InstCombineAndOrXor.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===- InstCombineAndOrXor.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitAnd, visitOr, and visitXor functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/InstructionSimplify.h"
16#include "llvm/IR/ConstantRange.h"
17#include "llvm/IR/Intrinsics.h"
18#include "llvm/IR/PatternMatch.h"
19#include "llvm/Transforms/Utils/CmpInstAnalysis.h"
20using namespace llvm;
21using namespace PatternMatch;
22
23#define DEBUG_TYPE "instcombine"
24
25/// isFreeToInvert - Return true if the specified value is free to invert (apply
26/// ~ to).  This happens in cases where the ~ can be eliminated.
27static inline bool isFreeToInvert(Value *V) {
28  // ~(~(X)) -> X.
29  if (BinaryOperator::isNot(V))
30    return true;
31
32  // Constants can be considered to be not'ed values.
33  if (isa<ConstantInt>(V))
34    return true;
35
36  // Compares can be inverted if they have a single use.
37  if (CmpInst *CI = dyn_cast<CmpInst>(V))
38    return CI->hasOneUse();
39
40  return false;
41}
42
43static inline Value *dyn_castNotVal(Value *V) {
44  // If this is not(not(x)) don't return that this is a not: we want the two
45  // not's to be folded first.
46  if (BinaryOperator::isNot(V)) {
47    Value *Operand = BinaryOperator::getNotArgument(V);
48    if (!isFreeToInvert(Operand))
49      return Operand;
50  }
51
52  // Constants can be considered to be not'ed values...
53  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
54    return ConstantInt::get(C->getType(), ~C->getValue());
55  return nullptr;
56}
57
58/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
59/// predicate into a three bit mask. It also returns whether it is an ordered
60/// predicate by reference.
61static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
62  isOrdered = false;
63  switch (CC) {
64  case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
65  case FCmpInst::FCMP_UNO:                   return 0;  // 000
66  case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
67  case FCmpInst::FCMP_UGT:                   return 1;  // 001
68  case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
69  case FCmpInst::FCMP_UEQ:                   return 2;  // 010
70  case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
71  case FCmpInst::FCMP_UGE:                   return 3;  // 011
72  case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
73  case FCmpInst::FCMP_ULT:                   return 4;  // 100
74  case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
75  case FCmpInst::FCMP_UNE:                   return 5;  // 101
76  case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
77  case FCmpInst::FCMP_ULE:                   return 6;  // 110
78    // True -> 7
79  default:
80    // Not expecting FCMP_FALSE and FCMP_TRUE;
81    llvm_unreachable("Unexpected FCmp predicate!");
82  }
83}
84
85/// getNewICmpValue - This is the complement of getICmpCode, which turns an
86/// opcode and two operands into either a constant true or false, or a brand
87/// new ICmp instruction. The sign is passed in to determine which kind
88/// of predicate to use in the new icmp instruction.
89static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
90                              InstCombiner::BuilderTy *Builder) {
91  ICmpInst::Predicate NewPred;
92  if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
93    return NewConstant;
94  return Builder->CreateICmp(NewPred, LHS, RHS);
95}
96
97/// getFCmpValue - This is the complement of getFCmpCode, which turns an
98/// opcode and two operands into either a FCmp instruction. isordered is passed
99/// in to determine which kind of predicate to use in the new fcmp instruction.
100static Value *getFCmpValue(bool isordered, unsigned code,
101                           Value *LHS, Value *RHS,
102                           InstCombiner::BuilderTy *Builder) {
103  CmpInst::Predicate Pred;
104  switch (code) {
105  default: llvm_unreachable("Illegal FCmp code!");
106  case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
107  case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
108  case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
109  case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
110  case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
111  case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
112  case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
113  case 7:
114    if (!isordered) return ConstantInt::getTrue(LHS->getContext());
115    Pred = FCmpInst::FCMP_ORD; break;
116  }
117  return Builder->CreateFCmp(Pred, LHS, RHS);
118}
119
120// OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
121// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
122// guaranteed to be a binary operator.
123Instruction *InstCombiner::OptAndOp(Instruction *Op,
124                                    ConstantInt *OpRHS,
125                                    ConstantInt *AndRHS,
126                                    BinaryOperator &TheAnd) {
127  Value *X = Op->getOperand(0);
128  Constant *Together = nullptr;
129  if (!Op->isShift())
130    Together = ConstantExpr::getAnd(AndRHS, OpRHS);
131
132  switch (Op->getOpcode()) {
133  case Instruction::Xor:
134    if (Op->hasOneUse()) {
135      // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
136      Value *And = Builder->CreateAnd(X, AndRHS);
137      And->takeName(Op);
138      return BinaryOperator::CreateXor(And, Together);
139    }
140    break;
141  case Instruction::Or:
142    if (Op->hasOneUse()){
143      if (Together != OpRHS) {
144        // (X | C1) & C2 --> (X | (C1&C2)) & C2
145        Value *Or = Builder->CreateOr(X, Together);
146        Or->takeName(Op);
147        return BinaryOperator::CreateAnd(Or, AndRHS);
148      }
149
150      ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
151      if (TogetherCI && !TogetherCI->isZero()){
152        // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
153        // NOTE: This reduces the number of bits set in the & mask, which
154        // can expose opportunities for store narrowing.
155        Together = ConstantExpr::getXor(AndRHS, Together);
156        Value *And = Builder->CreateAnd(X, Together);
157        And->takeName(Op);
158        return BinaryOperator::CreateOr(And, OpRHS);
159      }
160    }
161
162    break;
163  case Instruction::Add:
164    if (Op->hasOneUse()) {
165      // Adding a one to a single bit bit-field should be turned into an XOR
166      // of the bit.  First thing to check is to see if this AND is with a
167      // single bit constant.
168      const APInt &AndRHSV = AndRHS->getValue();
169
170      // If there is only one bit set.
171      if (AndRHSV.isPowerOf2()) {
172        // Ok, at this point, we know that we are masking the result of the
173        // ADD down to exactly one bit.  If the constant we are adding has
174        // no bits set below this bit, then we can eliminate the ADD.
175        const APInt& AddRHS = OpRHS->getValue();
176
177        // Check to see if any bits below the one bit set in AndRHSV are set.
178        if ((AddRHS & (AndRHSV-1)) == 0) {
179          // If not, the only thing that can effect the output of the AND is
180          // the bit specified by AndRHSV.  If that bit is set, the effect of
181          // the XOR is to toggle the bit.  If it is clear, then the ADD has
182          // no effect.
183          if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
184            TheAnd.setOperand(0, X);
185            return &TheAnd;
186          } else {
187            // Pull the XOR out of the AND.
188            Value *NewAnd = Builder->CreateAnd(X, AndRHS);
189            NewAnd->takeName(Op);
190            return BinaryOperator::CreateXor(NewAnd, AndRHS);
191          }
192        }
193      }
194    }
195    break;
196
197  case Instruction::Shl: {
198    // We know that the AND will not produce any of the bits shifted in, so if
199    // the anded constant includes them, clear them now!
200    //
201    uint32_t BitWidth = AndRHS->getType()->getBitWidth();
202    uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
203    APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
204    ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShlMask);
205
206    if (CI->getValue() == ShlMask)
207      // Masking out bits that the shift already masks.
208      return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
209
210    if (CI != AndRHS) {                  // Reducing bits set in and.
211      TheAnd.setOperand(1, CI);
212      return &TheAnd;
213    }
214    break;
215  }
216  case Instruction::LShr: {
217    // We know that the AND will not produce any of the bits shifted in, so if
218    // the anded constant includes them, clear them now!  This only applies to
219    // unsigned shifts, because a signed shr may bring in set bits!
220    //
221    uint32_t BitWidth = AndRHS->getType()->getBitWidth();
222    uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
223    APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
224    ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShrMask);
225
226    if (CI->getValue() == ShrMask)
227      // Masking out bits that the shift already masks.
228      return ReplaceInstUsesWith(TheAnd, Op);
229
230    if (CI != AndRHS) {
231      TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
232      return &TheAnd;
233    }
234    break;
235  }
236  case Instruction::AShr:
237    // Signed shr.
238    // See if this is shifting in some sign extension, then masking it out
239    // with an and.
240    if (Op->hasOneUse()) {
241      uint32_t BitWidth = AndRHS->getType()->getBitWidth();
242      uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
243      APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
244      Constant *C = Builder->getInt(AndRHS->getValue() & ShrMask);
245      if (C == AndRHS) {          // Masking out bits shifted in.
246        // (Val ashr C1) & C2 -> (Val lshr C1) & C2
247        // Make the argument unsigned.
248        Value *ShVal = Op->getOperand(0);
249        ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
250        return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
251      }
252    }
253    break;
254  }
255  return nullptr;
256}
257
258/// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
259/// (V < Lo || V >= Hi).  In practice, we emit the more efficient
260/// (V-Lo) \<u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
261/// whether to treat the V, Lo and HI as signed or not. IB is the location to
262/// insert new instructions.
263Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
264                                     bool isSigned, bool Inside) {
265  assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
266            ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
267         "Lo is not <= Hi in range emission code!");
268
269  if (Inside) {
270    if (Lo == Hi)  // Trivially false.
271      return Builder->getFalse();
272
273    // V >= Min && V < Hi --> V < Hi
274    if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
275      ICmpInst::Predicate pred = (isSigned ?
276        ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
277      return Builder->CreateICmp(pred, V, Hi);
278    }
279
280    // Emit V-Lo <u Hi-Lo
281    Constant *NegLo = ConstantExpr::getNeg(Lo);
282    Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
283    Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
284    return Builder->CreateICmpULT(Add, UpperBound);
285  }
286
287  if (Lo == Hi)  // Trivially true.
288    return Builder->getTrue();
289
290  // V < Min || V >= Hi -> V > Hi-1
291  Hi = SubOne(cast<ConstantInt>(Hi));
292  if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
293    ICmpInst::Predicate pred = (isSigned ?
294        ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
295    return Builder->CreateICmp(pred, V, Hi);
296  }
297
298  // Emit V-Lo >u Hi-1-Lo
299  // Note that Hi has already had one subtracted from it, above.
300  ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
301  Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
302  Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
303  return Builder->CreateICmpUGT(Add, LowerBound);
304}
305
306// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
307// any number of 0s on either side.  The 1s are allowed to wrap from LSB to
308// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
309// not, since all 1s are not contiguous.
310static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
311  const APInt& V = Val->getValue();
312  uint32_t BitWidth = Val->getType()->getBitWidth();
313  if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
314
315  // look for the first zero bit after the run of ones
316  MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
317  // look for the first non-zero bit
318  ME = V.getActiveBits();
319  return true;
320}
321
322/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
323/// where isSub determines whether the operator is a sub.  If we can fold one of
324/// the following xforms:
325///
326/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
327/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
328/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
329///
330/// return (A +/- B).
