1//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass looks for equivalent functions that are mergable and folds them.
11//
12// Order relation is defined on set of functions. It was made through
13// special function comparison procedure that returns
14// 0 when functions are equal,
15// -1 when Left function is less than right function, and
16// 1 for opposite case. We need total-ordering, so we need to maintain
17// four properties on the functions set:
18// a <= a (reflexivity)
19// if a <= b and b <= a then a = b (antisymmetry)
20// if a <= b and b <= c then a <= c (transitivity).
21// for all a and b: a <= b or b <= a (totality).
22//
23// Comparison iterates through each instruction in each basic block.
24// Functions are kept on binary tree. For each new function F we perform
25// lookup in binary tree.
26// In practice it works the following way:
27// -- We define Function* container class with custom "operator<" (FunctionPtr).
28// -- "FunctionPtr" instances are stored in std::set collection, so every
29//    std::set::insert operation will give you result in log(N) time.
30//
31// When a match is found the functions are folded. If both functions are
32// overridable, we move the functionality into a new internal function and
33// leave two overridable thunks to it.
34//
35//===----------------------------------------------------------------------===//
36//
37// Future work:
38//
39// * virtual functions.
40//
41// Many functions have their address taken by the virtual function table for
42// the object they belong to. However, as long as it's only used for a lookup
43// and call, this is irrelevant, and we'd like to fold such functions.
44//
45// * be smarter about bitcasts.
46//
47// In order to fold functions, we will sometimes add either bitcast instructions
48// or bitcast constant expressions. Unfortunately, this can confound further
49// analysis since the two functions differ where one has a bitcast and the
50// other doesn't. We should learn to look through bitcasts.
51//
52// * Compare complex types with pointer types inside.
53// * Compare cross-reference cases.
54// * Compare complex expressions.
55//
56// All the three issues above could be described as ability to prove that
57// fA == fB == fC == fE == fF == fG in example below:
58//
59//  void fA() {
60//    fB();
61//  }
62//  void fB() {
63//    fA();
64//  }
65//
66//  void fE() {
67//    fF();
68//  }
69//  void fF() {
70//    fG();
71//  }
72//  void fG() {
73//    fE();
74//  }
75//
76// Simplest cross-reference case (fA <--> fB) was implemented in previous
77// versions of MergeFunctions, though it presented only in two function pairs
78// in test-suite (that counts >50k functions)
79// Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A)
80// could cover much more cases.
81//
82//===----------------------------------------------------------------------===//
83
84#include "llvm/Transforms/IPO.h"
85#include "llvm/ADT/DenseSet.h"
86#include "llvm/ADT/FoldingSet.h"
87#include "llvm/ADT/STLExtras.h"
88#include "llvm/ADT/SmallSet.h"
89#include "llvm/ADT/Statistic.h"
90#include "llvm/IR/CallSite.h"
91#include "llvm/IR/Constants.h"
92#include "llvm/IR/DataLayout.h"
93#include "llvm/IR/IRBuilder.h"
94#include "llvm/IR/InlineAsm.h"
95#include "llvm/IR/Instructions.h"
96#include "llvm/IR/LLVMContext.h"
97#include "llvm/IR/Module.h"
98#include "llvm/IR/Operator.h"
99#include "llvm/IR/ValueHandle.h"
100#include "llvm/Pass.h"
101#include "llvm/Support/CommandLine.h"
102#include "llvm/Support/Debug.h"
103#include "llvm/Support/ErrorHandling.h"
104#include "llvm/Support/raw_ostream.h"
105#include <vector>
106using namespace llvm;
107
108#define DEBUG_TYPE "mergefunc"
109
110STATISTIC(NumFunctionsMerged, "Number of functions merged");
111STATISTIC(NumThunksWritten, "Number of thunks generated");
112STATISTIC(NumAliasesWritten, "Number of aliases generated");
113STATISTIC(NumDoubleWeak, "Number of new functions created");
114
115static cl::opt<unsigned> NumFunctionsForSanityCheck(
116    "mergefunc-sanity",
117    cl::desc("How many functions in module could be used for "
118             "MergeFunctions pass sanity check. "
119             "'0' disables this check. Works only with '-debug' key."),
120    cl::init(0), cl::Hidden);
121
122namespace {
123
124/// FunctionComparator - Compares two functions to determine whether or not
125/// they will generate machine code with the same behaviour. DataLayout is
126/// used if available. The comparator always fails conservatively (erring on the
127/// side of claiming that two functions are different).
128class FunctionComparator {
129public:
130  FunctionComparator(const DataLayout *DL, const Function *F1,
131                     const Function *F2)
132      : FnL(F1), FnR(F2), DL(DL) {}
133
134  /// Test whether the two functions have equivalent behaviour.
135  int compare();
136
137private:
138  /// Test whether two basic blocks have equivalent behaviour.
139  int compare(const BasicBlock *BBL, const BasicBlock *BBR);
140
141  /// Constants comparison.
142  /// Its analog to lexicographical comparison between hypothetical numbers
143  /// of next format:
144  /// <bitcastability-trait><raw-bit-contents>
145  ///
146  /// 1. Bitcastability.
147  /// Check whether L's type could be losslessly bitcasted to R's type.
148  /// On this stage method, in case when lossless bitcast is not possible
149  /// method returns -1 or 1, thus also defining which type is greater in
150  /// context of bitcastability.
151  /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight
152  ///          to the contents comparison.
153  ///          If types differ, remember types comparison result and check
154  ///          whether we still can bitcast types.
155  /// Stage 1: Types that satisfies isFirstClassType conditions are always
156  ///          greater then others.
157  /// Stage 2: Vector is greater then non-vector.
158  ///          If both types are vectors, then vector with greater bitwidth is
159  ///          greater.
160  ///          If both types are vectors with the same bitwidth, then types
161  ///          are bitcastable, and we can skip other stages, and go to contents
162  ///          comparison.
163  /// Stage 3: Pointer types are greater than non-pointers. If both types are
164  ///          pointers of the same address space - go to contents comparison.
165  ///          Different address spaces: pointer with greater address space is
166  ///          greater.
167  /// Stage 4: Types are neither vectors, nor pointers. And they differ.
168  ///          We don't know how to bitcast them. So, we better don't do it,
169  ///          and return types comparison result (so it determines the
170  ///          relationship among constants we don't know how to bitcast).
171  ///
172  /// Just for clearance, let's see how the set of constants could look
173  /// on single dimension axis:
174  ///
175  /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
176  /// Where: NFCT - Not a FirstClassType
177  ///        FCT - FirstClassTyp:
178  ///
179  /// 2. Compare raw contents.
