InstCombineAddSub.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- InstCombineAddSub.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for add, fadd, sub, and fsub.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/IR/DataLayout.h"
18#include "llvm/IR/GetElementPtrTypeIterator.h"
19#include "llvm/IR/PatternMatch.h"
20using namespace llvm;
21using namespace PatternMatch;
22
23namespace {
24
25  /// Class representing coefficient of floating-point addend.
26  /// This class needs to be highly efficient, which is especially true for
27  /// the constructor. As of I write this comment, the cost of the default
28  /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
29  /// perform write-merging).
30  ///
31  class FAddendCoef {
32  public:
33    // The constructor has to initialize a APFloat, which is uncessary for
34    // most addends which have coefficient either 1 or -1. So, the constructor
35    // is expensive. In order to avoid the cost of the constructor, we should
36    // reuse some instances whenever possible. The pre-created instances
37    // FAddCombine::Add[0-5] embodies this idea.
38    //
39    FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
40    ~FAddendCoef();
41
42    void set(short C) {
43      assert(!insaneIntVal(C) && "Insane coefficient");
44      IsFp = false; IntVal = C;
45    }
46
47    void set(const APFloat& C);
48
49    void negate();
50
51    bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
52    Value *getValue(Type *) const;
53
54    // If possible, don't define operator+/operator- etc because these
55    // operators inevitably call FAddendCoef's constructor which is not cheap.
56    void operator=(const FAddendCoef &A);
57    void operator+=(const FAddendCoef &A);
58    void operator-=(const FAddendCoef &A);
59    void operator*=(const FAddendCoef &S);
60
61    bool isOne() const { return isInt() && IntVal == 1; }
62    bool isTwo() const { return isInt() && IntVal == 2; }
63    bool isMinusOne() const { return isInt() && IntVal == -1; }
64    bool isMinusTwo() const { return isInt() && IntVal == -2; }
65
66  private:
67    bool insaneIntVal(int V) { return V > 4 || V < -4; }
68    APFloat *getFpValPtr(void)
69      { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
70    const APFloat *getFpValPtr(void) const
71      { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
72
73    const APFloat &getFpVal(void) const {
74      assert(IsFp && BufHasFpVal && "Incorret state");
75      return *getFpValPtr();
76    }
77
78    APFloat &getFpVal(void) {
79      assert(IsFp && BufHasFpVal && "Incorret state");
80      return *getFpValPtr();
81    }
82
83    bool isInt() const { return !IsFp; }
84
85    // If the coefficient is represented by an integer, promote it to a
86    // floating point.
87    void convertToFpType(const fltSemantics &Sem);
88
89    // Construct an APFloat from a signed integer.
90    // TODO: We should get rid of this function when APFloat can be constructed
91    //       from an *SIGNED* integer.
92    APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
93  private:
94
95    bool IsFp;
96
97    // True iff FpValBuf contains an instance of APFloat.
98    bool BufHasFpVal;
99
100    // The integer coefficient of an individual addend is either 1 or -1,
101    // and we try to simplify at most 4 addends from neighboring at most
102    // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
103    // is overkill of this end.
104    short IntVal;
105
106    AlignedCharArrayUnion<APFloat> FpValBuf;
107  };
108
109  /// FAddend is used to represent floating-point addend. An addend is
110  /// represented as <C, V>, where the V is a symbolic value, and C is a
111  /// constant coefficient. A constant addend is represented as <C, 0>.
112  ///
113  class FAddend {
114  public:
115    FAddend() { Val = 0; }
116
117    Value *getSymVal (void) const { return Val; }
118    const FAddendCoef &getCoef(void) const { return Coeff; }
119
120    bool isConstant() const { return Val == 0; }
121    bool isZero() const { return Coeff.isZero(); }
122
123    void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; }
124    void set(const APFloat& Coefficient, Value *V)
125      { Coeff.set(Coefficient); Val = V; }
126    void set(const ConstantFP* Coefficient, Value *V)
127      { Coeff.set(Coefficient->getValueAPF()); Val = V; }
128
129    void negate() { Coeff.negate(); }
130
131    /// Drill down the U-D chain one step to find the definition of V, and
132    /// try to break the definition into one or two addends.
133    static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
134
135    /// Similar to FAddend::drillDownOneStep() except that the value being
136    /// splitted is the addend itself.
137    unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
138
139    void operator+=(const FAddend &T) {
140      assert((Val == T.Val) && "Symbolic-values disagree");
141      Coeff += T.Coeff;
142    }
143
144  private:
145    void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
146
147    // This addend has the value of "Coeff * Val".
148    Value *Val;
149    FAddendCoef Coeff;
150  };
151
152  /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
153  /// with its neighboring at most two instructions.
154  ///
155  class FAddCombine {
156  public:
157    FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(0) {}
158    Value *simplify(Instruction *FAdd);
159
160  private:
161    typedef SmallVector<const FAddend*, 4> AddendVect;
162
163    Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
164
165    Value *performFactorization(Instruction *I);
166
167    /// Convert given addend to a Value
168    Value *createAddendVal(const FAddend &A, bool& NeedNeg);
169
170    /// Return the number of instructions needed to emit the N-ary addition.
171    unsigned calcInstrNumber(const AddendVect& Vect);
172    Value *createFSub(Value *Opnd0, Value *Opnd1);
173    Value *createFAdd(Value *Opnd0, Value *Opnd1);
174    Value *createFMul(Value *Opnd0, Value *Opnd1);
175    Value *createFDiv(Value *Opnd0, Value *Opnd1);
176    Value *createFNeg(Value *V);
177    Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
178    void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
179
180    InstCombiner::BuilderTy *Builder;
181    Instruction *Instr;
182
183  private:
184     // Debugging stuff are clustered here.
185    #ifndef NDEBUG
186      unsigned CreateInstrNum;
187      void initCreateInstNum() { CreateInstrNum = 0; }
188      void incCreateInstNum() { CreateInstrNum++; }
189    #else
190      void initCreateInstNum() {}
191      void incCreateInstNum() {}
192    #endif
193  };
194}
195
196//===----------------------------------------------------------------------===//
197//
198// Implementation of
199//    {FAddendCoef, FAddend, FAddition, FAddCombine}.