331///
332Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
333                                        ConstantInt *Mask, bool isSub,
334                                        Instruction &I) {
335  Instruction *LHSI = dyn_cast<Instruction>(LHS);
336  if (!LHSI || LHSI->getNumOperands() != 2 ||
337      !isa<ConstantInt>(LHSI->getOperand(1))) return nullptr;
338
339  ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
340
341  switch (LHSI->getOpcode()) {
342  default: return nullptr;
343  case Instruction::And:
344    if (ConstantExpr::getAnd(N, Mask) == Mask) {
345      // If the AndRHS is a power of two minus one (0+1+), this is simple.
346      if ((Mask->getValue().countLeadingZeros() +
347           Mask->getValue().countPopulation()) ==
348          Mask->getValue().getBitWidth())
349        break;
350
351      // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
352      // part, we don't need any explicit masks to take them out of A.  If that
353      // is all N is, ignore it.
354      uint32_t MB = 0, ME = 0;
355      if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
356        uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
357        APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
358        if (MaskedValueIsZero(RHS, Mask))
359          break;
360      }
361    }
362    return nullptr;
363  case Instruction::Or:
364  case Instruction::Xor:
365    // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
366    if ((Mask->getValue().countLeadingZeros() +
367         Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
368        && ConstantExpr::getAnd(N, Mask)->isNullValue())
369      break;
370    return nullptr;
371  }
372
373  if (isSub)
374    return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
375  return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
376}
377
378/// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
379/// One of A and B is considered the mask, the other the value. This is
380/// described as the "AMask" or "BMask" part of the enum. If the enum
381/// contains only "Mask", then both A and B can be considered masks.
382/// If A is the mask, then it was proven, that (A & C) == C. This
383/// is trivial if C == A, or C == 0. If both A and C are constants, this
384/// proof is also easy.
385/// For the following explanations we assume that A is the mask.
386/// The part "AllOnes" declares, that the comparison is true only
387/// if (A & B) == A, or all bits of A are set in B.
388///   Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
389/// The part "AllZeroes" declares, that the comparison is true only
390/// if (A & B) == 0, or all bits of A are cleared in B.
391///   Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
392/// The part "Mixed" declares, that (A & B) == C and C might or might not
393/// contain any number of one bits and zero bits.
394///   Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
395/// The Part "Not" means, that in above descriptions "==" should be replaced
396/// by "!=".
397///   Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
398/// If the mask A contains a single bit, then the following is equivalent:
399///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
400///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
401enum MaskedICmpType {
402  FoldMskICmp_AMask_AllOnes           =     1,
403  FoldMskICmp_AMask_NotAllOnes        =     2,
404  FoldMskICmp_BMask_AllOnes           =     4,
405  FoldMskICmp_BMask_NotAllOnes        =     8,
406  FoldMskICmp_Mask_AllZeroes          =    16,
407  FoldMskICmp_Mask_NotAllZeroes       =    32,
408  FoldMskICmp_AMask_Mixed             =    64,
409  FoldMskICmp_AMask_NotMixed          =   128,
410  FoldMskICmp_BMask_Mixed             =   256,
411  FoldMskICmp_BMask_NotMixed          =   512
412};
413
414/// return the set of pattern classes (from MaskedICmpType)
415/// that (icmp SCC (A & B), C) satisfies
416static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
417                                    ICmpInst::Predicate SCC)
418{
419  ConstantInt *ACst = dyn_cast<ConstantInt>(A);
420  ConstantInt *BCst = dyn_cast<ConstantInt>(B);
421  ConstantInt *CCst = dyn_cast<ConstantInt>(C);
422  bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
423  bool icmp_abit = (ACst && !ACst->isZero() &&
424                    ACst->getValue().isPowerOf2());
425  bool icmp_bbit = (BCst && !BCst->isZero() &&
426                    BCst->getValue().isPowerOf2());
427  unsigned result = 0;
428  if (CCst && CCst->isZero()) {
429    // if C is zero, then both A and B qualify as mask
430    result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
431                          FoldMskICmp_Mask_AllZeroes |
432                          FoldMskICmp_AMask_Mixed |
433                          FoldMskICmp_BMask_Mixed)
434                       : (FoldMskICmp_Mask_NotAllZeroes |
435                          FoldMskICmp_Mask_NotAllZeroes |
436                          FoldMskICmp_AMask_NotMixed |
437                          FoldMskICmp_BMask_NotMixed));
438    if (icmp_abit)
439      result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
440                            FoldMskICmp_AMask_NotMixed)
441                         : (FoldMskICmp_AMask_AllOnes |
442                            FoldMskICmp_AMask_Mixed));
443    if (icmp_bbit)
444      result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
445                            FoldMskICmp_BMask_NotMixed)
446                         : (FoldMskICmp_BMask_AllOnes |
447                            FoldMskICmp_BMask_Mixed));
448    return result;
449  }
450  if (A == C) {
451    result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
452                          FoldMskICmp_AMask_Mixed)
453                       : (FoldMskICmp_AMask_NotAllOnes |
454                          FoldMskICmp_AMask_NotMixed));
455    if (icmp_abit)
456      result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
457                            FoldMskICmp_AMask_NotMixed)
458                         : (FoldMskICmp_Mask_AllZeroes |
459                            FoldMskICmp_AMask_Mixed));
460  } else if (ACst && CCst &&
461             ConstantExpr::getAnd(ACst, CCst) == CCst) {
462    result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
463                       : FoldMskICmp_AMask_NotMixed);
464  }
465  if (B == C) {
466    result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
467                          FoldMskICmp_BMask_Mixed)
468                       : (FoldMskICmp_BMask_NotAllOnes |
469                          FoldMskICmp_BMask_NotMixed));
470    if (icmp_bbit)
471      result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
472                            FoldMskICmp_BMask_NotMixed)
473                         : (FoldMskICmp_Mask_AllZeroes |
474                            FoldMskICmp_BMask_Mixed));
475  } else if (BCst && CCst &&
476             ConstantExpr::getAnd(BCst, CCst) == CCst) {
477    result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
478                       : FoldMskICmp_BMask_NotMixed);
479  }
480  return result;
481}
482
483/// Convert an analysis of a masked ICmp into its equivalent if all boolean
484/// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
485/// is adjacent to the corresponding normal flag (recording ==), this just
486/// involves swapping those bits over.
487static unsigned conjugateICmpMask(unsigned Mask) {
488  unsigned NewMask;
489  NewMask = (Mask & (FoldMskICmp_AMask_AllOnes | FoldMskICmp_BMask_AllOnes |
490                     FoldMskICmp_Mask_AllZeroes | FoldMskICmp_AMask_Mixed |
491                     FoldMskICmp_BMask_Mixed))
492            << 1;
493
494  NewMask |=
495      (Mask & (FoldMskICmp_AMask_NotAllOnes | FoldMskICmp_BMask_NotAllOnes |
496               FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_AMask_NotMixed |
497               FoldMskICmp_BMask_NotMixed))
498      >> 1;
499
500  return NewMask;
501}
502
503/// decomposeBitTestICmp - Decompose an icmp into the form ((X & Y) pred Z)
504/// if possible. The returned predicate is either == or !=. Returns false if
505/// decomposition fails.
506static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
507                                 Value *&X, Value *&Y, Value *&Z) {
508  ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1));
509  if (!C)
510    return false;
511
512  switch (I->getPredicate()) {
513  default:
514    return false;
515  case ICmpInst::ICMP_SLT:
516    // X < 0 is equivalent to (X & SignBit) != 0.
517    if (!C->isZero())
518      return false;
519    Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
520    Pred = ICmpInst::ICMP_NE;
521    break;
522  case ICmpInst::ICMP_SGT:
523    // X > -1 is equivalent to (X & SignBit) == 0.
524    if (!C->isAllOnesValue())
525      return false;
526    Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
527    Pred = ICmpInst::ICMP_EQ;
528    break;
529  case ICmpInst::ICMP_ULT:
530    // X <u 2^n is equivalent to (X & ~(2^n-1)) == 0.
531    if (!C->getValue().isPowerOf2())
532      return false;
533    Y = ConstantInt::get(I->getContext(), -C->getValue());
534    Pred = ICmpInst::ICMP_EQ;
535    break;
536  case ICmpInst::ICMP_UGT:
537    // X >u 2^n-1 is equivalent to (X & ~(2^n-1)) != 0.
538    if (!(C->getValue() + 1).isPowerOf2())
539      return false;
540    Y = ConstantInt::get(I->getContext(), ~C->getValue());
541    Pred = ICmpInst::ICMP_NE;
542    break;
543  }
544
545  X = I->getOperand(0);
546  Z = ConstantInt::getNullValue(C->getType());
547  return true;
548}
549
550/// foldLogOpOfMaskedICmpsHelper:
551/// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
552/// return the set of pattern classes (from MaskedICmpType)
553/// that both LHS and RHS satisfy
554static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
555                                             Value*& B, Value*& C,
556                                             Value*& D, Value*& E,
557                                             ICmpInst *LHS, ICmpInst *RHS,
558                                             ICmpInst::Predicate &LHSCC,
559                                             ICmpInst::Predicate &RHSCC) {
560  if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
561  // vectors are not (yet?) supported
562  if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
563
564  // Here comes the tricky part:
565  // LHS might be of the form L11 & L12 == X, X == L21 & L22,
566  // and L11 & L12 == L21 & L22. The same goes for RHS.
567  // Now we must find those components L** and R**, that are equal, so
568  // that we can extract the parameters A, B, C, D, and E for the canonical
569  // above.
570  Value *L1 = LHS->getOperand(0);
571  Value *L2 = LHS->getOperand(1);
572  Value *L11,*L12,*L21,*L22;
573  // Check whether the icmp can be decomposed into a bit test.
574  if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) {
575    L21 = L22 = L1 = nullptr;
576  } else {
577    // Look for ANDs in the LHS icmp.
578    if (!L1->getType()->isIntegerTy()) {
579      // You can icmp pointers, for example. They really aren't masks.
580      L11 = L12 = nullptr;
581    } else if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
582      // Any icmp can be viewed as being trivially masked; if it allows us to
583      // remove one, it's worth it.
584      L11 = L1;
585      L12 = Constant::getAllOnesValue(L1->getType());
586    }
587
588    if (!L2->getType()->isIntegerTy()) {
589      // You can icmp pointers, for example. They really aren't masks.
590      L21 = L22 = nullptr;
591    } else if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
592      L21 = L2;
593      L22 = Constant::getAllOnesValue(L2->getType());
594    }
595  }
596
597  // Bail if LHS was a icmp that can't be decomposed into an equality.
