InstCombineAndOrXor.cpp revision 0d833348c2dea181e08d3ece8da18079653f96ee
1//===- InstCombineAndOrXor.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitAnd, visitOr, and visitXor functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/InstructionSimplify.h"
16#include "llvm/IR/Intrinsics.h"
17#include "llvm/Support/ConstantRange.h"
18#include "llvm/Support/PatternMatch.h"
19#include "llvm/Transforms/Utils/CmpInstAnalysis.h"
20using namespace llvm;
21using namespace PatternMatch;
22
23
24/// AddOne - Add one to a ConstantInt.
25static Constant *AddOne(ConstantInt *C) {
26  return ConstantInt::get(C->getContext(), C->getValue() + 1);
27}
28/// SubOne - Subtract one from a ConstantInt.
29static Constant *SubOne(ConstantInt *C) {
30  return ConstantInt::get(C->getContext(), C->getValue()-1);
31}
32
33/// isFreeToInvert - Return true if the specified value is free to invert (apply
34/// ~ to).  This happens in cases where the ~ can be eliminated.
35static inline bool isFreeToInvert(Value *V) {
36  // ~(~(X)) -> X.
37  if (BinaryOperator::isNot(V))
38    return true;
39
40  // Constants can be considered to be not'ed values.
41  if (isa<ConstantInt>(V))
42    return true;
43
44  // Compares can be inverted if they have a single use.
45  if (CmpInst *CI = dyn_cast<CmpInst>(V))
46    return CI->hasOneUse();
47
48  return false;
49}
50
51static inline Value *dyn_castNotVal(Value *V) {
52  // If this is not(not(x)) don't return that this is a not: we want the two
53  // not's to be folded first.
54  if (BinaryOperator::isNot(V)) {
55    Value *Operand = BinaryOperator::getNotArgument(V);
56    if (!isFreeToInvert(Operand))
57      return Operand;
58  }
59
60  // Constants can be considered to be not'ed values...
61  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
62    return ConstantInt::get(C->getType(), ~C->getValue());
63  return 0;
64}
65
66/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
67/// predicate into a three bit mask. It also returns whether it is an ordered
68/// predicate by reference.
69static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
70  isOrdered = false;
71  switch (CC) {
72  case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
73  case FCmpInst::FCMP_UNO:                   return 0;  // 000
74  case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
75  case FCmpInst::FCMP_UGT:                   return 1;  // 001
76  case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
77  case FCmpInst::FCMP_UEQ:                   return 2;  // 010
78  case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
79  case FCmpInst::FCMP_UGE:                   return 3;  // 011
80  case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
81  case FCmpInst::FCMP_ULT:                   return 4;  // 100
82  case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
83  case FCmpInst::FCMP_UNE:                   return 5;  // 101
84  case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
85  case FCmpInst::FCMP_ULE:                   return 6;  // 110
86    // True -> 7
87  default:
88    // Not expecting FCMP_FALSE and FCMP_TRUE;
89    llvm_unreachable("Unexpected FCmp predicate!");
90  }
91}
92
93/// getNewICmpValue - This is the complement of getICmpCode, which turns an
94/// opcode and two operands into either a constant true or false, or a brand
95/// new ICmp instruction. The sign is passed in to determine which kind
96/// of predicate to use in the new icmp instruction.
97static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
98                              InstCombiner::BuilderTy *Builder) {
99  ICmpInst::Predicate NewPred;
100  if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
101    return NewConstant;
102  return Builder->CreateICmp(NewPred, LHS, RHS);
103}
104
105/// getFCmpValue - This is the complement of getFCmpCode, which turns an
106/// opcode and two operands into either a FCmp instruction. isordered is passed
107/// in to determine which kind of predicate to use in the new fcmp instruction.
108static Value *getFCmpValue(bool isordered, unsigned code,
109                           Value *LHS, Value *RHS,
110                           InstCombiner::BuilderTy *Builder) {
111  CmpInst::Predicate Pred;
112  switch (code) {
113  default: llvm_unreachable("Illegal FCmp code!");
114  case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
115  case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
116  case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
117  case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
118  case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
119  case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
120  case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
121  case 7:
122    if (!isordered) return ConstantInt::getTrue(LHS->getContext());
123    Pred = FCmpInst::FCMP_ORD; break;
124  }
125  return Builder->CreateFCmp(Pred, LHS, RHS);
126}
127
128// OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
129// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
130// guaranteed to be a binary operator.
131Instruction *InstCombiner::OptAndOp(Instruction *Op,
132                                    ConstantInt *OpRHS,
133                                    ConstantInt *AndRHS,
134                                    BinaryOperator &TheAnd) {
135  Value *X = Op->getOperand(0);
136  Constant *Together = 0;
137  if (!Op->isShift())
138    Together = ConstantExpr::getAnd(AndRHS, OpRHS);
139
140  switch (Op->getOpcode()) {
141  case Instruction::Xor:
142    if (Op->hasOneUse()) {
143      // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
144      Value *And = Builder->CreateAnd(X, AndRHS);
145      And->takeName(Op);
146      return BinaryOperator::CreateXor(And, Together);
147    }
148    break;
149  case Instruction::Or:
150    if (Op->hasOneUse()){
151      if (Together != OpRHS) {
152        // (X | C1) & C2 --> (X | (C1&C2)) & C2
153        Value *Or = Builder->CreateOr(X, Together);
154        Or->takeName(Op);
155        return BinaryOperator::CreateAnd(Or, AndRHS);
156      }
157
158      ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
159      if (TogetherCI && !TogetherCI->isZero()){
160        // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
161        // NOTE: This reduces the number of bits set in the & mask, which
162        // can expose opportunities for store narrowing.
163        Together = ConstantExpr::getXor(AndRHS, Together);
164        Value *And = Builder->CreateAnd(X, Together);
165        And->takeName(Op);
166        return BinaryOperator::CreateOr(And, OpRHS);
167      }
168    }
169
170    break;
171  case Instruction::Add:
172    if (Op->hasOneUse()) {
173      // Adding a one to a single bit bit-field should be turned into an XOR
174      // of the bit.  First thing to check is to see if this AND is with a
175      // single bit constant.
176      const APInt &AndRHSV = AndRHS->getValue();
177
178      // If there is only one bit set.
179      if (AndRHSV.isPowerOf2()) {
180        // Ok, at this point, we know that we are masking the result of the
181        // ADD down to exactly one bit.  If the constant we are adding has
182        // no bits set below this bit, then we can eliminate the ADD.
183        const APInt& AddRHS = OpRHS->getValue();
184
185        // Check to see if any bits below the one bit set in AndRHSV are set.
186        if ((AddRHS & (AndRHSV-1)) == 0) {
187          // If not, the only thing that can effect the output of the AND is
188          // the bit specified by AndRHSV.  If that bit is set, the effect of
189          // the XOR is to toggle the bit.  If it is clear, then the ADD has
190          // no effect.
191          if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
192            TheAnd.setOperand(0, X);
193            return &TheAnd;
194          } else {
195            // Pull the XOR out of the AND.
196            Value *NewAnd = Builder->CreateAnd(X, AndRHS);
197            NewAnd->takeName(Op);
198            return BinaryOperator::CreateXor(NewAnd, AndRHS);
199          }
200        }
201      }
202    }
203    break;
204
205  case Instruction::Shl: {
206    // We know that the AND will not produce any of the bits shifted in, so if
207    // the anded constant includes them, clear them now!
208    //
209    uint32_t BitWidth = AndRHS->getType()->getBitWidth();
210    uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
211    APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
212    ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShlMask);
213
214    if (CI->getValue() == ShlMask)
215      // Masking out bits that the shift already masks.
216      return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
217
218    if (CI != AndRHS) {                  // Reducing bits set in and.
219      TheAnd.setOperand(1, CI);
220      return &TheAnd;
221    }
222    break;
223  }
224  case Instruction::LShr: {
225    // We know that the AND will not produce any of the bits shifted in, so if
226    // the anded constant includes them, clear them now!  This only applies to
227    // unsigned shifts, because a signed shr may bring in set bits!
228    //
229    uint32_t BitWidth = AndRHS->getType()->getBitWidth();
230    uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
231    APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
232    ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShrMask);
233
234    if (CI->getValue() == ShrMask)
235      // Masking out bits that the shift already masks.
236      return ReplaceInstUsesWith(TheAnd, Op);
237
238    if (CI != AndRHS) {
239      TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
240      return &TheAnd;
241    }
242    break;
243  }
244  case Instruction::AShr:
245    // Signed shr.
246    // See if this is shifting in some sign extension, then masking it out
247    // with an and.
248    if (Op->hasOneUse()) {
249      uint32_t BitWidth = AndRHS->getType()->getBitWidth();
250      uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
251      APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
252      Constant *C = Builder->getInt(AndRHS->getValue() & ShrMask);
253      if (C == AndRHS) {          // Masking out bits shifted in.
254        // (Val ashr C1) & C2 -> (Val lshr C1) & C2
255        // Make the argument unsigned.
256        Value *ShVal = Op->getOperand(0);
257        ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
258        return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
259      }
260    }
261    break;
262  }
263  return 0;
264}
265
266/// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
267/// (V < Lo || V >= Hi).  In practice, we emit the more efficient
268/// (V-Lo) \<u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
269/// whether to treat the V, Lo and HI as signed or not. IB is the location to
270/// insert new instructions.
271Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
272                                     bool isSigned, bool Inside) {
273  assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
274            ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
275         "Lo is not <= Hi in range emission code!");
276
277  if (Inside) {
278    if (Lo == Hi)  // Trivially false.
279      return Builder->getFalse();
280
281    // V >= Min && V < Hi --> V < Hi
282    if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
283      ICmpInst::Predicate pred = (isSigned ?
284        ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
285      return Builder->CreateICmp(pred, V, Hi);
286    }
287
288    // Emit V-Lo <u Hi-Lo
289    Constant *NegLo = ConstantExpr::getNeg(Lo);
290    Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
291    Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
292    return Builder->CreateICmpULT(Add, UpperBound);
293  }
294
295  if (Lo == Hi)  // Trivially true.
296    return Builder->getTrue();
297
298  // V < Min || V >= Hi -> V > Hi-1
299  Hi = SubOne(cast<ConstantInt>(Hi));
300  if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
301    ICmpInst::Predicate pred = (isSigned ?
302        ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
303    return Builder->CreateICmp(pred, V, Hi);
304  }
305
306  // Emit V-Lo >u Hi-1-Lo
307  // Note that Hi has already had one subtracted from it, above.
308  ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
309  Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
310  Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
311  return Builder->CreateICmpUGT(Add, LowerBound);
312}
313
314// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
315// any number of 0s on either side.  The 1s are allowed to wrap from LSB to
316// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
317// not, since all 1s are not contiguous.
