InstCombineAndOrXor.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- InstCombineAndOrXor.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitAnd, visitOr, and visitXor functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/InstructionSimplify.h"
16#include "llvm/IR/ConstantRange.h"
17#include "llvm/IR/Intrinsics.h"
18#include "llvm/IR/PatternMatch.h"
19#include "llvm/Transforms/Utils/CmpInstAnalysis.h"
20using namespace llvm;
21using namespace PatternMatch;
22
23/// isFreeToInvert - Return true if the specified value is free to invert (apply
24/// ~ to).  This happens in cases where the ~ can be eliminated.
25static inline bool isFreeToInvert(Value *V) {
26  // ~(~(X)) -> X.
27  if (BinaryOperator::isNot(V))
28    return true;
29
30  // Constants can be considered to be not'ed values.
31  if (isa<ConstantInt>(V))
32    return true;
33
34  // Compares can be inverted if they have a single use.
35  if (CmpInst *CI = dyn_cast<CmpInst>(V))
36    return CI->hasOneUse();
37
38  return false;
39}
40
41static inline Value *dyn_castNotVal(Value *V) {
42  // If this is not(not(x)) don't return that this is a not: we want the two
43  // not's to be folded first.
44  if (BinaryOperator::isNot(V)) {
45    Value *Operand = BinaryOperator::getNotArgument(V);
46    if (!isFreeToInvert(Operand))
47      return Operand;
48  }
49
50  // Constants can be considered to be not'ed values...
51  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
52    return ConstantInt::get(C->getType(), ~C->getValue());
53  return 0;
54}
55
56/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
57/// predicate into a three bit mask. It also returns whether it is an ordered
58/// predicate by reference.
59static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
60  isOrdered = false;
61  switch (CC) {
62  case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
63  case FCmpInst::FCMP_UNO:                   return 0;  // 000
64  case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
65  case FCmpInst::FCMP_UGT:                   return 1;  // 001
66  case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
67  case FCmpInst::FCMP_UEQ:                   return 2;  // 010
68  case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
69  case FCmpInst::FCMP_UGE:                   return 3;  // 011
70  case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
71  case FCmpInst::FCMP_ULT:                   return 4;  // 100
72  case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
73  case FCmpInst::FCMP_UNE:                   return 5;  // 101
74  case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
75  case FCmpInst::FCMP_ULE:                   return 6;  // 110
76    // True -> 7
77  default:
78    // Not expecting FCMP_FALSE and FCMP_TRUE;
79    llvm_unreachable("Unexpected FCmp predicate!");
80  }
81}
82
83/// getNewICmpValue - This is the complement of getICmpCode, which turns an
84/// opcode and two operands into either a constant true or false, or a brand
85/// new ICmp instruction. The sign is passed in to determine which kind
86/// of predicate to use in the new icmp instruction.
87static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
88                              InstCombiner::BuilderTy *Builder) {
89  ICmpInst::Predicate NewPred;
90  if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
91    return NewConstant;
92  return Builder->CreateICmp(NewPred, LHS, RHS);
93}
94
95/// getFCmpValue - This is the complement of getFCmpCode, which turns an
96/// opcode and two operands into either a FCmp instruction. isordered is passed
97/// in to determine which kind of predicate to use in the new fcmp instruction.
98static Value *getFCmpValue(bool isordered, unsigned code,
99                           Value *LHS, Value *RHS,
100                           InstCombiner::BuilderTy *Builder) {
101  CmpInst::Predicate Pred;
102  switch (code) {
103  default: llvm_unreachable("Illegal FCmp code!");
104  case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
105  case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
106  case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
107  case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
108  case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
109  case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
110  case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
111  case 7:
112    if (!isordered) return ConstantInt::getTrue(LHS->getContext());
113    Pred = FCmpInst::FCMP_ORD; break;
114  }
115  return Builder->CreateFCmp(Pred, LHS, RHS);
116}
117
118// OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
119// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
120// guaranteed to be a binary operator.
121Instruction *InstCombiner::OptAndOp(Instruction *Op,
122                                    ConstantInt *OpRHS,
123                                    ConstantInt *AndRHS,
124                                    BinaryOperator &TheAnd) {
125  Value *X = Op->getOperand(0);
126  Constant *Together = 0;
127  if (!Op->isShift())
128    Together = ConstantExpr::getAnd(AndRHS, OpRHS);
129
130  switch (Op->getOpcode()) {
131  case Instruction::Xor:
132    if (Op->hasOneUse()) {
133      // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
134      Value *And = Builder->CreateAnd(X, AndRHS);
135      And->takeName(Op);
136      return BinaryOperator::CreateXor(And, Together);
137    }
138    break;
139  case Instruction::Or:
140    if (Op->hasOneUse()){
141      if (Together != OpRHS) {
142        // (X | C1) & C2 --> (X | (C1&C2)) & C2
143        Value *Or = Builder->CreateOr(X, Together);
144        Or->takeName(Op);
145        return BinaryOperator::CreateAnd(Or, AndRHS);
146      }
147
148      ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
149      if (TogetherCI && !TogetherCI->isZero()){
150        // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
151        // NOTE: This reduces the number of bits set in the & mask, which
152        // can expose opportunities for store narrowing.
153        Together = ConstantExpr::getXor(AndRHS, Together);
154        Value *And = Builder->CreateAnd(X, Together);
155        And->takeName(Op);
156        return BinaryOperator::CreateOr(And, OpRHS);
157      }
158    }
159
160    break;
161  case Instruction::Add:
162    if (Op->hasOneUse()) {
163      // Adding a one to a single bit bit-field should be turned into an XOR
164      // of the bit.  First thing to check is to see if this AND is with a
165      // single bit constant.
166      const APInt &AndRHSV = AndRHS->getValue();
167
168      // If there is only one bit set.
169      if (AndRHSV.isPowerOf2()) {
170        // Ok, at this point, we know that we are masking the result of the
171        // ADD down to exactly one bit.  If the constant we are adding has
172        // no bits set below this bit, then we can eliminate the ADD.
173        const APInt& AddRHS = OpRHS->getValue();
174
175        // Check to see if any bits below the one bit set in AndRHSV are set.
176        if ((AddRHS & (AndRHSV-1)) == 0) {
177          // If not, the only thing that can effect the output of the AND is
178          // the bit specified by AndRHSV.  If that bit is set, the effect of
179          // the XOR is to toggle the bit.  If it is clear, then the ADD has
180          // no effect.
181          if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
182            TheAnd.setOperand(0, X);
183            return &TheAnd;
184          } else {
185            // Pull the XOR out of the AND.
186            Value *NewAnd = Builder->CreateAnd(X, AndRHS);
187            NewAnd->takeName(Op);
188            return BinaryOperator::CreateXor(NewAnd, AndRHS);
189          }
190        }
191      }
192    }
193    break;
194
195  case Instruction::Shl: {
196    // We know that the AND will not produce any of the bits shifted in, so if
197    // the anded constant includes them, clear them now!
198    //
199    uint32_t BitWidth = AndRHS->getType()->getBitWidth();
200    uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
201    APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
202    ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShlMask);
203
204    if (CI->getValue() == ShlMask)
205      // Masking out bits that the shift already masks.
206      return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
207
208    if (CI != AndRHS) {                  // Reducing bits set in and.
209      TheAnd.setOperand(1, CI);
210      return &TheAnd;
211    }
212    break;
213  }
214  case Instruction::LShr: {
215    // We know that the AND will not produce any of the bits shifted in, so if
216    // the anded constant includes them, clear them now!  This only applies to
217    // unsigned shifts, because a signed shr may bring in set bits!
218    //
219    uint32_t BitWidth = AndRHS->getType()->getBitWidth();
220    uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
221    APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
222    ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShrMask);
223
224    if (CI->getValue() == ShrMask)
225      // Masking out bits that the shift already masks.
226      return ReplaceInstUsesWith(TheAnd, Op);
227
228    if (CI != AndRHS) {
229      TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
230      return &TheAnd;
231    }
232    break;
233  }
234  case Instruction::AShr:
235    // Signed shr.
236    // See if this is shifting in some sign extension, then masking it out
237    // with an and.
238    if (Op->hasOneUse()) {
239      uint32_t BitWidth = AndRHS->getType()->getBitWidth();
240      uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
241      APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
242      Constant *C = Builder->getInt(AndRHS->getValue() & ShrMask);
243      if (C == AndRHS) {          // Masking out bits shifted in.
244        // (Val ashr C1) & C2 -> (Val lshr C1) & C2
245        // Make the argument unsigned.
246        Value *ShVal = Op->getOperand(0);
247        ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
248        return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
249      }
250    }
251    break;
252  }
253  return 0;
254}
255
256/// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
257/// (V < Lo || V >= Hi).  In practice, we emit the more efficient
258/// (V-Lo) \<u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
259/// whether to treat the V, Lo and HI as signed or not. IB is the location to
260/// insert new instructions.
261Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
262                                     bool isSigned, bool Inside) {
263  assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
264            ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
265         "Lo is not <= Hi in range emission code!");
266
267  if (Inside) {
268    if (Lo == Hi)  // Trivially false.
269      return Builder->getFalse();
270
271    // V >= Min && V < Hi --> V < Hi
272    if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
273      ICmpInst::Predicate pred = (isSigned ?
274        ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
275      return Builder->CreateICmp(pred, V, Hi);
276    }
277
278    // Emit V-Lo <u Hi-Lo
279    Constant *NegLo = ConstantExpr::getNeg(Lo);
280    Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
281    Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
282    return Builder->CreateICmpULT(Add, UpperBound);
283  }
284
285  if (Lo == Hi)  // Trivially true.
286    return Builder->getTrue();
287
288  // V < Min || V >= Hi -> V > Hi-1
289  Hi = SubOne(cast<ConstantInt>(Hi));
290  if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
291    ICmpInst::Predicate pred = (isSigned ?
292        ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
293    return Builder->CreateICmp(pred, V, Hi);
294  }
295
296  // Emit V-Lo >u Hi-1-Lo
297  // Note that Hi has already had one subtracted from it, above.
298  ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
299  Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
300  Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
301  return Builder->CreateICmpUGT(Add, LowerBound);
302}
303
304// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
305// any number of 0s on either side.  The 1s are allowed to wrap from LSB to
306// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
307// not, since all 1s are not contiguous.
308static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
309  const APInt& V = Val->getValue();
310  uint32_t BitWidth = Val->getType()->getBitWidth();
311  if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
312
313  // look for the first zero bit after the run of ones
314  MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
315  // look for the first non-zero bit
316  ME = V.getActiveBits();
317  return true;
318}
319
320/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
321/// where isSub determines whether the operator is a sub.  If we can fold one of
322/// the following xforms:
323///
324/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
325/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
326/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
327///
328/// return (A +/- B).