200//
201//===----------------------------------------------------------------------===//
202FAddendCoef::~FAddendCoef() {
203  if (BufHasFpVal)
204    getFpValPtr()->~APFloat();
205}
206
207void FAddendCoef::set(const APFloat& C) {
208  APFloat *P = getFpValPtr();
209
210  if (isInt()) {
211    // As the buffer is meanless byte stream, we cannot call
212    // APFloat::operator=().
213    new(P) APFloat(C);
214  } else
215    *P = C;
216
217  IsFp = BufHasFpVal = true;
218}
219
220void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
221  if (!isInt())
222    return;
223
224  APFloat *P = getFpValPtr();
225  if (IntVal > 0)
226    new(P) APFloat(Sem, IntVal);
227  else {
228    new(P) APFloat(Sem, 0 - IntVal);
229    P->changeSign();
230  }
231  IsFp = BufHasFpVal = true;
232}
233
234APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
235  if (Val >= 0)
236    return APFloat(Sem, Val);
237
238  APFloat T(Sem, 0 - Val);
239  T.changeSign();
240
241  return T;
242}
243
244void FAddendCoef::operator=(const FAddendCoef &That) {
245  if (That.isInt())
246    set(That.IntVal);
247  else
248    set(That.getFpVal());
249}
250
251void FAddendCoef::operator+=(const FAddendCoef &That) {
252  enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
253  if (isInt() == That.isInt()) {
254    if (isInt())
255      IntVal += That.IntVal;
256    else
257      getFpVal().add(That.getFpVal(), RndMode);
258    return;
259  }
260
261  if (isInt()) {
262    const APFloat &T = That.getFpVal();
263    convertToFpType(T.getSemantics());
264    getFpVal().add(T, RndMode);
265    return;
266  }
267
268  APFloat &T = getFpVal();
269  T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
270}
271
272void FAddendCoef::operator-=(const FAddendCoef &That) {
273  enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
274  if (isInt() == That.isInt()) {
275    if (isInt())
276      IntVal -= That.IntVal;
277    else
278      getFpVal().subtract(That.getFpVal(), RndMode);
279    return;
280  }
281
282  if (isInt()) {
283    const APFloat &T = That.getFpVal();
284    convertToFpType(T.getSemantics());
285    getFpVal().subtract(T, RndMode);
286    return;
287  }
288
289  APFloat &T = getFpVal();
290  T.subtract(createAPFloatFromInt(T.getSemantics(), IntVal), RndMode);
291}
292
293void FAddendCoef::operator*=(const FAddendCoef &That) {
294  if (That.isOne())
295    return;
296
297  if (That.isMinusOne()) {
298    negate();
299    return;
300  }
301
302  if (isInt() && That.isInt()) {
303    int Res = IntVal * (int)That.IntVal;
304    assert(!insaneIntVal(Res) && "Insane int value");
305    IntVal = Res;
306    return;
307  }
308
309  const fltSemantics &Semantic =
310    isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
311
312  if (isInt())
313    convertToFpType(Semantic);
314  APFloat &F0 = getFpVal();
315
316  if (That.isInt())
317    F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
318                APFloat::rmNearestTiesToEven);
319  else
320    F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
321
322  return;
323}
324
325void FAddendCoef::negate() {
326  if (isInt())
327    IntVal = 0 - IntVal;
328  else
329    getFpVal().changeSign();
330}
331
332Value *FAddendCoef::getValue(Type *Ty) const {
333  return isInt() ?
334    ConstantFP::get(Ty, float(IntVal)) :
335    ConstantFP::get(Ty->getContext(), getFpVal());
336}
337
338// The definition of <Val>     Addends
339// =========================================
340//  A + B                     <1, A>, <1,B>
341//  A - B                     <1, A>, <1,B>
342//  0 - B                     <-1, B>
343//  C * A,                    <C, A>
344//  A + C                     <1, A> <C, NULL>
345//  0 +/- 0                   <0, NULL> (corner case)
346//
347// Legend: A and B are not constant, C is constant
348//
349unsigned FAddend::drillValueDownOneStep
350  (Value *Val, FAddend &Addend0, FAddend &Addend1) {
351  Instruction *I = 0;
352  if (Val == 0 || !(I = dyn_cast<Instruction>(Val)))
353    return 0;
354
355  unsigned Opcode = I->getOpcode();
356
357  if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
358    ConstantFP *C0, *C1;
359    Value *Opnd0 = I->getOperand(0);
360    Value *Opnd1 = I->getOperand(1);
361    if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
362      Opnd0 = 0;
363
364    if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
365      Opnd1 = 0;
366
367    if (Opnd0) {
368      if (!C0)
369        Addend0.set(1, Opnd0);
370      else
371        Addend0.set(C0, 0);
372    }
373
374    if (Opnd1) {
375      FAddend &Addend = Opnd0 ? Addend1 : Addend0;
376      if (!C1)
377        Addend.set(1, Opnd1);
378      else
379        Addend.set(C1, 0);
380      if (Opcode == Instruction::FSub)
381        Addend.negate();
382    }
383
384    if (Opnd0 || Opnd1)
385      return Opnd0 && Opnd1 ? 2 : 1;
386
387    // Both operands are zero. Weird!
388    Addend0.set(APFloat(C0->getValueAPF().getSemantics()), 0);
389    return 1;
390  }
391
392  if (I->getOpcode() == Instruction::FMul) {
393    Value *V0 = I->getOperand(0);
394    Value *V1 = I->getOperand(1);
395    if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
396      Addend0.set(C, V1);
397      return 1;
398    }
399
400    if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
401      Addend0.set(C, V0);
402      return 1;
403    }
404  }
405
406  return 0;
407}
408
409// Try to break *this* addend into two addends. e.g. Suppose this addend is
410// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
411// i.e. <2.3, X> and <2.3, Y>.
412//
413unsigned FAddend::drillAddendDownOneStep
414  (FAddend &Addend0, FAddend &Addend1) const {
415  if (isConstant())
416    return 0;
417
418  unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
419  if (!BreakNum || Coeff.isOne())
420    return BreakNum;
421
422  Addend0.Scale(Coeff);
423
424  if (BreakNum == 2)
425    Addend1.Scale(Coeff);
426
427  return BreakNum;
428}
429
430// Try to perform following optimization on the input instruction I. Return the
431// simplified expression if was successful; otherwise, return 0.