598  if (!ICmpInst::isEquality(LHSCC))
599    return 0;
600
601  Value *R1 = RHS->getOperand(0);
602  Value *R2 = RHS->getOperand(1);
603  Value *R11,*R12;
604  bool ok = false;
605  if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) {
606    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
607      A = R11; D = R12;
608    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
609      A = R12; D = R11;
610    } else {
611      return 0;
612    }
613    E = R2; R1 = nullptr; ok = true;
614  } else if (R1->getType()->isIntegerTy()) {
615    if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
616      // As before, model no mask as a trivial mask if it'll let us do an
617      // optimisation.
618      R11 = R1;
619      R12 = Constant::getAllOnesValue(R1->getType());
620    }
621
622    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
623      A = R11; D = R12; E = R2; ok = true;
624    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
625      A = R12; D = R11; E = R2; ok = true;
626    }
627  }
628
629  // Bail if RHS was a icmp that can't be decomposed into an equality.
630  if (!ICmpInst::isEquality(RHSCC))
631    return 0;
632
633  // Look for ANDs in on the right side of the RHS icmp.
634  if (!ok && R2->getType()->isIntegerTy()) {
635    if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
636      R11 = R2;
637      R12 = Constant::getAllOnesValue(R2->getType());
638    }
639
640    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
641      A = R11; D = R12; E = R1; ok = true;
642    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
643      A = R12; D = R11; E = R1; ok = true;
644    } else {
645      return 0;
646    }
647  }
648  if (!ok)
649    return 0;
650
651  if (L11 == A) {
652    B = L12; C = L2;
653  } else if (L12 == A) {
654    B = L11; C = L2;
655  } else if (L21 == A) {
656    B = L22; C = L1;
657  } else if (L22 == A) {
658    B = L21; C = L1;
659  }
660
661  unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
662  unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
663  return left_type & right_type;
664}
665/// foldLogOpOfMaskedICmps:
666/// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
667/// into a single (icmp(A & X) ==/!= Y)
668static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
669                                     llvm::InstCombiner::BuilderTy* Builder) {
670  Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
671  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
672  unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
673                                               LHSCC, RHSCC);
674  if (mask == 0) return nullptr;
675  assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
676         "foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
677
678  // In full generality:
679  //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
680  // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
681  //
682  // If the latter can be converted into (icmp (A & X) Op Y) then the former is
683  // equivalent to (icmp (A & X) !Op Y).
684  //
685  // Therefore, we can pretend for the rest of this function that we're dealing
686  // with the conjunction, provided we flip the sense of any comparisons (both
687  // input and output).
688
689  // In most cases we're going to produce an EQ for the "&&" case.
690  ICmpInst::Predicate NEWCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
691  if (!IsAnd) {
692    // Convert the masking analysis into its equivalent with negated
693    // comparisons.
694    mask = conjugateICmpMask(mask);
695  }
696
697  if (mask & FoldMskICmp_Mask_AllZeroes) {
698    // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
699    // -> (icmp eq (A & (B|D)), 0)
700    Value* newOr = Builder->CreateOr(B, D);
701    Value* newAnd = Builder->CreateAnd(A, newOr);
702    // we can't use C as zero, because we might actually handle
703    //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
704    // with B and D, having a single bit set
705    Value* zero = Constant::getNullValue(A->getType());
706    return Builder->CreateICmp(NEWCC, newAnd, zero);
707  }
708  if (mask & FoldMskICmp_BMask_AllOnes) {
709    // (icmp eq (A & B), B) & (icmp eq (A & D), D)
710    // -> (icmp eq (A & (B|D)), (B|D))
711    Value* newOr = Builder->CreateOr(B, D);
712    Value* newAnd = Builder->CreateAnd(A, newOr);
713    return Builder->CreateICmp(NEWCC, newAnd, newOr);
714  }
715  if (mask & FoldMskICmp_AMask_AllOnes) {
716    // (icmp eq (A & B), A) & (icmp eq (A & D), A)
717    // -> (icmp eq (A & (B&D)), A)
718    Value* newAnd1 = Builder->CreateAnd(B, D);
719    Value* newAnd = Builder->CreateAnd(A, newAnd1);
720    return Builder->CreateICmp(NEWCC, newAnd, A);
721  }
722
723  // Remaining cases assume at least that B and D are constant, and depend on
724  // their actual values. This isn't strictly, necessary, just a "handle the
725  // easy cases for now" decision.
726  ConstantInt *BCst = dyn_cast<ConstantInt>(B);
727  if (!BCst) return nullptr;
728  ConstantInt *DCst = dyn_cast<ConstantInt>(D);
729  if (!DCst) return nullptr;
730
731  if (mask & (FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_BMask_NotAllOnes)) {
732    // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
733    // (icmp ne (A & B), B) & (icmp ne (A & D), D)
734    //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
735    // Only valid if one of the masks is a superset of the other (check "B&D" is
736    // the same as either B or D).
737    APInt NewMask = BCst->getValue() & DCst->getValue();
738
739    if (NewMask == BCst->getValue())
740      return LHS;
741    else if (NewMask == DCst->getValue())
742      return RHS;
743  }
744  if (mask & FoldMskICmp_AMask_NotAllOnes) {
745    // (icmp ne (A & B), B) & (icmp ne (A & D), D)
746    //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
747    // Only valid if one of the masks is a superset of the other (check "B|D" is
748    // the same as either B or D).
749    APInt NewMask = BCst->getValue() | DCst->getValue();
750
751    if (NewMask == BCst->getValue())
752      return LHS;
753    else if (NewMask == DCst->getValue())
754      return RHS;
755  }
756  if (mask & FoldMskICmp_BMask_Mixed) {
757    // (icmp eq (A & B), C) & (icmp eq (A & D), E)
758    // We already know that B & C == C && D & E == E.
759    // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
760    // C and E, which are shared by both the mask B and the mask D, don't
761    // contradict, then we can transform to
762    // -> (icmp eq (A & (B|D)), (C|E))
763    // Currently, we only handle the case of B, C, D, and E being constant.
764    // we can't simply use C and E, because we might actually handle
765    //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
766    // with B and D, having a single bit set
767    ConstantInt *CCst = dyn_cast<ConstantInt>(C);
768    if (!CCst) return nullptr;
769    if (LHSCC != NEWCC)
770      CCst = dyn_cast<ConstantInt>( ConstantExpr::getXor(BCst, CCst) );
771    ConstantInt *ECst = dyn_cast<ConstantInt>(E);
772    if (!ECst) return nullptr;
773    if (RHSCC != NEWCC)
774      ECst = dyn_cast<ConstantInt>( ConstantExpr::getXor(DCst, ECst) );
775    ConstantInt* MCst = dyn_cast<ConstantInt>(
776      ConstantExpr::getAnd(ConstantExpr::getAnd(BCst, DCst),
777                           ConstantExpr::getXor(CCst, ECst)) );
778    // if there is a conflict we should actually return a false for the
779    // whole construct
780    if (!MCst->isZero())
781      return nullptr;
782    Value *newOr1 = Builder->CreateOr(B, D);
783    Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
784    Value *newAnd = Builder->CreateAnd(A, newOr1);
785    return Builder->CreateICmp(NEWCC, newAnd, newOr2);
786  }
787  return nullptr;
788}
789
790/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
791Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
792  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
793
794  // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
795  if (PredicatesFoldable(LHSCC, RHSCC)) {
796    if (LHS->getOperand(0) == RHS->getOperand(1) &&
797        LHS->getOperand(1) == RHS->getOperand(0))
798      LHS->swapOperands();
799    if (LHS->getOperand(0) == RHS->getOperand(0) &&
800        LHS->getOperand(1) == RHS->getOperand(1)) {
801      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
802      unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
803      bool isSigned = LHS->isSigned() || RHS->isSigned();
804      return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
805    }
806  }
807
808  // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
809  if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
810    return V;
811
812  // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
813  Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
814  ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
815  ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
816  if (!LHSCst || !RHSCst) return nullptr;
817
818  if (LHSCst == RHSCst && LHSCC == RHSCC) {
819    // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
820    // where C is a power of 2
821    if (LHSCC == ICmpInst::ICMP_ULT &&
822        LHSCst->getValue().isPowerOf2()) {
823      Value *NewOr = Builder->CreateOr(Val, Val2);
824      return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
825    }
826
827    // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
828    if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
829      Value *NewOr = Builder->CreateOr(Val, Val2);
830      return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
831    }
832  }
833
834  // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
835  // where CMAX is the all ones value for the truncated type,
836  // iff the lower bits of C2 and CA are zero.
837  if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC &&
838      LHS->hasOneUse() && RHS->hasOneUse()) {
839    Value *V;
840    ConstantInt *AndCst, *SmallCst = nullptr, *BigCst = nullptr;
841
842    // (trunc x) == C1 & (and x, CA) == C2
843    // (and x, CA) == C2 & (trunc x) == C1
844    if (match(Val2, m_Trunc(m_Value(V))) &&
845        match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
846      SmallCst = RHSCst;
847      BigCst = LHSCst;
848    } else if (match(Val, m_Trunc(m_Value(V))) &&
849               match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
850      SmallCst = LHSCst;
851      BigCst = RHSCst;
852    }
853
854    if (SmallCst && BigCst) {
855      unsigned BigBitSize = BigCst->getType()->getBitWidth();
856      unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
857
858      // Check that the low bits are zero.
859      APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
860      if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
861        Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
862        APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
863        Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
864        return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
865      }
866    }
867  }
868
869  // From here on, we only handle:
870  //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
871  if (Val != Val2) return nullptr;
872
873  // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
874  if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
875      RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
876      LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
877      RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
878    return nullptr;
879
880  // Make a constant range that's the intersection of the two icmp ranges.
881  // If the intersection is empty, we know that the result is false.
882  ConstantRange LHSRange =
883    ConstantRange::makeICmpRegion(LHSCC, LHSCst->getValue());
884  ConstantRange RHSRange =
885    ConstantRange::makeICmpRegion(RHSCC, RHSCst->getValue());
886
887  if (LHSRange.intersectWith(RHSRange).isEmptySet())
888    return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
889
890  // We can't fold (ugt x, C) & (sgt x, C2).
891  if (!PredicatesFoldable(LHSCC, RHSCC))
892    return nullptr;
893
894  // Ensure that the larger constant is on the RHS.