329///
330Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
331                                        ConstantInt *Mask, bool isSub,
332                                        Instruction &I) {
333  Instruction *LHSI = dyn_cast<Instruction>(LHS);
334  if (!LHSI || LHSI->getNumOperands() != 2 ||
335      !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
336
337  ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
338
339  switch (LHSI->getOpcode()) {
340  default: return 0;
341  case Instruction::And:
342    if (ConstantExpr::getAnd(N, Mask) == Mask) {
343      // If the AndRHS is a power of two minus one (0+1+), this is simple.
344      if ((Mask->getValue().countLeadingZeros() +
345           Mask->getValue().countPopulation()) ==
346          Mask->getValue().getBitWidth())
347        break;
348
349      // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
350      // part, we don't need any explicit masks to take them out of A.  If that
351      // is all N is, ignore it.
352      uint32_t MB = 0, ME = 0;
353      if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
354        uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
355        APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
356        if (MaskedValueIsZero(RHS, Mask))
357          break;
358      }
359    }
360    return 0;
361  case Instruction::Or:
362  case Instruction::Xor:
363    // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
364    if ((Mask->getValue().countLeadingZeros() +
365         Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
366        && ConstantExpr::getAnd(N, Mask)->isNullValue())
367      break;
368    return 0;
369  }
370
371  if (isSub)
372    return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
373  return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
374}
375
376/// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
377/// One of A and B is considered the mask, the other the value. This is
378/// described as the "AMask" or "BMask" part of the enum. If the enum
379/// contains only "Mask", then both A and B can be considered masks.
380/// If A is the mask, then it was proven, that (A & C) == C. This
381/// is trivial if C == A, or C == 0. If both A and C are constants, this
382/// proof is also easy.
383/// For the following explanations we assume that A is the mask.
384/// The part "AllOnes" declares, that the comparison is true only
385/// if (A & B) == A, or all bits of A are set in B.
386///   Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
387/// The part "AllZeroes" declares, that the comparison is true only
388/// if (A & B) == 0, or all bits of A are cleared in B.
389///   Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
390/// The part "Mixed" declares, that (A & B) == C and C might or might not
391/// contain any number of one bits and zero bits.
392///   Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
393/// The Part "Not" means, that in above descriptions "==" should be replaced
394/// by "!=".
395///   Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
396/// If the mask A contains a single bit, then the following is equivalent:
397///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
398///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
399enum MaskedICmpType {
400  FoldMskICmp_AMask_AllOnes           =     1,
401  FoldMskICmp_AMask_NotAllOnes        =     2,
402  FoldMskICmp_BMask_AllOnes           =     4,
403  FoldMskICmp_BMask_NotAllOnes        =     8,
404  FoldMskICmp_Mask_AllZeroes          =    16,
405  FoldMskICmp_Mask_NotAllZeroes       =    32,
406  FoldMskICmp_AMask_Mixed             =    64,
407  FoldMskICmp_AMask_NotMixed          =   128,
408  FoldMskICmp_BMask_Mixed             =   256,
409  FoldMskICmp_BMask_NotMixed          =   512
410};
411
412/// return the set of pattern classes (from MaskedICmpType)
413/// that (icmp SCC (A & B), C) satisfies
414static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
415                                    ICmpInst::Predicate SCC)
416{
417  ConstantInt *ACst = dyn_cast<ConstantInt>(A);
418  ConstantInt *BCst = dyn_cast<ConstantInt>(B);
419  ConstantInt *CCst = dyn_cast<ConstantInt>(C);
420  bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
421  bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
422                    ACst->getValue().isPowerOf2());
423  bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
424                    BCst->getValue().isPowerOf2());
425  unsigned result = 0;
426  if (CCst != 0 && CCst->isZero()) {
427    // if C is zero, then both A and B qualify as mask
428    result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
429                          FoldMskICmp_Mask_AllZeroes |
430                          FoldMskICmp_AMask_Mixed |
431                          FoldMskICmp_BMask_Mixed)
432                       : (FoldMskICmp_Mask_NotAllZeroes |
433                          FoldMskICmp_Mask_NotAllZeroes |
434                          FoldMskICmp_AMask_NotMixed |
435                          FoldMskICmp_BMask_NotMixed));
436    if (icmp_abit)
437      result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
438                            FoldMskICmp_AMask_NotMixed)
439                         : (FoldMskICmp_AMask_AllOnes |
440                            FoldMskICmp_AMask_Mixed));
441    if (icmp_bbit)
442      result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
443                            FoldMskICmp_BMask_NotMixed)
444                         : (FoldMskICmp_BMask_AllOnes |
445                            FoldMskICmp_BMask_Mixed));
446    return result;
447  }
448  if (A == C) {
449    result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
450                          FoldMskICmp_AMask_Mixed)
451                       : (FoldMskICmp_AMask_NotAllOnes |
452                          FoldMskICmp_AMask_NotMixed));
453    if (icmp_abit)
454      result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
455                            FoldMskICmp_AMask_NotMixed)
456                         : (FoldMskICmp_Mask_AllZeroes |
457                            FoldMskICmp_AMask_Mixed));
458  } else if (ACst != 0 && CCst != 0 &&
459             ConstantExpr::getAnd(ACst, CCst) == CCst) {
460    result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
461                       : FoldMskICmp_AMask_NotMixed);
462  }
463  if (B == C) {
464    result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
465                          FoldMskICmp_BMask_Mixed)
466                       : (FoldMskICmp_BMask_NotAllOnes |
467                          FoldMskICmp_BMask_NotMixed));
468    if (icmp_bbit)
469      result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
470                            FoldMskICmp_BMask_NotMixed)
471                         : (FoldMskICmp_Mask_AllZeroes |
472                            FoldMskICmp_BMask_Mixed));
473  } else if (BCst != 0 && CCst != 0 &&
474             ConstantExpr::getAnd(BCst, CCst) == CCst) {
475    result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
476                       : FoldMskICmp_BMask_NotMixed);
477  }
478  return result;
479}
480
481/// Convert an analysis of a masked ICmp into its equivalent if all boolean
482/// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
483/// is adjacent to the corresponding normal flag (recording ==), this just
484/// involves swapping those bits over.
485static unsigned conjugateICmpMask(unsigned Mask) {
486  unsigned NewMask;
487  NewMask = (Mask & (FoldMskICmp_AMask_AllOnes | FoldMskICmp_BMask_AllOnes |
488                     FoldMskICmp_Mask_AllZeroes | FoldMskICmp_AMask_Mixed |
489                     FoldMskICmp_BMask_Mixed))
490            << 1;
491
492  NewMask |=
493      (Mask & (FoldMskICmp_AMask_NotAllOnes | FoldMskICmp_BMask_NotAllOnes |
494               FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_AMask_NotMixed |
495               FoldMskICmp_BMask_NotMixed))
496      >> 1;
497
498  return NewMask;
499}
500
501/// decomposeBitTestICmp - Decompose an icmp into the form ((X & Y) pred Z)
502/// if possible. The returned predicate is either == or !=. Returns false if
503/// decomposition fails.
504static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
505                                 Value *&X, Value *&Y, Value *&Z) {
506  ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1));
507  if (!C)
508    return false;
509
510  switch (I->getPredicate()) {
511  default:
512    return false;
513  case ICmpInst::ICMP_SLT:
514    // X < 0 is equivalent to (X & SignBit) != 0.
515    if (!C->isZero())
516      return false;
517    Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
518    Pred = ICmpInst::ICMP_NE;
519    break;
520  case ICmpInst::ICMP_SGT:
521    // X > -1 is equivalent to (X & SignBit) == 0.
522    if (!C->isAllOnesValue())
523      return false;
524    Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
525    Pred = ICmpInst::ICMP_EQ;
526    break;
527  case ICmpInst::ICMP_ULT:
528    // X <u 2^n is equivalent to (X & ~(2^n-1)) == 0.
529    if (!C->getValue().isPowerOf2())
530      return false;
531    Y = ConstantInt::get(I->getContext(), -C->getValue());
532    Pred = ICmpInst::ICMP_EQ;
533    break;
534  case ICmpInst::ICMP_UGT:
535    // X >u 2^n-1 is equivalent to (X & ~(2^n-1)) != 0.
536    if (!(C->getValue() + 1).isPowerOf2())
537      return false;
538    Y = ConstantInt::get(I->getContext(), ~C->getValue());
539    Pred = ICmpInst::ICMP_NE;
540    break;
541  }
542
543  X = I->getOperand(0);
544  Z = ConstantInt::getNullValue(C->getType());
545  return true;
546}
547
548/// foldLogOpOfMaskedICmpsHelper:
549/// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
550/// return the set of pattern classes (from MaskedICmpType)
551/// that both LHS and RHS satisfy
552static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
553                                             Value*& B, Value*& C,
554                                             Value*& D, Value*& E,
555                                             ICmpInst *LHS, ICmpInst *RHS,
556                                             ICmpInst::Predicate &LHSCC,
557                                             ICmpInst::Predicate &RHSCC) {
558  if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
559  // vectors are not (yet?) supported
560  if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
561
562  // Here comes the tricky part:
563  // LHS might be of the form L11 & L12 == X, X == L21 & L22,
564  // and L11 & L12 == L21 & L22. The same goes for RHS.
565  // Now we must find those components L** and R**, that are equal, so
566  // that we can extract the parameters A, B, C, D, and E for the canonical
567  // above.
568  Value *L1 = LHS->getOperand(0);
569  Value *L2 = LHS->getOperand(1);
570  Value *L11,*L12,*L21,*L22;
571  // Check whether the icmp can be decomposed into a bit test.
572  if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) {
573    L21 = L22 = L1 = 0;
574  } else {
575    // Look for ANDs in the LHS icmp.
576    if (!L1->getType()->isIntegerTy()) {
577      // You can icmp pointers, for example. They really aren't masks.
578      L11 = L12 = 0;
579    } else if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
580      // Any icmp can be viewed as being trivially masked; if it allows us to
581      // remove one, it's worth it.
582      L11 = L1;
583      L12 = Constant::getAllOnesValue(L1->getType());
584    }
585
586    if (!L2->getType()->isIntegerTy()) {
587      // You can icmp pointers, for example. They really aren't masks.
588      L21 = L22 = 0;
589    } else if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
590      L21 = L2;
591      L22 = Constant::getAllOnesValue(L2->getType());
592    }
593  }
594
595  // Bail if LHS was a icmp that can't be decomposed into an equality.
596  if (!ICmpInst::isEquality(LHSCC))
597    return 0;
598
599  Value *R1 = RHS->getOperand(0);
600  Value *R2 = RHS->getOperand(1);
601  Value *R11,*R12;
602  bool ok = false;
603  if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) {
604    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
605      A = R11; D = R12;
606    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
607      A = R12; D = R11;
608    } else {
609      return 0;
610    }
611    E = R2; R1 = 0; ok = true;
612  } else if (R1->getType()->isIntegerTy()) {
613    if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
614      // As before, model no mask as a trivial mask if it'll let us do an
615      // optimisation.