432//
433//   Instruction "I" is                Simplified into
434// -------------------------------------------------------
435//   (x * y) +/- (x * z)               x * (y +/- z)
436//   (y / x) +/- (z / x)               (y +/- z) / x
437//
438Value *FAddCombine::performFactorization(Instruction *I) {
439  assert((I->getOpcode() == Instruction::FAdd ||
440          I->getOpcode() == Instruction::FSub) && "Expect add/sub");
441
442  Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
443  Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
444
445  if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
446    return 0;
447
448  bool isMpy = false;
449  if (I0->getOpcode() == Instruction::FMul)
450    isMpy = true;
451  else if (I0->getOpcode() != Instruction::FDiv)
452    return 0;
453
454  Value *Opnd0_0 = I0->getOperand(0);
455  Value *Opnd0_1 = I0->getOperand(1);
456  Value *Opnd1_0 = I1->getOperand(0);
457  Value *Opnd1_1 = I1->getOperand(1);
458
459  //  Input Instr I       Factor   AddSub0  AddSub1
460  //  ----------------------------------------------
461  // (x*y) +/- (x*z)        x        y         z
462  // (y/x) +/- (z/x)        x        y         z
463  //
464  Value *Factor = 0;
465  Value *AddSub0 = 0, *AddSub1 = 0;
466
467  if (isMpy) {
468    if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
469      Factor = Opnd0_0;
470    else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
471      Factor = Opnd0_1;
472
473    if (Factor) {
474      AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
475      AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
476    }
477  } else if (Opnd0_1 == Opnd1_1) {
478    Factor = Opnd0_1;
479    AddSub0 = Opnd0_0;
480    AddSub1 = Opnd1_0;
481  }
482
483  if (!Factor)
484    return 0;
485
486  FastMathFlags Flags;
487  Flags.setUnsafeAlgebra();
488  if (I0) Flags &= I->getFastMathFlags();
489  if (I1) Flags &= I->getFastMathFlags();
490
491  // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
492  Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
493                      createFAdd(AddSub0, AddSub1) :
494                      createFSub(AddSub0, AddSub1);
495  if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
496    const APFloat &F = CFP->getValueAPF();
497    if (!F.isNormal())
498      return 0;
499  } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub))
500    II->setFastMathFlags(Flags);
501
502  if (isMpy) {
503    Value *RI = createFMul(Factor, NewAddSub);
504    if (Instruction *II = dyn_cast<Instruction>(RI))
505      II->setFastMathFlags(Flags);
506    return RI;
507  }
508
509  Value *RI = createFDiv(NewAddSub, Factor);
510  if (Instruction *II = dyn_cast<Instruction>(RI))
511    II->setFastMathFlags(Flags);
512  return RI;
513}
514
515Value *FAddCombine::simplify(Instruction *I) {
516  assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
517
518  // Currently we are not able to handle vector type.
519  if (I->getType()->isVectorTy())
520    return 0;
521
522  assert((I->getOpcode() == Instruction::FAdd ||
523          I->getOpcode() == Instruction::FSub) && "Expect add/sub");
524
525  // Save the instruction before calling other member-functions.
526  Instr = I;
527
528  FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
529
530  unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
531
532  // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
533  unsigned Opnd0_ExpNum = 0;
534  unsigned Opnd1_ExpNum = 0;
535
536  if (!Opnd0.isConstant())
537    Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
538
539  // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
540  if (OpndNum == 2 && !Opnd1.isConstant())
541    Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
542
543  // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
544  if (Opnd0_ExpNum && Opnd1_ExpNum) {
545    AddendVect AllOpnds;
546    AllOpnds.push_back(&Opnd0_0);
547    AllOpnds.push_back(&Opnd1_0);
548    if (Opnd0_ExpNum == 2)
549      AllOpnds.push_back(&Opnd0_1);
550    if (Opnd1_ExpNum == 2)
551      AllOpnds.push_back(&Opnd1_1);
552
553    // Compute instruction quota. We should save at least one instruction.
554    unsigned InstQuota = 0;
555
556    Value *V0 = I->getOperand(0);
557    Value *V1 = I->getOperand(1);
558    InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
559                 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
560
561    if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
562      return R;
563  }
564
565  if (OpndNum != 2) {
566    // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
567    // splitted into two addends, say "V = X - Y", the instruction would have
568    // been optimized into "I = Y - X" in the previous steps.
569    //
570    const FAddendCoef &CE = Opnd0.getCoef();
571    return CE.isOne() ? Opnd0.getSymVal() : 0;
572  }
573
574  // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
575  if (Opnd1_ExpNum) {
576    AddendVect AllOpnds;
577    AllOpnds.push_back(&Opnd0);
578    AllOpnds.push_back(&Opnd1_0);
579    if (Opnd1_ExpNum == 2)
580      AllOpnds.push_back(&Opnd1_1);
581
582    if (Value *R = simplifyFAdd(AllOpnds, 1))
583      return R;
584  }
585
586  // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
587  if (Opnd0_ExpNum) {
588    AddendVect AllOpnds;
589    AllOpnds.push_back(&Opnd1);
590    AllOpnds.push_back(&Opnd0_0);
591    if (Opnd0_ExpNum == 2)
592      AllOpnds.push_back(&Opnd0_1);
593
594    if (Value *R = simplifyFAdd(AllOpnds, 1))
595      return R;
596  }
597
598  // step 6: Try factorization as the last resort,
599  return performFactorization(I);
600}
601
602Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
603
604  unsigned AddendNum = Addends.size();
605  assert(AddendNum <= 4 && "Too many addends");
606
607  // For saving intermediate results;
608  unsigned NextTmpIdx = 0;
609  FAddend TmpResult[3];
610
611  // Points to the constant addend of the resulting simplified expression.
612  // If the resulting expr has constant-addend, this constant-addend is
613  // desirable to reside at the top of the resulting expression tree. Placing
614  // constant close to supper-expr(s) will potentially reveal some optimization
615  // opportunities in super-expr(s).
616  //
617  const FAddend *ConstAdd = 0;
618
619  // Simplified addends are placed <SimpVect>.
620  AddendVect SimpVect;
621
622  // The outer loop works on one symbolic-value at a time. Suppose the input
623  // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
624  // The symbolic-values will be processed in this order: x, y, z.
625  //
626  for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
627
628    const FAddend *ThisAddend = Addends[SymIdx];
629    if (!ThisAddend) {
630      // This addend was processed before.