895  bool ShouldSwap;
896  if (CmpInst::isSigned(LHSCC) ||
897      (ICmpInst::isEquality(LHSCC) &&
898       CmpInst::isSigned(RHSCC)))
899    ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
900  else
901    ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
902
903  if (ShouldSwap) {
904    std::swap(LHS, RHS);
905    std::swap(LHSCst, RHSCst);
906    std::swap(LHSCC, RHSCC);
907  }
908
909  // At this point, we know we have two icmp instructions
910  // comparing a value against two constants and and'ing the result
911  // together.  Because of the above check, we know that we only have
912  // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
913  // (from the icmp folding check above), that the two constants
914  // are not equal and that the larger constant is on the RHS
915  assert(LHSCst != RHSCst && "Compares not folded above?");
916
917  switch (LHSCC) {
918  default: llvm_unreachable("Unknown integer condition code!");
919  case ICmpInst::ICMP_EQ:
920    switch (RHSCC) {
921    default: llvm_unreachable("Unknown integer condition code!");
922    case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
923    case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
924    case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
925      return LHS;
926    }
927  case ICmpInst::ICMP_NE:
928    switch (RHSCC) {
929    default: llvm_unreachable("Unknown integer condition code!");
930    case ICmpInst::ICMP_ULT:
931      if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
932        return Builder->CreateICmpULT(Val, LHSCst);
933      break;                        // (X != 13 & X u< 15) -> no change
934    case ICmpInst::ICMP_SLT:
935      if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
936        return Builder->CreateICmpSLT(Val, LHSCst);
937      break;                        // (X != 13 & X s< 15) -> no change
938    case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
939    case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
940    case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
941      return RHS;
942    case ICmpInst::ICMP_NE:
943      // Special case to get the ordering right when the values wrap around
944      // zero.
945      if (LHSCst->getValue() == 0 && RHSCst->getValue().isAllOnesValue())
946        std::swap(LHSCst, RHSCst);
947      if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
948        Constant *AddCST = ConstantExpr::getNeg(LHSCst);
949        Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
950        return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1),
951                                      Val->getName()+".cmp");
952      }
953      break;                        // (X != 13 & X != 15) -> no change
954    }
955    break;
956  case ICmpInst::ICMP_ULT:
957    switch (RHSCC) {
958    default: llvm_unreachable("Unknown integer condition code!");
959    case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
960    case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
961      return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
962    case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
963      break;
964    case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
965    case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
966      return LHS;
967    case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
968      break;
969    }
970    break;
971  case ICmpInst::ICMP_SLT:
972    switch (RHSCC) {
973    default: llvm_unreachable("Unknown integer condition code!");
974    case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
975      break;
976    case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
977    case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
978      return LHS;
979    case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
980      break;
981    }
982    break;
983  case ICmpInst::ICMP_UGT:
984    switch (RHSCC) {
985    default: llvm_unreachable("Unknown integer condition code!");
986    case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
987    case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
988      return RHS;
989    case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
990      break;
991    case ICmpInst::ICMP_NE:
992      if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
993        return Builder->CreateICmp(LHSCC, Val, RHSCst);
994      break;                        // (X u> 13 & X != 15) -> no change
995    case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
996      return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
997    case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
998      break;
999    }
1000    break;
1001  case ICmpInst::ICMP_SGT:
1002    switch (RHSCC) {
1003    default: llvm_unreachable("Unknown integer condition code!");
1004    case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
1005    case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
1006      return RHS;
1007    case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
1008      break;
1009    case ICmpInst::ICMP_NE:
1010      if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
1011        return Builder->CreateICmp(LHSCC, Val, RHSCst);
1012      break;                        // (X s> 13 & X != 15) -> no change
1013    case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
1014      return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
1015    case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
1016      break;
1017    }
1018    break;
1019  }
1020
1021  return nullptr;
1022}
1023
1024/// FoldAndOfFCmps - Optimize (fcmp)&(fcmp).  NOTE: Unlike the rest of
1025/// instcombine, this returns a Value which should already be inserted into the
1026/// function.
1027Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
1028  if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
1029      RHS->getPredicate() == FCmpInst::FCMP_ORD) {
1030    if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType())
1031      return nullptr;
1032
1033    // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
1034    if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
1035      if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
1036        // If either of the constants are nans, then the whole thing returns
1037        // false.
1038        if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
1039          return Builder->getFalse();
1040        return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
1041      }
1042
1043    // Handle vector zeros.  This occurs because the canonical form of
1044    // "fcmp ord x,x" is "fcmp ord x, 0".
1045    if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
1046        isa<ConstantAggregateZero>(RHS->getOperand(1)))
1047      return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
1048    return nullptr;
1049  }
1050
1051  Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
1052  Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
1053  FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
1054
1055
1056  if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
1057    // Swap RHS operands to match LHS.
1058    Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
1059    std::swap(Op1LHS, Op1RHS);
1060  }
1061
1062  if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
1063    // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1064    if (Op0CC == Op1CC)
1065      return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
1066    if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
1067      return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1068    if (Op0CC == FCmpInst::FCMP_TRUE)
1069      return RHS;
1070    if (Op1CC == FCmpInst::FCMP_TRUE)
1071      return LHS;
1072
1073    bool Op0Ordered;
1074    bool Op1Ordered;
1075    unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
1076    unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
1077    // uno && ord -> false
1078    if (Op0Pred == 0 && Op1Pred == 0 && Op0Ordered != Op1Ordered)
1079        return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1080    if (Op1Pred == 0) {
1081      std::swap(LHS, RHS);
1082      std::swap(Op0Pred, Op1Pred);
1083      std::swap(Op0Ordered, Op1Ordered);
1084    }
1085    if (Op0Pred == 0) {
1086      // uno && ueq -> uno && (uno || eq) -> uno
1087      // ord && olt -> ord && (ord && lt) -> olt
1088      if (!Op0Ordered && (Op0Ordered == Op1Ordered))
1089        return LHS;
1090      if (Op0Ordered && (Op0Ordered == Op1Ordered))
1091        return RHS;
1092
1093      // uno && oeq -> uno && (ord && eq) -> false
1094      if (!Op0Ordered)
1095        return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1096      // ord && ueq -> ord && (uno || eq) -> oeq
1097      return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
1098    }
1099  }
1100
1101  return nullptr;
1102}
1103
1104
1105Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
1106  bool Changed = SimplifyAssociativeOrCommutative(I);
1107  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1108
1109  if (Value *V = SimplifyVectorOp(I))
1110    return ReplaceInstUsesWith(I, V);
1111
1112  if (Value *V = SimplifyAndInst(Op0, Op1, DL))
1113    return ReplaceInstUsesWith(I, V);
1114
1115  // (A|B)&(A|C) -> A|(B&C) etc
1116  if (Value *V = SimplifyUsingDistributiveLaws(I))
1117    return ReplaceInstUsesWith(I, V);
1118
1119  // See if we can simplify any instructions used by the instruction whose sole
1120  // purpose is to compute bits we don't care about.
1121  if (SimplifyDemandedInstructionBits(I))
1122    return &I;
1123
1124  if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
1125    const APInt &AndRHSMask = AndRHS->getValue();
1126
1127    // Optimize a variety of ((val OP C1) & C2) combinations...
1128    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1129      Value *Op0LHS = Op0I->getOperand(0);
1130      Value *Op0RHS = Op0I->getOperand(1);
1131      switch (Op0I->getOpcode()) {
1132      default: break;
1133      case Instruction::Xor:
1134      case Instruction::Or: {
1135        // If the mask is only needed on one incoming arm, push it up.
1136        if (!Op0I->hasOneUse()) break;
1137
1138        APInt NotAndRHS(~AndRHSMask);
1139        if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
1140          // Not masking anything out for the LHS, move to RHS.
1141          Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
1142                                             Op0RHS->getName()+".masked");
1143          return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
1144        }
1145        if (!isa<Constant>(Op0RHS) &&
1146            MaskedValueIsZero(Op0RHS, NotAndRHS)) {
1147          // Not masking anything out for the RHS, move to LHS.
1148          Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
1149                                             Op0LHS->getName()+".masked");
1150          return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
1151        }
1152
1153        break;
1154      }
1155      case Instruction::Add:
1156        // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
1157        // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1158        // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1159        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
1160          return BinaryOperator::CreateAnd(V, AndRHS);
1161        if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
1162          return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
1163        break;
1164
1165      case Instruction::Sub:
1166        // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
1167        // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1168        // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1169        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
1170          return BinaryOperator::CreateAnd(V, AndRHS);
1171
1172        // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
1173        // has 1's for all bits that the subtraction with A might affect.
1174        if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
1175          uint32_t BitWidth = AndRHSMask.getBitWidth();
1176          uint32_t Zeros = AndRHSMask.countLeadingZeros();
1177          APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
1178
1179          if (MaskedValueIsZero(Op0LHS, Mask)) {
1180            Value *NewNeg = Builder->CreateNeg(Op0RHS);
1181            return BinaryOperator::CreateAnd(NewNeg, AndRHS);
1182          }
1183        }
1184        break;
1185
1186      case Instruction::Shl:
1187      case Instruction::LShr:
1188        // (1 << x) & 1 --> zext(x == 0)
1189        // (1 >> x) & 1 --> zext(x == 0)
1190        if (AndRHSMask == 1 && Op0LHS == AndRHS) {
1191          Value *NewICmp =
1192            Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
1193          return new ZExtInst(NewICmp, I.getType());
1194        }
1195        break;
1196      }
1197
1198      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1199        if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
1200          return Res;
1201    }
1202
1203    // If this is an integer truncation, and if the source is an 'and' with
1204    // immediate, transform it.  This frequently occurs for bitfield accesses.
1205    {
1206      Value *X = nullptr; ConstantInt *YC = nullptr;
1207      if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
1208        // Change: and (trunc (and X, YC) to T), C2
1209        // into  : and (trunc X to T), trunc(YC) & C2
1210        // This will fold the two constants together, which may allow
1211        // other simplifications.
1212        Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
1213        Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
1214        C3 = ConstantExpr::getAnd(C3, AndRHS);
1215        return BinaryOperator::CreateAnd(NewCast, C3);
1216      }
1217    }
1218
1219    // Try to fold constant and into select arguments.
1220    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1221      if (Instruction *R = FoldOpIntoSelect(I, SI))
1222        return R;
1223    if (isa<PHINode>(Op0))
1224      if (Instruction *NV = FoldOpIntoPhi(I))
1225        return NV;
1226  }
1227
1228
1229  // (~A & ~B) == (~(A | B)) - De Morgan's Law
1230  if (Value *Op0NotVal = dyn_castNotVal(Op0))
1231    if (Value *Op1NotVal = dyn_castNotVal(Op1))
1232      if (Op0->hasOneUse() && Op1->hasOneUse()) {
1233        Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
1234                                      I.getName()+".demorgan");
1235        return BinaryOperator::CreateNot(Or);
1236      }
1237
1238  {
1239    Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
1240    // (A|B) & ~(A&B) -> A^B
1241    if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1242        match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1243        ((A == C && B == D) || (A == D && B == C)))
1244      return BinaryOperator::CreateXor(A, B);
1245
1246    // ~(A&B) & (A|B) -> A^B
1247    if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1248        match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1249        ((A == C && B == D) || (A == D && B == C)))
1250      return BinaryOperator::CreateXor(A, B);
1251
1252    // A&(A^B) => A & ~B
1253    {
1254      Value *tmpOp0 = Op0;
1255      Value *tmpOp1 = Op1;
1256      if (Op0->hasOneUse() &&
1257          match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
1258        if (A == Op1 || B == Op1 ) {
1259          tmpOp1 = Op0;
1260          tmpOp0 = Op1;
1261          // Simplify below
1262        }
1263      }
1264
1265      if (tmpOp1->hasOneUse() &&
1266          match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) {
1267        if (B == tmpOp0) {
1268          std::swap(A, B);
1269        }
1270        // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
1271        // A is originally -1 (or a vector of -1 and undefs), then we enter
1272        // an endless loop. By checking that A is non-constant we ensure that
1273        // we will never get to the loop.