616      R11 = R1;
617      R12 = Constant::getAllOnesValue(R1->getType());
618    }
619
620    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
621      A = R11; D = R12; E = R2; ok = true;
622    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
623      A = R12; D = R11; E = R2; ok = true;
624    }
625  }
626
627  // Bail if RHS was a icmp that can't be decomposed into an equality.
628  if (!ICmpInst::isEquality(RHSCC))
629    return 0;
630
631  // Look for ANDs in on the right side of the RHS icmp.
632  if (!ok && R2->getType()->isIntegerTy()) {
633    if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
634      R11 = R2;
635      R12 = Constant::getAllOnesValue(R2->getType());
636    }
637
638    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
639      A = R11; D = R12; E = R1; ok = true;
640    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
641      A = R12; D = R11; E = R1; ok = true;
642    } else {
643      return 0;
644    }
645  }
646  if (!ok)
647    return 0;
648
649  if (L11 == A) {
650    B = L12; C = L2;
651  } else if (L12 == A) {
652    B = L11; C = L2;
653  } else if (L21 == A) {
654    B = L22; C = L1;
655  } else if (L22 == A) {
656    B = L21; C = L1;
657  }
658
659  unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
660  unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
661  return left_type & right_type;
662}
663/// foldLogOpOfMaskedICmps:
664/// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
665/// into a single (icmp(A & X) ==/!= Y)
666static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
667                                     llvm::InstCombiner::BuilderTy* Builder) {
668  Value *A = 0, *B = 0, *C = 0, *D = 0, *E = 0;
669  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
670  unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
671                                               LHSCC, RHSCC);
672  if (mask == 0) return 0;
673  assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
674         "foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
675
676  // In full generality:
677  //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
678  // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
679  //
680  // If the latter can be converted into (icmp (A & X) Op Y) then the former is
681  // equivalent to (icmp (A & X) !Op Y).
682  //
683  // Therefore, we can pretend for the rest of this function that we're dealing
684  // with the conjunction, provided we flip the sense of any comparisons (both
685  // input and output).
686
687  // In most cases we're going to produce an EQ for the "&&" case.
688  ICmpInst::Predicate NEWCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
689  if (!IsAnd) {
690    // Convert the masking analysis into its equivalent with negated
691    // comparisons.
692    mask = conjugateICmpMask(mask);
693  }
694
695  if (mask & FoldMskICmp_Mask_AllZeroes) {
696    // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
697    // -> (icmp eq (A & (B|D)), 0)
698    Value* newOr = Builder->CreateOr(B, D);
699    Value* newAnd = Builder->CreateAnd(A, newOr);
700    // we can't use C as zero, because we might actually handle
701    //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
702    // with B and D, having a single bit set
703    Value* zero = Constant::getNullValue(A->getType());
704    return Builder->CreateICmp(NEWCC, newAnd, zero);
705  }
706  if (mask & FoldMskICmp_BMask_AllOnes) {
707    // (icmp eq (A & B), B) & (icmp eq (A & D), D)
708    // -> (icmp eq (A & (B|D)), (B|D))
709    Value* newOr = Builder->CreateOr(B, D);
710    Value* newAnd = Builder->CreateAnd(A, newOr);
711    return Builder->CreateICmp(NEWCC, newAnd, newOr);
712  }
713  if (mask & FoldMskICmp_AMask_AllOnes) {
714    // (icmp eq (A & B), A) & (icmp eq (A & D), A)
715    // -> (icmp eq (A & (B&D)), A)
716    Value* newAnd1 = Builder->CreateAnd(B, D);
717    Value* newAnd = Builder->CreateAnd(A, newAnd1);
718    return Builder->CreateICmp(NEWCC, newAnd, A);
719  }
720
721  // Remaining cases assume at least that B and D are constant, and depend on
722  // their actual values. This isn't strictly, necessary, just a "handle the
723  // easy cases for now" decision.
724  ConstantInt *BCst = dyn_cast<ConstantInt>(B);
725  if (BCst == 0) return 0;
726  ConstantInt *DCst = dyn_cast<ConstantInt>(D);
727  if (DCst == 0) return 0;
728
729  if (mask & (FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_BMask_NotAllOnes)) {
730    // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
731    // (icmp ne (A & B), B) & (icmp ne (A & D), D)
732    //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
733    // Only valid if one of the masks is a superset of the other (check "B&D" is
734    // the same as either B or D).
735    APInt NewMask = BCst->getValue() & DCst->getValue();
736
737    if (NewMask == BCst->getValue())
738      return LHS;
739    else if (NewMask == DCst->getValue())
740      return RHS;
741  }
742  if (mask & FoldMskICmp_AMask_NotAllOnes) {
743    // (icmp ne (A & B), B) & (icmp ne (A & D), D)
744    //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
745    // Only valid if one of the masks is a superset of the other (check "B|D" is
746    // the same as either B or D).
747    APInt NewMask = BCst->getValue() | DCst->getValue();
748
749    if (NewMask == BCst->getValue())
750      return LHS;
751    else if (NewMask == DCst->getValue())
752      return RHS;
753  }
754  if (mask & FoldMskICmp_BMask_Mixed) {
755    // (icmp eq (A & B), C) & (icmp eq (A & D), E)
756    // We already know that B & C == C && D & E == E.
757    // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
758    // C and E, which are shared by both the mask B and the mask D, don't
759    // contradict, then we can transform to
760    // -> (icmp eq (A & (B|D)), (C|E))
761    // Currently, we only handle the case of B, C, D, and E being constant.
762    // we can't simply use C and E, because we might actually handle
763    //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
764    // with B and D, having a single bit set
765    ConstantInt *CCst = dyn_cast<ConstantInt>(C);
766    if (CCst == 0) return 0;
767    if (LHSCC != NEWCC)
768      CCst = dyn_cast<ConstantInt>( ConstantExpr::getXor(BCst, CCst) );
769    ConstantInt *ECst = dyn_cast<ConstantInt>(E);
770    if (ECst == 0) return 0;
771    if (RHSCC != NEWCC)
772      ECst = dyn_cast<ConstantInt>( ConstantExpr::getXor(DCst, ECst) );
773    ConstantInt* MCst = dyn_cast<ConstantInt>(
774      ConstantExpr::getAnd(ConstantExpr::getAnd(BCst, DCst),
775                           ConstantExpr::getXor(CCst, ECst)) );
776    // if there is a conflict we should actually return a false for the
777    // whole construct
778    if (!MCst->isZero())
779      return 0;
780    Value *newOr1 = Builder->CreateOr(B, D);
781    Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
782    Value *newAnd = Builder->CreateAnd(A, newOr1);
783    return Builder->CreateICmp(NEWCC, newAnd, newOr2);
784  }
785  return 0;
786}
787
788/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
789Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
790  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
791
792  // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
793  if (PredicatesFoldable(LHSCC, RHSCC)) {
794    if (LHS->getOperand(0) == RHS->getOperand(1) &&
795        LHS->getOperand(1) == RHS->getOperand(0))
796      LHS->swapOperands();
797    if (LHS->getOperand(0) == RHS->getOperand(0) &&
798        LHS->getOperand(1) == RHS->getOperand(1)) {
799      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
800      unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
801      bool isSigned = LHS->isSigned() || RHS->isSigned();
802      return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
803    }
804  }
805
806  // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
807  if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
808    return V;
809
810  // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
811  Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
812  ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
813  ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
814  if (LHSCst == 0 || RHSCst == 0) return 0;
815
816  if (LHSCst == RHSCst && LHSCC == RHSCC) {
817    // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
818    // where C is a power of 2
819    if (LHSCC == ICmpInst::ICMP_ULT &&
820        LHSCst->getValue().isPowerOf2()) {
821      Value *NewOr = Builder->CreateOr(Val, Val2);
822      return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
823    }
824
825    // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
826    if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
827      Value *NewOr = Builder->CreateOr(Val, Val2);
828      return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
829    }
830  }
831
832  // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
833  // where CMAX is the all ones value for the truncated type,
834  // iff the lower bits of C2 and CA are zero.
835  if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC &&
836      LHS->hasOneUse() && RHS->hasOneUse()) {
837    Value *V;
838    ConstantInt *AndCst, *SmallCst = 0, *BigCst = 0;
839
840    // (trunc x) == C1 & (and x, CA) == C2
841    // (and x, CA) == C2 & (trunc x) == C1
842    if (match(Val2, m_Trunc(m_Value(V))) &&
843        match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
844      SmallCst = RHSCst;
845      BigCst = LHSCst;
846    } else if (match(Val, m_Trunc(m_Value(V))) &&
847               match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
848      SmallCst = LHSCst;
849      BigCst = RHSCst;
850    }
851
852    if (SmallCst && BigCst) {
853      unsigned BigBitSize = BigCst->getType()->getBitWidth();
854      unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
855
856      // Check that the low bits are zero.
857      APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
858      if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
859        Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
860        APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
861        Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
862        return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
863      }
864    }
865  }
866
867  // From here on, we only handle:
868  //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
869  if (Val != Val2) return 0;
870
871  // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
872  if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
873      RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
874      LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
875      RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
876    return 0;
877
878  // Make a constant range that's the intersection of the two icmp ranges.
879  // If the intersection is empty, we know that the result is false.
880  ConstantRange LHSRange =
881    ConstantRange::makeICmpRegion(LHSCC, LHSCst->getValue());
882  ConstantRange RHSRange =
883    ConstantRange::makeICmpRegion(RHSCC, RHSCst->getValue());
884
885  if (LHSRange.intersectWith(RHSRange).isEmptySet())
886    return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
887
888  // We can't fold (ugt x, C) & (sgt x, C2).
889  if (!PredicatesFoldable(LHSCC, RHSCC))
890    return 0;
891
892  // Ensure that the larger constant is on the RHS.
893  bool ShouldSwap;
894  if (CmpInst::isSigned(LHSCC) ||
895      (ICmpInst::isEquality(LHSCC) &&
896       CmpInst::isSigned(RHSCC)))
897    ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
898  else
899    ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
900
901  if (ShouldSwap) {
902    std::swap(LHS, RHS);
903    std::swap(LHSCst, RHSCst);
904    std::swap(LHSCC, RHSCC);
905  }
906
907  // At this point, we know we have two icmp instructions
908  // comparing a value against two constants and and'ing the result
909  // together.  Because of the above check, we know that we only have
910  // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
911  // (from the icmp folding check above), that the two constants
912  // are not equal and that the larger constant is on the RHS
913  assert(LHSCst != RHSCst && "Compares not folded above?");
914
915  switch (LHSCC) {
916  default: llvm_unreachable("Unknown integer condition code!");
917  case ICmpInst::ICMP_EQ:
918    switch (RHSCC) {
919    default: llvm_unreachable("Unknown integer condition code!");
920    case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
921    case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
922    case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
923      return LHS;
924    }
925  case ICmpInst::ICMP_NE:
926    switch (RHSCC) {
927    default: llvm_unreachable("Unknown integer condition code!");
928    case ICmpInst::ICMP_ULT:
929      if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
930        return Builder->CreateICmpULT(Val, LHSCst);
931      break;                        // (X != 13 & X u< 15) -> no change
932    case ICmpInst::ICMP_SLT:
933      if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
934        return Builder->CreateICmpSLT(Val, LHSCst);
935      break;                        // (X != 13 & X s< 15) -> no change
936    case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
937    case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
938    case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
939      return RHS;
940    case ICmpInst::ICMP_NE:
941      // Special case to get the ordering right when the values wrap around
942      // zero.