180  /// It ignores types on this stage and only compares bits from L and R.
181  /// Returns 0, if L and R has equivalent contents.
182  /// -1 or 1 if values are different.
183  /// Pretty trivial:
184  /// 2.1. If contents are numbers, compare numbers.
185  ///    Ints with greater bitwidth are greater. Ints with same bitwidths
186  ///    compared by their contents.
187  /// 2.2. "And so on". Just to avoid discrepancies with comments
188  /// perhaps it would be better to read the implementation itself.
189  /// 3. And again about overall picture. Let's look back at how the ordered set
190  /// of constants will look like:
191  /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
192  ///
193  /// Now look, what could be inside [FCT, "others"], for example:
194  /// [FCT, "others"] =
195  /// [
196  ///   [double 0.1], [double 1.23],
197  ///   [i32 1], [i32 2],
198  ///   { double 1.0 },       ; StructTyID, NumElements = 1
199  ///   { i32 1 },            ; StructTyID, NumElements = 1
200  ///   { double 1, i32 1 },  ; StructTyID, NumElements = 2
201  ///   { i32 1, double 1 }   ; StructTyID, NumElements = 2
202  /// ]
203  ///
204  /// Let's explain the order. Float numbers will be less than integers, just
205  /// because of cmpType terms: FloatTyID < IntegerTyID.
206  /// Floats (with same fltSemantics) are sorted according to their value.
207  /// Then you can see integers, and they are, like a floats,
208  /// could be easy sorted among each others.
209  /// The structures. Structures are grouped at the tail, again because of their
210  /// TypeID: StructTyID > IntegerTyID > FloatTyID.
211  /// Structures with greater number of elements are greater. Structures with
212  /// greater elements going first are greater.
213  /// The same logic with vectors, arrays and other possible complex types.
214  ///
215  /// Bitcastable constants.
216  /// Let's assume, that some constant, belongs to some group of
217  /// "so-called-equal" values with different types, and at the same time
218  /// belongs to another group of constants with equal types
219  /// and "really" equal values.
220  ///
221  /// Now, prove that this is impossible:
222  ///
223  /// If constant A with type TyA is bitcastable to B with type TyB, then:
224  /// 1. All constants with equal types to TyA, are bitcastable to B. Since
225  ///    those should be vectors (if TyA is vector), pointers
226  ///    (if TyA is pointer), or else (if TyA equal to TyB), those types should
227  ///    be equal to TyB.
228  /// 2. All constants with non-equal, but bitcastable types to TyA, are
229  ///    bitcastable to B.
230  ///    Once again, just because we allow it to vectors and pointers only.
231  ///    This statement could be expanded as below:
232  /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to
233  ///      vector B, and thus bitcastable to B as well.
234  /// 2.2. All pointers of the same address space, no matter what they point to,
235  ///      bitcastable. So if C is pointer, it could be bitcasted to A and to B.
236  /// So any constant equal or bitcastable to A is equal or bitcastable to B.
237  /// QED.
238  ///
239  /// In another words, for pointers and vectors, we ignore top-level type and
240  /// look at their particular properties (bit-width for vectors, and
241  /// address space for pointers).
242  /// If these properties are equal - compare their contents.
243  int cmpConstants(const Constant *L, const Constant *R);
244
245  /// Assign or look up previously assigned numbers for the two values, and
246  /// return whether the numbers are equal. Numbers are assigned in the order
247  /// visited.
248  /// Comparison order:
249  /// Stage 0: Value that is function itself is always greater then others.
250  ///          If left and right values are references to their functions, then
251  ///          they are equal.
252  /// Stage 1: Constants are greater than non-constants.
253  ///          If both left and right are constants, then the result of
254  ///          cmpConstants is used as cmpValues result.
255  /// Stage 2: InlineAsm instances are greater than others. If both left and
256  ///          right are InlineAsm instances, InlineAsm* pointers casted to
257  ///          integers and compared as numbers.
258  /// Stage 3: For all other cases we compare order we meet these values in
259  ///          their functions. If right value was met first during scanning,
260  ///          then left value is greater.
261  ///          In another words, we compare serial numbers, for more details
262  ///          see comments for sn_mapL and sn_mapR.
263  int cmpValues(const Value *L, const Value *R);
264
265  /// Compare two Instructions for equivalence, similar to
266  /// Instruction::isSameOperationAs but with modifications to the type
267  /// comparison.
268  /// Stages are listed in "most significant stage first" order:
269  /// On each stage below, we do comparison between some left and right
270  /// operation parts. If parts are non-equal, we assign parts comparison
271  /// result to the operation comparison result and exit from method.
272  /// Otherwise we proceed to the next stage.
273  /// Stages:
274  /// 1. Operations opcodes. Compared as numbers.
275  /// 2. Number of operands.
276  /// 3. Operation types. Compared with cmpType method.
277  /// 4. Compare operation subclass optional data as stream of bytes:
278  /// just convert it to integers and call cmpNumbers.
279  /// 5. Compare in operation operand types with cmpType in
280  /// most significant operand first order.
281  /// 6. Last stage. Check operations for some specific attributes.
282  /// For example, for Load it would be:
283  /// 6.1.Load: volatile (as boolean flag)
284  /// 6.2.Load: alignment (as integer numbers)
285  /// 6.3.Load: synch-scope (as integer numbers)
286  /// 6.4.Load: range metadata (as integer numbers)
287  /// On this stage its better to see the code, since its not more than 10-15
288  /// strings for particular instruction, and could change sometimes.
289  int cmpOperation(const Instruction *L, const Instruction *R) const;
290
291  /// Compare two GEPs for equivalent pointer arithmetic.
292  /// Parts to be compared for each comparison stage,
293  /// most significant stage first:
294  /// 1. Address space. As numbers.
295  /// 2. Constant offset, (if "DataLayout *DL" field is not NULL,
296  /// using GEPOperator::accumulateConstantOffset method).
297  /// 3. Pointer operand type (using cmpType method).
298  /// 4. Number of operands.
299  /// 5. Compare operands, using cmpValues method.
300  int cmpGEP(const GEPOperator *GEPL, const GEPOperator *GEPR);
301  int cmpGEP(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) {
302    return cmpGEP(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
303  }
304
305  /// cmpType - compares two types,
306  /// defines total ordering among the types set.
307  ///
308  /// Return values:
309  /// 0 if types are equal,
310  /// -1 if Left is less than Right,
311  /// +1 if Left is greater than Right.
312  ///
313  /// Description:
314  /// Comparison is broken onto stages. Like in lexicographical comparison
315  /// stage coming first has higher priority.