1274        if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
1275          return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
1276      }
1277    }
1278
1279    // (A&((~A)|B)) -> A&B
1280    if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
1281        match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
1282      return BinaryOperator::CreateAnd(A, Op1);
1283    if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
1284        match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
1285      return BinaryOperator::CreateAnd(A, Op0);
1286  }
1287
1288  if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
1289    if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
1290      if (Value *Res = FoldAndOfICmps(LHS, RHS))
1291        return ReplaceInstUsesWith(I, Res);
1292
1293  // If and'ing two fcmp, try combine them into one.
1294  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1295    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
1296      if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1297        return ReplaceInstUsesWith(I, Res);
1298
1299
1300  // fold (and (cast A), (cast B)) -> (cast (and A, B))
1301  if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
1302    if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
1303      Type *SrcTy = Op0C->getOperand(0)->getType();
1304      if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
1305          SrcTy == Op1C->getOperand(0)->getType() &&
1306          SrcTy->isIntOrIntVectorTy()) {
1307        Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
1308
1309        // Only do this if the casts both really cause code to be generated.
1310        if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
1311            ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
1312          Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
1313          return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
1314        }
1315
1316        // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
1317        // cast is otherwise not optimizable.  This happens for vector sexts.
1318        if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
1319          if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
1320            if (Value *Res = FoldAndOfICmps(LHS, RHS))
1321              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
1322
1323        // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
1324        // cast is otherwise not optimizable.  This happens for vector sexts.
1325        if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
1326          if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
1327            if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1328              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
1329      }
1330    }
1331
1332  // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
1333  if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
1334    if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
1335      if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
1336          SI0->getOperand(1) == SI1->getOperand(1) &&
1337          (SI0->hasOneUse() || SI1->hasOneUse())) {
1338        Value *NewOp =
1339          Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
1340                             SI0->getName());
1341        return BinaryOperator::Create(SI1->getOpcode(), NewOp,
1342                                      SI1->getOperand(1));
1343      }
1344  }
1345
1346  {
1347    Value *X = nullptr;
1348    bool OpsSwapped = false;
1349    // Canonicalize SExt or Not to the LHS
1350    if (match(Op1, m_SExt(m_Value())) ||
1351        match(Op1, m_Not(m_Value()))) {
1352      std::swap(Op0, Op1);
1353      OpsSwapped = true;
1354    }
1355
1356    // Fold (and (sext bool to A), B) --> (select bool, B, 0)
1357    if (match(Op0, m_SExt(m_Value(X))) &&
1358        X->getType()->getScalarType()->isIntegerTy(1)) {
1359      Value *Zero = Constant::getNullValue(Op1->getType());
1360      return SelectInst::Create(X, Op1, Zero);
1361    }
1362
1363    // Fold (and ~(sext bool to A), B) --> (select bool, 0, B)
1364    if (match(Op0, m_Not(m_SExt(m_Value(X)))) &&
1365        X->getType()->getScalarType()->isIntegerTy(1)) {
1366      Value *Zero = Constant::getNullValue(Op0->getType());
1367      return SelectInst::Create(X, Zero, Op1);
1368    }
1369
1370    if (OpsSwapped)
1371      std::swap(Op0, Op1);
1372  }
1373
1374  return Changed ? &I : nullptr;
1375}
1376
1377/// CollectBSwapParts - Analyze the specified subexpression and see if it is
1378/// capable of providing pieces of a bswap.  The subexpression provides pieces
1379/// of a bswap if it is proven that each of the non-zero bytes in the output of
1380/// the expression came from the corresponding "byte swapped" byte in some other
1381/// value.  For example, if the current subexpression is "(shl i32 %X, 24)" then
1382/// we know that the expression deposits the low byte of %X into the high byte
1383/// of the bswap result and that all other bytes are zero.  This expression is
1384/// accepted, the high byte of ByteValues is set to X to indicate a correct
1385/// match.
1386///
1387/// This function returns true if the match was unsuccessful and false if so.
1388/// On entry to the function the "OverallLeftShift" is a signed integer value
1389/// indicating the number of bytes that the subexpression is later shifted.  For
1390/// example, if the expression is later right shifted by 16 bits, the
1391/// OverallLeftShift value would be -2 on entry.  This is used to specify which
1392/// byte of ByteValues is actually being set.
1393///
1394/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
1395/// byte is masked to zero by a user.  For example, in (X & 255), X will be
1396/// processed with a bytemask of 1.  Because bytemask is 32-bits, this limits
1397/// this function to working on up to 32-byte (256 bit) values.  ByteMask is
1398/// always in the local (OverallLeftShift) coordinate space.
1399///
1400static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
1401                              SmallVectorImpl<Value *> &ByteValues) {
1402  if (Instruction *I = dyn_cast<Instruction>(V)) {
1403    // If this is an or instruction, it may be an inner node of the bswap.
1404    if (I->getOpcode() == Instruction::Or) {
1405      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1406                               ByteValues) ||
1407             CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
1408                               ByteValues);
1409    }
1410
1411    // If this is a logical shift by a constant multiple of 8, recurse with
1412    // OverallLeftShift and ByteMask adjusted.
1413    if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1414      unsigned ShAmt =
1415        cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1416      // Ensure the shift amount is defined and of a byte value.
1417      if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
1418        return true;
1419
1420      unsigned ByteShift = ShAmt >> 3;
1421      if (I->getOpcode() == Instruction::Shl) {
1422        // X << 2 -> collect(X, +2)
1423        OverallLeftShift += ByteShift;
1424        ByteMask >>= ByteShift;
1425      } else {
1426        // X >>u 2 -> collect(X, -2)
1427        OverallLeftShift -= ByteShift;
1428        ByteMask <<= ByteShift;
1429        ByteMask &= (~0U >> (32-ByteValues.size()));
1430      }
1431
1432      if (OverallLeftShift >= (int)ByteValues.size()) return true;
1433      if (OverallLeftShift <= -(int)ByteValues.size()) return true;
1434
1435      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1436                               ByteValues);
1437    }
1438
1439    // If this is a logical 'and' with a mask that clears bytes, clear the
1440    // corresponding bytes in ByteMask.
1441    if (I->getOpcode() == Instruction::And &&
1442        isa<ConstantInt>(I->getOperand(1))) {
1443      // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
1444      unsigned NumBytes = ByteValues.size();
1445      APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
1446      const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
1447
1448      for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
1449        // If this byte is masked out by a later operation, we don't care what
1450        // the and mask is.
1451        if ((ByteMask & (1 << i)) == 0)
1452          continue;
1453
1454        // If the AndMask is all zeros for this byte, clear the bit.
1455        APInt MaskB = AndMask & Byte;
1456        if (MaskB == 0) {
1457          ByteMask &= ~(1U << i);
1458          continue;
1459        }
1460
1461        // If the AndMask is not all ones for this byte, it's not a bytezap.
1462        if (MaskB != Byte)
1463          return true;
1464
1465        // Otherwise, this byte is kept.
1466      }
1467
1468      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1469                               ByteValues);
1470    }
1471  }
1472
1473  // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
1474  // the input value to the bswap.  Some observations: 1) if more than one byte
1475  // is demanded from this input, then it could not be successfully assembled
1476  // into a byteswap.  At least one of the two bytes would not be aligned with
1477  // their ultimate destination.
1478  if (!isPowerOf2_32(ByteMask)) return true;
1479  unsigned InputByteNo = countTrailingZeros(ByteMask);
1480
1481  // 2) The input and ultimate destinations must line up: if byte 3 of an i32
1482  // is demanded, it needs to go into byte 0 of the result.  This means that the
1483  // byte needs to be shifted until it lands in the right byte bucket.  The
1484  // shift amount depends on the position: if the byte is coming from the high
1485  // part of the value (e.g. byte 3) then it must be shifted right.  If from the
1486  // low part, it must be shifted left.
1487  unsigned DestByteNo = InputByteNo + OverallLeftShift;
1488  if (ByteValues.size()-1-DestByteNo != InputByteNo)
1489    return true;
1490
1491  // If the destination byte value is already defined, the values are or'd
1492  // together, which isn't a bswap (unless it's an or of the same bits).
1493  if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
1494    return true;
1495  ByteValues[DestByteNo] = V;
1496  return false;
1497}
1498
1499/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
1500/// If so, insert the new bswap intrinsic and return it.
1501Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
1502  IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
1503  if (!ITy || ITy->getBitWidth() % 16 ||
1504      // ByteMask only allows up to 32-byte values.
1505      ITy->getBitWidth() > 32*8)
1506    return nullptr;   // Can only bswap pairs of bytes.  Can't do vectors.
1507
1508  /// ByteValues - For each byte of the result, we keep track of which value
1509  /// defines each byte.
1510  SmallVector<Value*, 8> ByteValues;
1511  ByteValues.resize(ITy->getBitWidth()/8);
1512
1513  // Try to find all the pieces corresponding to the bswap.
1514  uint32_t ByteMask = ~0U >> (32-ByteValues.size());
1515  if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
1516    return nullptr;
1517
1518  // Check to see if all of the bytes come from the same value.
1519  Value *V = ByteValues[0];
1520  if (!V) return nullptr;  // Didn't find a byte?  Must be zero.
1521
1522  // Check to make sure that all of the bytes come from the same value.
1523  for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
1524    if (ByteValues[i] != V)
1525      return nullptr;
1526  Module *M = I.getParent()->getParent()->getParent();
1527  Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
1528  return CallInst::Create(F, V);
1529}
1530
1531/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D).  Check
1532/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
1533/// we can simplify this expression to "cond ? C : D or B".
1534static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
1535                                         Value *C, Value *D) {
1536  // If A is not a select of -1/0, this cannot match.
1537  Value *Cond = nullptr;
1538  if (!match(A, m_SExt(m_Value(Cond))) ||
1539      !Cond->getType()->isIntegerTy(1))
1540    return nullptr;
1541
1542  // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
1543  if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
1544    return SelectInst::Create(Cond, C, B);
1545  if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
1546    return SelectInst::Create(Cond, C, B);
1547
1548  // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
1549  if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
1550    return SelectInst::Create(Cond, C, D);
1551  if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
1552    return SelectInst::Create(Cond, C, D);
1553  return nullptr;
1554}
1555
1556/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
1557Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
1558  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
1559
1560  // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
1561  // if K1 and K2 are a one-bit mask.
