InlineSimple.cpp revision e9bb2df410f7a22decad9a883f7139d5857c1520
1//===- MethodInlining.cpp - Code to perform method inlining ---------------===//
2//
3// This file implements inlining of methods.
4//
5// Specifically, this:
6//   * Exports functionality to inline any method call
7//   * Inlines methods that consist of a single basic block
8//   * Is able to inline ANY method call
9//   . Has a smart heuristic for when to inline a method
10//
11// Notice that:
12//   * This pass has a habit of introducing duplicated constant pool entries,
13//     and also opens up a lot of opportunities for constant propogation.  It is
14//     a good idea to to run a constant propogation pass, then a DCE pass
15//     sometime after running this pass.
16//
17// TODO: Currently this throws away all of the symbol names in the method being
18//       inlined to try to avoid name clashes.  Use a name if it's not taken
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Optimizations/MethodInlining.h"
23#include "llvm/Module.h"
24#include "llvm/Method.h"
25#include "llvm/iTerminators.h"
26#include "llvm/iPHINode.h"
27#include "llvm/iOther.h"
28#include <algorithm>
29#include <map>
30
31#include "llvm/Assembly/Writer.h"
32
33using namespace opt;
34
35// RemapInstruction - Convert the instruction operands from referencing the
36// current values into those specified by ValueMap.
37//
38static inline void RemapInstruction(Instruction *I,
39				    map<const Value *, Value*> &ValueMap) {
40
41  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
42    const Value *Op = I->getOperand(op);
43    Value *V = ValueMap[Op];
44    if (!V && (isa<GlobalValue>(Op) || isa<Constant>(Op)))
45      continue;  // Globals and constants don't get relocated
46
47    if (!V) {
48      cerr << "Val = " << endl << Op << "Addr = " << (void*)Op << endl;
49      cerr << "Inst = " << I;
50    }
51    assert(V && "Referenced value not in value map!");
52    I->setOperand(op, V);
53  }
54}
55
56// InlineMethod - This function forcibly inlines the called method into the
57// basic block of the caller.  This returns false if it is not possible to
58// inline this call.  The program is still in a well defined state if this
59// occurs though.
60//
61// Note that this only does one level of inlining.  For example, if the
62// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
63// exists in the instruction stream.  Similiarly this will inline a recursive
64// method by one level.
65//
66bool opt::InlineMethod(BasicBlock::iterator CIIt) {
67  assert(isa<CallInst>(*CIIt) && "InlineMethod only works on CallInst nodes!");
68  assert((*CIIt)->getParent() && "Instruction not embedded in basic block!");
69  assert((*CIIt)->getParent()->getParent() && "Instruction not in method!");
70
71  CallInst *CI = cast<CallInst>(*CIIt);
72  const Method *CalledMeth = CI->getCalledMethod();
73  if (CalledMeth == 0 ||   // Can't inline external method or indirect call!
74      CalledMeth->isExternal()) return false;
75  Method *CurrentMeth = CI->getParent()->getParent();
76
77  //cerr << "Inlining " << CalledMeth->getName() << " into "
78  //     << CurrentMeth->getName() << endl;
79
80  BasicBlock *OrigBB = CI->getParent();
81
82  // Call splitBasicBlock - The original basic block now ends at the instruction
83  // immediately before the call.  The original basic block now ends with an
84  // unconditional branch to NewBB, and NewBB starts with the call instruction.
85  //
86  BasicBlock *NewBB = OrigBB->splitBasicBlock(CIIt);
87
88  // Remove (unlink) the CallInst from the start of the new basic block.
89  NewBB->getInstList().remove(CI);
90
91  // If we have a return value generated by this call, convert it into a PHI
92  // node that gets values from each of the old RET instructions in the original
93  // method.
94  //
95  PHINode *PHI = 0;
96  if (CalledMeth->getReturnType() != Type::VoidTy) {
97    PHI = new PHINode(CalledMeth->getReturnType(), CI->getName());
98
99    // The PHI node should go at the front of the new basic block to merge all
100    // possible incoming values.
101    //
102    NewBB->getInstList().push_front(PHI);
103
104    // Anything that used the result of the function call should now use the PHI
105    // node as their operand.
106    //
107    CI->replaceAllUsesWith(PHI);
108  }
109
110  // Keep a mapping between the original method's values and the new duplicated
111  // code's values.  This includes all of: Method arguments, instruction values,
112  // constant pool entries, and basic blocks.
113  //
114  map<const Value *, Value*> ValueMap;
115
116  // Add the method arguments to the mapping: (start counting at 1 to skip the
117  // method reference itself)
118  //
119  Method::ArgumentListType::const_iterator PTI =
120    CalledMeth->getArgumentList().begin();
121  for (unsigned a = 1, E = CI->getNumOperands(); a != E; ++a, ++PTI)
122    ValueMap[*PTI] = CI->getOperand(a);
123
124  ValueMap[NewBB] = NewBB;  // Returns get converted to reference NewBB
125
126  // Loop over all of the basic blocks in the method, inlining them as
127  // appropriate.  Keep track of the first basic block of the method...