316  /// On each explanation stage keep in mind total ordering properties.
317  ///
318  /// 0. Before comparison we coerce pointer types of 0 address space to
319  /// integer.
320  /// We also don't bother with same type at left and right, so
321  /// just return 0 in this case.
322  ///
323  /// 1. If types are of different kind (different type IDs).
324  ///    Return result of type IDs comparison, treating them as numbers.
325  /// 2. If types are vectors or integers, compare Type* values as numbers.
326  /// 3. Types has same ID, so check whether they belongs to the next group:
327  /// * Void
328  /// * Float
329  /// * Double
330  /// * X86_FP80
331  /// * FP128
332  /// * PPC_FP128
333  /// * Label
334  /// * Metadata
335  /// If so - return 0, yes - we can treat these types as equal only because
336  /// their IDs are same.
337  /// 4. If Left and Right are pointers, return result of address space
338  /// comparison (numbers comparison). We can treat pointer types of same
339  /// address space as equal.
340  /// 5. If types are complex.
341  /// Then both Left and Right are to be expanded and their element types will
342  /// be checked with the same way. If we get Res != 0 on some stage, return it.
343  /// Otherwise return 0.
344  /// 6. For all other cases put llvm_unreachable.
345  int cmpType(Type *TyL, Type *TyR) const;
346
347  int cmpNumbers(uint64_t L, uint64_t R) const;
348
349  int cmpAPInt(const APInt &L, const APInt &R) const;
350  int cmpAPFloat(const APFloat &L, const APFloat &R) const;
351  int cmpStrings(StringRef L, StringRef R) const;
352  int cmpAttrs(const AttributeSet L, const AttributeSet R) const;
353
354  // The two functions undergoing comparison.
355  const Function *FnL, *FnR;
356
357  const DataLayout *DL;
358
359  /// Assign serial numbers to values from left function, and values from
360  /// right function.
361  /// Explanation:
362  /// Being comparing functions we need to compare values we meet at left and
363  /// right sides.
364  /// Its easy to sort things out for external values. It just should be
365  /// the same value at left and right.
366  /// But for local values (those were introduced inside function body)
367  /// we have to ensure they were introduced at exactly the same place,
368  /// and plays the same role.
369  /// Let's assign serial number to each value when we meet it first time.
370  /// Values that were met at same place will be with same serial numbers.
371  /// In this case it would be good to explain few points about values assigned
372  /// to BBs and other ways of implementation (see below).
373  ///
374  /// 1. Safety of BB reordering.
375  /// It's safe to change the order of BasicBlocks in function.
376  /// Relationship with other functions and serial numbering will not be
377  /// changed in this case.
378  /// As follows from FunctionComparator::compare(), we do CFG walk: we start
379  /// from the entry, and then take each terminator. So it doesn't matter how in
380  /// fact BBs are ordered in function. And since cmpValues are called during
381  /// this walk, the numbering depends only on how BBs located inside the CFG.
382  /// So the answer is - yes. We will get the same numbering.
383  ///
384  /// 2. Impossibility to use dominance properties of values.
385  /// If we compare two instruction operands: first is usage of local
386  /// variable AL from function FL, and second is usage of local variable AR
387  /// from FR, we could compare their origins and check whether they are
388  /// defined at the same place.
389  /// But, we are still not able to compare operands of PHI nodes, since those
390  /// could be operands from further BBs we didn't scan yet.
391  /// So it's impossible to use dominance properties in general.
392  DenseMap<const Value*, int> sn_mapL, sn_mapR;
393};
394
395class FunctionPtr {
396  AssertingVH<Function> F;
397  const DataLayout *DL;
398
399public:
400  FunctionPtr(Function *F, const DataLayout *DL) : F(F), DL(DL) {}
401  Function *getFunc() const { return F; }
402  void release() { F = 0; }
403  bool operator<(const FunctionPtr &RHS) const {
404    return (FunctionComparator(DL, F, RHS.getFunc()).compare()) == -1;
405  }
406};
407}
408
409int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
410  if (L < R) return -1;
411  if (L > R) return 1;
412  return 0;
413}
414
415int FunctionComparator::cmpAPInt(const APInt &L, const APInt &R) const {
416  if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
417    return Res;
418  if (L.ugt(R)) return 1;
419  if (R.ugt(L)) return -1;
420  return 0;
421}
422
423int FunctionComparator::cmpAPFloat(const APFloat &L, const APFloat &R) const {
424  if (int Res = cmpNumbers((uint64_t)&L.getSemantics(),
425                           (uint64_t)&R.getSemantics()))
426    return Res;
427  return cmpAPInt(L.bitcastToAPInt(), R.bitcastToAPInt());
428}
429
430int FunctionComparator::cmpStrings(StringRef L, StringRef R) const {
431  // Prevent heavy comparison, compare sizes first.
432  if (int Res = cmpNumbers(L.size(), R.size()))
433    return Res;
434
435  // Compare strings lexicographically only when it is necessary: only when
436  // strings are equal in size.
437  return L.compare(R);
438}
439
440int FunctionComparator::cmpAttrs(const AttributeSet L,
441                                 const AttributeSet R) const {
442  if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots()))
443    return Res;
444
445  for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) {
446    AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i),
447                           RE = R.end(i);
448    for (; LI != LE && RI != RE; ++LI, ++RI) {
449      Attribute LA = *LI;
450      Attribute RA = *RI;
451      if (LA < RA)
452        return -1;
453      if (RA < LA)
454        return 1;
455    }
456    if (LI != LE)
457      return 1;
458    if (RI != RE)
459      return -1;
460  }
461  return 0;
462}
463
464/// Constants comparison:
465/// 1. Check whether type of L constant could be losslessly bitcasted to R
466/// type.
467/// 2. Compare constant contents.
468/// For more details see declaration comments.
469int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) {
470
471  Type *TyL = L->getType();
472  Type *TyR = R->getType();
473
474  // Check whether types are bitcastable. This part is just re-factored
475  // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
476  // we also pack into result which type is "less" for us.
477  int TypesRes = cmpType(TyL, TyR);
478  if (TypesRes != 0) {
479    // Types are different, but check whether we can bitcast them.
480    if (!TyL->isFirstClassType()) {
481      if (TyR->isFirstClassType())
482        return -1;
483      // Neither TyL nor TyR are values of first class type. Return the result
484      // of comparing the types
485      return TypesRes;
486    }
487    if (!TyR->isFirstClassType()) {
488      if (TyL->isFirstClassType())
489        return 1;
490      return TypesRes;
491    }
492
493    // Vector -> Vector conversions are always lossless if the two vector types
494    // have the same size, otherwise not.