318static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
319  const APInt& V = Val->getValue();
320  uint32_t BitWidth = Val->getType()->getBitWidth();
321  if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
322
323  // look for the first zero bit after the run of ones
324  MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
325  // look for the first non-zero bit
326  ME = V.getActiveBits();
327  return true;
328}
329
330/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
331/// where isSub determines whether the operator is a sub.  If we can fold one of
332/// the following xforms:
333///
334/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
335/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
336/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
337///
338/// return (A +/- B).
339///
340Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
341                                        ConstantInt *Mask, bool isSub,
342                                        Instruction &I) {
343  Instruction *LHSI = dyn_cast<Instruction>(LHS);
344  if (!LHSI || LHSI->getNumOperands() != 2 ||
345      !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
346
347  ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
348
349  switch (LHSI->getOpcode()) {
350  default: return 0;
351  case Instruction::And:
352    if (ConstantExpr::getAnd(N, Mask) == Mask) {
353      // If the AndRHS is a power of two minus one (0+1+), this is simple.
354      if ((Mask->getValue().countLeadingZeros() +
355           Mask->getValue().countPopulation()) ==
356          Mask->getValue().getBitWidth())
357        break;
358
359      // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
360      // part, we don't need any explicit masks to take them out of A.  If that
361      // is all N is, ignore it.
362      uint32_t MB = 0, ME = 0;
363      if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
364        uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
365        APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
366        if (MaskedValueIsZero(RHS, Mask))
367          break;
368      }
369    }
370    return 0;
371  case Instruction::Or:
372  case Instruction::Xor:
373    // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
374    if ((Mask->getValue().countLeadingZeros() +
375         Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
376        && ConstantExpr::getAnd(N, Mask)->isNullValue())
377      break;
378    return 0;
379  }
380
381  if (isSub)
382    return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
383  return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
384}
385
386/// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
387/// One of A and B is considered the mask, the other the value. This is
388/// described as the "AMask" or "BMask" part of the enum. If the enum
389/// contains only "Mask", then both A and B can be considered masks.
390/// If A is the mask, then it was proven, that (A & C) == C. This
391/// is trivial if C == A, or C == 0. If both A and C are constants, this
392/// proof is also easy.
393/// For the following explanations we assume that A is the mask.
394/// The part "AllOnes" declares, that the comparison is true only
395/// if (A & B) == A, or all bits of A are set in B.
396///   Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
397/// The part "AllZeroes" declares, that the comparison is true only
398/// if (A & B) == 0, or all bits of A are cleared in B.
399///   Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
400/// The part "Mixed" declares, that (A & B) == C and C might or might not
401/// contain any number of one bits and zero bits.
402///   Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
403/// The Part "Not" means, that in above descriptions "==" should be replaced
404/// by "!=".
405///   Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
406/// If the mask A contains a single bit, then the following is equivalent:
407///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
408///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
409enum MaskedICmpType {
410  FoldMskICmp_AMask_AllOnes           =     1,
411  FoldMskICmp_AMask_NotAllOnes        =     2,
412  FoldMskICmp_BMask_AllOnes           =     4,
413  FoldMskICmp_BMask_NotAllOnes        =     8,
414  FoldMskICmp_Mask_AllZeroes          =    16,
415  FoldMskICmp_Mask_NotAllZeroes       =    32,
416  FoldMskICmp_AMask_Mixed             =    64,
417  FoldMskICmp_AMask_NotMixed          =   128,
418  FoldMskICmp_BMask_Mixed             =   256,
419  FoldMskICmp_BMask_NotMixed          =   512
420};
421
422/// return the set of pattern classes (from MaskedICmpType)
423/// that (icmp SCC (A & B), C) satisfies
424static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
425                                    ICmpInst::Predicate SCC)
426{
427  ConstantInt *ACst = dyn_cast<ConstantInt>(A);
428  ConstantInt *BCst = dyn_cast<ConstantInt>(B);
429  ConstantInt *CCst = dyn_cast<ConstantInt>(C);
430  bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
431  bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
432                    ACst->getValue().isPowerOf2());
433  bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
434                    BCst->getValue().isPowerOf2());
435  unsigned result = 0;
436  if (CCst != 0 && CCst->isZero()) {
437    // if C is zero, then both A and B qualify as mask
438    result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
439                          FoldMskICmp_Mask_AllZeroes |
440                          FoldMskICmp_AMask_Mixed |
441                          FoldMskICmp_BMask_Mixed)
442                       : (FoldMskICmp_Mask_NotAllZeroes |
443                          FoldMskICmp_Mask_NotAllZeroes |
444                          FoldMskICmp_AMask_NotMixed |
445                          FoldMskICmp_BMask_NotMixed));
446    if (icmp_abit)
447      result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
448                            FoldMskICmp_AMask_NotMixed)
449                         : (FoldMskICmp_AMask_AllOnes |
450                            FoldMskICmp_AMask_Mixed));
451    if (icmp_bbit)
452      result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
453                            FoldMskICmp_BMask_NotMixed)
454                         : (FoldMskICmp_BMask_AllOnes |
455                            FoldMskICmp_BMask_Mixed));
456    return result;
457  }
458  if (A == C) {
459    result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
460                          FoldMskICmp_AMask_Mixed)
461                       : (FoldMskICmp_AMask_NotAllOnes |
462                          FoldMskICmp_AMask_NotMixed));
463    if (icmp_abit)
464      result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
465                            FoldMskICmp_AMask_NotMixed)
466                         : (FoldMskICmp_Mask_AllZeroes |
467                            FoldMskICmp_AMask_Mixed));
468  } else if (ACst != 0 && CCst != 0 &&
469             ConstantExpr::getAnd(ACst, CCst) == CCst) {
470    result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
471                       : FoldMskICmp_AMask_NotMixed);
472  }
473  if (B == C) {
474    result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
475                          FoldMskICmp_BMask_Mixed)
476                       : (FoldMskICmp_BMask_NotAllOnes |
477                          FoldMskICmp_BMask_NotMixed));
478    if (icmp_bbit)
479      result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
480                            FoldMskICmp_BMask_NotMixed)
481                         : (FoldMskICmp_Mask_AllZeroes |
482                            FoldMskICmp_BMask_Mixed));
483  } else if (BCst != 0 && CCst != 0 &&
484             ConstantExpr::getAnd(BCst, CCst) == CCst) {
485    result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
486                       : FoldMskICmp_BMask_NotMixed);
487  }
488  return result;
489}
490
491/// Convert an analysis of a masked ICmp into its equivalent if all boolean
492/// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
493/// is adjacent to the corresponding normal flag (recording ==), this just
494/// involves swapping those bits over.
495static unsigned conjugateICmpMask(unsigned Mask) {
496  unsigned NewMask;
497  NewMask = (Mask & (FoldMskICmp_AMask_AllOnes | FoldMskICmp_BMask_AllOnes |
498                     FoldMskICmp_Mask_AllZeroes | FoldMskICmp_AMask_Mixed |
499                     FoldMskICmp_BMask_Mixed))
500            << 1;
501
502  NewMask |=
503      (Mask & (FoldMskICmp_AMask_NotAllOnes | FoldMskICmp_BMask_NotAllOnes |
504               FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_AMask_NotMixed |
505               FoldMskICmp_BMask_NotMixed))
506      >> 1;
507
508  return NewMask;
509}
510
511/// decomposeBitTestICmp - Decompose an icmp into the form ((X & Y) pred Z)
512/// if possible. The returned predicate is either == or !=. Returns false if
513/// decomposition fails.
514static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
515                                 Value *&X, Value *&Y, Value *&Z) {
516  // X < 0 is equivalent to (X & SignBit) != 0.
517  if (I->getPredicate() == ICmpInst::ICMP_SLT)
518    if (ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
519      if (C->isZero()) {
520        X = I->getOperand(0);
521        Y = ConstantInt::get(I->getContext(),
522                             APInt::getSignBit(C->getBitWidth()));
523        Pred = ICmpInst::ICMP_NE;
524        Z = C;
525        return true;
526      }
527
528  // X > -1 is equivalent to (X & SignBit) == 0.
529  if (I->getPredicate() == ICmpInst::ICMP_SGT)
530    if (ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
531      if (C->isAllOnesValue()) {
532        X = I->getOperand(0);
533        Y = ConstantInt::get(I->getContext(),
534                             APInt::getSignBit(C->getBitWidth()));
535        Pred = ICmpInst::ICMP_EQ;
536        Z = ConstantInt::getNullValue(C->getType());
537        return true;
538      }
539
540  return false;
541}
542
543/// foldLogOpOfMaskedICmpsHelper:
544/// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
545/// return the set of pattern classes (from MaskedICmpType)
546/// that both LHS and RHS satisfy
547static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
548                                             Value*& B, Value*& C,
549                                             Value*& D, Value*& E,
550                                             ICmpInst *LHS, ICmpInst *RHS,
551                                             ICmpInst::Predicate &LHSCC,
552                                             ICmpInst::Predicate &RHSCC) {
553  if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
554  // vectors are not (yet?) supported
555  if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
556
557  // Here comes the tricky part:
558  // LHS might be of the form L11 & L12 == X, X == L21 & L22,
559  // and L11 & L12 == L21 & L22. The same goes for RHS.
560  // Now we must find those components L** and R**, that are equal, so
561  // that we can extract the parameters A, B, C, D, and E for the canonical
562  // above.
563  Value *L1 = LHS->getOperand(0);
564  Value *L2 = LHS->getOperand(1);
565  Value *L11,*L12,*L21,*L22;
566  // Check whether the icmp can be decomposed into a bit test.
567  if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) {
568    L21 = L22 = L1 = 0;
569  } else {
570    // Look for ANDs in the LHS icmp.
571    if (!L1->getType()->isIntegerTy()) {
572      // You can icmp pointers, for example. They really aren't masks.
573      L11 = L12 = 0;
574    } else if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
575      // Any icmp can be viewed as being trivially masked; if it allows us to
576      // remove one, it's worth it.
577      L11 = L1;
578      L12 = Constant::getAllOnesValue(L1->getType());
579    }
580
581    if (!L2->getType()->isIntegerTy()) {
582      // You can icmp pointers, for example. They really aren't masks.
583      L21 = L22 = 0;
584    } else if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
585      L21 = L2;
586      L22 = Constant::getAllOnesValue(L2->getType());
587    }
588  }
589
590  // Bail if LHS was a icmp that can't be decomposed into an equality.
591  if (!ICmpInst::isEquality(LHSCC))
592    return 0;
593
594  Value *R1 = RHS->getOperand(0);
595  Value *R2 = RHS->getOperand(1);
596  Value *R11,*R12;
597  bool ok = false;
598  if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) {
599    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
600      A = R11; D = R12;
601    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
602      A = R12; D = R11;
603    } else {
604      return 0;
605    }
606    E = R2; R1 = 0; ok = true;
607  } else if (R1->getType()->isIntegerTy()) {
608    if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
609      // As before, model no mask as a trivial mask if it'll let us do an
610      // optimisation.