631      continue;
632    }
633
634    Value *Val = ThisAddend->getSymVal();
635    unsigned StartIdx = SimpVect.size();
636    SimpVect.push_back(ThisAddend);
637
638    // The inner loop collects addends sharing same symbolic-value, and these
639    // addends will be later on folded into a single addend. Following above
640    // example, if the symbolic value "y" is being processed, the inner loop
641    // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
642    // be later on folded into "<b1+b2, y>".
643    //
644    for (unsigned SameSymIdx = SymIdx + 1;
645         SameSymIdx < AddendNum; SameSymIdx++) {
646      const FAddend *T = Addends[SameSymIdx];
647      if (T && T->getSymVal() == Val) {
648        // Set null such that next iteration of the outer loop will not process
649        // this addend again.
650        Addends[SameSymIdx] = 0;
651        SimpVect.push_back(T);
652      }
653    }
654
655    // If multiple addends share same symbolic value, fold them together.
656    if (StartIdx + 1 != SimpVect.size()) {
657      FAddend &R = TmpResult[NextTmpIdx ++];
658      R = *SimpVect[StartIdx];
659      for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
660        R += *SimpVect[Idx];
661
662      // Pop all addends being folded and push the resulting folded addend.
663      SimpVect.resize(StartIdx);
664      if (Val != 0) {
665        if (!R.isZero()) {
666          SimpVect.push_back(&R);
667        }
668      } else {
669        // Don't push constant addend at this time. It will be the last element
670        // of <SimpVect>.
671        ConstAdd = &R;
672      }
673    }
674  }
675
676  assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
677         "out-of-bound access");
678
679  if (ConstAdd)
680    SimpVect.push_back(ConstAdd);
681
682  Value *Result;
683  if (!SimpVect.empty())
684    Result = createNaryFAdd(SimpVect, InstrQuota);
685  else {
686    // The addition is folded to 0.0.
687    Result = ConstantFP::get(Instr->getType(), 0.0);
688  }
689
690  return Result;
691}
692
693Value *FAddCombine::createNaryFAdd
694  (const AddendVect &Opnds, unsigned InstrQuota) {
695  assert(!Opnds.empty() && "Expect at least one addend");
696
697  // Step 1: Check if the # of instructions needed exceeds the quota.
698  //
699  unsigned InstrNeeded = calcInstrNumber(Opnds);
700  if (InstrNeeded > InstrQuota)
701    return 0;
702
703  initCreateInstNum();
704
705  // step 2: Emit the N-ary addition.
706  // Note that at most three instructions are involved in Fadd-InstCombine: the
707  // addition in question, and at most two neighboring instructions.
708  // The resulting optimized addition should have at least one less instruction
709  // than the original addition expression tree. This implies that the resulting
710  // N-ary addition has at most two instructions, and we don't need to worry
711  // about tree-height when constructing the N-ary addition.
712
713  Value *LastVal = 0;
714  bool LastValNeedNeg = false;
715
716  // Iterate the addends, creating fadd/fsub using adjacent two addends.
717  for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
718       I != E; I++) {
719    bool NeedNeg;
720    Value *V = createAddendVal(**I, NeedNeg);
721    if (!LastVal) {
722      LastVal = V;
723      LastValNeedNeg = NeedNeg;
724      continue;
725    }
726
727    if (LastValNeedNeg == NeedNeg) {
728      LastVal = createFAdd(LastVal, V);
729      continue;
730    }
731
732    if (LastValNeedNeg)
733      LastVal = createFSub(V, LastVal);
734    else
735      LastVal = createFSub(LastVal, V);
736
737    LastValNeedNeg = false;
738  }
739
740  if (LastValNeedNeg) {
741    LastVal = createFNeg(LastVal);
742  }
743
744  #ifndef NDEBUG
745    assert(CreateInstrNum == InstrNeeded &&
746           "Inconsistent in instruction numbers");
747  #endif
748
749  return LastVal;
750}
751
752Value *FAddCombine::createFSub
753  (Value *Opnd0, Value *Opnd1) {
754  Value *V = Builder->CreateFSub(Opnd0, Opnd1);
755  if (Instruction *I = dyn_cast<Instruction>(V))
756    createInstPostProc(I);
757  return V;
758}
759
760Value *FAddCombine::createFNeg(Value *V) {
761  Value *Zero = cast<Value>(ConstantFP::get(V->getType(), 0.0));
762  Value *NewV = createFSub(Zero, V);
763  if (Instruction *I = dyn_cast<Instruction>(NewV))
764    createInstPostProc(I, true); // fneg's don't receive instruction numbers.
765  return NewV;
766}
767
768Value *FAddCombine::createFAdd
769  (Value *Opnd0, Value *Opnd1) {
770  Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
771  if (Instruction *I = dyn_cast<Instruction>(V))
772    createInstPostProc(I);
773  return V;
774}
775
776Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
777  Value *V = Builder->CreateFMul(Opnd0, Opnd1);
778  if (Instruction *I = dyn_cast<Instruction>(V))
779    createInstPostProc(I);
780  return V;
781}
782
783Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
784  Value *V = Builder->CreateFDiv(Opnd0, Opnd1);
785  if (Instruction *I = dyn_cast<Instruction>(V))
786    createInstPostProc(I);
787  return V;
788}
789
790void FAddCombine::createInstPostProc(Instruction *NewInstr,
791                                     bool NoNumber) {
792  NewInstr->setDebugLoc(Instr->getDebugLoc());
793
794  // Keep track of the number of instruction created.
795  if (!NoNumber)
796    incCreateInstNum();
797
798  // Propagate fast-math flags
799  NewInstr->setFastMathFlags(Instr->getFastMathFlags());
800}
801
802// Return the number of instruction needed to emit the N-ary addition.
803// NOTE: Keep this function in sync with createAddendVal().
804unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
805  unsigned OpndNum = Opnds.size();
806  unsigned InstrNeeded = OpndNum - 1;
807
808  // The number of addends in the form of "(-1)*x".
809  unsigned NegOpndNum = 0;
810
811  // Adjust the number of instructions needed to emit the N-ary add.
812  for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
813       I != E; I++) {
814    const FAddend *Opnd = *I;
815    if (Opnd->isConstant())
816      continue;
817
818    const FAddendCoef &CE = Opnd->getCoef();
819    if (CE.isMinusOne() || CE.isMinusTwo())
820      NegOpndNum++;
821
822    // Let the addend be "c * x". If "c == +/-1", the value of the addend
823    // is immediately available; otherwise, it needs exactly one instruction
824    // to evaluate the value.