1562  ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
1563  ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
1564
1565  if (LHS->getPredicate() == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero() &&
1566      RHS->getPredicate() == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
1567
1568    BinaryOperator *LAnd = dyn_cast<BinaryOperator>(LHS->getOperand(0));
1569    BinaryOperator *RAnd = dyn_cast<BinaryOperator>(RHS->getOperand(0));
1570    if (LAnd && RAnd && LAnd->hasOneUse() && RHS->hasOneUse() &&
1571        LAnd->getOpcode() == Instruction::And &&
1572        RAnd->getOpcode() == Instruction::And) {
1573
1574      Value *Mask = nullptr;
1575      Value *Masked = nullptr;
1576      if (LAnd->getOperand(0) == RAnd->getOperand(0) &&
1577          isKnownToBeAPowerOfTwo(LAnd->getOperand(1)) &&
1578          isKnownToBeAPowerOfTwo(RAnd->getOperand(1))) {
1579        Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1));
1580        Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask);
1581      } else if (LAnd->getOperand(1) == RAnd->getOperand(1) &&
1582                 isKnownToBeAPowerOfTwo(LAnd->getOperand(0)) &&
1583                 isKnownToBeAPowerOfTwo(RAnd->getOperand(0))) {
1584        Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0));
1585        Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask);
1586      }
1587
1588      if (Masked)
1589        return Builder->CreateICmp(ICmpInst::ICMP_NE, Masked, Mask);
1590    }
1591  }
1592
1593  // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
1594  if (PredicatesFoldable(LHSCC, RHSCC)) {
1595    if (LHS->getOperand(0) == RHS->getOperand(1) &&
1596        LHS->getOperand(1) == RHS->getOperand(0))
1597      LHS->swapOperands();
1598    if (LHS->getOperand(0) == RHS->getOperand(0) &&
1599        LHS->getOperand(1) == RHS->getOperand(1)) {
1600      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1601      unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
1602      bool isSigned = LHS->isSigned() || RHS->isSigned();
1603      return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
1604    }
1605  }
1606
1607  // handle (roughly):
1608  // (icmp ne (A & B), C) | (icmp ne (A & D), E)
1609  if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
1610    return V;
1611
1612  Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
1613  if (LHS->hasOneUse() || RHS->hasOneUse()) {
1614    // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
1615    // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
1616    Value *A = nullptr, *B = nullptr;
1617    if (LHSCC == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero()) {
1618      B = Val;
1619      if (RHSCC == ICmpInst::ICMP_ULT && Val == RHS->getOperand(1))
1620        A = Val2;
1621      else if (RHSCC == ICmpInst::ICMP_UGT && Val == Val2)
1622        A = RHS->getOperand(1);
1623    }
1624    // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
1625    // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
1626    else if (RHSCC == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
1627      B = Val2;
1628      if (LHSCC == ICmpInst::ICMP_ULT && Val2 == LHS->getOperand(1))
1629        A = Val;
1630      else if (LHSCC == ICmpInst::ICMP_UGT && Val2 == Val)
1631        A = LHS->getOperand(1);
1632    }
1633    if (A && B)
1634      return Builder->CreateICmp(
1635          ICmpInst::ICMP_UGE,
1636          Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
1637  }
1638
1639  // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
1640  if (!LHSCst || !RHSCst) return nullptr;
1641
1642  if (LHSCst == RHSCst && LHSCC == RHSCC) {
1643    // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
1644    if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
1645      Value *NewOr = Builder->CreateOr(Val, Val2);
1646      return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
1647    }
1648  }
1649
1650  // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
1651  //   iff C2 + CA == C1.
1652  if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
1653    ConstantInt *AddCst;
1654    if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
1655      if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
1656        return Builder->CreateICmpULE(Val, LHSCst);
1657  }
1658
1659  // From here on, we only handle:
1660  //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
1661  if (Val != Val2) return nullptr;
1662
1663  // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
1664  if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
1665      RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
1666      LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
1667      RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
1668    return nullptr;
1669
1670  // We can't fold (ugt x, C) | (sgt x, C2).
1671  if (!PredicatesFoldable(LHSCC, RHSCC))
1672    return nullptr;
1673
1674  // Ensure that the larger constant is on the RHS.
1675  bool ShouldSwap;
1676  if (CmpInst::isSigned(LHSCC) ||
1677      (ICmpInst::isEquality(LHSCC) &&
1678       CmpInst::isSigned(RHSCC)))
1679    ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
1680  else
1681    ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
1682
1683  if (ShouldSwap) {
1684    std::swap(LHS, RHS);
1685    std::swap(LHSCst, RHSCst);
1686    std::swap(LHSCC, RHSCC);
1687  }
1688
1689  // At this point, we know we have two icmp instructions
1690  // comparing a value against two constants and or'ing the result
1691  // together.  Because of the above check, we know that we only have
1692  // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
1693  // icmp folding check above), that the two constants are not
1694  // equal.
1695  assert(LHSCst != RHSCst && "Compares not folded above?");
1696
1697  switch (LHSCC) {
1698  default: llvm_unreachable("Unknown integer condition code!");
1699  case ICmpInst::ICMP_EQ:
1700    switch (RHSCC) {
1701    default: llvm_unreachable("Unknown integer condition code!");
1702    case ICmpInst::ICMP_EQ:
1703      if (LHS->getOperand(0) == RHS->getOperand(0)) {
1704        // if LHSCst and RHSCst differ only by one bit:
1705        // (A == C1 || A == C2) -> (A & ~(C1 ^ C2)) == C1
1706        assert(LHSCst->getValue().ule(LHSCst->getValue()));
1707
1708        APInt Xor = LHSCst->getValue() ^ RHSCst->getValue();
1709        if (Xor.isPowerOf2()) {
1710          Value *NegCst = Builder->getInt(~Xor);
1711          Value *And = Builder->CreateAnd(LHS->getOperand(0), NegCst);
1712          return Builder->CreateICmp(ICmpInst::ICMP_EQ, And, LHSCst);
1713        }
1714      }
1715
1716      if (LHSCst == SubOne(RHSCst)) {
1717        // (X == 13 | X == 14) -> X-13 <u 2
1718        Constant *AddCST = ConstantExpr::getNeg(LHSCst);
1719        Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
1720        AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
1721        return Builder->CreateICmpULT(Add, AddCST);
1722      }
1723
1724      break;                         // (X == 13 | X == 15) -> no change
1725    case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
1726    case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
1727      break;
1728    case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
1729    case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
1730    case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
1731      return RHS;
1732    }
1733    break;
1734  case ICmpInst::ICMP_NE:
1735    switch (RHSCC) {
1736    default: llvm_unreachable("Unknown integer condition code!");
1737    case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
1738    case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
1739    case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
1740      return LHS;
1741    case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
1742    case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
1743    case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
1744      return Builder->getTrue();
1745    }
1746  case ICmpInst::ICMP_ULT:
1747    switch (RHSCC) {
1748    default: llvm_unreachable("Unknown integer condition code!");
1749    case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
1750      break;
1751    case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
1752      // If RHSCst is [us]MAXINT, it is always false.  Not handling
1753      // this can cause overflow.
1754      if (RHSCst->isMaxValue(false))
1755        return LHS;
1756      return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
1757    case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
1758      break;
1759    case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
1760    case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
1761      return RHS;
1762    case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
1763      break;
1764    }
1765    break;
1766  case ICmpInst::ICMP_SLT:
1767    switch (RHSCC) {
1768    default: llvm_unreachable("Unknown integer condition code!");
1769    case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
1770      break;
1771    case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
1772      // If RHSCst is [us]MAXINT, it is always false.  Not handling
1773      // this can cause overflow.
1774      if (RHSCst->isMaxValue(true))
1775        return LHS;
1776      return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
1777    case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
1778      break;
1779    case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
1780    case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
1781      return RHS;
1782    case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
1783      break;
1784    }
1785    break;
1786  case ICmpInst::ICMP_UGT:
1787    switch (RHSCC) {
1788    default: llvm_unreachable("Unknown integer condition code!");
1789    case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
1790    case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
1791      return LHS;
1792    case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
1793      break;
1794    case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
1795    case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
1796      return Builder->getTrue();
1797    case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
1798      break;
1799    }
1800    break;
1801  case ICmpInst::ICMP_SGT:
1802    switch (RHSCC) {
1803    default: llvm_unreachable("Unknown integer condition code!");
1804    case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
1805    case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
1806      return LHS;
1807    case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
1808      break;
1809    case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
1810    case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
1811      return Builder->getTrue();
1812    case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
1813      break;
1814    }
1815    break;
1816  }
1817  return nullptr;
1818}
1819
1820/// FoldOrOfFCmps - Optimize (fcmp)|(fcmp).  NOTE: Unlike the rest of
1821/// instcombine, this returns a Value which should already be inserted into the
1822/// function.
1823Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
1824  if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
1825      RHS->getPredicate() == FCmpInst::FCMP_UNO &&
1826      LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
1827    if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
1828      if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
1829        // If either of the constants are nans, then the whole thing returns
1830        // true.
1831        if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
1832          return Builder->getTrue();
1833
1834        // Otherwise, no need to compare the two constants, compare the
1835        // rest.
1836        return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
1837      }
1838
1839    // Handle vector zeros.  This occurs because the canonical form of
1840    // "fcmp uno x,x" is "fcmp uno x, 0".
1841    if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
1842        isa<ConstantAggregateZero>(RHS->getOperand(1)))
1843      return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
1844
1845    return nullptr;
1846  }
1847
1848  Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
1849  Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
1850  FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
1851
1852  if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
1853    // Swap RHS operands to match LHS.
1854    Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
1855    std::swap(Op1LHS, Op1RHS);
1856  }
1857  if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
1858    // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
1859    if (Op0CC == Op1CC)
1860      return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
1861    if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
1862      return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
1863    if (Op0CC == FCmpInst::FCMP_FALSE)
1864      return RHS;
1865    if (Op1CC == FCmpInst::FCMP_FALSE)
1866      return LHS;
1867    bool Op0Ordered;
1868    bool Op1Ordered;
1869    unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
1870    unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
1871    if (Op0Ordered == Op1Ordered) {
1872      // If both are ordered or unordered, return a new fcmp with
1873      // or'ed predicates.
1874      return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
1875    }
1876  }
1877  return nullptr;
1878}
1879
1880/// FoldOrWithConstants - This helper function folds:
1881///
1882///     ((A | B) & C1) | (B & C2)
1883///
1884/// into:
1885///
1886///     (A & C1) | B
1887///
1888/// when the XOR of the two constants is "all ones" (-1).