611      R11 = R1;
612      R12 = Constant::getAllOnesValue(R1->getType());
613    }
614
615    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
616      A = R11; D = R12; E = R2; ok = true;
617    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
618      A = R12; D = R11; E = R2; ok = true;
619    }
620  }
621
622  // Bail if RHS was a icmp that can't be decomposed into an equality.
623  if (!ICmpInst::isEquality(RHSCC))
624    return 0;
625
626  // Look for ANDs in on the right side of the RHS icmp.
627  if (!ok && R2->getType()->isIntegerTy()) {
628    if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
629      R11 = R2;
630      R12 = Constant::getAllOnesValue(R2->getType());
631    }
632
633    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
634      A = R11; D = R12; E = R1; ok = true;
635    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
636      A = R12; D = R11; E = R1; ok = true;
637    } else {
638      return 0;
639    }
640  }
641  if (!ok)
642    return 0;
643
644  if (L11 == A) {
645    B = L12; C = L2;
646  } else if (L12 == A) {
647    B = L11; C = L2;
648  } else if (L21 == A) {
649    B = L22; C = L1;
650  } else if (L22 == A) {
651    B = L21; C = L1;
652  }
653
654  unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
655  unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
656  return left_type & right_type;
657}
658/// foldLogOpOfMaskedICmps:
659/// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
660/// into a single (icmp(A & X) ==/!= Y)
661static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
662                                     llvm::InstCombiner::BuilderTy* Builder) {
663  Value *A = 0, *B = 0, *C = 0, *D = 0, *E = 0;
664  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
665  unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
666                                               LHSCC, RHSCC);
667  if (mask == 0) return 0;
668  assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
669         "foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
670
671  // In full generality:
672  //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
673  // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
674  //
675  // If the latter can be converted into (icmp (A & X) Op Y) then the former is
676  // equivalent to (icmp (A & X) !Op Y).
677  //
678  // Therefore, we can pretend for the rest of this function that we're dealing
679  // with the conjunction, provided we flip the sense of any comparisons (both
680  // input and output).
681
682  // In most cases we're going to produce an EQ for the "&&" case.
683  ICmpInst::Predicate NEWCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
684  if (!IsAnd) {
685    // Convert the masking analysis into its equivalent with negated
686    // comparisons.
687    mask = conjugateICmpMask(mask);
688  }
689
690  if (mask & FoldMskICmp_Mask_AllZeroes) {
691    // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
692    // -> (icmp eq (A & (B|D)), 0)
693    Value* newOr = Builder->CreateOr(B, D);
694    Value* newAnd = Builder->CreateAnd(A, newOr);
695    // we can't use C as zero, because we might actually handle
696    //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
697    // with B and D, having a single bit set
698    Value* zero = Constant::getNullValue(A->getType());
699    return Builder->CreateICmp(NEWCC, newAnd, zero);
700  }
701  if (mask & FoldMskICmp_BMask_AllOnes) {
702    // (icmp eq (A & B), B) & (icmp eq (A & D), D)
703    // -> (icmp eq (A & (B|D)), (B|D))
704    Value* newOr = Builder->CreateOr(B, D);
705    Value* newAnd = Builder->CreateAnd(A, newOr);
706    return Builder->CreateICmp(NEWCC, newAnd, newOr);
707  }
708  if (mask & FoldMskICmp_AMask_AllOnes) {
709    // (icmp eq (A & B), A) & (icmp eq (A & D), A)
710    // -> (icmp eq (A & (B&D)), A)
711    Value* newAnd1 = Builder->CreateAnd(B, D);
712    Value* newAnd = Builder->CreateAnd(A, newAnd1);
713    return Builder->CreateICmp(NEWCC, newAnd, A);
714  }
715
716  // Remaining cases assume at least that B and D are constant, and depend on
717  // their actual values. This isn't strictly, necessary, just a "handle the
718  // easy cases for now" decision.
719  ConstantInt *BCst = dyn_cast<ConstantInt>(B);
720  if (BCst == 0) return 0;
721  ConstantInt *DCst = dyn_cast<ConstantInt>(D);
722  if (DCst == 0) return 0;
723
724  if (mask & (FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_BMask_NotAllOnes)) {
725    // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
726    // (icmp ne (A & B), B) & (icmp ne (A & D), D)
727    //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
728    // Only valid if one of the masks is a superset of the other (check "B&D" is
729    // the same as either B or D).
730    APInt NewMask = BCst->getValue() & DCst->getValue();
731
732    if (NewMask == BCst->getValue())
733      return LHS;
734    else if (NewMask == DCst->getValue())
735      return RHS;
736  }
737  if (mask & FoldMskICmp_AMask_NotAllOnes) {
738    // (icmp ne (A & B), B) & (icmp ne (A & D), D)
739    //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
740    // Only valid if one of the masks is a superset of the other (check "B|D" is
741    // the same as either B or D).
742    APInt NewMask = BCst->getValue() | DCst->getValue();
743
744    if (NewMask == BCst->getValue())
745      return LHS;
746    else if (NewMask == DCst->getValue())
747      return RHS;
748  }
749  if (mask & FoldMskICmp_BMask_Mixed) {
750    // (icmp eq (A & B), C) & (icmp eq (A & D), E)
751    // We already know that B & C == C && D & E == E.
752    // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
753    // C and E, which are shared by both the mask B and the mask D, don't
754    // contradict, then we can transform to
755    // -> (icmp eq (A & (B|D)), (C|E))
756    // Currently, we only handle the case of B, C, D, and E being constant.
757    // we can't simply use C and E, because we might actually handle
758    //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
759    // with B and D, having a single bit set
760    ConstantInt *CCst = dyn_cast<ConstantInt>(C);
761    if (CCst == 0) return 0;
762    if (LHSCC != NEWCC)
763      CCst = dyn_cast<ConstantInt>( ConstantExpr::getXor(BCst, CCst) );
764    ConstantInt *ECst = dyn_cast<ConstantInt>(E);
765    if (ECst == 0) return 0;
766    if (RHSCC != NEWCC)
767      ECst = dyn_cast<ConstantInt>( ConstantExpr::getXor(DCst, ECst) );
768    ConstantInt* MCst = dyn_cast<ConstantInt>(
769      ConstantExpr::getAnd(ConstantExpr::getAnd(BCst, DCst),
770                           ConstantExpr::getXor(CCst, ECst)) );
771    // if there is a conflict we should actually return a false for the
772    // whole construct
773    if (!MCst->isZero())
774      return 0;
775    Value *newOr1 = Builder->CreateOr(B, D);
776    Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
777    Value *newAnd = Builder->CreateAnd(A, newOr1);
778    return Builder->CreateICmp(NEWCC, newAnd, newOr2);
779  }
780  return 0;
781}
782
783/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
784Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
785  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
786
787  // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
788  if (PredicatesFoldable(LHSCC, RHSCC)) {
789    if (LHS->getOperand(0) == RHS->getOperand(1) &&
790        LHS->getOperand(1) == RHS->getOperand(0))
791      LHS->swapOperands();
792    if (LHS->getOperand(0) == RHS->getOperand(0) &&
793        LHS->getOperand(1) == RHS->getOperand(1)) {
794      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
795      unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
796      bool isSigned = LHS->isSigned() || RHS->isSigned();
797      return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
798    }
799  }
800
801  // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
802  if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
803    return V;
804
805  // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
806  Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
807  ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
808  ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
809  if (LHSCst == 0 || RHSCst == 0) return 0;
810
811  if (LHSCst == RHSCst && LHSCC == RHSCC) {
812    // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
813    // where C is a power of 2
814    if (LHSCC == ICmpInst::ICMP_ULT &&
815        LHSCst->getValue().isPowerOf2()) {
816      Value *NewOr = Builder->CreateOr(Val, Val2);
817      return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
818    }
819
820    // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
821    if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
822      Value *NewOr = Builder->CreateOr(Val, Val2);
823      return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
824    }
825  }
826
827  // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
828  // where CMAX is the all ones value for the truncated type,
829  // iff the lower bits of C2 and CA are zero.
830  if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC &&
831      LHS->hasOneUse() && RHS->hasOneUse()) {
832    Value *V;
833    ConstantInt *AndCst, *SmallCst = 0, *BigCst = 0;
834
835    // (trunc x) == C1 & (and x, CA) == C2
836    // (and x, CA) == C2 & (trunc x) == C1
837    if (match(Val2, m_Trunc(m_Value(V))) &&
838        match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
839      SmallCst = RHSCst;
840      BigCst = LHSCst;
841    } else if (match(Val, m_Trunc(m_Value(V))) &&
842               match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
843      SmallCst = LHSCst;
844      BigCst = RHSCst;
845    }
846
847    if (SmallCst && BigCst) {
848      unsigned BigBitSize = BigCst->getType()->getBitWidth();
849      unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
850
851      // Check that the low bits are zero.
852      APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
853      if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
854        Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
855        APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
856        Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
857        return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
858      }
859    }
860  }
861
862  // From here on, we only handle:
863  //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
864  if (Val != Val2) return 0;
865
866  // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
867  if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
868      RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
869      LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
870      RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
871    return 0;
872
873  // Make a constant range that's the intersection of the two icmp ranges.
874  // If the intersection is empty, we know that the result is false.
875  ConstantRange LHSRange =
876    ConstantRange::makeICmpRegion(LHSCC, LHSCst->getValue());
877  ConstantRange RHSRange =
878    ConstantRange::makeICmpRegion(RHSCC, RHSCst->getValue());
879
880  if (LHSRange.intersectWith(RHSRange).isEmptySet())
881    return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
882
883  // We can't fold (ugt x, C) & (sgt x, C2).
884  if (!PredicatesFoldable(LHSCC, RHSCC))
885    return 0;
886
887  // Ensure that the larger constant is on the RHS.
888  bool ShouldSwap;
889  if (CmpInst::isSigned(LHSCC) ||
890      (ICmpInst::isEquality(LHSCC) &&
891       CmpInst::isSigned(RHSCC)))
892    ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
893  else
894    ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
895
896  if (ShouldSwap) {
897    std::swap(LHS, RHS);
898    std::swap(LHSCst, RHSCst);
899    std::swap(LHSCC, RHSCC);
900  }
901
902  // At this point, we know we have two icmp instructions
903  // comparing a value against two constants and and'ing the result
904  // together.  Because of the above check, we know that we only have
905  // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
906  // (from the icmp folding check above), that the two constants
907  // are not equal and that the larger constant is on the RHS
908  assert(LHSCst != RHSCst && "Compares not folded above?");
909
910  switch (LHSCC) {
911  default: llvm_unreachable("Unknown integer condition code!");
912  case ICmpInst::ICMP_EQ:
913    switch (RHSCC) {
914    default: llvm_unreachable("Unknown integer condition code!");
915    case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
916    case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
917    case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
918      return LHS;
919    }
920  case ICmpInst::ICMP_NE:
921    switch (RHSCC) {
922    default: llvm_unreachable("Unknown integer condition code!");
923    case ICmpInst::ICMP_ULT:
924      if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
925        return Builder->CreateICmpULT(Val, LHSCst);
926      break;                        // (X != 13 & X u< 15) -> no change
927    case ICmpInst::ICMP_SLT:
928      if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
929        return Builder->CreateICmpSLT(Val, LHSCst);
930      break;                        // (X != 13 & X s< 15) -> no change
931    case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
932    case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
933    case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
934      return RHS;
935    case ICmpInst::ICMP_NE:
936      // Special case to get the ordering right when the values wrap around
937      // zero.