943      if (LHSCst->getValue() == 0 && RHSCst->getValue().isAllOnesValue())
944        std::swap(LHSCst, RHSCst);
945      if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
946        Constant *AddCST = ConstantExpr::getNeg(LHSCst);
947        Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
948        return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1),
949                                      Val->getName()+".cmp");
950      }
951      break;                        // (X != 13 & X != 15) -> no change
952    }
953    break;
954  case ICmpInst::ICMP_ULT:
955    switch (RHSCC) {
956    default: llvm_unreachable("Unknown integer condition code!");
957    case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
958    case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
959      return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
960    case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
961      break;
962    case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
963    case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
964      return LHS;
965    case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
966      break;
967    }
968    break;
969  case ICmpInst::ICMP_SLT:
970    switch (RHSCC) {
971    default: llvm_unreachable("Unknown integer condition code!");
972    case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
973      break;
974    case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
975    case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
976      return LHS;
977    case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
978      break;
979    }
980    break;
981  case ICmpInst::ICMP_UGT:
982    switch (RHSCC) {
983    default: llvm_unreachable("Unknown integer condition code!");
984    case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
985    case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
986      return RHS;
987    case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
988      break;
989    case ICmpInst::ICMP_NE:
990      if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
991        return Builder->CreateICmp(LHSCC, Val, RHSCst);
992      break;                        // (X u> 13 & X != 15) -> no change
993    case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
994      return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
995    case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
996      break;
997    }
998    break;
999  case ICmpInst::ICMP_SGT:
1000    switch (RHSCC) {
1001    default: llvm_unreachable("Unknown integer condition code!");
1002    case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
1003    case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
1004      return RHS;
1005    case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
1006      break;
1007    case ICmpInst::ICMP_NE:
1008      if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
1009        return Builder->CreateICmp(LHSCC, Val, RHSCst);
1010      break;                        // (X s> 13 & X != 15) -> no change
1011    case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
1012      return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
1013    case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
1014      break;
1015    }
1016    break;
1017  }
1018
1019  return 0;
1020}
1021
1022/// FoldAndOfFCmps - Optimize (fcmp)&(fcmp).  NOTE: Unlike the rest of
1023/// instcombine, this returns a Value which should already be inserted into the
1024/// function.
1025Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
1026  if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
1027      RHS->getPredicate() == FCmpInst::FCMP_ORD) {
1028    if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType())
1029      return 0;
1030
1031    // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
1032    if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
1033      if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
1034        // If either of the constants are nans, then the whole thing returns
1035        // false.
1036        if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
1037          return Builder->getFalse();
1038        return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
1039      }
1040
1041    // Handle vector zeros.  This occurs because the canonical form of
1042    // "fcmp ord x,x" is "fcmp ord x, 0".
1043    if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
1044        isa<ConstantAggregateZero>(RHS->getOperand(1)))
1045      return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
1046    return 0;
1047  }
1048
1049  Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
1050  Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
1051  FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
1052
1053
1054  if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
1055    // Swap RHS operands to match LHS.
1056    Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
1057    std::swap(Op1LHS, Op1RHS);
1058  }
1059
1060  if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
1061    // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1062    if (Op0CC == Op1CC)
1063      return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
1064    if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
1065      return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1066    if (Op0CC == FCmpInst::FCMP_TRUE)
1067      return RHS;
1068    if (Op1CC == FCmpInst::FCMP_TRUE)
1069      return LHS;
1070
1071    bool Op0Ordered;
1072    bool Op1Ordered;
1073    unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
1074    unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
1075    // uno && ord -> false
1076    if (Op0Pred == 0 && Op1Pred == 0 && Op0Ordered != Op1Ordered)
1077        return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1078    if (Op1Pred == 0) {
1079      std::swap(LHS, RHS);
1080      std::swap(Op0Pred, Op1Pred);
1081      std::swap(Op0Ordered, Op1Ordered);
1082    }
1083    if (Op0Pred == 0) {
1084      // uno && ueq -> uno && (uno || eq) -> uno
1085      // ord && olt -> ord && (ord && lt) -> olt
1086      if (!Op0Ordered && (Op0Ordered == Op1Ordered))
1087        return LHS;
1088      if (Op0Ordered && (Op0Ordered == Op1Ordered))
1089        return RHS;
1090
1091      // uno && oeq -> uno && (ord && eq) -> false
1092      if (!Op0Ordered)
1093        return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1094      // ord && ueq -> ord && (uno || eq) -> oeq
1095      return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
1096    }
1097  }
1098
1099  return 0;
1100}
1101
1102
1103Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
1104  bool Changed = SimplifyAssociativeOrCommutative(I);
1105  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1106
1107  if (Value *V = SimplifyAndInst(Op0, Op1, DL))
1108    return ReplaceInstUsesWith(I, V);
1109
1110  // (A|B)&(A|C) -> A|(B&C) etc
1111  if (Value *V = SimplifyUsingDistributiveLaws(I))
1112    return ReplaceInstUsesWith(I, V);
1113
1114  // See if we can simplify any instructions used by the instruction whose sole
1115  // purpose is to compute bits we don't care about.
1116  if (SimplifyDemandedInstructionBits(I))
1117    return &I;
1118
1119  if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
1120    const APInt &AndRHSMask = AndRHS->getValue();
1121
1122    // Optimize a variety of ((val OP C1) & C2) combinations...
1123    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1124      Value *Op0LHS = Op0I->getOperand(0);
1125      Value *Op0RHS = Op0I->getOperand(1);
1126      switch (Op0I->getOpcode()) {
1127      default: break;
1128      case Instruction::Xor:
1129      case Instruction::Or: {
1130        // If the mask is only needed on one incoming arm, push it up.
1131        if (!Op0I->hasOneUse()) break;
1132
1133        APInt NotAndRHS(~AndRHSMask);
1134        if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
1135          // Not masking anything out for the LHS, move to RHS.
1136          Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
1137                                             Op0RHS->getName()+".masked");
1138          return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
1139        }
1140        if (!isa<Constant>(Op0RHS) &&
1141            MaskedValueIsZero(Op0RHS, NotAndRHS)) {
1142          // Not masking anything out for the RHS, move to LHS.
1143          Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
1144                                             Op0LHS->getName()+".masked");
1145          return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
1146        }
1147
1148        break;
1149      }
1150      case Instruction::Add:
1151        // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
1152        // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1153        // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1154        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
1155          return BinaryOperator::CreateAnd(V, AndRHS);
1156        if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
1157          return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
1158        break;
1159
1160      case Instruction::Sub:
1161        // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
1162        // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1163        // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1164        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
1165          return BinaryOperator::CreateAnd(V, AndRHS);
1166
1167        // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
1168        // has 1's for all bits that the subtraction with A might affect.
1169        if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
1170          uint32_t BitWidth = AndRHSMask.getBitWidth();
1171          uint32_t Zeros = AndRHSMask.countLeadingZeros();
1172          APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
1173
1174          if (MaskedValueIsZero(Op0LHS, Mask)) {
1175            Value *NewNeg = Builder->CreateNeg(Op0RHS);
1176            return BinaryOperator::CreateAnd(NewNeg, AndRHS);
1177          }
1178        }
1179        break;
1180
1181      case Instruction::Shl:
1182      case Instruction::LShr:
1183        // (1 << x) & 1 --> zext(x == 0)
1184        // (1 >> x) & 1 --> zext(x == 0)
1185        if (AndRHSMask == 1 && Op0LHS == AndRHS) {
1186          Value *NewICmp =
1187            Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
1188          return new ZExtInst(NewICmp, I.getType());
1189        }
1190        break;
1191      }
1192
1193      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1194        if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
1195          return Res;
1196    }
1197
1198    // If this is an integer truncation, and if the source is an 'and' with
1199    // immediate, transform it.  This frequently occurs for bitfield accesses.
1200    {
1201      Value *X = 0; ConstantInt *YC = 0;
1202      if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
1203        // Change: and (trunc (and X, YC) to T), C2
1204        // into  : and (trunc X to T), trunc(YC) & C2
1205        // This will fold the two constants together, which may allow
1206        // other simplifications.
1207        Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
1208        Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
1209        C3 = ConstantExpr::getAnd(C3, AndRHS);
1210        return BinaryOperator::CreateAnd(NewCast, C3);
1211      }
1212    }
1213
1214    // Try to fold constant and into select arguments.
1215    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1216      if (Instruction *R = FoldOpIntoSelect(I, SI))
1217        return R;
1218    if (isa<PHINode>(Op0))
1219      if (Instruction *NV = FoldOpIntoPhi(I))
1220        return NV;
1221  }
1222
1223
1224  // (~A & ~B) == (~(A | B)) - De Morgan's Law
1225  if (Value *Op0NotVal = dyn_castNotVal(Op0))
1226    if (Value *Op1NotVal = dyn_castNotVal(Op1))
1227      if (Op0->hasOneUse() && Op1->hasOneUse()) {
1228        Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
1229                                      I.getName()+".demorgan");
1230        return BinaryOperator::CreateNot(Or);
1231      }
1232
1233  {
1234    Value *A = 0, *B = 0, *C = 0, *D = 0;
1235    // (A|B) & ~(A&B) -> A^B
1236    if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1237        match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1238        ((A == C && B == D) || (A == D && B == C)))
1239      return BinaryOperator::CreateXor(A, B);
1240
1241    // ~(A&B) & (A|B) -> A^B
1242    if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1243        match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1244        ((A == C && B == D) || (A == D && B == C)))
1245      return BinaryOperator::CreateXor(A, B);
1246
1247    // A&(A^B) => A & ~B
1248    {
1249      Value *tmpOp0 = Op0;
1250      Value *tmpOp1 = Op1;
1251      if (Op0->hasOneUse() &&
1252          match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
1253        if (A == Op1 || B == Op1 ) {
1254          tmpOp1 = Op0;
1255          tmpOp0 = Op1;
1256          // Simplify below
1257        }
1258      }
1259
1260      if (tmpOp1->hasOneUse() &&
1261          match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) {
1262        if (B == tmpOp0) {
1263          std::swap(A, B);
1264        }
1265        // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
1266        // A is originally -1 (or a vector of -1 and undefs), then we enter
1267        // an endless loop. By checking that A is non-constant we ensure that
1268        // we will never get to the loop.