1889Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
1890                                               Value *A, Value *B, Value *C) {
1891  ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
1892  if (!CI1) return nullptr;
1893
1894  Value *V1 = nullptr;
1895  ConstantInt *CI2 = nullptr;
1896  if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return nullptr;
1897
1898  APInt Xor = CI1->getValue() ^ CI2->getValue();
1899  if (!Xor.isAllOnesValue()) return nullptr;
1900
1901  if (V1 == A || V1 == B) {
1902    Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
1903    return BinaryOperator::CreateOr(NewOp, V1);
1904  }
1905
1906  return nullptr;
1907}
1908
1909Instruction *InstCombiner::visitOr(BinaryOperator &I) {
1910  bool Changed = SimplifyAssociativeOrCommutative(I);
1911  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1912
1913  if (Value *V = SimplifyVectorOp(I))
1914    return ReplaceInstUsesWith(I, V);
1915
1916  if (Value *V = SimplifyOrInst(Op0, Op1, DL))
1917    return ReplaceInstUsesWith(I, V);
1918
1919  // (A&B)|(A&C) -> A&(B|C) etc
1920  if (Value *V = SimplifyUsingDistributiveLaws(I))
1921    return ReplaceInstUsesWith(I, V);
1922
1923  // See if we can simplify any instructions used by the instruction whose sole
1924  // purpose is to compute bits we don't care about.
1925  if (SimplifyDemandedInstructionBits(I))
1926    return &I;
1927
1928  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
1929    ConstantInt *C1 = nullptr; Value *X = nullptr;
1930    // (X & C1) | C2 --> (X | C2) & (C1|C2)
1931    // iff (C1 & C2) == 0.
1932    if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
1933        (RHS->getValue() & C1->getValue()) != 0 &&
1934        Op0->hasOneUse()) {
1935      Value *Or = Builder->CreateOr(X, RHS);
1936      Or->takeName(Op0);
1937      return BinaryOperator::CreateAnd(Or,
1938                             Builder->getInt(RHS->getValue() | C1->getValue()));
1939    }
1940
1941    // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
1942    if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
1943        Op0->hasOneUse()) {
1944      Value *Or = Builder->CreateOr(X, RHS);
1945      Or->takeName(Op0);
1946      return BinaryOperator::CreateXor(Or,
1947                            Builder->getInt(C1->getValue() & ~RHS->getValue()));
1948    }
1949
1950    // Try to fold constant and into select arguments.
1951    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1952      if (Instruction *R = FoldOpIntoSelect(I, SI))
1953        return R;
1954
1955    if (isa<PHINode>(Op0))
1956      if (Instruction *NV = FoldOpIntoPhi(I))
1957        return NV;
1958  }
1959
1960  Value *A = nullptr, *B = nullptr;
1961  ConstantInt *C1 = nullptr, *C2 = nullptr;
1962
1963  // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
1964  // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
1965  if (match(Op0, m_Or(m_Value(), m_Value())) ||
1966      match(Op1, m_Or(m_Value(), m_Value())) ||
1967      (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
1968       match(Op1, m_LogicalShift(m_Value(), m_Value())))) {
1969    if (Instruction *BSwap = MatchBSwap(I))
1970      return BSwap;
1971  }
1972
1973  // (X^C)|Y -> (X|Y)^C iff Y&C == 0
1974  if (Op0->hasOneUse() &&
1975      match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
1976      MaskedValueIsZero(Op1, C1->getValue())) {
1977    Value *NOr = Builder->CreateOr(A, Op1);
1978    NOr->takeName(Op0);
1979    return BinaryOperator::CreateXor(NOr, C1);
1980  }
1981
1982  // Y|(X^C) -> (X|Y)^C iff Y&C == 0
1983  if (Op1->hasOneUse() &&
1984      match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
1985      MaskedValueIsZero(Op0, C1->getValue())) {
1986    Value *NOr = Builder->CreateOr(A, Op0);
1987    NOr->takeName(Op0);
1988    return BinaryOperator::CreateXor(NOr, C1);
1989  }
1990
1991  // (A & C)|(B & D)
1992  Value *C = nullptr, *D = nullptr;
1993  if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
1994      match(Op1, m_And(m_Value(B), m_Value(D)))) {
1995    Value *V1 = nullptr, *V2 = nullptr;
1996    C1 = dyn_cast<ConstantInt>(C);
1997    C2 = dyn_cast<ConstantInt>(D);
1998    if (C1 && C2) {  // (A & C1)|(B & C2)
1999      if ((C1->getValue() & C2->getValue()) == 0) {
2000        // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
2001        // iff (C1&C2) == 0 and (N&~C1) == 0
2002        if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
2003            ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) ||  // (V|N)
2004             (V2 == B && MaskedValueIsZero(V1, ~C1->getValue()))))   // (N|V)
2005          return BinaryOperator::CreateAnd(A,
2006                                Builder->getInt(C1->getValue()|C2->getValue()));
2007        // Or commutes, try both ways.
2008        if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
2009            ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) ||  // (V|N)
2010             (V2 == A && MaskedValueIsZero(V1, ~C2->getValue()))))   // (N|V)
2011          return BinaryOperator::CreateAnd(B,
2012                                Builder->getInt(C1->getValue()|C2->getValue()));
2013
2014        // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
2015        // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
2016        ConstantInt *C3 = nullptr, *C4 = nullptr;
2017        if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
2018            (C3->getValue() & ~C1->getValue()) == 0 &&
2019            match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
2020            (C4->getValue() & ~C2->getValue()) == 0) {
2021          V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
2022          return BinaryOperator::CreateAnd(V2,
2023                                Builder->getInt(C1->getValue()|C2->getValue()));
2024        }
2025      }
2026    }
2027
2028    // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants.
2029    // Don't do this for vector select idioms, the code generator doesn't handle
2030    // them well yet.
2031    if (!I.getType()->isVectorTy()) {
2032      if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
2033        return Match;
2034      if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
2035        return Match;
2036      if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
2037        return Match;
2038      if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
2039        return Match;
2040    }
2041
2042    // ((A&~B)|(~A&B)) -> A^B
2043    if ((match(C, m_Not(m_Specific(D))) &&
2044         match(B, m_Not(m_Specific(A)))))
2045      return BinaryOperator::CreateXor(A, D);
2046    // ((~B&A)|(~A&B)) -> A^B
2047    if ((match(A, m_Not(m_Specific(D))) &&
2048         match(B, m_Not(m_Specific(C)))))
2049      return BinaryOperator::CreateXor(C, D);
2050    // ((A&~B)|(B&~A)) -> A^B
2051    if ((match(C, m_Not(m_Specific(B))) &&
2052         match(D, m_Not(m_Specific(A)))))
2053      return BinaryOperator::CreateXor(A, B);
2054    // ((~B&A)|(B&~A)) -> A^B
2055    if ((match(A, m_Not(m_Specific(B))) &&
2056         match(D, m_Not(m_Specific(C)))))
2057      return BinaryOperator::CreateXor(C, B);
2058
2059    // ((A|B)&1)|(B&-2) -> (A&1) | B
2060    if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
2061        match(A, m_Or(m_Specific(B), m_Value(V1)))) {
2062      Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
2063      if (Ret) return Ret;
2064    }
2065    // (B&-2)|((A|B)&1) -> (A&1) | B
2066    if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
2067        match(B, m_Or(m_Value(V1), m_Specific(A)))) {
2068      Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
2069      if (Ret) return Ret;
2070    }
2071  }
2072
2073  // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
2074  if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
2075    if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
2076      if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
2077          SI0->getOperand(1) == SI1->getOperand(1) &&
2078          (SI0->hasOneUse() || SI1->hasOneUse())) {
2079        Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
2080                                         SI0->getName());
2081        return BinaryOperator::Create(SI1->getOpcode(), NewOp,
2082                                      SI1->getOperand(1));
2083      }
2084  }
2085
2086  // (~A | ~B) == (~(A & B)) - De Morgan's Law
2087  if (Value *Op0NotVal = dyn_castNotVal(Op0))
2088    if (Value *Op1NotVal = dyn_castNotVal(Op1))
2089      if (Op0->hasOneUse() && Op1->hasOneUse()) {
2090        Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
2091                                        I.getName()+".demorgan");
2092        return BinaryOperator::CreateNot(And);
2093      }
2094
2095  // Canonicalize xor to the RHS.
2096  bool SwappedForXor = false;
2097  if (match(Op0, m_Xor(m_Value(), m_Value()))) {
2098    std::swap(Op0, Op1);
2099    SwappedForXor = true;
2100  }
2101
2102  // A | ( A ^ B) -> A |  B
2103  // A | (~A ^ B) -> A | ~B
2104  // (A & B) | (A ^ B)
2105  if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
2106    if (Op0 == A || Op0 == B)
2107      return BinaryOperator::CreateOr(A, B);
2108
2109    if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
2110        match(Op0, m_And(m_Specific(B), m_Specific(A))))
2111      return BinaryOperator::CreateOr(A, B);
2112
2113    if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
2114      Value *Not = Builder->CreateNot(B, B->getName()+".not");
2115      return BinaryOperator::CreateOr(Not, Op0);
2116    }
2117    if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
2118      Value *Not = Builder->CreateNot(A, A->getName()+".not");
2119      return BinaryOperator::CreateOr(Not, Op0);
2120    }
2121  }
2122
2123  // A | ~(A | B) -> A | ~B
2124  // A | ~(A ^ B) -> A | ~B
2125  if (match(Op1, m_Not(m_Value(A))))
2126    if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
2127      if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
2128          Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
2129                               B->getOpcode() == Instruction::Xor)) {
2130        Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
2131                                                 B->getOperand(0);
2132        Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
2133        return BinaryOperator::CreateOr(Not, Op0);
2134      }
2135
2136  if (SwappedForXor)
2137    std::swap(Op0, Op1);
2138
2139  if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
2140    if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
2141      if (Value *Res = FoldOrOfICmps(LHS, RHS))
2142        return ReplaceInstUsesWith(I, Res);
2143
2144  // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
2145  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2146    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2147      if (Value *Res = FoldOrOfFCmps(LHS, RHS))
2148        return ReplaceInstUsesWith(I, Res);
2149
2150  // fold (or (cast A), (cast B)) -> (cast (or A, B))
2151  if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2152    CastInst *Op1C = dyn_cast<CastInst>(Op1);
2153    if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
2154      Type *SrcTy = Op0C->getOperand(0)->getType();
2155      if (SrcTy == Op1C->getOperand(0)->getType() &&
2156          SrcTy->isIntOrIntVectorTy()) {
2157        Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
2158
2159        if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
2160            // Only do this if the casts both really cause code to be
2161            // generated.
2162            ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
2163            ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
2164          Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
2165          return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2166        }
2167
2168        // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
2169        // cast is otherwise not optimizable.  This happens for vector sexts.
2170        if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
2171          if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
2172            if (Value *Res = FoldOrOfICmps(LHS, RHS))
2173              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
2174
2175        // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
2176        // cast is otherwise not optimizable.  This happens for vector sexts.