938      if (LHSCst->getValue() == 0 && RHSCst->getValue().isAllOnesValue())
939        std::swap(LHSCst, RHSCst);
940      if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
941        Constant *AddCST = ConstantExpr::getNeg(LHSCst);
942        Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
943        return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1),
944                                      Val->getName()+".cmp");
945      }
946      break;                        // (X != 13 & X != 15) -> no change
947    }
948    break;
949  case ICmpInst::ICMP_ULT:
950    switch (RHSCC) {
951    default: llvm_unreachable("Unknown integer condition code!");
952    case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
953    case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
954      return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
955    case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
956      break;
957    case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
958    case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
959      return LHS;
960    case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
961      break;
962    }
963    break;
964  case ICmpInst::ICMP_SLT:
965    switch (RHSCC) {
966    default: llvm_unreachable("Unknown integer condition code!");
967    case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
968      break;
969    case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
970    case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
971      return LHS;
972    case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
973      break;
974    }
975    break;
976  case ICmpInst::ICMP_UGT:
977    switch (RHSCC) {
978    default: llvm_unreachable("Unknown integer condition code!");
979    case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
980    case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
981      return RHS;
982    case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
983      break;
984    case ICmpInst::ICMP_NE:
985      if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
986        return Builder->CreateICmp(LHSCC, Val, RHSCst);
987      break;                        // (X u> 13 & X != 15) -> no change
988    case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
989      return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
990    case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
991      break;
992    }
993    break;
994  case ICmpInst::ICMP_SGT:
995    switch (RHSCC) {
996    default: llvm_unreachable("Unknown integer condition code!");
997    case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
998    case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
999      return RHS;
1000    case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
1001      break;
1002    case ICmpInst::ICMP_NE:
1003      if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
1004        return Builder->CreateICmp(LHSCC, Val, RHSCst);
1005      break;                        // (X s> 13 & X != 15) -> no change
1006    case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
1007      return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
1008    case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
1009      break;
1010    }
1011    break;
1012  }
1013
1014  return 0;
1015}
1016
1017/// FoldAndOfFCmps - Optimize (fcmp)&(fcmp).  NOTE: Unlike the rest of
1018/// instcombine, this returns a Value which should already be inserted into the
1019/// function.
1020Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
1021  if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
1022      RHS->getPredicate() == FCmpInst::FCMP_ORD) {
1023    if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType())
1024      return 0;
1025
1026    // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
1027    if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
1028      if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
1029        // If either of the constants are nans, then the whole thing returns
1030        // false.
1031        if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
1032          return Builder->getFalse();
1033        return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
1034      }
1035
1036    // Handle vector zeros.  This occurs because the canonical form of
1037    // "fcmp ord x,x" is "fcmp ord x, 0".
1038    if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
1039        isa<ConstantAggregateZero>(RHS->getOperand(1)))
1040      return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
1041    return 0;
1042  }
1043
1044  Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
1045  Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
1046  FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
1047
1048
1049  if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
1050    // Swap RHS operands to match LHS.
1051    Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
1052    std::swap(Op1LHS, Op1RHS);
1053  }
1054
1055  if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
1056    // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1057    if (Op0CC == Op1CC)
1058      return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
1059    if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
1060      return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1061    if (Op0CC == FCmpInst::FCMP_TRUE)
1062      return RHS;
1063    if (Op1CC == FCmpInst::FCMP_TRUE)
1064      return LHS;
1065
1066    bool Op0Ordered;
1067    bool Op1Ordered;
1068    unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
1069    unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
1070    // uno && ord -> false
1071    if (Op0Pred == 0 && Op1Pred == 0 && Op0Ordered != Op1Ordered)
1072        return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1073    if (Op1Pred == 0) {
1074      std::swap(LHS, RHS);
1075      std::swap(Op0Pred, Op1Pred);
1076      std::swap(Op0Ordered, Op1Ordered);
1077    }
1078    if (Op0Pred == 0) {
1079      // uno && ueq -> uno && (uno || eq) -> uno
1080      // ord && olt -> ord && (ord && lt) -> olt
1081      if (!Op0Ordered && (Op0Ordered == Op1Ordered))
1082        return LHS;
1083      if (Op0Ordered && (Op0Ordered == Op1Ordered))
1084        return RHS;
1085
1086      // uno && oeq -> uno && (ord && eq) -> false
1087      if (!Op0Ordered)
1088        return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1089      // ord && ueq -> ord && (uno || eq) -> oeq
1090      return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
1091    }
1092  }
1093
1094  return 0;
1095}
1096
1097
1098Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
1099  bool Changed = SimplifyAssociativeOrCommutative(I);
1100  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1101
1102  if (Value *V = SimplifyAndInst(Op0, Op1, TD))
1103    return ReplaceInstUsesWith(I, V);
1104
1105  // (A|B)&(A|C) -> A|(B&C) etc
1106  if (Value *V = SimplifyUsingDistributiveLaws(I))
1107    return ReplaceInstUsesWith(I, V);
1108
1109  // See if we can simplify any instructions used by the instruction whose sole
1110  // purpose is to compute bits we don't care about.
1111  if (SimplifyDemandedInstructionBits(I))
1112    return &I;
1113
1114  if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
1115    const APInt &AndRHSMask = AndRHS->getValue();
1116
1117    // Optimize a variety of ((val OP C1) & C2) combinations...
1118    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1119      Value *Op0LHS = Op0I->getOperand(0);
1120      Value *Op0RHS = Op0I->getOperand(1);
1121      switch (Op0I->getOpcode()) {
1122      default: break;
1123      case Instruction::Xor:
1124      case Instruction::Or: {
1125        // If the mask is only needed on one incoming arm, push it up.
1126        if (!Op0I->hasOneUse()) break;
1127
1128        APInt NotAndRHS(~AndRHSMask);
1129        if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
1130          // Not masking anything out for the LHS, move to RHS.
1131          Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
1132                                             Op0RHS->getName()+".masked");
1133          return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
1134        }
1135        if (!isa<Constant>(Op0RHS) &&
1136            MaskedValueIsZero(Op0RHS, NotAndRHS)) {
1137          // Not masking anything out for the RHS, move to LHS.
1138          Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
1139                                             Op0LHS->getName()+".masked");
1140          return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
1141        }
1142
1143        break;
1144      }
1145      case Instruction::Add:
1146        // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
1147        // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1148        // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1149        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
1150          return BinaryOperator::CreateAnd(V, AndRHS);
1151        if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
1152          return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
1153        break;
1154
1155      case Instruction::Sub:
1156        // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
1157        // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1158        // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1159        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
1160          return BinaryOperator::CreateAnd(V, AndRHS);
1161
1162        // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
1163        // has 1's for all bits that the subtraction with A might affect.
1164        if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
1165          uint32_t BitWidth = AndRHSMask.getBitWidth();
1166          uint32_t Zeros = AndRHSMask.countLeadingZeros();
1167          APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
1168
1169          if (MaskedValueIsZero(Op0LHS, Mask)) {
1170            Value *NewNeg = Builder->CreateNeg(Op0RHS);
1171            return BinaryOperator::CreateAnd(NewNeg, AndRHS);
1172          }
1173        }
1174        break;
1175
1176      case Instruction::Shl:
1177      case Instruction::LShr:
1178        // (1 << x) & 1 --> zext(x == 0)
1179        // (1 >> x) & 1 --> zext(x == 0)
1180        if (AndRHSMask == 1 && Op0LHS == AndRHS) {
1181          Value *NewICmp =
1182            Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
1183          return new ZExtInst(NewICmp, I.getType());
1184        }
1185        break;
1186      }
1187
1188      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1189        if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
1190          return Res;
1191    }
1192
1193    // If this is an integer truncation, and if the source is an 'and' with
1194    // immediate, transform it.  This frequently occurs for bitfield accesses.
1195    {
1196      Value *X = 0; ConstantInt *YC = 0;
1197      if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
1198        // Change: and (trunc (and X, YC) to T), C2
1199        // into  : and (trunc X to T), trunc(YC) & C2
1200        // This will fold the two constants together, which may allow
1201        // other simplifications.
1202        Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
1203        Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
1204        C3 = ConstantExpr::getAnd(C3, AndRHS);
1205        return BinaryOperator::CreateAnd(NewCast, C3);
1206      }
1207    }
1208
1209    // Try to fold constant and into select arguments.
1210    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1211      if (Instruction *R = FoldOpIntoSelect(I, SI))
1212        return R;
1213    if (isa<PHINode>(Op0))
1214      if (Instruction *NV = FoldOpIntoPhi(I))
1215        return NV;
1216  }
1217
1218
1219  // (~A & ~B) == (~(A | B)) - De Morgan's Law
1220  if (Value *Op0NotVal = dyn_castNotVal(Op0))
1221    if (Value *Op1NotVal = dyn_castNotVal(Op1))
1222      if (Op0->hasOneUse() && Op1->hasOneUse()) {
1223        Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
1224                                      I.getName()+".demorgan");
1225        return BinaryOperator::CreateNot(Or);
1226      }
1227
1228  {
1229    Value *A = 0, *B = 0, *C = 0, *D = 0;
1230    // (A|B) & ~(A&B) -> A^B
1231    if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1232        match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1233        ((A == C && B == D) || (A == D && B == C)))
1234      return BinaryOperator::CreateXor(A, B);
1235
1236    // ~(A&B) & (A|B) -> A^B
1237    if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1238        match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1239        ((A == C && B == D) || (A == D && B == C)))
1240      return BinaryOperator::CreateXor(A, B);
1241
1242    // A&(A^B) => A & ~B
1243    {
1244      Value *tmpOp0 = Op0;
1245      Value *tmpOp1 = Op1;
1246      if (Op0->hasOneUse() &&
1247          match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
1248        if (A == Op1 || B == Op1 ) {
1249          tmpOp1 = Op0;
1250          tmpOp0 = Op1;
1251          // Simplify below
1252        }
1253      }
1254
1255      if (tmpOp1->hasOneUse() &&
1256          match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) {
1257        if (B == tmpOp0) {
1258          std::swap(A, B);
1259        }
1260        // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
1261        // A is originally -1 (or a vector of -1 and undefs), then we enter
1262        // an endless loop. By checking that A is non-constant we ensure that
1263        // we will never get to the loop.