825    if (!CE.isMinusOne() && !CE.isOne())
826      InstrNeeded++;
827  }
828  if (NegOpndNum == OpndNum)
829    InstrNeeded++;
830  return InstrNeeded;
831}
832
833// Input Addend        Value           NeedNeg(output)
834// ================================================================
835// Constant C          C               false
836// <+/-1, V>           V               coefficient is -1
837// <2/-2, V>          "fadd V, V"      coefficient is -2
838// <C, V>             "fmul V, C"      false
839//
840// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
841Value *FAddCombine::createAddendVal
842  (const FAddend &Opnd, bool &NeedNeg) {
843  const FAddendCoef &Coeff = Opnd.getCoef();
844
845  if (Opnd.isConstant()) {
846    NeedNeg = false;
847    return Coeff.getValue(Instr->getType());
848  }
849
850  Value *OpndVal = Opnd.getSymVal();
851
852  if (Coeff.isMinusOne() || Coeff.isOne()) {
853    NeedNeg = Coeff.isMinusOne();
854    return OpndVal;
855  }
856
857  if (Coeff.isTwo() || Coeff.isMinusTwo()) {
858    NeedNeg = Coeff.isMinusTwo();
859    return createFAdd(OpndVal, OpndVal);
860  }
861
862  NeedNeg = false;
863  return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
864}
865
866// dyn_castFoldableMul - If this value is a multiply that can be folded into
867// other computations (because it has a constant operand), return the
868// non-constant operand of the multiply, and set CST to point to the multiplier.
869// Otherwise, return null.
870//
871static inline Value *dyn_castFoldableMul(Value *V, Constant *&CST) {
872  if (!V->hasOneUse() || !V->getType()->isIntOrIntVectorTy())
873    return 0;
874
875  Instruction *I = dyn_cast<Instruction>(V);
876  if (I == 0) return 0;
877
878  if (I->getOpcode() == Instruction::Mul)
879    if ((CST = dyn_cast<Constant>(I->getOperand(1))))
880      return I->getOperand(0);
881  if (I->getOpcode() == Instruction::Shl)
882    if ((CST = dyn_cast<Constant>(I->getOperand(1)))) {
883      // The multiplier is really 1 << CST.
884      CST = ConstantExpr::getShl(ConstantInt::get(V->getType(), 1), CST);
885      return I->getOperand(0);
886    }
887  return 0;
888}
889
890
891/// WillNotOverflowSignedAdd - Return true if we can prove that:
892///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
893/// This basically requires proving that the add in the original type would not
894/// overflow to change the sign bit or have a carry out.
895bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
896  // There are different heuristics we can use for this.  Here are some simple
897  // ones.
898
899  // Add has the property that adding any two 2's complement numbers can only
900  // have one carry bit which can change a sign.  As such, if LHS and RHS each
901  // have at least two sign bits, we know that the addition of the two values
902  // will sign extend fine.
903  if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
904    return true;
905
906
907  // If one of the operands only has one non-zero bit, and if the other operand
908  // has a known-zero bit in a more significant place than it (not including the
909  // sign bit) the ripple may go up to and fill the zero, but won't change the
910  // sign.  For example, (X & ~4) + 1.
911
912  // TODO: Implement.
913
914  return false;
915}
916
917Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
918  bool Changed = SimplifyAssociativeOrCommutative(I);
919  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
920
921  if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
922                                 I.hasNoUnsignedWrap(), DL))
923    return ReplaceInstUsesWith(I, V);
924
925  // (A*B)+(A*C) -> A*(B+C) etc
926  if (Value *V = SimplifyUsingDistributiveLaws(I))
927    return ReplaceInstUsesWith(I, V);
928
929  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
930    // X + (signbit) --> X ^ signbit
931    const APInt &Val = CI->getValue();
932    if (Val.isSignBit())
933      return BinaryOperator::CreateXor(LHS, RHS);
934
935    // See if SimplifyDemandedBits can simplify this.  This handles stuff like
936    // (X & 254)+1 -> (X&254)|1
937    if (SimplifyDemandedInstructionBits(I))
938      return &I;
939
940    // zext(bool) + C -> bool ? C + 1 : C
941    if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
942      if (ZI->getSrcTy()->isIntegerTy(1))
943        return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
944
945    Value *XorLHS = 0; ConstantInt *XorRHS = 0;
946    if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
947      uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
948      const APInt &RHSVal = CI->getValue();
949      unsigned ExtendAmt = 0;
950      // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
951      // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
952      if (XorRHS->getValue() == -RHSVal) {
953        if (RHSVal.isPowerOf2())
954          ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
955        else if (XorRHS->getValue().isPowerOf2())
956          ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
957      }
958
959      if (ExtendAmt) {
960        APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
961        if (!MaskedValueIsZero(XorLHS, Mask))
962          ExtendAmt = 0;
963      }
964
965      if (ExtendAmt) {
966        Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
967        Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
968        return BinaryOperator::CreateAShr(NewShl, ShAmt);
969      }
970
971      // If this is a xor that was canonicalized from a sub, turn it back into
972      // a sub and fuse this add with it.