2177        if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
2178          if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
2179            if (Value *Res = FoldOrOfFCmps(LHS, RHS))
2180              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
2181      }
2182    }
2183  }
2184
2185  // or(sext(A), B) -> A ? -1 : B where A is an i1
2186  // or(A, sext(B)) -> B ? -1 : A where B is an i1
2187  if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2188    return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
2189  if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2190    return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
2191
2192  // Note: If we've gotten to the point of visiting the outer OR, then the
2193  // inner one couldn't be simplified.  If it was a constant, then it won't
2194  // be simplified by a later pass either, so we try swapping the inner/outer
2195  // ORs in the hopes that we'll be able to simplify it this way.
2196  // (X|C) | V --> (X|V) | C
2197  if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
2198      match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
2199    Value *Inner = Builder->CreateOr(A, Op1);
2200    Inner->takeName(Op0);
2201    return BinaryOperator::CreateOr(Inner, C1);
2202  }
2203
2204  // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
2205  // Since this OR statement hasn't been optimized further yet, we hope
2206  // that this transformation will allow the new ORs to be optimized.
2207  {
2208    Value *X = nullptr, *Y = nullptr;
2209    if (Op0->hasOneUse() && Op1->hasOneUse() &&
2210        match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
2211        match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
2212      Value *orTrue = Builder->CreateOr(A, C);
2213      Value *orFalse = Builder->CreateOr(B, D);
2214      return SelectInst::Create(X, orTrue, orFalse);
2215    }
2216  }
2217
2218  return Changed ? &I : nullptr;
2219}
2220
2221Instruction *InstCombiner::visitXor(BinaryOperator &I) {
2222  bool Changed = SimplifyAssociativeOrCommutative(I);
2223  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2224
2225  if (Value *V = SimplifyVectorOp(I))
2226    return ReplaceInstUsesWith(I, V);
2227
2228  if (Value *V = SimplifyXorInst(Op0, Op1, DL))
2229    return ReplaceInstUsesWith(I, V);
2230
2231  // (A&B)^(A&C) -> A&(B^C) etc
2232  if (Value *V = SimplifyUsingDistributiveLaws(I))
2233    return ReplaceInstUsesWith(I, V);
2234
2235  // See if we can simplify any instructions used by the instruction whose sole
2236  // purpose is to compute bits we don't care about.
2237  if (SimplifyDemandedInstructionBits(I))
2238    return &I;
2239
2240  // Is this a ~ operation?
2241  if (Value *NotOp = dyn_castNotVal(&I)) {
2242    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
2243      if (Op0I->getOpcode() == Instruction::And ||
2244          Op0I->getOpcode() == Instruction::Or) {
2245        // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
2246        // ~(~X | Y) === (X & ~Y) - De Morgan's Law
2247        if (dyn_castNotVal(Op0I->getOperand(1)))
2248          Op0I->swapOperands();
2249        if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
2250          Value *NotY =
2251            Builder->CreateNot(Op0I->getOperand(1),
2252                               Op0I->getOperand(1)->getName()+".not");
2253          if (Op0I->getOpcode() == Instruction::And)
2254            return BinaryOperator::CreateOr(Op0NotVal, NotY);
2255          return BinaryOperator::CreateAnd(Op0NotVal, NotY);
2256        }
2257
2258        // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
2259        // ~(X | Y) === (~X & ~Y) - De Morgan's Law
2260        if (isFreeToInvert(Op0I->getOperand(0)) &&
2261            isFreeToInvert(Op0I->getOperand(1))) {
2262          Value *NotX =
2263            Builder->CreateNot(Op0I->getOperand(0), "notlhs");
2264          Value *NotY =
2265            Builder->CreateNot(Op0I->getOperand(1), "notrhs");
2266          if (Op0I->getOpcode() == Instruction::And)
2267            return BinaryOperator::CreateOr(NotX, NotY);
2268          return BinaryOperator::CreateAnd(NotX, NotY);
2269        }
2270
2271      } else if (Op0I->getOpcode() == Instruction::AShr) {
2272        // ~(~X >>s Y) --> (X >>s Y)
2273        if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
2274          return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
2275      }
2276    }
2277  }
2278
2279
2280  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2281    if (RHS->isOne() && Op0->hasOneUse())
2282      // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
2283      if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
2284        return CmpInst::Create(CI->getOpcode(),
2285                               CI->getInversePredicate(),
2286                               CI->getOperand(0), CI->getOperand(1));
2287
2288    // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
2289    if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2290      if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
2291        if (CI->hasOneUse() && Op0C->hasOneUse()) {
2292          Instruction::CastOps Opcode = Op0C->getOpcode();
2293          if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
2294              (RHS == ConstantExpr::getCast(Opcode, Builder->getTrue(),
2295                                            Op0C->getDestTy()))) {
2296            CI->setPredicate(CI->getInversePredicate());
2297            return CastInst::Create(Opcode, CI, Op0C->getType());
2298          }
2299        }
2300      }
2301    }
2302
2303    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2304      // ~(c-X) == X-c-1 == X+(-c-1)
2305      if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
2306        if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
2307          Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
2308          Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
2309                                      ConstantInt::get(I.getType(), 1));
2310          return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
2311        }
2312
2313      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2314        if (Op0I->getOpcode() == Instruction::Add) {
2315          // ~(X-c) --> (-c-1)-X
2316          if (RHS->isAllOnesValue()) {
2317            Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
2318            return BinaryOperator::CreateSub(
2319                           ConstantExpr::getSub(NegOp0CI,
2320                                      ConstantInt::get(I.getType(), 1)),
2321                                      Op0I->getOperand(0));
2322          } else if (RHS->getValue().isSignBit()) {
2323            // (X + C) ^ signbit -> (X + C + signbit)
2324            Constant *C = Builder->getInt(RHS->getValue() + Op0CI->getValue());
2325            return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
2326
2327          }
2328        } else if (Op0I->getOpcode() == Instruction::Or) {
2329          // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
2330          if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
2331            Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
2332            // Anything in both C1 and C2 is known to be zero, remove it from
2333            // NewRHS.
2334            Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
2335            NewRHS = ConstantExpr::getAnd(NewRHS,
2336                                       ConstantExpr::getNot(CommonBits));
2337            Worklist.Add(Op0I);
2338            I.setOperand(0, Op0I->getOperand(0));
2339            I.setOperand(1, NewRHS);
2340            return &I;
2341          }
2342        } else if (Op0I->getOpcode() == Instruction::LShr) {
2343          // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
2344          // E1 = "X ^ C1"
2345          BinaryOperator *E1;
2346          ConstantInt *C1;
2347          if (Op0I->hasOneUse() &&
2348              (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
2349              E1->getOpcode() == Instruction::Xor &&
2350              (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
2351            // fold (C1 >> C2) ^ C3
2352            ConstantInt *C2 = Op0CI, *C3 = RHS;
2353            APInt FoldConst = C1->getValue().lshr(C2->getValue());
2354            FoldConst ^= C3->getValue();
2355            // Prepare the two operands.
2356            Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2);
2357            Opnd0->takeName(Op0I);
2358            cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
2359            Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
2360
2361            return BinaryOperator::CreateXor(Opnd0, FoldVal);
2362          }
2363        }
2364      }
2365    }
2366
2367    // Try to fold constant and into select arguments.
2368    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2369      if (Instruction *R = FoldOpIntoSelect(I, SI))
2370        return R;
2371    if (isa<PHINode>(Op0))
2372      if (Instruction *NV = FoldOpIntoPhi(I))
2373        return NV;
2374  }
2375
2376  BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
2377  if (Op1I) {
2378    Value *A, *B;
2379    if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
2380      if (A == Op0) {              // B^(B|A) == (A|B)^B
2381        Op1I->swapOperands();
2382        I.swapOperands();
2383        std::swap(Op0, Op1);
2384      } else if (B == Op0) {       // B^(A|B) == (A|B)^B
2385        I.swapOperands();     // Simplified below.
2386        std::swap(Op0, Op1);
2387      }
2388    } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
2389               Op1I->hasOneUse()){
2390      if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
2391        Op1I->swapOperands();
2392        std::swap(A, B);
2393      }
2394      if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
2395        I.swapOperands();     // Simplified below.
2396        std::swap(Op0, Op1);
2397      }
2398    }
2399  }
2400
2401  BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
2402  if (Op0I) {
2403    Value *A, *B;
2404    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2405        Op0I->hasOneUse()) {
2406      if (A == Op1)                                  // (B|A)^B == (A|B)^B
2407        std::swap(A, B);
2408      if (B == Op1)                                  // (A|B)^B == A & ~B
2409        return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
2410    } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2411               Op0I->hasOneUse()){
2412      if (A == Op1)                                        // (A&B)^A -> (B&A)^A
2413        std::swap(A, B);
2414      if (B == Op1 &&                                      // (B&A)^A == ~B & A
2415          !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
2416        return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
2417      }
2418    }
2419  }
2420
2421  // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
2422  if (Op0I && Op1I && Op0I->isShift() &&
2423      Op0I->getOpcode() == Op1I->getOpcode() &&
2424      Op0I->getOperand(1) == Op1I->getOperand(1) &&
2425      (Op0I->hasOneUse() || Op1I->hasOneUse())) {
2426    Value *NewOp =
2427      Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
2428                         Op0I->getName());
2429    return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
2430                                  Op1I->getOperand(1));
2431  }
2432
2433  if (Op0I && Op1I) {
2434    Value *A, *B, *C, *D;
2435    // (A & B)^(A | B) -> A ^ B
2436    if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2437        match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
2438      if ((A == C && B == D) || (A == D && B == C))
2439        return BinaryOperator::CreateXor(A, B);
2440    }
2441    // (A | B)^(A & B) -> A ^ B
2442    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2443        match(Op1I, m_And(m_Value(C), m_Value(D)))) {
2444      if ((A == C && B == D) || (A == D && B == C))
2445        return BinaryOperator::CreateXor(A, B);
2446    }
2447  }
2448
2449  // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2450  if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
2451    if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
2452      if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2453        if (LHS->getOperand(0) == RHS->getOperand(1) &&
2454            LHS->getOperand(1) == RHS->getOperand(0))
2455          LHS->swapOperands();
2456        if (LHS->getOperand(0) == RHS->getOperand(0) &&
2457            LHS->getOperand(1) == RHS->getOperand(1)) {
2458          Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2459          unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2460          bool isSigned = LHS->isSigned() || RHS->isSigned();
2461          return ReplaceInstUsesWith(I,
2462                               getNewICmpValue(isSigned, Code, Op0, Op1,
2463                                               Builder));
2464        }
2465      }
2466
2467  // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
2468  if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2469    if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
2470      if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
2471        Type *SrcTy = Op0C->getOperand(0)->getType();
2472        if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
2473            // Only do this if the casts both really cause code to be generated.
2474            ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
2475                               I.getType()) &&
2476            ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
2477                               I.getType())) {
2478          Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
2479                                            Op1C->getOperand(0), I.getName());
2480          return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2481        }
2482      }
2483  }
2484
2485  return Changed ? &I : nullptr;
2486}
2487