1264        if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
1265          return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
1266      }
1267    }
1268
1269    // (A&((~A)|B)) -> A&B
1270    if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
1271        match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
1272      return BinaryOperator::CreateAnd(A, Op1);
1273    if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
1274        match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
1275      return BinaryOperator::CreateAnd(A, Op0);
1276  }
1277
1278  if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
1279    if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
1280      if (Value *Res = FoldAndOfICmps(LHS, RHS))
1281        return ReplaceInstUsesWith(I, Res);
1282
1283  // If and'ing two fcmp, try combine them into one.
1284  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1285    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
1286      if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1287        return ReplaceInstUsesWith(I, Res);
1288
1289
1290  // fold (and (cast A), (cast B)) -> (cast (and A, B))
1291  if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
1292    if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
1293      Type *SrcTy = Op0C->getOperand(0)->getType();
1294      if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
1295          SrcTy == Op1C->getOperand(0)->getType() &&
1296          SrcTy->isIntOrIntVectorTy()) {
1297        Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
1298
1299        // Only do this if the casts both really cause code to be generated.
1300        if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
1301            ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
1302          Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
1303          return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
1304        }
1305
1306        // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
1307        // cast is otherwise not optimizable.  This happens for vector sexts.
1308        if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
1309          if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
1310            if (Value *Res = FoldAndOfICmps(LHS, RHS))
1311              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
1312
1313        // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
1314        // cast is otherwise not optimizable.  This happens for vector sexts.
1315        if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
1316          if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
1317            if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1318              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
1319      }
1320    }
1321
1322  // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
1323  if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
1324    if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
1325      if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
1326          SI0->getOperand(1) == SI1->getOperand(1) &&
1327          (SI0->hasOneUse() || SI1->hasOneUse())) {
1328        Value *NewOp =
1329          Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
1330                             SI0->getName());
1331        return BinaryOperator::Create(SI1->getOpcode(), NewOp,
1332                                      SI1->getOperand(1));
1333      }
1334  }
1335
1336  {
1337    Value *X = 0;
1338    bool OpsSwapped = false;
1339    // Canonicalize SExt or Not to the LHS
1340    if (match(Op1, m_SExt(m_Value())) ||
1341        match(Op1, m_Not(m_Value()))) {
1342      std::swap(Op0, Op1);
1343      OpsSwapped = true;
1344    }
1345
1346    // Fold (and (sext bool to A), B) --> (select bool, B, 0)
1347    if (match(Op0, m_SExt(m_Value(X))) &&
1348        X->getType()->getScalarType()->isIntegerTy(1)) {
1349      Value *Zero = Constant::getNullValue(Op1->getType());
1350      return SelectInst::Create(X, Op1, Zero);
1351    }
1352
1353    // Fold (and ~(sext bool to A), B) --> (select bool, 0, B)
1354    if (match(Op0, m_Not(m_SExt(m_Value(X)))) &&
1355        X->getType()->getScalarType()->isIntegerTy(1)) {
1356      Value *Zero = Constant::getNullValue(Op0->getType());
1357      return SelectInst::Create(X, Zero, Op1);
1358    }
1359
1360    if (OpsSwapped)
1361      std::swap(Op0, Op1);
1362  }
1363
1364  return Changed ? &I : 0;
1365}
1366
1367/// CollectBSwapParts - Analyze the specified subexpression and see if it is
1368/// capable of providing pieces of a bswap.  The subexpression provides pieces
1369/// of a bswap if it is proven that each of the non-zero bytes in the output of
1370/// the expression came from the corresponding "byte swapped" byte in some other
1371/// value.  For example, if the current subexpression is "(shl i32 %X, 24)" then
1372/// we know that the expression deposits the low byte of %X into the high byte
1373/// of the bswap result and that all other bytes are zero.  This expression is
1374/// accepted, the high byte of ByteValues is set to X to indicate a correct
1375/// match.
1376///
1377/// This function returns true if the match was unsuccessful and false if so.
1378/// On entry to the function the "OverallLeftShift" is a signed integer value
1379/// indicating the number of bytes that the subexpression is later shifted.  For
1380/// example, if the expression is later right shifted by 16 bits, the
1381/// OverallLeftShift value would be -2 on entry.  This is used to specify which
1382/// byte of ByteValues is actually being set.
1383///
1384/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
1385/// byte is masked to zero by a user.  For example, in (X & 255), X will be
1386/// processed with a bytemask of 1.  Because bytemask is 32-bits, this limits
1387/// this function to working on up to 32-byte (256 bit) values.  ByteMask is
1388/// always in the local (OverallLeftShift) coordinate space.
1389///
1390static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
1391                              SmallVectorImpl<Value *> &ByteValues) {
1392  if (Instruction *I = dyn_cast<Instruction>(V)) {
1393    // If this is an or instruction, it may be an inner node of the bswap.
1394    if (I->getOpcode() == Instruction::Or) {
1395      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1396                               ByteValues) ||
1397             CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
1398                               ByteValues);
1399    }
1400
1401    // If this is a logical shift by a constant multiple of 8, recurse with
1402    // OverallLeftShift and ByteMask adjusted.
1403    if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1404      unsigned ShAmt =
1405        cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1406      // Ensure the shift amount is defined and of a byte value.
1407      if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
1408        return true;
1409
1410      unsigned ByteShift = ShAmt >> 3;
1411      if (I->getOpcode() == Instruction::Shl) {
1412        // X << 2 -> collect(X, +2)
1413        OverallLeftShift += ByteShift;
1414        ByteMask >>= ByteShift;
1415      } else {
1416        // X >>u 2 -> collect(X, -2)
1417        OverallLeftShift -= ByteShift;
1418        ByteMask <<= ByteShift;
1419        ByteMask &= (~0U >> (32-ByteValues.size()));
1420      }
1421
1422      if (OverallLeftShift >= (int)ByteValues.size()) return true;
1423      if (OverallLeftShift <= -(int)ByteValues.size()) return true;
1424
1425      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1426                               ByteValues);
1427    }
1428
1429    // If this is a logical 'and' with a mask that clears bytes, clear the
1430    // corresponding bytes in ByteMask.
1431    if (I->getOpcode() == Instruction::And &&
1432        isa<ConstantInt>(I->getOperand(1))) {
1433      // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
1434      unsigned NumBytes = ByteValues.size();
1435      APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
1436      const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
1437
1438      for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
1439        // If this byte is masked out by a later operation, we don't care what
1440        // the and mask is.
1441        if ((ByteMask & (1 << i)) == 0)
1442          continue;
1443
1444        // If the AndMask is all zeros for this byte, clear the bit.
1445        APInt MaskB = AndMask & Byte;
1446        if (MaskB == 0) {
1447          ByteMask &= ~(1U << i);
1448          continue;
1449        }
1450
1451        // If the AndMask is not all ones for this byte, it's not a bytezap.
1452        if (MaskB != Byte)
1453          return true;
1454
1455        // Otherwise, this byte is kept.
1456      }
1457
1458      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1459                               ByteValues);
1460    }
1461  }
1462
1463  // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
1464  // the input value to the bswap.  Some observations: 1) if more than one byte
1465  // is demanded from this input, then it could not be successfully assembled
1466  // into a byteswap.  At least one of the two bytes would not be aligned with
1467  // their ultimate destination.
1468  if (!isPowerOf2_32(ByteMask)) return true;
1469  unsigned InputByteNo = countTrailingZeros(ByteMask);
1470
1471  // 2) The input and ultimate destinations must line up: if byte 3 of an i32
1472  // is demanded, it needs to go into byte 0 of the result.  This means that the
1473  // byte needs to be shifted until it lands in the right byte bucket.  The
1474  // shift amount depends on the position: if the byte is coming from the high
1475  // part of the value (e.g. byte 3) then it must be shifted right.  If from the
1476  // low part, it must be shifted left.
1477  unsigned DestByteNo = InputByteNo + OverallLeftShift;
1478  if (ByteValues.size()-1-DestByteNo != InputByteNo)
1479    return true;
1480
1481  // If the destination byte value is already defined, the values are or'd
1482  // together, which isn't a bswap (unless it's an or of the same bits).
1483  if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
1484    return true;
1485  ByteValues[DestByteNo] = V;
1486  return false;
1487}
1488
1489/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
1490/// If so, insert the new bswap intrinsic and return it.
1491Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
1492  IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
1493  if (!ITy || ITy->getBitWidth() % 16 ||
1494      // ByteMask only allows up to 32-byte values.
1495      ITy->getBitWidth() > 32*8)
1496    return 0;   // Can only bswap pairs of bytes.  Can't do vectors.
1497
1498  /// ByteValues - For each byte of the result, we keep track of which value
1499  /// defines each byte.
1500  SmallVector<Value*, 8> ByteValues;
1501  ByteValues.resize(ITy->getBitWidth()/8);
1502
1503  // Try to find all the pieces corresponding to the bswap.
1504  uint32_t ByteMask = ~0U >> (32-ByteValues.size());
1505  if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
1506    return 0;
1507
1508  // Check to see if all of the bytes come from the same value.
1509  Value *V = ByteValues[0];
1510  if (V == 0) return 0;  // Didn't find a byte?  Must be zero.
1511
1512  // Check to make sure that all of the bytes come from the same value.
1513  for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
1514    if (ByteValues[i] != V)
1515      return 0;
1516  Module *M = I.getParent()->getParent()->getParent();
1517  Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
1518  return CallInst::Create(F, V);
1519}
1520
1521/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D).  Check
1522/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
1523/// we can simplify this expression to "cond ? C : D or B".
1524static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
1525                                         Value *C, Value *D) {
1526  // If A is not a select of -1/0, this cannot match.
1527  Value *Cond = 0;
1528  if (!match(A, m_SExt(m_Value(Cond))) ||
1529      !Cond->getType()->isIntegerTy(1))
1530    return 0;
1531
1532  // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
1533  if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
1534    return SelectInst::Create(Cond, C, B);
1535  if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
1536    return SelectInst::Create(Cond, C, B);
1537
1538  // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
1539  if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
1540    return SelectInst::Create(Cond, C, D);
1541  if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
1542    return SelectInst::Create(Cond, C, D);
1543  return 0;
1544}
1545
1546/// IsOneHotValue - Returns true for "one-hot" values (values where at most
1547/// one bit can be set).
1548static bool IsOneHotValue(Value *V) {
1549  // Match 1<<K.
1550  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
1551    if (BO->getOpcode() == Instruction::Shl) {
1552      ConstantInt *One = dyn_cast<ConstantInt>(BO->getOperand(0));
1553      return One && One->isOne();
1554    }
1555
1556  // Check for power of two integer constants.
1557  if (ConstantInt *K = dyn_cast<ConstantInt>(V))
1558    return K->getValue().isPowerOf2();
1559
1560  return false;
1561}
1562
1563/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
1564Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
1565  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
1566
1567  // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
1568  // if K1 and K2 are a one-bit mask.