973      if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
974        IntegerType *IT = cast<IntegerType>(I.getType());
975        APInt LHSKnownOne(IT->getBitWidth(), 0);
976        APInt LHSKnownZero(IT->getBitWidth(), 0);
977        ComputeMaskedBits(XorLHS, LHSKnownZero, LHSKnownOne);
978        if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
979          return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
980                                           XorLHS);
981      }
982      // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C,
983      // transform them into (X + (signbit ^ C))
984      if (XorRHS->getValue().isSignBit())
985          return BinaryOperator::CreateAdd(XorLHS,
986                                           ConstantExpr::getXor(XorRHS, CI));
987    }
988  }
989
990  if (isa<Constant>(RHS) && isa<PHINode>(LHS))
991    if (Instruction *NV = FoldOpIntoPhi(I))
992      return NV;
993
994  if (I.getType()->getScalarType()->isIntegerTy(1))
995    return BinaryOperator::CreateXor(LHS, RHS);
996
997  // X + X --> X << 1
998  if (LHS == RHS) {
999    BinaryOperator *New =
1000      BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
1001    New->setHasNoSignedWrap(I.hasNoSignedWrap());
1002    New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1003    return New;
1004  }
1005
1006  // -A + B  -->  B - A
1007  // -A + -B  -->  -(A + B)
1008  if (Value *LHSV = dyn_castNegVal(LHS)) {
1009    if (!isa<Constant>(RHS))
1010      if (Value *RHSV = dyn_castNegVal(RHS)) {
1011        Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
1012        return BinaryOperator::CreateNeg(NewAdd);
1013      }
1014
1015    return BinaryOperator::CreateSub(RHS, LHSV);
1016  }
1017
1018  // A + -B  -->  A - B
1019  if (!isa<Constant>(RHS))
1020    if (Value *V = dyn_castNegVal(RHS))
1021      return BinaryOperator::CreateSub(LHS, V);
1022
1023
1024  {
1025    Constant *C2;
1026    if (Value *X = dyn_castFoldableMul(LHS, C2)) {
1027      if (X == RHS) // X*C + X --> X * (C+1)
1028        return BinaryOperator::CreateMul(RHS, AddOne(C2));
1029
1030      // X*C1 + X*C2 --> X * (C1+C2)
1031      Constant *C1;
1032      if (X == dyn_castFoldableMul(RHS, C1))
1033        return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
1034    }
1035
1036    // X + X*C --> X * (C+1)
1037    if (dyn_castFoldableMul(RHS, C2) == LHS)
1038      return BinaryOperator::CreateMul(LHS, AddOne(C2));
1039  }
1040
1041  // A+B --> A|B iff A and B have no bits set in common.
1042  if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
1043    APInt LHSKnownOne(IT->getBitWidth(), 0);
1044    APInt LHSKnownZero(IT->getBitWidth(), 0);
1045    ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
1046    if (LHSKnownZero != 0) {
1047      APInt RHSKnownOne(IT->getBitWidth(), 0);
1048      APInt RHSKnownZero(IT->getBitWidth(), 0);
1049      ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
1050
1051      // No bits in common -> bitwise or.
1052      if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
1053        return BinaryOperator::CreateOr(LHS, RHS);
1054    }
1055  }
1056
1057  // W*X + Y*Z --> W * (X+Z)  iff W == Y
1058  {
1059    Value *W, *X, *Y, *Z;
1060    if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
1061        match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
1062      if (W != Y) {
1063        if (W == Z) {
1064          std::swap(Y, Z);
1065        } else if (Y == X) {
1066          std::swap(W, X);
1067        } else if (X == Z) {
1068          std::swap(Y, Z);
1069          std::swap(W, X);
1070        }
1071      }
1072
1073      if (W == Y) {
1074        Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
1075        return BinaryOperator::CreateMul(W, NewAdd);
1076      }
1077    }
1078  }
1079
1080  if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
1081    Value *X;
1082    if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
1083      return BinaryOperator::CreateSub(SubOne(CRHS), X);
1084  }
1085
1086  if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1087    // (X & FF00) + xx00  -> (X+xx00) & FF00
1088    Value *X;
1089    ConstantInt *C2;
1090    if (LHS->hasOneUse() &&
1091        match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1092        CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1093      // See if all bits from the first bit set in the Add RHS up are included
1094      // in the mask.  First, get the rightmost bit.
1095      const APInt &AddRHSV = CRHS->getValue();
1096
1097      // Form a mask of all bits from the lowest bit added through the top.
1098      APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1099
1100      // See if the and mask includes all of these bits.
1101      APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1102
1103      if (AddRHSHighBits == AddRHSHighBitsAnd) {
1104        // Okay, the xform is safe.  Insert the new add pronto.
1105        Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
1106        return BinaryOperator::CreateAnd(NewAdd, C2);
1107      }
1108    }
1109
1110    // Try to fold constant add into select arguments.
1111    if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
1112      if (Instruction *R = FoldOpIntoSelect(I, SI))
1113        return R;
1114  }
1115
1116  // add (select X 0 (sub n A)) A  -->  select X A n
1117  {
1118    SelectInst *SI = dyn_cast<SelectInst>(LHS);
1119    Value *A = RHS;
1120    if (!SI) {
1121      SI = dyn_cast<SelectInst>(RHS);
1122      A = LHS;
1123    }
1124    if (SI && SI->hasOneUse()) {
1125      Value *TV = SI->getTrueValue();
1126      Value *FV = SI->getFalseValue();
1127      Value *N;
1128
1129      // Can we fold the add into the argument of the select?
1130      // We check both true and false select arguments for a matching subtract.
1131      if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1132        // Fold the add into the true select value.
1133        return SelectInst::Create(SI->getCondition(), N, A);
1134
1135      if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1136        // Fold the add into the false select value.
1137        return SelectInst::Create(SI->getCondition(), A, N);
1138    }
1139  }
1140
1141  // Check for (add (sext x), y), see if we can merge this into an
1142  // integer add followed by a sext.
1143  if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
1144    // (add (sext x), cst) --> (sext (add x, cst'))
1145    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1146      Constant *CI =
1147        ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1148      if (LHSConv->hasOneUse() &&
1149          ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
1150          WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
1151        // Insert the new, smaller add.
1152        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1153                                              CI, "addconv");
1154        return new SExtInst(NewAdd, I.getType());
1155      }
1156    }
1157
1158    // (add (sext x), (sext y)) --> (sext (add int x, y))
1159    if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
1160      // Only do this if x/y have the same type, if at last one of them has a
1161      // single use (so we don't increase the number of sexts), and if the
1162      // integer add will not overflow.
1163      if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
1164          (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1165          WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1166                                   RHSConv->getOperand(0))) {
1167        // Insert the new integer add.
1168        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1169                                             RHSConv->getOperand(0), "addconv");
1170        return new SExtInst(NewAdd, I.getType());
1171      }
1172    }
1173  }
1174
1175  // Check for (x & y) + (x ^ y)
1176  {
1177    Value *A = 0, *B = 0;
1178    if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
1179        (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
1180         match(LHS, m_And(m_Specific(B), m_Specific(A)))))
1181      return BinaryOperator::CreateOr(A, B);
1182
1183    if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
1184        (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
1185         match(RHS, m_And(m_Specific(B), m_Specific(A)))))
1186      return BinaryOperator::CreateOr(A, B);
1187  }
1188
1189  return Changed ? &I : 0;
1190}
1191
1192Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1193  bool Changed = SimplifyAssociativeOrCommutative(I);
1194  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1195
1196  if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL))
1197    return ReplaceInstUsesWith(I, V);
1198
1199  if (isa<Constant>(RHS)) {
1200    if (isa<PHINode>(LHS))
1201      if (Instruction *NV = FoldOpIntoPhi(I))
1202        return NV;
1203
1204    if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
1205      if (Instruction *NV = FoldOpIntoSelect(I, SI))
1206        return NV;
1207  }
1208
1209  // -A + B  -->  B - A
1210  // -A + -B  -->  -(A + B)
1211  if (Value *LHSV = dyn_castFNegVal(LHS)) {
1212    Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV);
1213    RI->copyFastMathFlags(&I);
1214    return RI;
1215  }
1216
1217  // A + -B  -->  A - B
1218  if (!isa<Constant>(RHS))
1219    if (Value *V = dyn_castFNegVal(RHS)) {
1220      Instruction *RI = BinaryOperator::CreateFSub(LHS, V);
1221      RI->copyFastMathFlags(&I);
1222      return RI;
1223    }
1224
1225  // Check for (fadd double (sitofp x), y), see if we can merge this into an
1226  // integer add followed by a promotion.