495    unsigned TyLWidth = 0;
496    unsigned TyRWidth = 0;
497
498    if (const VectorType *VecTyL = dyn_cast<VectorType>(TyL))
499      TyLWidth = VecTyL->getBitWidth();
500    if (const VectorType *VecTyR = dyn_cast<VectorType>(TyR))
501      TyRWidth = VecTyR->getBitWidth();
502
503    if (TyLWidth != TyRWidth)
504      return cmpNumbers(TyLWidth, TyRWidth);
505
506    // Zero bit-width means neither TyL nor TyR are vectors.
507    if (!TyLWidth) {
508      PointerType *PTyL = dyn_cast<PointerType>(TyL);
509      PointerType *PTyR = dyn_cast<PointerType>(TyR);
510      if (PTyL && PTyR) {
511        unsigned AddrSpaceL = PTyL->getAddressSpace();
512        unsigned AddrSpaceR = PTyR->getAddressSpace();
513        if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
514          return Res;
515      }
516      if (PTyL)
517        return 1;
518      if (PTyR)
519        return -1;
520
521      // TyL and TyR aren't vectors, nor pointers. We don't know how to
522      // bitcast them.
523      return TypesRes;
524    }
525  }
526
527  // OK, types are bitcastable, now check constant contents.
528
529  if (L->isNullValue() && R->isNullValue())
530    return TypesRes;
531  if (L->isNullValue() && !R->isNullValue())
532    return 1;
533  if (!L->isNullValue() && R->isNullValue())
534    return -1;
535
536  if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
537    return Res;
538
539  switch (L->getValueID()) {
540  case Value::UndefValueVal: return TypesRes;
541  case Value::ConstantIntVal: {
542    const APInt &LInt = cast<ConstantInt>(L)->getValue();
543    const APInt &RInt = cast<ConstantInt>(R)->getValue();
544    return cmpAPInt(LInt, RInt);
545  }
546  case Value::ConstantFPVal: {
547    const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
548    const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
549    return cmpAPFloat(LAPF, RAPF);
550  }
551  case Value::ConstantArrayVal: {
552    const ConstantArray *LA = cast<ConstantArray>(L);
553    const ConstantArray *RA = cast<ConstantArray>(R);
554    uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
555    uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
556    if (int Res = cmpNumbers(NumElementsL, NumElementsR))
557      return Res;
558    for (uint64_t i = 0; i < NumElementsL; ++i) {
559      if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
560                                 cast<Constant>(RA->getOperand(i))))
561        return Res;
562    }
563    return 0;
564  }
565  case Value::ConstantStructVal: {
566    const ConstantStruct *LS = cast<ConstantStruct>(L);
567    const ConstantStruct *RS = cast<ConstantStruct>(R);
568    unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
569    unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
570    if (int Res = cmpNumbers(NumElementsL, NumElementsR))
571      return Res;
572    for (unsigned i = 0; i != NumElementsL; ++i) {
573      if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
574                                 cast<Constant>(RS->getOperand(i))))
575        return Res;
576    }
577    return 0;
578  }
579  case Value::ConstantVectorVal: {
580    const ConstantVector *LV = cast<ConstantVector>(L);
581    const ConstantVector *RV = cast<ConstantVector>(R);
582    unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
583    unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
584    if (int Res = cmpNumbers(NumElementsL, NumElementsR))
585      return Res;
586    for (uint64_t i = 0; i < NumElementsL; ++i) {
587      if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
588                                 cast<Constant>(RV->getOperand(i))))
589        return Res;
590    }
591    return 0;
592  }
593  case Value::ConstantExprVal: {
594    const ConstantExpr *LE = cast<ConstantExpr>(L);
595    const ConstantExpr *RE = cast<ConstantExpr>(R);
596    unsigned NumOperandsL = LE->getNumOperands();
597    unsigned NumOperandsR = RE->getNumOperands();
598    if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
599      return Res;
600    for (unsigned i = 0; i < NumOperandsL; ++i) {
601      if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
602                                 cast<Constant>(RE->getOperand(i))))
603        return Res;
604    }
605    return 0;
606  }
607  case Value::FunctionVal:
608  case Value::GlobalVariableVal:
609  case Value::GlobalAliasVal:
610  default: // Unknown constant, cast L and R pointers to numbers and compare.
611    return cmpNumbers((uint64_t)L, (uint64_t)R);
612  }
613}
614
615/// cmpType - compares two types,
616/// defines total ordering among the types set.
617/// See method declaration comments for more details.
618int FunctionComparator::cmpType(Type *TyL, Type *TyR) const {
619
620  PointerType *PTyL = dyn_cast<PointerType>(TyL);
621  PointerType *PTyR = dyn_cast<PointerType>(TyR);
622
623  if (DL) {
624    if (PTyL && PTyL->getAddressSpace() == 0) TyL = DL->getIntPtrType(TyL);
625    if (PTyR && PTyR->getAddressSpace() == 0) TyR = DL->getIntPtrType(TyR);
626  }
627
628  if (TyL == TyR)
629    return 0;
630
631  if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
632    return Res;
633
634  switch (TyL->getTypeID()) {
635  default:
636    llvm_unreachable("Unknown type!");
637    // Fall through in Release mode.
638  case Type::IntegerTyID:
639  case Type::VectorTyID:
640    // TyL == TyR would have returned true earlier.
641    return cmpNumbers((uint64_t)TyL, (uint64_t)TyR);
642
643  case Type::VoidTyID:
644  case Type::FloatTyID:
645  case Type::DoubleTyID:
646  case Type::X86_FP80TyID:
647  case Type::FP128TyID:
648  case Type::PPC_FP128TyID:
649  case Type::LabelTyID:
650  case Type::MetadataTyID:
651    return 0;
652
653  case Type::PointerTyID: {
654    assert(PTyL && PTyR && "Both types must be pointers here.");
655    return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
656  }
657
658  case Type::StructTyID: {
659    StructType *STyL = cast<StructType>(TyL);
660    StructType *STyR = cast<StructType>(TyR);
661    if (STyL->getNumElements() != STyR->getNumElements())
662      return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
663
664    if (STyL->isPacked() != STyR->isPacked())
665      return cmpNumbers(STyL->isPacked(), STyR->isPacked());
666
667    for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
668      if (int Res = cmpType(STyL->getElementType(i),
669                            STyR->getElementType(i)))
670        return Res;
671    }
672    return 0;
673  }
674
675  case Type::FunctionTyID: {
676    FunctionType *FTyL = cast<FunctionType>(TyL);
677    FunctionType *FTyR = cast<FunctionType>(TyR);
678    if (FTyL->getNumParams() != FTyR->getNumParams())
679      return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
680
681    if (FTyL->isVarArg() != FTyR->isVarArg())
682      return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
683
684    if (int Res = cmpType(FTyL->getReturnType(), FTyR->getReturnType()))
685      return Res;
686
687    for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
688      if (int Res = cmpType(FTyL->getParamType(i), FTyR->getParamType(i)))
689        return Res;
690    }
691    return 0;
692  }
693
694  case Type::ArrayTyID: {
695    ArrayType *ATyL = cast<ArrayType>(TyL);
696    ArrayType *ATyR = cast<ArrayType>(TyR);
697    if (ATyL->getNumElements() != ATyR->getNumElements())
698      return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
699    return cmpType(ATyL->getElementType(), ATyR->getElementType());
700  }
701  }
702}
703
704// Determine whether the two operations are the same except that pointer-to-A
705// and pointer-to-B are equivalent. This should be kept in sync with
706// Instruction::isSameOperationAs.