1269        if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
1270          return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
1271      }
1272    }
1273
1274    // (A&((~A)|B)) -> A&B
1275    if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
1276        match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
1277      return BinaryOperator::CreateAnd(A, Op1);
1278    if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
1279        match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
1280      return BinaryOperator::CreateAnd(A, Op0);
1281  }
1282
1283  if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
1284    if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
1285      if (Value *Res = FoldAndOfICmps(LHS, RHS))
1286        return ReplaceInstUsesWith(I, Res);
1287
1288  // If and'ing two fcmp, try combine them into one.
1289  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1290    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
1291      if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1292        return ReplaceInstUsesWith(I, Res);
1293
1294
1295  // fold (and (cast A), (cast B)) -> (cast (and A, B))
1296  if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
1297    if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
1298      Type *SrcTy = Op0C->getOperand(0)->getType();
1299      if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
1300          SrcTy == Op1C->getOperand(0)->getType() &&
1301          SrcTy->isIntOrIntVectorTy()) {
1302        Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
1303
1304        // Only do this if the casts both really cause code to be generated.
1305        if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
1306            ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
1307          Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
1308          return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
1309        }
1310
1311        // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
1312        // cast is otherwise not optimizable.  This happens for vector sexts.
1313        if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
1314          if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
1315            if (Value *Res = FoldAndOfICmps(LHS, RHS))
1316              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
1317
1318        // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
1319        // cast is otherwise not optimizable.  This happens for vector sexts.
1320        if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
1321          if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
1322            if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1323              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
1324      }
1325    }
1326
1327  // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
1328  if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
1329    if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
1330      if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
1331          SI0->getOperand(1) == SI1->getOperand(1) &&
1332          (SI0->hasOneUse() || SI1->hasOneUse())) {
1333        Value *NewOp =
1334          Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
1335                             SI0->getName());
1336        return BinaryOperator::Create(SI1->getOpcode(), NewOp,
1337                                      SI1->getOperand(1));
1338      }
1339  }
1340
1341  {
1342    Value *X = 0;
1343    bool OpsSwapped = false;
1344    // Canonicalize SExt or Not to the LHS
1345    if (match(Op1, m_SExt(m_Value())) ||
1346        match(Op1, m_Not(m_Value()))) {
1347      std::swap(Op0, Op1);
1348      OpsSwapped = true;
1349    }
1350
1351    // Fold (and (sext bool to A), B) --> (select bool, B, 0)
1352    if (match(Op0, m_SExt(m_Value(X))) &&
1353        X->getType()->getScalarType()->isIntegerTy(1)) {
1354      Value *Zero = Constant::getNullValue(Op1->getType());
1355      return SelectInst::Create(X, Op1, Zero);
1356    }
1357
1358    // Fold (and ~(sext bool to A), B) --> (select bool, 0, B)
1359    if (match(Op0, m_Not(m_SExt(m_Value(X)))) &&
1360        X->getType()->getScalarType()->isIntegerTy(1)) {
1361      Value *Zero = Constant::getNullValue(Op0->getType());
1362      return SelectInst::Create(X, Zero, Op1);
1363    }
1364
1365    if (OpsSwapped)
1366      std::swap(Op0, Op1);
1367  }
1368
1369  return Changed ? &I : 0;
1370}
1371
1372/// CollectBSwapParts - Analyze the specified subexpression and see if it is
1373/// capable of providing pieces of a bswap.  The subexpression provides pieces
1374/// of a bswap if it is proven that each of the non-zero bytes in the output of
1375/// the expression came from the corresponding "byte swapped" byte in some other
1376/// value.  For example, if the current subexpression is "(shl i32 %X, 24)" then
1377/// we know that the expression deposits the low byte of %X into the high byte
1378/// of the bswap result and that all other bytes are zero.  This expression is
1379/// accepted, the high byte of ByteValues is set to X to indicate a correct
1380/// match.
1381///
1382/// This function returns true if the match was unsuccessful and false if so.
1383/// On entry to the function the "OverallLeftShift" is a signed integer value
1384/// indicating the number of bytes that the subexpression is later shifted.  For
1385/// example, if the expression is later right shifted by 16 bits, the
1386/// OverallLeftShift value would be -2 on entry.  This is used to specify which
1387/// byte of ByteValues is actually being set.
1388///
1389/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
1390/// byte is masked to zero by a user.  For example, in (X & 255), X will be
1391/// processed with a bytemask of 1.  Because bytemask is 32-bits, this limits
1392/// this function to working on up to 32-byte (256 bit) values.  ByteMask is
1393/// always in the local (OverallLeftShift) coordinate space.
1394///
1395static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
1396                              SmallVectorImpl<Value *> &ByteValues) {
1397  if (Instruction *I = dyn_cast<Instruction>(V)) {
1398    // If this is an or instruction, it may be an inner node of the bswap.
1399    if (I->getOpcode() == Instruction::Or) {
1400      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1401                               ByteValues) ||
1402             CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
1403                               ByteValues);
1404    }
1405
1406    // If this is a logical shift by a constant multiple of 8, recurse with
1407    // OverallLeftShift and ByteMask adjusted.
1408    if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1409      unsigned ShAmt =
1410        cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1411      // Ensure the shift amount is defined and of a byte value.
1412      if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
1413        return true;
1414
1415      unsigned ByteShift = ShAmt >> 3;
1416      if (I->getOpcode() == Instruction::Shl) {
1417        // X << 2 -> collect(X, +2)
1418        OverallLeftShift += ByteShift;
1419        ByteMask >>= ByteShift;
1420      } else {
1421        // X >>u 2 -> collect(X, -2)
1422        OverallLeftShift -= ByteShift;
1423        ByteMask <<= ByteShift;
1424        ByteMask &= (~0U >> (32-ByteValues.size()));
1425      }
1426
1427      if (OverallLeftShift >= (int)ByteValues.size()) return true;
1428      if (OverallLeftShift <= -(int)ByteValues.size()) return true;
1429
1430      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1431                               ByteValues);
1432    }
1433
1434    // If this is a logical 'and' with a mask that clears bytes, clear the
1435    // corresponding bytes in ByteMask.
1436    if (I->getOpcode() == Instruction::And &&
1437        isa<ConstantInt>(I->getOperand(1))) {
1438      // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
1439      unsigned NumBytes = ByteValues.size();
1440      APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
1441      const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
1442
1443      for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
1444        // If this byte is masked out by a later operation, we don't care what
1445        // the and mask is.
1446        if ((ByteMask & (1 << i)) == 0)
1447          continue;
1448
1449        // If the AndMask is all zeros for this byte, clear the bit.
1450        APInt MaskB = AndMask & Byte;
1451        if (MaskB == 0) {
1452          ByteMask &= ~(1U << i);
1453          continue;
1454        }
1455
1456        // If the AndMask is not all ones for this byte, it's not a bytezap.
1457        if (MaskB != Byte)
1458          return true;
1459
1460        // Otherwise, this byte is kept.
1461      }
1462
1463      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1464                               ByteValues);
1465    }
1466  }
1467
1468  // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
1469  // the input value to the bswap.  Some observations: 1) if more than one byte
1470  // is demanded from this input, then it could not be successfully assembled
1471  // into a byteswap.  At least one of the two bytes would not be aligned with
1472  // their ultimate destination.
1473  if (!isPowerOf2_32(ByteMask)) return true;
1474  unsigned InputByteNo = countTrailingZeros(ByteMask);
1475
1476  // 2) The input and ultimate destinations must line up: if byte 3 of an i32
1477  // is demanded, it needs to go into byte 0 of the result.  This means that the
1478  // byte needs to be shifted until it lands in the right byte bucket.  The
1479  // shift amount depends on the position: if the byte is coming from the high
1480  // part of the value (e.g. byte 3) then it must be shifted right.  If from the
1481  // low part, it must be shifted left.
1482  unsigned DestByteNo = InputByteNo + OverallLeftShift;
1483  if (ByteValues.size()-1-DestByteNo != InputByteNo)
1484    return true;
1485
1486  // If the destination byte value is already defined, the values are or'd
1487  // together, which isn't a bswap (unless it's an or of the same bits).
1488  if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
1489    return true;
1490  ByteValues[DestByteNo] = V;
1491  return false;
1492}
1493
1494/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
1495/// If so, insert the new bswap intrinsic and return it.
1496Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
1497  IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
1498  if (!ITy || ITy->getBitWidth() % 16 ||
1499      // ByteMask only allows up to 32-byte values.
1500      ITy->getBitWidth() > 32*8)
1501    return 0;   // Can only bswap pairs of bytes.  Can't do vectors.
1502
1503  /// ByteValues - For each byte of the result, we keep track of which value
1504  /// defines each byte.
1505  SmallVector<Value*, 8> ByteValues;
1506  ByteValues.resize(ITy->getBitWidth()/8);
1507
1508  // Try to find all the pieces corresponding to the bswap.
1509  uint32_t ByteMask = ~0U >> (32-ByteValues.size());
1510  if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
1511    return 0;
1512
1513  // Check to see if all of the bytes come from the same value.
1514  Value *V = ByteValues[0];
1515  if (V == 0) return 0;  // Didn't find a byte?  Must be zero.
1516
1517  // Check to make sure that all of the bytes come from the same value.
1518  for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
1519    if (ByteValues[i] != V)
1520      return 0;
1521  Module *M = I.getParent()->getParent()->getParent();
1522  Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
1523  return CallInst::Create(F, V);
1524}
1525
1526/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D).  Check
1527/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
1528/// we can simplify this expression to "cond ? C : D or B".
1529static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
1530                                         Value *C, Value *D) {
1531  // If A is not a select of -1/0, this cannot match.
1532  Value *Cond = 0;
1533  if (!match(A, m_SExt(m_Value(Cond))) ||
1534      !Cond->getType()->isIntegerTy(1))
1535    return 0;
1536
1537  // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
1538  if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
1539    return SelectInst::Create(Cond, C, B);
1540  if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
1541    return SelectInst::Create(Cond, C, B);
1542
1543  // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
1544  if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
1545    return SelectInst::Create(Cond, C, D);
1546  if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
1547    return SelectInst::Create(Cond, C, D);
1548  return 0;
1549}
1550
1551/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
1552Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
1553  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
1554
1555  // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
1556  // if K1 and K2 are a one-bit mask.