1569  ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
1570  ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
1571
1572  if (LHS->getPredicate() == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero() &&
1573      RHS->getPredicate() == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
1574
1575    BinaryOperator *LAnd = dyn_cast<BinaryOperator>(LHS->getOperand(0));
1576    BinaryOperator *RAnd = dyn_cast<BinaryOperator>(RHS->getOperand(0));
1577    if (LAnd && RAnd && LAnd->hasOneUse() && RHS->hasOneUse() &&
1578        LAnd->getOpcode() == Instruction::And &&
1579        RAnd->getOpcode() == Instruction::And) {
1580
1581      Value *Mask = 0;
1582      Value *Masked = 0;
1583      if (LAnd->getOperand(0) == RAnd->getOperand(0) &&
1584          IsOneHotValue(LAnd->getOperand(1)) &&
1585          IsOneHotValue(RAnd->getOperand(1))) {
1586        Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1));
1587        Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask);
1588      } else if (LAnd->getOperand(1) == RAnd->getOperand(1) &&
1589                 IsOneHotValue(LAnd->getOperand(0)) &&
1590                 IsOneHotValue(RAnd->getOperand(0))) {
1591        Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0));
1592        Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask);
1593      }
1594
1595      if (Masked)
1596        return Builder->CreateICmp(ICmpInst::ICMP_NE, Masked, Mask);
1597    }
1598  }
1599
1600  // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
1601  if (PredicatesFoldable(LHSCC, RHSCC)) {
1602    if (LHS->getOperand(0) == RHS->getOperand(1) &&
1603        LHS->getOperand(1) == RHS->getOperand(0))
1604      LHS->swapOperands();
1605    if (LHS->getOperand(0) == RHS->getOperand(0) &&
1606        LHS->getOperand(1) == RHS->getOperand(1)) {
1607      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1608      unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
1609      bool isSigned = LHS->isSigned() || RHS->isSigned();
1610      return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
1611    }
1612  }
1613
1614  // handle (roughly):
1615  // (icmp ne (A & B), C) | (icmp ne (A & D), E)
1616  if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
1617    return V;
1618
1619  Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
1620  if (LHS->hasOneUse() || RHS->hasOneUse()) {
1621    // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
1622    // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
1623    Value *A = 0, *B = 0;
1624    if (LHSCC == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero()) {
1625      B = Val;
1626      if (RHSCC == ICmpInst::ICMP_ULT && Val == RHS->getOperand(1))
1627        A = Val2;
1628      else if (RHSCC == ICmpInst::ICMP_UGT && Val == Val2)
1629        A = RHS->getOperand(1);
1630    }
1631    // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
1632    // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
1633    else if (RHSCC == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
1634      B = Val2;
1635      if (LHSCC == ICmpInst::ICMP_ULT && Val2 == LHS->getOperand(1))
1636        A = Val;
1637      else if (LHSCC == ICmpInst::ICMP_UGT && Val2 == Val)
1638        A = LHS->getOperand(1);
1639    }
1640    if (A && B)
1641      return Builder->CreateICmp(
1642          ICmpInst::ICMP_UGE,
1643          Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
1644  }
1645
1646  // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
1647  if (LHSCst == 0 || RHSCst == 0) return 0;
1648
1649  if (LHSCst == RHSCst && LHSCC == RHSCC) {
1650    // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
1651    if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
1652      Value *NewOr = Builder->CreateOr(Val, Val2);
1653      return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
1654    }
1655  }
1656
1657  // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
1658  //   iff C2 + CA == C1.
1659  if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
1660    ConstantInt *AddCst;
1661    if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
1662      if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
1663        return Builder->CreateICmpULE(Val, LHSCst);
1664  }
1665
1666  // From here on, we only handle:
1667  //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
1668  if (Val != Val2) return 0;
1669
1670  // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
1671  if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
1672      RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
1673      LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
1674      RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
1675    return 0;
1676
1677  // We can't fold (ugt x, C) | (sgt x, C2).
1678  if (!PredicatesFoldable(LHSCC, RHSCC))
1679    return 0;
1680
1681  // Ensure that the larger constant is on the RHS.
1682  bool ShouldSwap;
1683  if (CmpInst::isSigned(LHSCC) ||
1684      (ICmpInst::isEquality(LHSCC) &&
1685       CmpInst::isSigned(RHSCC)))
1686    ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
1687  else
1688    ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
1689
1690  if (ShouldSwap) {
1691    std::swap(LHS, RHS);
1692    std::swap(LHSCst, RHSCst);
1693    std::swap(LHSCC, RHSCC);
1694  }
1695
1696  // At this point, we know we have two icmp instructions
1697  // comparing a value against two constants and or'ing the result
1698  // together.  Because of the above check, we know that we only have
1699  // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
1700  // icmp folding check above), that the two constants are not
1701  // equal.
1702  assert(LHSCst != RHSCst && "Compares not folded above?");
1703
1704  switch (LHSCC) {
1705  default: llvm_unreachable("Unknown integer condition code!");
1706  case ICmpInst::ICMP_EQ:
1707    switch (RHSCC) {
1708    default: llvm_unreachable("Unknown integer condition code!");
1709    case ICmpInst::ICMP_EQ:
1710      if (LHS->getOperand(0) == RHS->getOperand(0)) {
1711        // if LHSCst and RHSCst differ only by one bit:
1712        // (A == C1 || A == C2) -> (A & ~(C1 ^ C2)) == C1
1713        assert(LHSCst->getValue().ule(LHSCst->getValue()));
1714
1715        APInt Xor = LHSCst->getValue() ^ RHSCst->getValue();
1716        if (Xor.isPowerOf2()) {
1717          Value *NegCst = Builder->getInt(~Xor);
1718          Value *And = Builder->CreateAnd(LHS->getOperand(0), NegCst);
1719          return Builder->CreateICmp(ICmpInst::ICMP_EQ, And, LHSCst);
1720        }
1721      }
1722
1723      if (LHSCst == SubOne(RHSCst)) {
1724        // (X == 13 | X == 14) -> X-13 <u 2
1725        Constant *AddCST = ConstantExpr::getNeg(LHSCst);
1726        Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
1727        AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
1728        return Builder->CreateICmpULT(Add, AddCST);
1729      }
1730
1731      break;                         // (X == 13 | X == 15) -> no change
1732    case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
1733    case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
1734      break;
1735    case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
1736    case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
1737    case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
1738      return RHS;
1739    }
1740    break;
1741  case ICmpInst::ICMP_NE:
1742    switch (RHSCC) {
1743    default: llvm_unreachable("Unknown integer condition code!");
1744    case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
1745    case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
1746    case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
1747      return LHS;
1748    case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
1749    case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
1750    case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
1751      return Builder->getTrue();
1752    }
1753  case ICmpInst::ICMP_ULT:
1754    switch (RHSCC) {
1755    default: llvm_unreachable("Unknown integer condition code!");
1756    case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
1757      break;
1758    case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
1759      // If RHSCst is [us]MAXINT, it is always false.  Not handling
1760      // this can cause overflow.
1761      if (RHSCst->isMaxValue(false))
1762        return LHS;
1763      return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
1764    case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
1765      break;
1766    case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
1767    case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
1768      return RHS;
1769    case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
1770      break;
1771    }
1772    break;
1773  case ICmpInst::ICMP_SLT:
1774    switch (RHSCC) {
1775    default: llvm_unreachable("Unknown integer condition code!");
1776    case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
1777      break;
1778    case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
1779      // If RHSCst is [us]MAXINT, it is always false.  Not handling
1780      // this can cause overflow.
1781      if (RHSCst->isMaxValue(true))
1782        return LHS;
1783      return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
1784    case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
1785      break;
1786    case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
1787    case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
1788      return RHS;
1789    case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
1790      break;
1791    }
1792    break;
1793  case ICmpInst::ICMP_UGT:
1794    switch (RHSCC) {
1795    default: llvm_unreachable("Unknown integer condition code!");
1796    case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
1797    case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
1798      return LHS;
1799    case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
1800      break;
1801    case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
1802    case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
1803      return Builder->getTrue();
1804    case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
1805      break;
1806    }
1807    break;
1808  case ICmpInst::ICMP_SGT:
1809    switch (RHSCC) {
1810    default: llvm_unreachable("Unknown integer condition code!");
1811    case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
1812    case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
1813      return LHS;
1814    case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
1815      break;
1816    case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
1817    case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
1818      return Builder->getTrue();
1819    case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
1820      break;
1821    }
1822    break;
1823  }
1824  return 0;
1825}
1826
1827/// FoldOrOfFCmps - Optimize (fcmp)|(fcmp).  NOTE: Unlike the rest of
1828/// instcombine, this returns a Value which should already be inserted into the
1829/// function.
1830Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
1831  if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
1832      RHS->getPredicate() == FCmpInst::FCMP_UNO &&
1833      LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
1834    if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
1835      if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
1836        // If either of the constants are nans, then the whole thing returns
1837        // true.
1838        if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
1839          return Builder->getTrue();
1840
1841        // Otherwise, no need to compare the two constants, compare the
1842        // rest.
1843        return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
1844      }
1845
1846    // Handle vector zeros.  This occurs because the canonical form of
1847    // "fcmp uno x,x" is "fcmp uno x, 0".
1848    if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
1849        isa<ConstantAggregateZero>(RHS->getOperand(1)))
1850      return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
1851
1852    return 0;
1853  }
1854
1855  Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
1856  Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
1857  FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
1858
1859  if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
1860    // Swap RHS operands to match LHS.
1861    Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
1862    std::swap(Op1LHS, Op1RHS);
1863  }
1864  if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
1865    // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
1866    if (Op0CC == Op1CC)
1867      return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
1868    if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
1869      return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
1870    if (Op0CC == FCmpInst::FCMP_FALSE)
1871      return RHS;
1872    if (Op1CC == FCmpInst::FCMP_FALSE)
1873      return LHS;
1874    bool Op0Ordered;
1875    bool Op1Ordered;
1876    unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
1877    unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
1878    if (Op0Ordered == Op1Ordered) {
1879      // If both are ordered or unordered, return a new fcmp with
1880      // or'ed predicates.
1881      return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
1882    }
1883  }
1884  return 0;
1885}
1886
1887/// FoldOrWithConstants - This helper function folds:
1888///
1889///     ((A | B) & C1) | (B & C2)
1890///
1891/// into:
1892///
1893///     (A & C1) | B
1894///
1895/// when the XOR of the two constants is "all ones" (-1).
1896Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
1897                                               Value *A, Value *B, Value *C) {
1898  ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
1899  if (!CI1) return 0;
1900
1901  Value *V1 = 0;
1902  ConstantInt *CI2 = 0;
1903  if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
1904
1905  APInt Xor = CI1->getValue() ^ CI2->getValue();
1906  if (!Xor.isAllOnesValue()) return 0;
1907
1908  if (V1 == A || V1 == B) {
1909    Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
1910    return BinaryOperator::CreateOr(NewOp, V1);
1911  }
1912
1913  return 0;
1914}
1915
1916Instruction *InstCombiner::visitOr(BinaryOperator &I) {
1917  bool Changed = SimplifyAssociativeOrCommutative(I);
1918  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1919
1920  if (Value *V = SimplifyOrInst(Op0, Op1, TD))
1921    return ReplaceInstUsesWith(I, V);
1922
1923  // (A&B)|(A&C) -> A&(B|C) etc
1924  if (Value *V = SimplifyUsingDistributiveLaws(I))
1925    return ReplaceInstUsesWith(I, V);
1926
1927  // See if we can simplify any instructions used by the instruction whose sole
1928  // purpose is to compute bits we don't care about.