707// Read method declaration comments for more details.
708int FunctionComparator::cmpOperation(const Instruction *L,
709                                     const Instruction *R) const {
710  // Differences from Instruction::isSameOperationAs:
711  //  * replace type comparison with calls to isEquivalentType.
712  //  * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
713  //  * because of the above, we don't test for the tail bit on calls later on
714  if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
715    return Res;
716
717  if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
718    return Res;
719
720  if (int Res = cmpType(L->getType(), R->getType()))
721    return Res;
722
723  if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
724                           R->getRawSubclassOptionalData()))
725    return Res;
726
727  // We have two instructions of identical opcode and #operands.  Check to see
728  // if all operands are the same type
729  for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
730    if (int Res =
731            cmpType(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
732      return Res;
733  }
734
735  // Check special state that is a part of some instructions.
736  if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
737    if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
738      return Res;
739    if (int Res =
740            cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
741      return Res;
742    if (int Res =
743            cmpNumbers(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
744      return Res;
745    if (int Res =
746            cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope()))
747      return Res;
748    return cmpNumbers((uint64_t)LI->getMetadata(LLVMContext::MD_range),
749                      (uint64_t)cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
750  }
751  if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
752    if (int Res =
753            cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
754      return Res;
755    if (int Res =
756            cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
757      return Res;
758    if (int Res =
759            cmpNumbers(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
760      return Res;
761    return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope());
762  }
763  if (const CmpInst *CI = dyn_cast<CmpInst>(L))
764    return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
765  if (const CallInst *CI = dyn_cast<CallInst>(L)) {
766    if (int Res = cmpNumbers(CI->getCallingConv(),
767                             cast<CallInst>(R)->getCallingConv()))
768      return Res;
769    return cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes());
770  }
771  if (const InvokeInst *CI = dyn_cast<InvokeInst>(L)) {
772    if (int Res = cmpNumbers(CI->getCallingConv(),
773                             cast<InvokeInst>(R)->getCallingConv()))
774      return Res;
775    return cmpAttrs(CI->getAttributes(), cast<InvokeInst>(R)->getAttributes());
776  }
777  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
778    ArrayRef<unsigned> LIndices = IVI->getIndices();
779    ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
780    if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
781      return Res;
782    for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
783      if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
784        return Res;
785    }
786  }
787  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
788    ArrayRef<unsigned> LIndices = EVI->getIndices();
789    ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
790    if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
791      return Res;
792    for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
793      if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
794        return Res;
795    }
796  }
797  if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
798    if (int Res =
799            cmpNumbers(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
800      return Res;
801    return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope());
802  }
803
804  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
805    if (int Res = cmpNumbers(CXI->isVolatile(),
806                             cast<AtomicCmpXchgInst>(R)->isVolatile()))
807      return Res;
808    if (int Res = cmpNumbers(CXI->isWeak(),
809                             cast<AtomicCmpXchgInst>(R)->isWeak()))
810      return Res;
811    if (int Res = cmpNumbers(CXI->getSuccessOrdering(),
812                             cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
813      return Res;
814    if (int Res = cmpNumbers(CXI->getFailureOrdering(),
815                             cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
816      return Res;
817    return cmpNumbers(CXI->getSynchScope(),
818                      cast<AtomicCmpXchgInst>(R)->getSynchScope());
819  }
820  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
821    if (int Res = cmpNumbers(RMWI->getOperation(),
822                             cast<AtomicRMWInst>(R)->getOperation()))
823      return Res;
824    if (int Res = cmpNumbers(RMWI->isVolatile(),
825                             cast<AtomicRMWInst>(R)->isVolatile()))
826      return Res;
827    if (int Res = cmpNumbers(RMWI->getOrdering(),
828                             cast<AtomicRMWInst>(R)->getOrdering()))
829      return Res;
830    return cmpNumbers(RMWI->getSynchScope(),
831                      cast<AtomicRMWInst>(R)->getSynchScope());
832  }
833  return 0;
834}
835
836// Determine whether two GEP operations perform the same underlying arithmetic.
837// Read method declaration comments for more details.
838int FunctionComparator::cmpGEP(const GEPOperator *GEPL,
839                               const GEPOperator *GEPR) {
840
841  unsigned int ASL = GEPL->getPointerAddressSpace();
842  unsigned int ASR = GEPR->getPointerAddressSpace();
843
844  if (int Res = cmpNumbers(ASL, ASR))
845    return Res;
846
847  // When we have target data, we can reduce the GEP down to the value in bytes
848  // added to the address.
849  if (DL) {
850    unsigned BitWidth = DL->getPointerSizeInBits(ASL);
851    APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
852    if (GEPL->accumulateConstantOffset(*DL, OffsetL) &&
853        GEPR->accumulateConstantOffset(*DL, OffsetR))
854      return cmpAPInt(OffsetL, OffsetR);
855  }
856
857  if (int Res = cmpNumbers((uint64_t)GEPL->getPointerOperand()->getType(),
858                           (uint64_t)GEPR->getPointerOperand()->getType()))
859    return Res;
860
861  if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
862    return Res;
863
864  for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
865    if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
866      return Res;
867  }
868
869  return 0;
870}
871
872/// Compare two values used by the two functions under pair-wise comparison. If
873/// this is the first time the values are seen, they're added to the mapping so
874/// that we will detect mismatches on next use.
875/// See comments in declaration for more details.
876int FunctionComparator::cmpValues(const Value *L, const Value *R) {
877  // Catch self-reference case.