1557  ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
1558  ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
1559
1560  if (LHS->getPredicate() == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero() &&
1561      RHS->getPredicate() == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
1562
1563    BinaryOperator *LAnd = dyn_cast<BinaryOperator>(LHS->getOperand(0));
1564    BinaryOperator *RAnd = dyn_cast<BinaryOperator>(RHS->getOperand(0));
1565    if (LAnd && RAnd && LAnd->hasOneUse() && RHS->hasOneUse() &&
1566        LAnd->getOpcode() == Instruction::And &&
1567        RAnd->getOpcode() == Instruction::And) {
1568
1569      Value *Mask = 0;
1570      Value *Masked = 0;
1571      if (LAnd->getOperand(0) == RAnd->getOperand(0) &&
1572          isKnownToBeAPowerOfTwo(LAnd->getOperand(1)) &&
1573          isKnownToBeAPowerOfTwo(RAnd->getOperand(1))) {
1574        Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1));
1575        Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask);
1576      } else if (LAnd->getOperand(1) == RAnd->getOperand(1) &&
1577                 isKnownToBeAPowerOfTwo(LAnd->getOperand(0)) &&
1578                 isKnownToBeAPowerOfTwo(RAnd->getOperand(0))) {
1579        Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0));
1580        Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask);
1581      }
1582
1583      if (Masked)
1584        return Builder->CreateICmp(ICmpInst::ICMP_NE, Masked, Mask);
1585    }
1586  }
1587
1588  // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
1589  if (PredicatesFoldable(LHSCC, RHSCC)) {
1590    if (LHS->getOperand(0) == RHS->getOperand(1) &&
1591        LHS->getOperand(1) == RHS->getOperand(0))
1592      LHS->swapOperands();
1593    if (LHS->getOperand(0) == RHS->getOperand(0) &&
1594        LHS->getOperand(1) == RHS->getOperand(1)) {
1595      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1596      unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
1597      bool isSigned = LHS->isSigned() || RHS->isSigned();
1598      return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
1599    }
1600  }
1601
1602  // handle (roughly):
1603  // (icmp ne (A & B), C) | (icmp ne (A & D), E)
1604  if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
1605    return V;
1606
1607  Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
1608  if (LHS->hasOneUse() || RHS->hasOneUse()) {
1609    // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
1610    // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
1611    Value *A = 0, *B = 0;
1612    if (LHSCC == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero()) {
1613      B = Val;
1614      if (RHSCC == ICmpInst::ICMP_ULT && Val == RHS->getOperand(1))
1615        A = Val2;
1616      else if (RHSCC == ICmpInst::ICMP_UGT && Val == Val2)
1617        A = RHS->getOperand(1);
1618    }
1619    // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
1620    // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
1621    else if (RHSCC == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
1622      B = Val2;
1623      if (LHSCC == ICmpInst::ICMP_ULT && Val2 == LHS->getOperand(1))
1624        A = Val;
1625      else if (LHSCC == ICmpInst::ICMP_UGT && Val2 == Val)
1626        A = LHS->getOperand(1);
1627    }
1628    if (A && B)
1629      return Builder->CreateICmp(
1630          ICmpInst::ICMP_UGE,
1631          Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
1632  }
1633
1634  // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
1635  if (LHSCst == 0 || RHSCst == 0) return 0;
1636
1637  if (LHSCst == RHSCst && LHSCC == RHSCC) {
1638    // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
1639    if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
1640      Value *NewOr = Builder->CreateOr(Val, Val2);
1641      return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
1642    }
1643  }
1644
1645  // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
1646  //   iff C2 + CA == C1.
1647  if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
1648    ConstantInt *AddCst;
1649    if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
1650      if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
1651        return Builder->CreateICmpULE(Val, LHSCst);
1652  }
1653
1654  // From here on, we only handle:
1655  //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
1656  if (Val != Val2) return 0;
1657
1658  // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
1659  if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
1660      RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
1661      LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
1662      RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
1663    return 0;
1664
1665  // We can't fold (ugt x, C) | (sgt x, C2).
1666  if (!PredicatesFoldable(LHSCC, RHSCC))
1667    return 0;
1668
1669  // Ensure that the larger constant is on the RHS.
1670  bool ShouldSwap;
1671  if (CmpInst::isSigned(LHSCC) ||
1672      (ICmpInst::isEquality(LHSCC) &&
1673       CmpInst::isSigned(RHSCC)))
1674    ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
1675  else
1676    ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
1677
1678  if (ShouldSwap) {
1679    std::swap(LHS, RHS);
1680    std::swap(LHSCst, RHSCst);
1681    std::swap(LHSCC, RHSCC);
1682  }
1683
1684  // At this point, we know we have two icmp instructions
1685  // comparing a value against two constants and or'ing the result
1686  // together.  Because of the above check, we know that we only have
1687  // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
1688  // icmp folding check above), that the two constants are not
1689  // equal.
1690  assert(LHSCst != RHSCst && "Compares not folded above?");
1691
1692  switch (LHSCC) {
1693  default: llvm_unreachable("Unknown integer condition code!");
1694  case ICmpInst::ICMP_EQ:
1695    switch (RHSCC) {
1696    default: llvm_unreachable("Unknown integer condition code!");
1697    case ICmpInst::ICMP_EQ:
1698      if (LHS->getOperand(0) == RHS->getOperand(0)) {
1699        // if LHSCst and RHSCst differ only by one bit:
1700        // (A == C1 || A == C2) -> (A & ~(C1 ^ C2)) == C1
1701        assert(LHSCst->getValue().ule(LHSCst->getValue()));
1702
1703        APInt Xor = LHSCst->getValue() ^ RHSCst->getValue();
1704        if (Xor.isPowerOf2()) {
1705          Value *NegCst = Builder->getInt(~Xor);
1706          Value *And = Builder->CreateAnd(LHS->getOperand(0), NegCst);
1707          return Builder->CreateICmp(ICmpInst::ICMP_EQ, And, LHSCst);
1708        }
1709      }
1710
1711      if (LHSCst == SubOne(RHSCst)) {
1712        // (X == 13 | X == 14) -> X-13 <u 2
1713        Constant *AddCST = ConstantExpr::getNeg(LHSCst);
1714        Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
1715        AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
1716        return Builder->CreateICmpULT(Add, AddCST);
1717      }
1718
1719      break;                         // (X == 13 | X == 15) -> no change
1720    case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
1721    case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
1722      break;
1723    case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
1724    case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
1725    case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
1726      return RHS;
1727    }
1728    break;
1729  case ICmpInst::ICMP_NE:
1730    switch (RHSCC) {
1731    default: llvm_unreachable("Unknown integer condition code!");
1732    case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
1733    case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
1734    case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
1735      return LHS;
1736    case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
1737    case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
1738    case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
1739      return Builder->getTrue();
1740    }
1741  case ICmpInst::ICMP_ULT:
1742    switch (RHSCC) {
1743    default: llvm_unreachable("Unknown integer condition code!");
1744    case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
1745      break;
1746    case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
1747      // If RHSCst is [us]MAXINT, it is always false.  Not handling
1748      // this can cause overflow.
1749      if (RHSCst->isMaxValue(false))
1750        return LHS;
1751      return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
1752    case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
1753      break;
1754    case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
1755    case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
1756      return RHS;
1757    case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
1758      break;
1759    }
1760    break;
1761  case ICmpInst::ICMP_SLT:
1762    switch (RHSCC) {
1763    default: llvm_unreachable("Unknown integer condition code!");
1764    case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
1765      break;
1766    case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
1767      // If RHSCst is [us]MAXINT, it is always false.  Not handling
1768      // this can cause overflow.
1769      if (RHSCst->isMaxValue(true))
1770        return LHS;
1771      return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
1772    case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
1773      break;
1774    case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
1775    case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
1776      return RHS;
1777    case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
1778      break;
1779    }
1780    break;
1781  case ICmpInst::ICMP_UGT:
1782    switch (RHSCC) {
1783    default: llvm_unreachable("Unknown integer condition code!");
1784    case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
1785    case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
1786      return LHS;
1787    case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
1788      break;
1789    case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
1790    case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
1791      return Builder->getTrue();
1792    case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
1793      break;
1794    }
1795    break;
1796  case ICmpInst::ICMP_SGT:
1797    switch (RHSCC) {
1798    default: llvm_unreachable("Unknown integer condition code!");
1799    case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
1800    case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
1801      return LHS;
1802    case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
1803      break;
1804    case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
1805    case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
1806      return Builder->getTrue();
1807    case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
1808      break;
1809    }
1810    break;
1811  }
1812  return 0;
1813}
1814
1815/// FoldOrOfFCmps - Optimize (fcmp)|(fcmp).  NOTE: Unlike the rest of
1816/// instcombine, this returns a Value which should already be inserted into the
1817/// function.
1818Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
1819  if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
1820      RHS->getPredicate() == FCmpInst::FCMP_UNO &&
1821      LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
1822    if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
1823      if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
1824        // If either of the constants are nans, then the whole thing returns
1825        // true.
1826        if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
1827          return Builder->getTrue();
1828
1829        // Otherwise, no need to compare the two constants, compare the
1830        // rest.
1831        return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
1832      }
1833
1834    // Handle vector zeros.  This occurs because the canonical form of
1835    // "fcmp uno x,x" is "fcmp uno x, 0".
1836    if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
1837        isa<ConstantAggregateZero>(RHS->getOperand(1)))
1838      return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
1839
1840    return 0;
1841  }
1842
1843  Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
1844  Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
1845  FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
1846
1847  if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
1848    // Swap RHS operands to match LHS.
1849    Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
1850    std::swap(Op1LHS, Op1RHS);
1851  }
1852  if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
1853    // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
1854    if (Op0CC == Op1CC)
1855      return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
1856    if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
1857      return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
1858    if (Op0CC == FCmpInst::FCMP_FALSE)
1859      return RHS;
1860    if (Op1CC == FCmpInst::FCMP_FALSE)
1861      return LHS;
1862    bool Op0Ordered;
1863    bool Op1Ordered;
1864    unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
1865    unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
1866    if (Op0Ordered == Op1Ordered) {
1867      // If both are ordered or unordered, return a new fcmp with
1868      // or'ed predicates.
1869      return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
1870    }
1871  }
1872  return 0;
1873}
1874
1875/// FoldOrWithConstants - This helper function folds:
1876///
1877///     ((A | B) & C1) | (B & C2)
1878///
1879/// into:
1880///
1881///     (A & C1) | B
1882///
1883/// when the XOR of the two constants is "all ones" (-1).
1884Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
1885                                               Value *A, Value *B, Value *C) {
1886  ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
1887  if (!CI1) return 0;
1888
1889  Value *V1 = 0;
1890  ConstantInt *CI2 = 0;
1891  if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
1892
1893  APInt Xor = CI1->getValue() ^ CI2->getValue();
1894  if (!Xor.isAllOnesValue()) return 0;
1895
1896  if (V1 == A || V1 == B) {
1897    Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
1898    return BinaryOperator::CreateOr(NewOp, V1);
1899  }
1900
1901  return 0;
1902}
1903
1904Instruction *InstCombiner::visitOr(BinaryOperator &I) {
1905  bool Changed = SimplifyAssociativeOrCommutative(I);
1906  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1907
1908  if (Value *V = SimplifyOrInst(Op0, Op1, DL))
1909    return ReplaceInstUsesWith(I, V);
1910
1911  // (A&B)|(A&C) -> A&(B|C) etc
1912  if (Value *V = SimplifyUsingDistributiveLaws(I))
1913    return ReplaceInstUsesWith(I, V);
1914
1915  // See if we can simplify any instructions used by the instruction whose sole
1916  // purpose is to compute bits we don't care about.