1929  if (SimplifyDemandedInstructionBits(I))
1930    return &I;
1931
1932  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
1933    ConstantInt *C1 = 0; Value *X = 0;
1934    // (X & C1) | C2 --> (X | C2) & (C1|C2)
1935    // iff (C1 & C2) == 0.
1936    if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
1937        (RHS->getValue() & C1->getValue()) != 0 &&
1938        Op0->hasOneUse()) {
1939      Value *Or = Builder->CreateOr(X, RHS);
1940      Or->takeName(Op0);
1941      return BinaryOperator::CreateAnd(Or,
1942                             Builder->getInt(RHS->getValue() | C1->getValue()));
1943    }
1944
1945    // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
1946    if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
1947        Op0->hasOneUse()) {
1948      Value *Or = Builder->CreateOr(X, RHS);
1949      Or->takeName(Op0);
1950      return BinaryOperator::CreateXor(Or,
1951                            Builder->getInt(C1->getValue() & ~RHS->getValue()));
1952    }
1953
1954    // Try to fold constant and into select arguments.
1955    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1956      if (Instruction *R = FoldOpIntoSelect(I, SI))
1957        return R;
1958
1959    if (isa<PHINode>(Op0))
1960      if (Instruction *NV = FoldOpIntoPhi(I))
1961        return NV;
1962  }
1963
1964  Value *A = 0, *B = 0;
1965  ConstantInt *C1 = 0, *C2 = 0;
1966
1967  // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
1968  // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
1969  if (match(Op0, m_Or(m_Value(), m_Value())) ||
1970      match(Op1, m_Or(m_Value(), m_Value())) ||
1971      (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
1972       match(Op1, m_LogicalShift(m_Value(), m_Value())))) {
1973    if (Instruction *BSwap = MatchBSwap(I))
1974      return BSwap;
1975  }
1976
1977  // (X^C)|Y -> (X|Y)^C iff Y&C == 0
1978  if (Op0->hasOneUse() &&
1979      match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
1980      MaskedValueIsZero(Op1, C1->getValue())) {
1981    Value *NOr = Builder->CreateOr(A, Op1);
1982    NOr->takeName(Op0);
1983    return BinaryOperator::CreateXor(NOr, C1);
1984  }
1985
1986  // Y|(X^C) -> (X|Y)^C iff Y&C == 0
1987  if (Op1->hasOneUse() &&
1988      match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
1989      MaskedValueIsZero(Op0, C1->getValue())) {
1990    Value *NOr = Builder->CreateOr(A, Op0);
1991    NOr->takeName(Op0);
1992    return BinaryOperator::CreateXor(NOr, C1);
1993  }
1994
1995  // (A & C)|(B & D)
1996  Value *C = 0, *D = 0;
1997  if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
1998      match(Op1, m_And(m_Value(B), m_Value(D)))) {
1999    Value *V1 = 0, *V2 = 0;
2000    C1 = dyn_cast<ConstantInt>(C);
2001    C2 = dyn_cast<ConstantInt>(D);
2002    if (C1 && C2) {  // (A & C1)|(B & C2)
2003      // If we have: ((V + N) & C1) | (V & C2)
2004      // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2005      // replace with V+N.
2006      if (C1->getValue() == ~C2->getValue()) {
2007        if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
2008            match(A, m_Add(m_Value(V1), m_Value(V2)))) {
2009          // Add commutes, try both ways.
2010          if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
2011            return ReplaceInstUsesWith(I, A);
2012          if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
2013            return ReplaceInstUsesWith(I, A);
2014        }
2015        // Or commutes, try both ways.
2016        if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
2017            match(B, m_Add(m_Value(V1), m_Value(V2)))) {
2018          // Add commutes, try both ways.
2019          if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
2020            return ReplaceInstUsesWith(I, B);
2021          if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
2022            return ReplaceInstUsesWith(I, B);
2023        }
2024      }
2025
2026      if ((C1->getValue() & C2->getValue()) == 0) {
2027        // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
2028        // iff (C1&C2) == 0 and (N&~C1) == 0
2029        if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
2030            ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) ||  // (V|N)
2031             (V2 == B && MaskedValueIsZero(V1, ~C1->getValue()))))   // (N|V)
2032          return BinaryOperator::CreateAnd(A,
2033                                Builder->getInt(C1->getValue()|C2->getValue()));
2034        // Or commutes, try both ways.
2035        if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
2036            ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) ||  // (V|N)
2037             (V2 == A && MaskedValueIsZero(V1, ~C2->getValue()))))   // (N|V)
2038          return BinaryOperator::CreateAnd(B,
2039                                Builder->getInt(C1->getValue()|C2->getValue()));
2040
2041        // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
2042        // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
2043        ConstantInt *C3 = 0, *C4 = 0;
2044        if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
2045            (C3->getValue() & ~C1->getValue()) == 0 &&
2046            match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
2047            (C4->getValue() & ~C2->getValue()) == 0) {
2048          V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
2049          return BinaryOperator::CreateAnd(V2,
2050                                Builder->getInt(C1->getValue()|C2->getValue()));
2051        }
2052      }
2053    }
2054
2055    // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants.
2056    // Don't do this for vector select idioms, the code generator doesn't handle
2057    // them well yet.
2058    if (!I.getType()->isVectorTy()) {
2059      if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
2060        return Match;
2061      if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
2062        return Match;
2063      if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
2064        return Match;
2065      if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
2066        return Match;
2067    }
2068
2069    // ((A&~B)|(~A&B)) -> A^B
2070    if ((match(C, m_Not(m_Specific(D))) &&
2071         match(B, m_Not(m_Specific(A)))))
2072      return BinaryOperator::CreateXor(A, D);
2073    // ((~B&A)|(~A&B)) -> A^B
2074    if ((match(A, m_Not(m_Specific(D))) &&
2075         match(B, m_Not(m_Specific(C)))))
2076      return BinaryOperator::CreateXor(C, D);
2077    // ((A&~B)|(B&~A)) -> A^B
2078    if ((match(C, m_Not(m_Specific(B))) &&
2079         match(D, m_Not(m_Specific(A)))))
2080      return BinaryOperator::CreateXor(A, B);
2081    // ((~B&A)|(B&~A)) -> A^B
2082    if ((match(A, m_Not(m_Specific(B))) &&
2083         match(D, m_Not(m_Specific(C)))))
2084      return BinaryOperator::CreateXor(C, B);
2085
2086    // ((A|B)&1)|(B&-2) -> (A&1) | B
2087    if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
2088        match(A, m_Or(m_Specific(B), m_Value(V1)))) {
2089      Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
2090      if (Ret) return Ret;
2091    }
2092    // (B&-2)|((A|B)&1) -> (A&1) | B
2093    if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
2094        match(B, m_Or(m_Value(V1), m_Specific(A)))) {
2095      Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
2096      if (Ret) return Ret;
2097    }
2098  }
2099
2100  // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
2101  if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
2102    if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
2103      if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
2104          SI0->getOperand(1) == SI1->getOperand(1) &&
2105          (SI0->hasOneUse() || SI1->hasOneUse())) {
2106        Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
2107                                         SI0->getName());
2108        return BinaryOperator::Create(SI1->getOpcode(), NewOp,
2109                                      SI1->getOperand(1));
2110      }
2111  }
2112
2113  // (~A | ~B) == (~(A & B)) - De Morgan's Law
2114  if (Value *Op0NotVal = dyn_castNotVal(Op0))
2115    if (Value *Op1NotVal = dyn_castNotVal(Op1))
2116      if (Op0->hasOneUse() && Op1->hasOneUse()) {
2117        Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
2118                                        I.getName()+".demorgan");
2119        return BinaryOperator::CreateNot(And);
2120      }
2121
2122  // Canonicalize xor to the RHS.
2123  bool SwappedForXor = false;
2124  if (match(Op0, m_Xor(m_Value(), m_Value()))) {
2125    std::swap(Op0, Op1);
2126    SwappedForXor = true;
2127  }
2128
2129  // A | ( A ^ B) -> A |  B
2130  // A | (~A ^ B) -> A | ~B
2131  // (A & B) | (A ^ B)
2132  if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
2133    if (Op0 == A || Op0 == B)
2134      return BinaryOperator::CreateOr(A, B);
2135
2136    if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
2137        match(Op0, m_And(m_Specific(B), m_Specific(A))))
2138      return BinaryOperator::CreateOr(A, B);
2139
2140    if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
2141      Value *Not = Builder->CreateNot(B, B->getName()+".not");
2142      return BinaryOperator::CreateOr(Not, Op0);
2143    }
2144    if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
2145      Value *Not = Builder->CreateNot(A, A->getName()+".not");
2146      return BinaryOperator::CreateOr(Not, Op0);
2147    }
2148  }
2149
2150  // A | ~(A | B) -> A | ~B
2151  // A | ~(A ^ B) -> A | ~B
2152  if (match(Op1, m_Not(m_Value(A))))
2153    if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
2154      if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
2155          Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
2156                               B->getOpcode() == Instruction::Xor)) {
2157        Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
2158                                                 B->getOperand(0);
2159        Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
2160        return BinaryOperator::CreateOr(Not, Op0);
2161      }
2162
2163  if (SwappedForXor)
2164    std::swap(Op0, Op1);
2165
2166  if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
2167    if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
2168      if (Value *Res = FoldOrOfICmps(LHS, RHS))
2169        return ReplaceInstUsesWith(I, Res);
2170
2171  // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
2172  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2173    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2174      if (Value *Res = FoldOrOfFCmps(LHS, RHS))
2175        return ReplaceInstUsesWith(I, Res);
2176
2177  // fold (or (cast A), (cast B)) -> (cast (or A, B))
2178  if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2179    CastInst *Op1C = dyn_cast<CastInst>(Op1);
2180    if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
2181      Type *SrcTy = Op0C->getOperand(0)->getType();
2182      if (SrcTy == Op1C->getOperand(0)->getType() &&
2183          SrcTy->isIntOrIntVectorTy()) {
2184        Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
2185
2186        if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
2187            // Only do this if the casts both really cause code to be
2188            // generated.
2189            ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
2190            ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
2191          Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
2192          return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2193        }
2194
2195        // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
2196        // cast is otherwise not optimizable.  This happens for vector sexts.
2197        if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
2198          if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
2199            if (Value *Res = FoldOrOfICmps(LHS, RHS))
2200              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
2201
2202        // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
2203        // cast is otherwise not optimizable.  This happens for vector sexts.