878  if (L == FnL) {
879    if (R == FnR)
880      return 0;
881    return -1;
882  }
883  if (R == FnR) {
884    if (L == FnL)
885      return 0;
886    return 1;
887  }
888
889  const Constant *ConstL = dyn_cast<Constant>(L);
890  const Constant *ConstR = dyn_cast<Constant>(R);
891  if (ConstL && ConstR) {
892    if (L == R)
893      return 0;
894    return cmpConstants(ConstL, ConstR);
895  }
896
897  if (ConstL)
898    return 1;
899  if (ConstR)
900    return -1;
901
902  const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
903  const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
904
905  if (InlineAsmL && InlineAsmR)
906    return cmpNumbers((uint64_t)L, (uint64_t)R);
907  if (InlineAsmL)
908    return 1;
909  if (InlineAsmR)
910    return -1;
911
912  auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
913       RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
914
915  return cmpNumbers(LeftSN.first->second, RightSN.first->second);
916}
917// Test whether two basic blocks have equivalent behaviour.
918int FunctionComparator::compare(const BasicBlock *BBL, const BasicBlock *BBR) {
919  BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
920  BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
921
922  do {
923    if (int Res = cmpValues(InstL, InstR))
924      return Res;
925
926    const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL);
927    const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR);
928
929    if (GEPL && !GEPR)
930      return 1;
931    if (GEPR && !GEPL)
932      return -1;
933
934    if (GEPL && GEPR) {
935      if (int Res =
936              cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
937        return Res;
938      if (int Res = cmpGEP(GEPL, GEPR))
939        return Res;
940    } else {
941      if (int Res = cmpOperation(InstL, InstR))
942        return Res;
943      assert(InstL->getNumOperands() == InstR->getNumOperands());
944
945      for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
946        Value *OpL = InstL->getOperand(i);
947        Value *OpR = InstR->getOperand(i);
948        if (int Res = cmpValues(OpL, OpR))
949          return Res;
950        if (int Res = cmpNumbers(OpL->getValueID(), OpR->getValueID()))
951          return Res;
952        // TODO: Already checked in cmpOperation
953        if (int Res = cmpType(OpL->getType(), OpR->getType()))
954          return Res;
955      }
956    }
957
958    ++InstL, ++InstR;
959  } while (InstL != InstLE && InstR != InstRE);
960
961  if (InstL != InstLE && InstR == InstRE)
962    return 1;
963  if (InstL == InstLE && InstR != InstRE)
964    return -1;
965  return 0;
966}
967
968// Test whether the two functions have equivalent behaviour.
969int FunctionComparator::compare() {
970
971  sn_mapL.clear();
972  sn_mapR.clear();
973
974  if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
975    return Res;
976
977  if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
978    return Res;
979
980  if (FnL->hasGC()) {
981    if (int Res = cmpNumbers((uint64_t)FnL->getGC(), (uint64_t)FnR->getGC()))
982      return Res;
983  }
984
985  if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
986    return Res;
987
988  if (FnL->hasSection()) {
989    if (int Res = cmpStrings(FnL->getSection(), FnR->getSection()))
990      return Res;
991  }
992
993  if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
994    return Res;
995
996  // TODO: if it's internal and only used in direct calls, we could handle this
997  // case too.
998  if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
999    return Res;
1000
1001  if (int Res = cmpType(FnL->getFunctionType(), FnR->getFunctionType()))
1002    return Res;
1003
1004  assert(FnL->arg_size() == FnR->arg_size() &&
1005         "Identically typed functions have different numbers of args!");
1006
1007  // Visit the arguments so that they get enumerated in the order they're
1008  // passed in.
1009  for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
1010                                    ArgRI = FnR->arg_begin(),
1011                                    ArgLE = FnL->arg_end();
1012       ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
1013    if (cmpValues(ArgLI, ArgRI) != 0)
1014      llvm_unreachable("Arguments repeat!");
1015  }
1016
1017  // We do a CFG-ordered walk since the actual ordering of the blocks in the
1018  // linked list is immaterial. Our walk starts at the entry block for both
1019  // functions, then takes each block from each terminator in order. As an
1020  // artifact, this also means that unreachable blocks are ignored.
1021  SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
1022  SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
1023
1024  FnLBBs.push_back(&FnL->getEntryBlock());
1025  FnRBBs.push_back(&FnR->getEntryBlock());
1026
1027  VisitedBBs.insert(FnLBBs[0]);
1028  while (!FnLBBs.empty()) {
1029    const BasicBlock *BBL = FnLBBs.pop_back_val();
1030    const BasicBlock *BBR = FnRBBs.pop_back_val();
1031
1032    if (int Res = cmpValues(BBL, BBR))
1033      return Res;
1034
1035    if (int Res = compare(BBL, BBR))
1036      return Res;
1037
1038    const TerminatorInst *TermL = BBL->getTerminator();
1039    const TerminatorInst *TermR = BBR->getTerminator();
1040
1041    assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
1042    for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
1043      if (!VisitedBBs.insert(TermL->getSuccessor(i)))
1044        continue;
1045
1046      FnLBBs.push_back(TermL->getSuccessor(i));
1047      FnRBBs.push_back(TermR->getSuccessor(i));
1048    }
1049  }
1050  return 0;
1051}
1052
1053namespace {
1054
1055/// MergeFunctions finds functions which will generate identical machine code,
1056/// by considering all pointer types to be equivalent. Once identified,
1057/// MergeFunctions will fold them by replacing a call to one to a call to a
1058/// bitcast of the other.
1059///
1060class MergeFunctions : public ModulePass {
1061public:
1062  static char ID;
1063  MergeFunctions()
1064    : ModulePass(ID), HasGlobalAliases(false) {
1065    initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
1066  }
1067
1068  bool runOnModule(Module &M) override;
1069
1070private:
1071  typedef std::set<FunctionPtr> FnTreeType;
1072
1073  /// A work queue of functions that may have been modified and should be
1074  /// analyzed again.
1075  std::vector<WeakVH> Deferred;
1076
1077  /// Checks the rules of order relation introduced among functions set.
1078  /// Returns true, if sanity check has been passed, and false if failed.
1079  bool doSanityCheck(std::vector<WeakVH> &Worklist);
1080
1081  /// Insert a ComparableFunction into the FnTree, or merge it away if it's
1082  /// equal to one that's already present.
1083  bool insert(Function *NewFunction);
1084
1085  /// Remove a Function from the FnTree and queue it up for a second sweep of
1086  /// analysis.
1087  void remove(Function *F);
1088
1089  /// Find the functions that use this Value and remove them from FnTree and
1090  /// queue the functions.
1091  void removeUsers(Value *V);
1092
1093  /// Replace all direct calls of Old with calls of New. Will bitcast New if
1094  /// necessary to make types match.