1917  if (SimplifyDemandedInstructionBits(I))
1918    return &I;
1919
1920  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
1921    ConstantInt *C1 = 0; Value *X = 0;
1922    // (X & C1) | C2 --> (X | C2) & (C1|C2)
1923    // iff (C1 & C2) == 0.
1924    if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
1925        (RHS->getValue() & C1->getValue()) != 0 &&
1926        Op0->hasOneUse()) {
1927      Value *Or = Builder->CreateOr(X, RHS);
1928      Or->takeName(Op0);
1929      return BinaryOperator::CreateAnd(Or,
1930                             Builder->getInt(RHS->getValue() | C1->getValue()));
1931    }
1932
1933    // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
1934    if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
1935        Op0->hasOneUse()) {
1936      Value *Or = Builder->CreateOr(X, RHS);
1937      Or->takeName(Op0);
1938      return BinaryOperator::CreateXor(Or,
1939                            Builder->getInt(C1->getValue() & ~RHS->getValue()));
1940    }
1941
1942    // Try to fold constant and into select arguments.
1943    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1944      if (Instruction *R = FoldOpIntoSelect(I, SI))
1945        return R;
1946
1947    if (isa<PHINode>(Op0))
1948      if (Instruction *NV = FoldOpIntoPhi(I))
1949        return NV;
1950  }
1951
1952  Value *A = 0, *B = 0;
1953  ConstantInt *C1 = 0, *C2 = 0;
1954
1955  // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
1956  // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
1957  if (match(Op0, m_Or(m_Value(), m_Value())) ||
1958      match(Op1, m_Or(m_Value(), m_Value())) ||
1959      (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
1960       match(Op1, m_LogicalShift(m_Value(), m_Value())))) {
1961    if (Instruction *BSwap = MatchBSwap(I))
1962      return BSwap;
1963  }
1964
1965  // (X^C)|Y -> (X|Y)^C iff Y&C == 0
1966  if (Op0->hasOneUse() &&
1967      match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
1968      MaskedValueIsZero(Op1, C1->getValue())) {
1969    Value *NOr = Builder->CreateOr(A, Op1);
1970    NOr->takeName(Op0);
1971    return BinaryOperator::CreateXor(NOr, C1);
1972  }
1973
1974  // Y|(X^C) -> (X|Y)^C iff Y&C == 0
1975  if (Op1->hasOneUse() &&
1976      match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
1977      MaskedValueIsZero(Op0, C1->getValue())) {
1978    Value *NOr = Builder->CreateOr(A, Op0);
1979    NOr->takeName(Op0);
1980    return BinaryOperator::CreateXor(NOr, C1);
1981  }
1982
1983  // (A & C)|(B & D)
1984  Value *C = 0, *D = 0;
1985  if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
1986      match(Op1, m_And(m_Value(B), m_Value(D)))) {
1987    Value *V1 = 0, *V2 = 0;
1988    C1 = dyn_cast<ConstantInt>(C);
1989    C2 = dyn_cast<ConstantInt>(D);
1990    if (C1 && C2) {  // (A & C1)|(B & C2)
1991      // If we have: ((V + N) & C1) | (V & C2)
1992      // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1993      // replace with V+N.
1994      if (C1->getValue() == ~C2->getValue()) {
1995        if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
1996            match(A, m_Add(m_Value(V1), m_Value(V2)))) {
1997          // Add commutes, try both ways.
1998          if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
1999            return ReplaceInstUsesWith(I, A);
2000          if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
2001            return ReplaceInstUsesWith(I, A);
2002        }
2003        // Or commutes, try both ways.
2004        if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
2005            match(B, m_Add(m_Value(V1), m_Value(V2)))) {
2006          // Add commutes, try both ways.
2007          if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
2008            return ReplaceInstUsesWith(I, B);
2009          if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
2010            return ReplaceInstUsesWith(I, B);
2011        }
2012      }
2013
2014      if ((C1->getValue() & C2->getValue()) == 0) {
2015        // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
2016        // iff (C1&C2) == 0 and (N&~C1) == 0
2017        if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
2018            ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) ||  // (V|N)
2019             (V2 == B && MaskedValueIsZero(V1, ~C1->getValue()))))   // (N|V)
2020          return BinaryOperator::CreateAnd(A,
2021                                Builder->getInt(C1->getValue()|C2->getValue()));
2022        // Or commutes, try both ways.
2023        if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
2024            ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) ||  // (V|N)
2025             (V2 == A && MaskedValueIsZero(V1, ~C2->getValue()))))   // (N|V)
2026          return BinaryOperator::CreateAnd(B,
2027                                Builder->getInt(C1->getValue()|C2->getValue()));
2028
2029        // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
2030        // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
2031        ConstantInt *C3 = 0, *C4 = 0;
2032        if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
2033            (C3->getValue() & ~C1->getValue()) == 0 &&
2034            match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
2035            (C4->getValue() & ~C2->getValue()) == 0) {
2036          V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
2037          return BinaryOperator::CreateAnd(V2,
2038                                Builder->getInt(C1->getValue()|C2->getValue()));
2039        }
2040      }
2041    }
2042
2043    // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants.
2044    // Don't do this for vector select idioms, the code generator doesn't handle
2045    // them well yet.
2046    if (!I.getType()->isVectorTy()) {
2047      if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
2048        return Match;
2049      if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
2050        return Match;
2051      if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
2052        return Match;
2053      if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
2054        return Match;
2055    }
2056
2057    // ((A&~B)|(~A&B)) -> A^B
2058    if ((match(C, m_Not(m_Specific(D))) &&
2059         match(B, m_Not(m_Specific(A)))))
2060      return BinaryOperator::CreateXor(A, D);
2061    // ((~B&A)|(~A&B)) -> A^B
2062    if ((match(A, m_Not(m_Specific(D))) &&
2063         match(B, m_Not(m_Specific(C)))))
2064      return BinaryOperator::CreateXor(C, D);
2065    // ((A&~B)|(B&~A)) -> A^B
2066    if ((match(C, m_Not(m_Specific(B))) &&
2067         match(D, m_Not(m_Specific(A)))))
2068      return BinaryOperator::CreateXor(A, B);
2069    // ((~B&A)|(B&~A)) -> A^B
2070    if ((match(A, m_Not(m_Specific(B))) &&
2071         match(D, m_Not(m_Specific(C)))))
2072      return BinaryOperator::CreateXor(C, B);
2073
2074    // ((A|B)&1)|(B&-2) -> (A&1) | B
2075    if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
2076        match(A, m_Or(m_Specific(B), m_Value(V1)))) {
2077      Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
2078      if (Ret) return Ret;
2079    }
2080    // (B&-2)|((A|B)&1) -> (A&1) | B
2081    if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
2082        match(B, m_Or(m_Value(V1), m_Specific(A)))) {
2083      Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
2084      if (Ret) return Ret;
2085    }
2086  }
2087
2088  // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
2089  if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
2090    if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
2091      if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
2092          SI0->getOperand(1) == SI1->getOperand(1) &&
2093          (SI0->hasOneUse() || SI1->hasOneUse())) {
2094        Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
2095                                         SI0->getName());
2096        return BinaryOperator::Create(SI1->getOpcode(), NewOp,
2097                                      SI1->getOperand(1));
2098      }
2099  }
2100
2101  // (~A | ~B) == (~(A & B)) - De Morgan's Law
2102  if (Value *Op0NotVal = dyn_castNotVal(Op0))
2103    if (Value *Op1NotVal = dyn_castNotVal(Op1))
2104      if (Op0->hasOneUse() && Op1->hasOneUse()) {
2105        Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
2106                                        I.getName()+".demorgan");
2107        return BinaryOperator::CreateNot(And);
2108      }
2109
2110  // Canonicalize xor to the RHS.
2111  bool SwappedForXor = false;
2112  if (match(Op0, m_Xor(m_Value(), m_Value()))) {
2113    std::swap(Op0, Op1);
2114    SwappedForXor = true;
2115  }
2116
2117  // A | ( A ^ B) -> A |  B
2118  // A | (~A ^ B) -> A | ~B
2119  // (A & B) | (A ^ B)
2120  if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
2121    if (Op0 == A || Op0 == B)
2122      return BinaryOperator::CreateOr(A, B);
2123
2124    if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
2125        match(Op0, m_And(m_Specific(B), m_Specific(A))))
2126      return BinaryOperator::CreateOr(A, B);
2127
2128    if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
2129      Value *Not = Builder->CreateNot(B, B->getName()+".not");
2130      return BinaryOperator::CreateOr(Not, Op0);
2131    }
2132    if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
2133      Value *Not = Builder->CreateNot(A, A->getName()+".not");
2134      return BinaryOperator::CreateOr(Not, Op0);
2135    }
2136  }
2137
2138  // A | ~(A | B) -> A | ~B
2139  // A | ~(A ^ B) -> A | ~B
2140  if (match(Op1, m_Not(m_Value(A))))
2141    if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
2142      if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
2143          Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
2144                               B->getOpcode() == Instruction::Xor)) {
2145        Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
2146                                                 B->getOperand(0);
2147        Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
2148        return BinaryOperator::CreateOr(Not, Op0);
2149      }
2150
2151  if (SwappedForXor)
2152    std::swap(Op0, Op1);
2153
2154  if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
2155    if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
2156      if (Value *Res = FoldOrOfICmps(LHS, RHS))
2157        return ReplaceInstUsesWith(I, Res);
2158
2159  // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
2160  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2161    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2162      if (Value *Res = FoldOrOfFCmps(LHS, RHS))
2163        return ReplaceInstUsesWith(I, Res);
2164
2165  // fold (or (cast A), (cast B)) -> (cast (or A, B))
2166  if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2167    CastInst *Op1C = dyn_cast<CastInst>(Op1);
2168    if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
2169      Type *SrcTy = Op0C->getOperand(0)->getType();
2170      if (SrcTy == Op1C->getOperand(0)->getType() &&
2171          SrcTy->isIntOrIntVectorTy()) {
2172        Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
2173
2174        if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
2175            // Only do this if the casts both really cause code to be
2176            // generated.
2177            ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
2178            ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
2179          Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
2180          return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2181        }
2182
2183        // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
2184        // cast is otherwise not optimizable.  This happens for vector sexts.
2185        if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
2186          if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
2187            if (Value *Res = FoldOrOfICmps(LHS, RHS))
2188              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
2189
2190        // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
2191        // cast is otherwise not optimizable.  This happens for vector sexts.