1227  if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1228    // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1229    // ... if the constant fits in the integer value.  This is useful for things
1230    // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1231    // requires a constant pool load, and generally allows the add to be better
1232    // instcombined.
1233    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
1234      Constant *CI =
1235      ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
1236      if (LHSConv->hasOneUse() &&
1237          ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1238          WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
1239        // Insert the new integer add.
1240        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1241                                              CI, "addconv");
1242        return new SIToFPInst(NewAdd, I.getType());
1243      }
1244    }
1245
1246    // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1247    if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1248      // Only do this if x/y have the same type, if at last one of them has a
1249      // single use (so we don't increase the number of int->fp conversions),
1250      // and if the integer add will not overflow.
1251      if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
1252          (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1253          WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1254                                   RHSConv->getOperand(0))) {
1255        // Insert the new integer add.
1256        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1257                                              RHSConv->getOperand(0),"addconv");
1258        return new SIToFPInst(NewAdd, I.getType());
1259      }
1260    }
1261  }
1262
1263  // select C, 0, B + select C, A, 0 -> select C, A, B
1264  {
1265    Value *A1, *B1, *C1, *A2, *B2, *C2;
1266    if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) &&
1267        match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) {
1268      if (C1 == C2) {
1269        Constant *Z1=0, *Z2=0;
1270        Value *A, *B, *C=C1;
1271        if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) {
1272            Z1 = dyn_cast<Constant>(A1); A = A2;
1273            Z2 = dyn_cast<Constant>(B2); B = B1;
1274        } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) {
1275            Z1 = dyn_cast<Constant>(B1); B = B2;
1276            Z2 = dyn_cast<Constant>(A2); A = A1;
1277        }
1278
1279        if (Z1 && Z2 &&
1280            (I.hasNoSignedZeros() ||
1281             (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) {
1282          return SelectInst::Create(C, A, B);
1283        }
1284      }
1285    }
1286  }
1287
1288  if (I.hasUnsafeAlgebra()) {
1289    if (Value *V = FAddCombine(Builder).simplify(&I))
1290      return ReplaceInstUsesWith(I, V);
1291  }
1292
1293  return Changed ? &I : 0;
1294}
1295
1296
1297/// Optimize pointer differences into the same array into a size.  Consider:
1298///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1299/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1300///
1301Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1302                                               Type *Ty) {
1303  assert(DL && "Must have target data info for this");
1304
1305  // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1306  // this.
1307  bool Swapped = false;
1308  GEPOperator *GEP1 = 0, *GEP2 = 0;
1309
1310  // For now we require one side to be the base pointer "A" or a constant
1311  // GEP derived from it.
1312  if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1313    // (gep X, ...) - X
1314    if (LHSGEP->getOperand(0) == RHS) {
1315      GEP1 = LHSGEP;
1316      Swapped = false;
1317    } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1318      // (gep X, ...) - (gep X, ...)
1319      if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1320            RHSGEP->getOperand(0)->stripPointerCasts()) {
1321        GEP2 = RHSGEP;
1322        GEP1 = LHSGEP;
1323        Swapped = false;
1324      }
1325    }
1326  }
1327
1328  if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1329    // X - (gep X, ...)
1330    if (RHSGEP->getOperand(0) == LHS) {
1331      GEP1 = RHSGEP;
1332      Swapped = true;
1333    } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1334      // (gep X, ...) - (gep X, ...)
1335      if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1336            LHSGEP->getOperand(0)->stripPointerCasts()) {
1337        GEP2 = LHSGEP;
1338        GEP1 = RHSGEP;
1339        Swapped = true;
1340      }
1341    }
1342  }
1343
1344  // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
1345  // multiple users.
1346  if (GEP1 == 0 ||
1347      (GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
1348    return 0;
1349
1350  // Emit the offset of the GEP and an intptr_t.
1351  Value *Result = EmitGEPOffset(GEP1);
1352
1353  // If we had a constant expression GEP on the other side offsetting the
1354  // pointer, subtract it from the offset we have.
1355  if (GEP2) {
1356    Value *Offset = EmitGEPOffset(GEP2);
1357    Result = Builder->CreateSub(Result, Offset);
1358  }
1359
1360  // If we have p - gep(p, ...)  then we have to negate the result.
1361  if (Swapped)
1362    Result = Builder->CreateNeg(Result, "diff.neg");
1363
1364  return Builder->CreateIntCast(Result, Ty, true);
1365}
1366
1367
1368Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1369  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1370
1371  if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
1372                                 I.hasNoUnsignedWrap(), DL))
1373    return ReplaceInstUsesWith(I, V);
1374
1375  // (A*B)-(A*C) -> A*(B-C) etc
1376  if (Value *V = SimplifyUsingDistributiveLaws(I))
1377    return ReplaceInstUsesWith(I, V);
1378
1379  // If this is a 'B = x-(-A)', change to B = x+A.  This preserves NSW/NUW.
1380  if (Value *V = dyn_castNegVal(Op1)) {
1381    BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1382    Res->setHasNoSignedWrap(I.hasNoSignedWrap());
1383    Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1384    return Res;
1385  }
1386
1387  if (I.getType()->isIntegerTy(1))
1388    return BinaryOperator::CreateXor(Op0, Op1);
1389
1390  // Replace (-1 - A) with (~A).