1095  void replaceDirectCallers(Function *Old, Function *New);
1096
1097  /// Merge two equivalent functions. Upon completion, G may be deleted, or may
1098  /// be converted into a thunk. In either case, it should never be visited
1099  /// again.
1100  void mergeTwoFunctions(Function *F, Function *G);
1101
1102  /// Replace G with a thunk or an alias to F. Deletes G.
1103  void writeThunkOrAlias(Function *F, Function *G);
1104
1105  /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
1106  /// of G with bitcast(F). Deletes G.
1107  void writeThunk(Function *F, Function *G);
1108
1109  /// Replace G with an alias to F. Deletes G.
1110  void writeAlias(Function *F, Function *G);
1111
1112  /// The set of all distinct functions. Use the insert() and remove() methods
1113  /// to modify it.
1114  FnTreeType FnTree;
1115
1116  /// DataLayout for more accurate GEP comparisons. May be NULL.
1117  const DataLayout *DL;
1118
1119  /// Whether or not the target supports global aliases.
1120  bool HasGlobalAliases;
1121};
1122
1123}  // end anonymous namespace
1124
1125char MergeFunctions::ID = 0;
1126INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
1127
1128ModulePass *llvm::createMergeFunctionsPass() {
1129  return new MergeFunctions();
1130}
1131
1132bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) {
1133  if (const unsigned Max = NumFunctionsForSanityCheck) {
1134    unsigned TripleNumber = 0;
1135    bool Valid = true;
1136
1137    dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n";
1138
1139    unsigned i = 0;
1140    for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end();
1141         I != E && i < Max; ++I, ++i) {
1142      unsigned j = i;
1143      for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) {
1144        Function *F1 = cast<Function>(*I);
1145        Function *F2 = cast<Function>(*J);
1146        int Res1 = FunctionComparator(DL, F1, F2).compare();
1147        int Res2 = FunctionComparator(DL, F2, F1).compare();
1148
1149        // If F1 <= F2, then F2 >= F1, otherwise report failure.
1150        if (Res1 != -Res2) {
1151          dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber
1152                 << "\n";
1153          F1->dump();
1154          F2->dump();
1155          Valid = false;
1156        }
1157
1158        if (Res1 == 0)
1159          continue;
1160
1161        unsigned k = j;
1162        for (std::vector<WeakVH>::iterator K = J; K != E && k < Max;
1163             ++k, ++K, ++TripleNumber) {
1164          if (K == J)
1165            continue;
1166
1167          Function *F3 = cast<Function>(*K);
1168          int Res3 = FunctionComparator(DL, F1, F3).compare();
1169          int Res4 = FunctionComparator(DL, F2, F3).compare();
1170
1171          bool Transitive = true;
1172
1173          if (Res1 != 0 && Res1 == Res4) {
1174            // F1 > F2, F2 > F3 => F1 > F3
1175            Transitive = Res3 == Res1;
1176          } else if (Res3 != 0 && Res3 == -Res4) {
1177            // F1 > F3, F3 > F2 => F1 > F2
1178            Transitive = Res3 == Res1;
1179          } else if (Res4 != 0 && -Res3 == Res4) {
1180            // F2 > F3, F3 > F1 => F2 > F1
1181            Transitive = Res4 == -Res1;
1182          }
1183
1184          if (!Transitive) {
1185            dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: "
1186                   << TripleNumber << "\n";
1187            dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", "
1188                   << Res4 << "\n";
1189            F1->dump();
1190            F2->dump();
1191            F3->dump();
1192            Valid = false;
1193          }
1194        }
1195      }
1196    }
1197
1198    dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n";
1199    return Valid;
1200  }
1201  return true;
1202}
1203
1204bool MergeFunctions::runOnModule(Module &M) {
1205  bool Changed = false;
1206  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1207  DL = DLP ? &DLP->getDataLayout() : nullptr;
1208
1209  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1210    if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
1211      Deferred.push_back(WeakVH(I));
1212  }
1213
1214  do {
1215    std::vector<WeakVH> Worklist;
1216    Deferred.swap(Worklist);
1217
1218    DEBUG(doSanityCheck(Worklist));
1219
1220    DEBUG(dbgs() << "size of module: " << M.size() << '\n');
1221    DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
1222
1223    // Insert only strong functions and merge them. Strong function merging
1224    // always deletes one of them.
1225    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
1226           E = Worklist.end(); I != E; ++I) {
1227      if (!*I) continue;
1228      Function *F = cast<Function>(*I);
1229      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
1230          !F->mayBeOverridden()) {
1231        Changed |= insert(F);
1232      }
1233    }
1234
1235    // Insert only weak functions and merge them. By doing these second we
1236    // create thunks to the strong function when possible. When two weak
1237    // functions are identical, we create a new strong function with two weak
1238    // weak thunks to it which are identical but not mergable.
1239    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
1240           E = Worklist.end(); I != E; ++I) {
1241      if (!*I) continue;
1242      Function *F = cast<Function>(*I);
1243      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
1244          F->mayBeOverridden()) {
1245        Changed |= insert(F);
1246      }
1247    }
1248    DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n');
1249  } while (!Deferred.empty());
1250
1251  FnTree.clear();
1252
1253  return Changed;
1254}
1255
1256// Replace direct callers of Old with New.
1257void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
1258  Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
1259  for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) {
1260    Use *U = &*UI;
1261    ++UI;
1262    CallSite CS(U->getUser());
1263    if (CS && CS.isCallee(U)) {
1264      remove(CS.getInstruction()->getParent()->getParent());
1265      U->set(BitcastNew);
1266    }
1267  }
1268}
1269
1270// Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
1271void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
1272  if (HasGlobalAliases && G->hasUnnamedAddr()) {
1273    if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
1274        G->hasWeakLinkage()) {
1275      writeAlias(F, G);
1276      return;
1277    }
1278  }
1279
1280  writeThunk(F, G);
1281}
1282
1283// Helper for writeThunk,
1284// Selects proper bitcast operation,
1285// but a bit simpler then CastInst::getCastOpcode.
1286static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) {
1287  Type *SrcTy = V->getType();
1288  if (SrcTy->isStructTy()) {
1289    assert(DestTy->isStructTy());
1290    assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
1291    Value *Result = UndefValue::get(DestTy);
1292    for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
1293      Value *Element = createCast(
1294          Builder, Builder.CreateExtractValue(V, ArrayRef<unsigned int>(I)),
1295          DestTy->getStructElementType(I));
1296
1297      Result =
1298          Builder.CreateInsertValue(Result, Element, ArrayRef<unsigned int>(I));
1299    }
1300    return Result;
1301  }
1302  assert(!DestTy->isStructTy());
1303  if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
1304    return Builder.CreateIntToPtr(V, DestTy);
1305  else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
1306    return Builder.CreatePtrToInt(V, DestTy);
1307  else
1308    return Builder.CreateBitCast(V, DestTy);
1309}
1310
1311// Replace G with a simple tail call to bitcast(F). Also replace direct uses
1312// of G with bitcast(F). Deletes G.