128  //
129  for (Method::const_iterator BI = CalledMeth->begin();
130       BI != CalledMeth->end(); ++BI) {
131    const BasicBlock *BB = *BI;
132    assert(BB->getTerminator() && "BasicBlock doesn't have terminator!?!?");
133
134    // Create a new basic block to copy instructions into!
135    BasicBlock *IBB = new BasicBlock("", NewBB->getParent());
136
137    ValueMap[BB] = IBB;                       // Add basic block mapping.
138
139    // Make sure to capture the mapping that a return will use...
140    // TODO: This assumes that the RET is returning a value computed in the same
141    //       basic block as the return was issued from!
142    //
143    const TerminatorInst *TI = BB->getTerminator();
144
145    // Loop over all instructions copying them over...
146    Instruction *NewInst;
147    for (BasicBlock::const_iterator II = BB->begin();
148	 II != (BB->end()-1); ++II) {
149      IBB->getInstList().push_back((NewInst = (*II)->clone()));
150      ValueMap[*II] = NewInst;                  // Add instruction map to value.
151    }
152
153    // Copy over the terminator now...
154    switch (TI->getOpcode()) {
155    case Instruction::Ret: {
156      const ReturnInst *RI = cast<const ReturnInst>(TI);
157
158      if (PHI) {   // The PHI node should include this value!
159	assert(RI->getReturnValue() && "Ret should have value!");
160	assert(RI->getReturnValue()->getType() == PHI->getType() &&
161	       "Ret value not consistent in method!");
162	PHI->addIncoming((Value*)RI->getReturnValue(), cast<BasicBlock>(BB));
163      }
164
165      // Add a branch to the code that was after the original Call.
166      IBB->getInstList().push_back(new BranchInst(NewBB));
167      break;
168    }
169    case Instruction::Br:
170      IBB->getInstList().push_back(TI->clone());
171      break;
172
173    default:
174      cerr << "MethodInlining: Don't know how to handle terminator: " << TI;
175      abort();
176    }
177  }
178
179
180  // Loop over all of the instructions in the method, fixing up operand
181  // references as we go.  This uses ValueMap to do all the hard work.
182  //
183  for (Method::const_iterator BI = CalledMeth->begin();
184       BI != CalledMeth->end(); ++BI) {
185    const BasicBlock *BB = *BI;
186    BasicBlock *NBB = (BasicBlock*)ValueMap[BB];
187
188    // Loop over all instructions, fixing each one as we find it...
189    //
190    for (BasicBlock::iterator II = NBB->begin(); II != NBB->end(); II++)
191      RemapInstruction(*II, ValueMap);
192  }
193
194  if (PHI) RemapInstruction(PHI, ValueMap);  // Fix the PHI node also...
195
196  // Change the branch that used to go to NewBB to branch to the first basic
197  // block of the inlined method.
198  //
199  TerminatorInst *Br = OrigBB->getTerminator();
200  assert(Br && Br->getOpcode() == Instruction::Br &&
201	 "splitBasicBlock broken!");
202  Br->setOperand(0, ValueMap[CalledMeth->front()]);
203
204  // Since we are now done with the CallInst, we can finally delete it.
205  delete CI;
206  return true;
207}
208
209bool opt::InlineMethod(CallInst *CI) {
210  assert(CI->getParent() && "CallInst not embeded in BasicBlock!");
211  BasicBlock *PBB = CI->getParent();
212
213  BasicBlock::iterator CallIt = find(PBB->begin(), PBB->end(), CI);
214
215  assert(CallIt != PBB->end() &&
216	 "CallInst has parent that doesn't contain CallInst?!?");
217  return InlineMethod(CallIt);
218}
219
220static inline bool ShouldInlineMethod(const CallInst *CI, const Method *M) {
221  assert(CI->getParent() && CI->getParent()->getParent() &&
222	 "Call not embedded into a method!");
223
224  // Don't inline a recursive call.
225  if (CI->getParent()->getParent() == M) return false;
226
227  // Don't inline something too big.  This is a really crappy heuristic
228  if (M->size() > 3) return false;
229
230  // Don't inline into something too big. This is a **really** crappy heuristic
231  if (CI->getParent()->getParent()->size() > 10) return false;
232
233  // Go ahead and try just about anything else.
234  return true;
235}
236
237
238static inline bool DoMethodInlining(BasicBlock *BB) {
239  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
240    if (CallInst *CI = dyn_cast<CallInst>(*I)) {
241      // Check to see if we should inline this method
242      Method *M = CI->getCalledMethod();
243      if (M && ShouldInlineMethod(CI, M))
244	return InlineMethod(I);
245    }
246  }
247  return false;
248}
249
250bool opt::MethodInlining::doMethodInlining(Method *M) {
251  bool Changed = false;
252
253  // Loop through now and inline instructions a basic block at a time...
254  for (Method::iterator I = M->begin(); I != M->end(); )
255    if (DoMethodInlining(*I)) {
256      Changed = true;
257      // Iterator is now invalidated by new basic blocks inserted
258      I = M->begin();
259    } else {
260      ++I;
261    }
262
263  return Changed;
264}
265