1391  if (match(Op0, m_AllOnes()))
1392    return BinaryOperator::CreateNot(Op1);
1393
1394  if (Constant *C = dyn_cast<Constant>(Op0)) {
1395    // C - ~X == X + (1+C)
1396    Value *X = 0;
1397    if (match(Op1, m_Not(m_Value(X))))
1398      return BinaryOperator::CreateAdd(X, AddOne(C));
1399
1400    // Try to fold constant sub into select arguments.
1401    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1402      if (Instruction *R = FoldOpIntoSelect(I, SI))
1403        return R;
1404
1405    // C-(X+C2) --> (C-C2)-X
1406    Constant *C2;
1407    if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1408      return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1409
1410    if (SimplifyDemandedInstructionBits(I))
1411      return &I;
1412
1413    // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
1414    if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X))))
1415      if (X->getType()->getScalarType()->isIntegerTy(1))
1416        return CastInst::CreateSExtOrBitCast(X, Op1->getType());
1417
1418    // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
1419    if (C->isNullValue() && match(Op1, m_SExt(m_Value(X))))
1420      if (X->getType()->getScalarType()->isIntegerTy(1))
1421        return CastInst::CreateZExtOrBitCast(X, Op1->getType());
1422  }
1423
1424  if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
1425    // -(X >>u 31) -> (X >>s 31)
1426    // -(X >>s 31) -> (X >>u 31)
1427    if (C->isZero()) {
1428      Value *X; ConstantInt *CI;
1429      if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
1430          // Verify we are shifting out everything but the sign bit.
1431          CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
1432        return BinaryOperator::CreateAShr(X, CI);
1433
1434      if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
1435          // Verify we are shifting out everything but the sign bit.
1436          CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
1437        return BinaryOperator::CreateLShr(X, CI);
1438    }
1439  }
1440
1441
1442  { Value *Y;
1443    // X-(X+Y) == -Y    X-(Y+X) == -Y
1444    if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
1445        match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
1446      return BinaryOperator::CreateNeg(Y);
1447
1448    // (X-Y)-X == -Y
1449    if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1450      return BinaryOperator::CreateNeg(Y);
1451  }
1452
1453  if (Op1->hasOneUse()) {
1454    Value *X = 0, *Y = 0, *Z = 0;
1455    Constant *C = 0;
1456    Constant *CI = 0;
1457
1458    // (X - (Y - Z))  -->  (X + (Z - Y)).
1459    if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1460      return BinaryOperator::CreateAdd(Op0,
1461                                      Builder->CreateSub(Z, Y, Op1->getName()));
1462
1463    // (X - (X & Y))   -->   (X & ~Y)
1464    //
1465    if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
1466        match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
1467      return BinaryOperator::CreateAnd(Op0,
1468                                  Builder->CreateNot(Y, Y->getName() + ".not"));
1469
1470    // 0 - (X sdiv C)  -> (X sdiv -C)
1471    if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) &&
1472        match(Op0, m_Zero()))
1473      return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1474
1475    // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
1476    if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1477      if (Value *XNeg = dyn_castNegVal(X))
1478        return BinaryOperator::CreateShl(XNeg, Y);
1479
1480    // X - X*C --> X * (1-C)
1481    if (match(Op1, m_Mul(m_Specific(Op0), m_Constant(CI)))) {
1482      Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI);
1483      return BinaryOperator::CreateMul(Op0, CP1);
1484    }
1485
1486    // X - X<<C --> X * (1-(1<<C))
1487    if (match(Op1, m_Shl(m_Specific(Op0), m_Constant(CI)))) {
1488      Constant *One = ConstantInt::get(I.getType(), 1);
1489      C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI));
1490      return BinaryOperator::CreateMul(Op0, C);
1491    }
1492
1493    // X - A*-B -> X + A*B
1494    // X - -A*B -> X + A*B
1495    Value *A, *B;
1496    if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
1497        match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
1498      return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
1499
1500    // X - A*CI -> X + A*-CI
1501    // X - CI*A -> X + A*-CI
1502    if (match(Op1, m_Mul(m_Value(A), m_Constant(CI))) ||
1503        match(Op1, m_Mul(m_Constant(CI), m_Value(A)))) {
1504      Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
1505      return BinaryOperator::CreateAdd(Op0, NewMul);
1506    }
1507  }
1508
1509  Constant *C1;
1510  if (Value *X = dyn_castFoldableMul(Op0, C1)) {
1511    if (X == Op1)  // X*C - X --> X * (C-1)
1512      return BinaryOperator::CreateMul(Op1, SubOne(C1));
1513
1514    Constant *C2;   // X*C1 - X*C2 -> X * (C1-C2)
1515    if (X == dyn_castFoldableMul(Op1, C2))
1516      return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
1517  }
1518
1519  // Optimize pointer differences into the same array into a size.  Consider:
1520  //  &A[10] - &A[0]: we should compile this to "10".
1521  if (DL) {
1522    Value *LHSOp, *RHSOp;
1523    if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1524        match(Op1, m_PtrToInt(m_Value(RHSOp))))
1525      if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1526        return ReplaceInstUsesWith(I, Res);
1527
1528    // trunc(p)-trunc(q) -> trunc(p-q)
1529    if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1530        match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1531      if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1532        return ReplaceInstUsesWith(I, Res);
1533  }
1534
1535  return 0;
1536}
1537
1538Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1539  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1540
1541  if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL))
1542    return ReplaceInstUsesWith(I, V);
1543
1544  if (isa<Constant>(Op0))
1545    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1546      if (Instruction *NV = FoldOpIntoSelect(I, SI))
1547        return NV;
1548
1549  // If this is a 'B = x-(-A)', change to B = x+A, potentially looking
1550  // through FP extensions/truncations along the way.
1551  if (Value *V = dyn_castFNegVal(Op1)) {
1552    Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V);
1553    NewI->copyFastMathFlags(&I);
1554    return NewI;
1555  }
1556  if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) {
1557    if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) {
1558      Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType());
1559      Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc);
1560      NewI->copyFastMathFlags(&I);
1561      return NewI;
1562    }
1563  } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) {
1564    if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) {
1565      Value *NewExt = Builder->CreateFPExt(V, I.getType());
1566      Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt);
1567      NewI->copyFastMathFlags(&I);
1568      return NewI;
1569    }
1570  }
1571
1572  if (I.hasUnsafeAlgebra()) {
1573    if (Value *V = FAddCombine(Builder).simplify(&I))
1574      return ReplaceInstUsesWith(I, V);
1575  }
1576
1577  return 0;
1578}
1579