1313void MergeFunctions::writeThunk(Function *F, Function *G) {
1314  if (!G->mayBeOverridden()) {
1315    // Redirect direct callers of G to F.
1316    replaceDirectCallers(G, F);
1317  }
1318
1319  // If G was internal then we may have replaced all uses of G with F. If so,
1320  // stop here and delete G. There's no need for a thunk.
1321  if (G->hasLocalLinkage() && G->use_empty()) {
1322    G->eraseFromParent();
1323    return;
1324  }
1325
1326  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
1327                                    G->getParent());
1328  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
1329  IRBuilder<false> Builder(BB);
1330
1331  SmallVector<Value *, 16> Args;
1332  unsigned i = 0;
1333  FunctionType *FFTy = F->getFunctionType();
1334  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
1335       AI != AE; ++AI) {
1336    Args.push_back(createCast(Builder, (Value*)AI, FFTy->getParamType(i)));
1337    ++i;
1338  }
1339
1340  CallInst *CI = Builder.CreateCall(F, Args);
1341  CI->setTailCall();
1342  CI->setCallingConv(F->getCallingConv());
1343  if (NewG->getReturnType()->isVoidTy()) {
1344    Builder.CreateRetVoid();
1345  } else {
1346    Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
1347  }
1348
1349  NewG->copyAttributesFrom(G);
1350  NewG->takeName(G);
1351  removeUsers(G);
1352  G->replaceAllUsesWith(NewG);
1353  G->eraseFromParent();
1354
1355  DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
1356  ++NumThunksWritten;
1357}
1358
1359// Replace G with an alias to F and delete G.
1360void MergeFunctions::writeAlias(Function *F, Function *G) {
1361  PointerType *PTy = G->getType();
1362  auto *GA = GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
1363                                 G->getLinkage(), "", F);
1364  F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
1365  GA->takeName(G);
1366  GA->setVisibility(G->getVisibility());
1367  removeUsers(G);
1368  G->replaceAllUsesWith(GA);
1369  G->eraseFromParent();
1370
1371  DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
1372  ++NumAliasesWritten;
1373}
1374
1375// Merge two equivalent functions. Upon completion, Function G is deleted.
1376void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
1377  if (F->mayBeOverridden()) {
1378    assert(G->mayBeOverridden());
1379
1380    if (HasGlobalAliases) {
1381      // Make them both thunks to the same internal function.
1382      Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
1383                                     F->getParent());
1384      H->copyAttributesFrom(F);
1385      H->takeName(F);
1386      removeUsers(F);
1387      F->replaceAllUsesWith(H);
1388
1389      unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
1390
1391      writeAlias(F, G);
1392      writeAlias(F, H);
1393
1394      F->setAlignment(MaxAlignment);
1395      F->setLinkage(GlobalValue::PrivateLinkage);
1396    } else {
1397      // We can't merge them. Instead, pick one and update all direct callers
1398      // to call it and hope that we improve the instruction cache hit rate.
1399      replaceDirectCallers(G, F);
1400    }
1401
1402    ++NumDoubleWeak;
1403  } else {
1404    writeThunkOrAlias(F, G);
1405  }
1406
1407  ++NumFunctionsMerged;
1408}
1409
1410// Insert a ComparableFunction into the FnTree, or merge it away if equal to one
1411// that was already inserted.
1412bool MergeFunctions::insert(Function *NewFunction) {
1413  std::pair<FnTreeType::iterator, bool> Result =
1414      FnTree.insert(FunctionPtr(NewFunction, DL));
1415
1416  if (Result.second) {
1417    DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n');
1418    return false;
1419  }
1420
1421  const FunctionPtr &OldF = *Result.first;
1422
1423  // Don't merge tiny functions, since it can just end up making the function
1424  // larger.
1425  // FIXME: Should still merge them if they are unnamed_addr and produce an
1426  // alias.
1427  if (NewFunction->size() == 1) {
1428    if (NewFunction->front().size() <= 2) {
1429      DEBUG(dbgs() << NewFunction->getName()
1430                   << " is to small to bother merging\n");
1431      return false;
1432    }
1433  }
1434
1435  // Never thunk a strong function to a weak function.
1436  assert(!OldF.getFunc()->mayBeOverridden() || NewFunction->mayBeOverridden());
1437
1438  DEBUG(dbgs() << "  " << OldF.getFunc()->getName()
1439               << " == " << NewFunction->getName() << '\n');
1440
1441  Function *DeleteF = NewFunction;
1442  mergeTwoFunctions(OldF.getFunc(), DeleteF);
1443  return true;
1444}
1445
1446// Remove a function from FnTree. If it was already in FnTree, add
1447// it to Deferred so that we'll look at it in the next round.
1448void MergeFunctions::remove(Function *F) {
1449  // We need to make sure we remove F, not a function "equal" to F per the
1450  // function equality comparator.
1451  FnTreeType::iterator found = FnTree.find(FunctionPtr(F, DL));
1452  size_t Erased = 0;
1453  if (found != FnTree.end() && found->getFunc() == F) {
1454    Erased = 1;
1455    FnTree.erase(found);
1456  }
1457
1458  if (Erased) {
1459    DEBUG(dbgs() << "Removed " << F->getName()
1460                 << " from set and deferred it.\n");
1461    Deferred.push_back(F);
1462  }
1463}
1464
1465// For each instruction used by the value, remove() the function that contains
1466// the instruction. This should happen right before a call to RAUW.
1467void MergeFunctions::removeUsers(Value *V) {
1468  std::vector<Value *> Worklist;
1469  Worklist.push_back(V);
1470  while (!Worklist.empty()) {
1471    Value *V = Worklist.back();
1472    Worklist.pop_back();
1473
1474    for (User *U : V->users()) {
1475      if (Instruction *I = dyn_cast<Instruction>(U)) {
1476        remove(I->getParent()->getParent());
1477      } else if (isa<GlobalValue>(U)) {
1478        // do nothing
1479      } else if (Constant *C = dyn_cast<Constant>(U)) {
1480        for (User *UU : C->users())
1481          Worklist.push_back(UU);
1482      }
1483    }
1484  }
1485}
1486