2192        if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
2193          if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
2194            if (Value *Res = FoldOrOfFCmps(LHS, RHS))
2195              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
2196      }
2197    }
2198  }
2199
2200  // or(sext(A), B) -> A ? -1 : B where A is an i1
2201  // or(A, sext(B)) -> B ? -1 : A where B is an i1
2202  if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2203    return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
2204  if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2205    return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
2206
2207  // Note: If we've gotten to the point of visiting the outer OR, then the
2208  // inner one couldn't be simplified.  If it was a constant, then it won't
2209  // be simplified by a later pass either, so we try swapping the inner/outer
2210  // ORs in the hopes that we'll be able to simplify it this way.
2211  // (X|C) | V --> (X|V) | C
2212  if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
2213      match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
2214    Value *Inner = Builder->CreateOr(A, Op1);
2215    Inner->takeName(Op0);
2216    return BinaryOperator::CreateOr(Inner, C1);
2217  }
2218
2219  // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
2220  // Since this OR statement hasn't been optimized further yet, we hope
2221  // that this transformation will allow the new ORs to be optimized.
2222  {
2223    Value *X = 0, *Y = 0;
2224    if (Op0->hasOneUse() && Op1->hasOneUse() &&
2225        match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
2226        match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
2227      Value *orTrue = Builder->CreateOr(A, C);
2228      Value *orFalse = Builder->CreateOr(B, D);
2229      return SelectInst::Create(X, orTrue, orFalse);
2230    }
2231  }
2232
2233  return Changed ? &I : 0;
2234}
2235
2236Instruction *InstCombiner::visitXor(BinaryOperator &I) {
2237  bool Changed = SimplifyAssociativeOrCommutative(I);
2238  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2239
2240  if (Value *V = SimplifyXorInst(Op0, Op1, DL))
2241    return ReplaceInstUsesWith(I, V);
2242
2243  // (A&B)^(A&C) -> A&(B^C) etc
2244  if (Value *V = SimplifyUsingDistributiveLaws(I))
2245    return ReplaceInstUsesWith(I, V);
2246
2247  // See if we can simplify any instructions used by the instruction whose sole
2248  // purpose is to compute bits we don't care about.
2249  if (SimplifyDemandedInstructionBits(I))
2250    return &I;
2251
2252  // Is this a ~ operation?
2253  if (Value *NotOp = dyn_castNotVal(&I)) {
2254    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
2255      if (Op0I->getOpcode() == Instruction::And ||
2256          Op0I->getOpcode() == Instruction::Or) {
2257        // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
2258        // ~(~X | Y) === (X & ~Y) - De Morgan's Law
2259        if (dyn_castNotVal(Op0I->getOperand(1)))
2260          Op0I->swapOperands();
2261        if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
2262          Value *NotY =
2263            Builder->CreateNot(Op0I->getOperand(1),
2264                               Op0I->getOperand(1)->getName()+".not");
2265          if (Op0I->getOpcode() == Instruction::And)
2266            return BinaryOperator::CreateOr(Op0NotVal, NotY);
2267          return BinaryOperator::CreateAnd(Op0NotVal, NotY);
2268        }
2269
2270        // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
2271        // ~(X | Y) === (~X & ~Y) - De Morgan's Law
2272        if (isFreeToInvert(Op0I->getOperand(0)) &&
2273            isFreeToInvert(Op0I->getOperand(1))) {
2274          Value *NotX =
2275            Builder->CreateNot(Op0I->getOperand(0), "notlhs");
2276          Value *NotY =
2277            Builder->CreateNot(Op0I->getOperand(1), "notrhs");
2278          if (Op0I->getOpcode() == Instruction::And)
2279            return BinaryOperator::CreateOr(NotX, NotY);
2280          return BinaryOperator::CreateAnd(NotX, NotY);
2281        }
2282
2283      } else if (Op0I->getOpcode() == Instruction::AShr) {
2284        // ~(~X >>s Y) --> (X >>s Y)
2285        if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
2286          return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
2287      }
2288    }
2289  }
2290
2291
2292  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2293    if (RHS->isOne() && Op0->hasOneUse())
2294      // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
2295      if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
2296        return CmpInst::Create(CI->getOpcode(),
2297                               CI->getInversePredicate(),
2298                               CI->getOperand(0), CI->getOperand(1));
2299
2300    // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
2301    if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2302      if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
2303        if (CI->hasOneUse() && Op0C->hasOneUse()) {
2304          Instruction::CastOps Opcode = Op0C->getOpcode();
2305          if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
2306              (RHS == ConstantExpr::getCast(Opcode, Builder->getTrue(),
2307                                            Op0C->getDestTy()))) {
2308            CI->setPredicate(CI->getInversePredicate());
2309            return CastInst::Create(Opcode, CI, Op0C->getType());
2310          }
2311        }
2312      }
2313    }
2314
2315    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2316      // ~(c-X) == X-c-1 == X+(-c-1)
2317      if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
2318        if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
2319          Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
2320          Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
2321                                      ConstantInt::get(I.getType(), 1));
2322          return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
2323        }
2324
2325      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2326        if (Op0I->getOpcode() == Instruction::Add) {
2327          // ~(X-c) --> (-c-1)-X
2328          if (RHS->isAllOnesValue()) {
2329            Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
2330            return BinaryOperator::CreateSub(
2331                           ConstantExpr::getSub(NegOp0CI,
2332                                      ConstantInt::get(I.getType(), 1)),
2333                                      Op0I->getOperand(0));
2334          } else if (RHS->getValue().isSignBit()) {
2335            // (X + C) ^ signbit -> (X + C + signbit)
2336            Constant *C = Builder->getInt(RHS->getValue() + Op0CI->getValue());
2337            return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
2338
2339          }
2340        } else if (Op0I->getOpcode() == Instruction::Or) {
2341          // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
2342          if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
2343            Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
2344            // Anything in both C1 and C2 is known to be zero, remove it from
2345            // NewRHS.
2346            Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
2347            NewRHS = ConstantExpr::getAnd(NewRHS,
2348                                       ConstantExpr::getNot(CommonBits));
2349            Worklist.Add(Op0I);
2350            I.setOperand(0, Op0I->getOperand(0));
2351            I.setOperand(1, NewRHS);
2352            return &I;
2353          }
2354        } else if (Op0I->getOpcode() == Instruction::LShr) {
2355          // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
2356          // E1 = "X ^ C1"
2357          BinaryOperator *E1;
2358          ConstantInt *C1;
2359          if (Op0I->hasOneUse() &&
2360              (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
2361              E1->getOpcode() == Instruction::Xor &&
2362              (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
2363            // fold (C1 >> C2) ^ C3
2364            ConstantInt *C2 = Op0CI, *C3 = RHS;
2365            APInt FoldConst = C1->getValue().lshr(C2->getValue());
2366            FoldConst ^= C3->getValue();
2367            // Prepare the two operands.
2368            Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2);
2369            Opnd0->takeName(Op0I);
2370            cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
2371            Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
2372
2373            return BinaryOperator::CreateXor(Opnd0, FoldVal);
2374          }
2375        }
2376      }
2377    }
2378
2379    // Try to fold constant and into select arguments.
2380    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2381      if (Instruction *R = FoldOpIntoSelect(I, SI))
2382        return R;
2383    if (isa<PHINode>(Op0))
2384      if (Instruction *NV = FoldOpIntoPhi(I))
2385        return NV;
2386  }
2387
2388  BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
2389  if (Op1I) {
2390    Value *A, *B;
2391    if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
2392      if (A == Op0) {              // B^(B|A) == (A|B)^B
2393        Op1I->swapOperands();
2394        I.swapOperands();
2395        std::swap(Op0, Op1);
2396      } else if (B == Op0) {       // B^(A|B) == (A|B)^B
2397        I.swapOperands();     // Simplified below.
2398        std::swap(Op0, Op1);
2399      }
2400    } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
2401               Op1I->hasOneUse()){
2402      if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
2403        Op1I->swapOperands();
2404        std::swap(A, B);
2405      }
2406      if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
2407        I.swapOperands();     // Simplified below.
2408        std::swap(Op0, Op1);
2409      }
2410    }
2411  }
2412
2413  BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
2414  if (Op0I) {
2415    Value *A, *B;
2416    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2417        Op0I->hasOneUse()) {
2418      if (A == Op1)                                  // (B|A)^B == (A|B)^B
2419        std::swap(A, B);
2420      if (B == Op1)                                  // (A|B)^B == A & ~B
2421        return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
2422    } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2423               Op0I->hasOneUse()){
2424      if (A == Op1)                                        // (A&B)^A -> (B&A)^A
2425        std::swap(A, B);
2426      if (B == Op1 &&                                      // (B&A)^A == ~B & A
2427          !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
2428        return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
2429      }
2430    }
2431  }
2432
2433  // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
2434  if (Op0I && Op1I && Op0I->isShift() &&
2435      Op0I->getOpcode() == Op1I->getOpcode() &&
2436      Op0I->getOperand(1) == Op1I->getOperand(1) &&
2437      (Op0I->hasOneUse() || Op1I->hasOneUse())) {
2438    Value *NewOp =
2439      Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
2440                         Op0I->getName());
2441    return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
2442                                  Op1I->getOperand(1));
2443  }
2444
2445  if (Op0I && Op1I) {
2446    Value *A, *B, *C, *D;
2447    // (A & B)^(A | B) -> A ^ B
2448    if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2449        match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
2450      if ((A == C && B == D) || (A == D && B == C))
2451        return BinaryOperator::CreateXor(A, B);
2452    }
2453    // (A | B)^(A & B) -> A ^ B
2454    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2455        match(Op1I, m_And(m_Value(C), m_Value(D)))) {
2456      if ((A == C && B == D) || (A == D && B == C))
2457        return BinaryOperator::CreateXor(A, B);
2458    }
2459  }
2460
2461  // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2462  if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
2463    if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
2464      if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2465        if (LHS->getOperand(0) == RHS->getOperand(1) &&
2466            LHS->getOperand(1) == RHS->getOperand(0))
2467          LHS->swapOperands();
2468        if (LHS->getOperand(0) == RHS->getOperand(0) &&
2469            LHS->getOperand(1) == RHS->getOperand(1)) {
2470          Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2471          unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2472          bool isSigned = LHS->isSigned() || RHS->isSigned();
2473          return ReplaceInstUsesWith(I,
2474                               getNewICmpValue(isSigned, Code, Op0, Op1,
2475                                               Builder));
2476        }
2477      }
2478
2479  // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
2480  if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2481    if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
2482      if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
2483        Type *SrcTy = Op0C->getOperand(0)->getType();
2484        if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
2485            // Only do this if the casts both really cause code to be generated.
2486            ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
2487                               I.getType()) &&
2488            ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
2489                               I.getType())) {
2490          Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
2491                                            Op1C->getOperand(0), I.getName());
2492          return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2493        }
2494      }
2495  }
2496
2497  return Changed ? &I : 0;
2498}
2499