2204        if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
2205          if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
2206            if (Value *Res = FoldOrOfFCmps(LHS, RHS))
2207              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
2208      }
2209    }
2210  }
2211
2212  // or(sext(A), B) -> A ? -1 : B where A is an i1
2213  // or(A, sext(B)) -> B ? -1 : A where B is an i1
2214  if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2215    return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
2216  if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2217    return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
2218
2219  // Note: If we've gotten to the point of visiting the outer OR, then the
2220  // inner one couldn't be simplified.  If it was a constant, then it won't
2221  // be simplified by a later pass either, so we try swapping the inner/outer
2222  // ORs in the hopes that we'll be able to simplify it this way.
2223  // (X|C) | V --> (X|V) | C
2224  if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
2225      match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
2226    Value *Inner = Builder->CreateOr(A, Op1);
2227    Inner->takeName(Op0);
2228    return BinaryOperator::CreateOr(Inner, C1);
2229  }
2230
2231  // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
2232  // Since this OR statement hasn't been optimized further yet, we hope
2233  // that this transformation will allow the new ORs to be optimized.
2234  {
2235    Value *X = 0, *Y = 0;
2236    if (Op0->hasOneUse() && Op1->hasOneUse() &&
2237        match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
2238        match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
2239      Value *orTrue = Builder->CreateOr(A, C);
2240      Value *orFalse = Builder->CreateOr(B, D);
2241      return SelectInst::Create(X, orTrue, orFalse);
2242    }
2243  }
2244
2245  return Changed ? &I : 0;
2246}
2247
2248Instruction *InstCombiner::visitXor(BinaryOperator &I) {
2249  bool Changed = SimplifyAssociativeOrCommutative(I);
2250  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2251
2252  if (Value *V = SimplifyXorInst(Op0, Op1, TD))
2253    return ReplaceInstUsesWith(I, V);
2254
2255  // (A&B)^(A&C) -> A&(B^C) etc
2256  if (Value *V = SimplifyUsingDistributiveLaws(I))
2257    return ReplaceInstUsesWith(I, V);
2258
2259  // See if we can simplify any instructions used by the instruction whose sole
2260  // purpose is to compute bits we don't care about.
2261  if (SimplifyDemandedInstructionBits(I))
2262    return &I;
2263
2264  // Is this a ~ operation?
2265  if (Value *NotOp = dyn_castNotVal(&I)) {
2266    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
2267      if (Op0I->getOpcode() == Instruction::And ||
2268          Op0I->getOpcode() == Instruction::Or) {
2269        // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
2270        // ~(~X | Y) === (X & ~Y) - De Morgan's Law
2271        if (dyn_castNotVal(Op0I->getOperand(1)))
2272          Op0I->swapOperands();
2273        if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
2274          Value *NotY =
2275            Builder->CreateNot(Op0I->getOperand(1),
2276                               Op0I->getOperand(1)->getName()+".not");
2277          if (Op0I->getOpcode() == Instruction::And)
2278            return BinaryOperator::CreateOr(Op0NotVal, NotY);
2279          return BinaryOperator::CreateAnd(Op0NotVal, NotY);
2280        }
2281
2282        // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
2283        // ~(X | Y) === (~X & ~Y) - De Morgan's Law
2284        if (isFreeToInvert(Op0I->getOperand(0)) &&
2285            isFreeToInvert(Op0I->getOperand(1))) {
2286          Value *NotX =
2287            Builder->CreateNot(Op0I->getOperand(0), "notlhs");
2288          Value *NotY =
2289            Builder->CreateNot(Op0I->getOperand(1), "notrhs");
2290          if (Op0I->getOpcode() == Instruction::And)
2291            return BinaryOperator::CreateOr(NotX, NotY);
2292          return BinaryOperator::CreateAnd(NotX, NotY);
2293        }
2294
2295      } else if (Op0I->getOpcode() == Instruction::AShr) {
2296        // ~(~X >>s Y) --> (X >>s Y)
2297        if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
2298          return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
2299      }
2300    }
2301  }
2302
2303
2304  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2305    if (RHS->isOne() && Op0->hasOneUse())
2306      // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
2307      if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
2308        return CmpInst::Create(CI->getOpcode(),
2309                               CI->getInversePredicate(),
2310                               CI->getOperand(0), CI->getOperand(1));
2311
2312    // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
2313    if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2314      if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
2315        if (CI->hasOneUse() && Op0C->hasOneUse()) {
2316          Instruction::CastOps Opcode = Op0C->getOpcode();
2317          if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
2318              (RHS == ConstantExpr::getCast(Opcode, Builder->getTrue(),
2319                                            Op0C->getDestTy()))) {
2320            CI->setPredicate(CI->getInversePredicate());
2321            return CastInst::Create(Opcode, CI, Op0C->getType());
2322          }
2323        }
2324      }
2325    }
2326
2327    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2328      // ~(c-X) == X-c-1 == X+(-c-1)
2329      if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
2330        if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
2331          Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
2332          Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
2333                                      ConstantInt::get(I.getType(), 1));
2334          return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
2335        }
2336
2337      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2338        if (Op0I->getOpcode() == Instruction::Add) {
2339          // ~(X-c) --> (-c-1)-X
2340          if (RHS->isAllOnesValue()) {
2341            Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
2342            return BinaryOperator::CreateSub(
2343                           ConstantExpr::getSub(NegOp0CI,
2344                                      ConstantInt::get(I.getType(), 1)),
2345                                      Op0I->getOperand(0));
2346          } else if (RHS->getValue().isSignBit()) {
2347            // (X + C) ^ signbit -> (X + C + signbit)
2348            Constant *C = Builder->getInt(RHS->getValue() + Op0CI->getValue());
2349            return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
2350
2351          }
2352        } else if (Op0I->getOpcode() == Instruction::Or) {
2353          // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
2354          if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
2355            Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
2356            // Anything in both C1 and C2 is known to be zero, remove it from
2357            // NewRHS.
2358            Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
2359            NewRHS = ConstantExpr::getAnd(NewRHS,
2360                                       ConstantExpr::getNot(CommonBits));
2361            Worklist.Add(Op0I);
2362            I.setOperand(0, Op0I->getOperand(0));
2363            I.setOperand(1, NewRHS);
2364            return &I;
2365          }
2366        } else if (Op0I->getOpcode() == Instruction::LShr) {
2367          // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
2368          // E1 = "X ^ C1"
2369          BinaryOperator *E1;
2370          ConstantInt *C1;
2371          if (Op0I->hasOneUse() &&
2372              (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
2373              E1->getOpcode() == Instruction::Xor &&
2374              (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
2375            // fold (C1 >> C2) ^ C3
2376            ConstantInt *C2 = Op0CI, *C3 = RHS;
2377            APInt FoldConst = C1->getValue().lshr(C2->getValue());
2378            FoldConst ^= C3->getValue();
2379            // Prepare the two operands.
2380            Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2);
2381            Opnd0->takeName(Op0I);
2382            cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
2383            Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
2384
2385            return BinaryOperator::CreateXor(Opnd0, FoldVal);
2386          }
2387        }
2388      }
2389    }
2390
2391    // Try to fold constant and into select arguments.
2392    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2393      if (Instruction *R = FoldOpIntoSelect(I, SI))
2394        return R;
2395    if (isa<PHINode>(Op0))
2396      if (Instruction *NV = FoldOpIntoPhi(I))
2397        return NV;
2398  }
2399
2400  BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
2401  if (Op1I) {
2402    Value *A, *B;
2403    if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
2404      if (A == Op0) {              // B^(B|A) == (A|B)^B
2405        Op1I->swapOperands();
2406        I.swapOperands();
2407        std::swap(Op0, Op1);
2408      } else if (B == Op0) {       // B^(A|B) == (A|B)^B
2409        I.swapOperands();     // Simplified below.
2410        std::swap(Op0, Op1);
2411      }
2412    } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
2413               Op1I->hasOneUse()){
2414      if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
2415        Op1I->swapOperands();
2416        std::swap(A, B);
2417      }
2418      if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
2419        I.swapOperands();     // Simplified below.
2420        std::swap(Op0, Op1);
2421      }
2422    }
2423  }
2424
2425  BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
2426  if (Op0I) {
2427    Value *A, *B;
2428    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2429        Op0I->hasOneUse()) {
2430      if (A == Op1)                                  // (B|A)^B == (A|B)^B
2431        std::swap(A, B);
2432      if (B == Op1)                                  // (A|B)^B == A & ~B
2433        return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
2434    } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2435               Op0I->hasOneUse()){
2436      if (A == Op1)                                        // (A&B)^A -> (B&A)^A
2437        std::swap(A, B);
2438      if (B == Op1 &&                                      // (B&A)^A == ~B & A
2439          !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
2440        return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
2441      }
2442    }
2443  }
2444
2445  // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
2446  if (Op0I && Op1I && Op0I->isShift() &&
2447      Op0I->getOpcode() == Op1I->getOpcode() &&
2448      Op0I->getOperand(1) == Op1I->getOperand(1) &&
2449      (Op0I->hasOneUse() || Op1I->hasOneUse())) {
2450    Value *NewOp =
2451      Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
2452                         Op0I->getName());
2453    return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
2454                                  Op1I->getOperand(1));
2455  }
2456
2457  if (Op0I && Op1I) {
2458    Value *A, *B, *C, *D;
2459    // (A & B)^(A | B) -> A ^ B
2460    if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2461        match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
2462      if ((A == C && B == D) || (A == D && B == C))
2463        return BinaryOperator::CreateXor(A, B);
2464    }
2465    // (A | B)^(A & B) -> A ^ B
2466    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2467        match(Op1I, m_And(m_Value(C), m_Value(D)))) {
2468      if ((A == C && B == D) || (A == D && B == C))
2469        return BinaryOperator::CreateXor(A, B);
2470    }
2471  }
2472
2473  // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2474  if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
2475    if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
2476      if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2477        if (LHS->getOperand(0) == RHS->getOperand(1) &&
2478            LHS->getOperand(1) == RHS->getOperand(0))
2479          LHS->swapOperands();
2480        if (LHS->getOperand(0) == RHS->getOperand(0) &&
2481            LHS->getOperand(1) == RHS->getOperand(1)) {
2482          Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2483          unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2484          bool isSigned = LHS->isSigned() || RHS->isSigned();
2485          return ReplaceInstUsesWith(I,
2486                               getNewICmpValue(isSigned, Code, Op0, Op1,
2487                                               Builder));
2488        }
2489      }
2490
2491  // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
2492  if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2493    if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
2494      if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
2495        Type *SrcTy = Op0C->getOperand(0)->getType();
2496        if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
2497            // Only do this if the casts both really cause code to be generated.
2498            ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
2499                               I.getType()) &&
2500            ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
2501                               I.getType())) {
2502          Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
2503                                            Op1C->getOperand(0), I.getName());
2504          return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2505        }
2506      }
2507  }
2508
2509  return Changed ? &I : 0;
2510}
2511