InstCombineCalls.cpp revision 12c807873a5988d900c8032e7d98f8f07da5c628
1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Support/CallSite.h"
16#include "llvm/Target/TargetData.h"
17#include "llvm/Analysis/MemoryBuiltins.h"
18#include "llvm/Transforms/Utils/BuildLibCalls.h"
19#include "llvm/Transforms/Utils/Local.h"
20using namespace llvm;
21
22/// getPromotedType - Return the specified type promoted as it would be to pass
23/// though a va_arg area.
24static Type *getPromotedType(Type *Ty) {
25  if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
26    if (ITy->getBitWidth() < 32)
27      return Type::getInt32Ty(Ty->getContext());
28  }
29  return Ty;
30}
31
32
33Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
34  unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), TD);
35  unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), TD);
36  unsigned MinAlign = std::min(DstAlign, SrcAlign);
37  unsigned CopyAlign = MI->getAlignment();
38
39  if (CopyAlign < MinAlign) {
40    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
41                                             MinAlign, false));
42    return MI;
43  }
44
45  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
46  // load/store.
47  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
48  if (MemOpLength == 0) return 0;
49
50  // Source and destination pointer types are always "i8*" for intrinsic.  See
51  // if the size is something we can handle with a single primitive load/store.
52  // A single load+store correctly handles overlapping memory in the memmove
53  // case.
54  unsigned Size = MemOpLength->getZExtValue();
55  if (Size == 0) return MI;  // Delete this mem transfer.
56
57  if (Size > 8 || (Size&(Size-1)))
58    return 0;  // If not 1/2/4/8 bytes, exit.
59
60  // Use an integer load+store unless we can find something better.
61  unsigned SrcAddrSp =
62    cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
63  unsigned DstAddrSp =
64    cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
65
66  IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
67  Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
68  Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
69
70  // Memcpy forces the use of i8* for the source and destination.  That means
71  // that if you're using memcpy to move one double around, you'll get a cast
72  // from double* to i8*.  We'd much rather use a double load+store rather than
73  // an i64 load+store, here because this improves the odds that the source or
74  // dest address will be promotable.  See if we can find a better type than the
75  // integer datatype.
76  Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
77  if (StrippedDest != MI->getArgOperand(0)) {
78    Type *SrcETy = cast<PointerType>(StrippedDest->getType())
79                                    ->getElementType();
80    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
81      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
82      // down through these levels if so.
83      while (!SrcETy->isSingleValueType()) {
84        if (StructType *STy = dyn_cast<StructType>(SrcETy)) {
85          if (STy->getNumElements() == 1)
86            SrcETy = STy->getElementType(0);
87          else
88            break;
89        } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
90          if (ATy->getNumElements() == 1)
91            SrcETy = ATy->getElementType();
92          else
93            break;
94        } else
95          break;
96      }
97
98      if (SrcETy->isSingleValueType()) {
99        NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
100        NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
101      }
102    }
103  }
104
105
106  // If the memcpy/memmove provides better alignment info than we can
107  // infer, use it.
108  SrcAlign = std::max(SrcAlign, CopyAlign);
109  DstAlign = std::max(DstAlign, CopyAlign);
110
111  Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
112  Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
113  LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
114  L->setAlignment(SrcAlign);
115  StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
116  S->setAlignment(DstAlign);
117
118  // Set the size of the copy to 0, it will be deleted on the next iteration.
119  MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
120  return MI;
121}
122
123Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
124  unsigned Alignment = getKnownAlignment(MI->getDest(), TD);
125  if (MI->getAlignment() < Alignment) {
126    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
127                                             Alignment, false));
128    return MI;
129  }
130
131  // Extract the length and alignment and fill if they are constant.
132  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
133  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
134  if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
135    return 0;
136  uint64_t Len = LenC->getZExtValue();
137  Alignment = MI->getAlignment();
138
139  // If the length is zero, this is a no-op
140  if (Len == 0) return MI; // memset(d,c,0,a) -> noop
141
142  // memset(s,c,n) -> store s, c (for n=1,2,4,8)
143  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
144    Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
145
146    Value *Dest = MI->getDest();
147    unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
148    Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
149    Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
150
151    // Alignment 0 is identity for alignment 1 for memset, but not store.
152    if (Alignment == 0) Alignment = 1;
153
154    // Extract the fill value and store.
155    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
156    StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
157                                        MI->isVolatile());
158    S->setAlignment(Alignment);
159
160    // Set the size of the copy to 0, it will be deleted on the next iteration.
161    MI->setLength(Constant::getNullValue(LenC->getType()));
162    return MI;
163  }
164
165  return 0;
166}
167
168/// computeAllocSize - compute the object size allocated by an allocation
169/// site. Returns 0 if the size is not constant (in SizeValue), 1 if the size
170/// is constant (in Size), and 2 if the size could not be determined within the
171/// given maximum Penalty that the computation would incurr at run-time.
172static int computeAllocSize(Value *Alloc, uint64_t &Size, Value* &SizeValue,
173                            uint64_t Penalty, TargetData *TD,
174                            InstCombiner::BuilderTy *Builder) {
175  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Alloc)) {
176    if (GV->hasDefinitiveInitializer()) {
177      Constant *C = GV->getInitializer();
178      Size = TD->getTypeAllocSize(C->getType());
179      return 1;
180    }
181    // Can't determine size of the GV.
182    return 2;
183
184  } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Alloc)) {
185    if (!AI->getAllocatedType()->isSized())
186      return 2;
187
188    Size = TD->getTypeAllocSize(AI->getAllocatedType());
189    if (!AI->isArrayAllocation())
190      return 1; // we are done
191
192    Value *ArraySize = AI->getArraySize();
193    if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
194      Size *= C->getZExtValue();
195      return 1;
196    }
197
198    if (Penalty < 2)
199      return 2;
200
201    SizeValue = ConstantInt::get(ArraySize->getType(), Size);
202    SizeValue = Builder->CreateMul(SizeValue, ArraySize);
203    return 0;
204
205  } else if (CallInst *MI = extractMallocCall(Alloc)) {
206    SizeValue = MI->getArgOperand(0);
207    if (ConstantInt *CI = dyn_cast<ConstantInt>(SizeValue)) {
208      Size = CI->getZExtValue();
209      return 1;
210    }
211    return Penalty >= 2 ? 0 : 2;
212
213  } else if (CallInst *MI = extractCallocCall(Alloc)) {
214    Value *Arg1 = MI->getArgOperand(0);
215    Value *Arg2 = MI->getArgOperand(1);
216    if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Arg1)) {
217      if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Arg2)) {
218        Size = (CI1->getValue() * CI2->getValue()).getZExtValue();
219        return 1;
220      }
221    }
222
223    if (Penalty < 2)
224      return 2;
225
226    SizeValue = Builder->CreateMul(Arg1, Arg2);
227    return 0;
228  }
229
230  DEBUG(errs() << "computeAllocSize failed:\n");
231  DEBUG(Alloc->dump());
232  return 2;
233}
234
235/// visitCallInst - CallInst simplification.  This mostly only handles folding
236/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
237/// the heavy lifting.
238///
239Instruction *InstCombiner::visitCallInst(CallInst &CI) {
240  if (isFreeCall(&CI))
241    return visitFree(CI);
242  if (extractMallocCall(&CI) || extractCallocCall(&CI))
243    return visitMalloc(CI);
244
245  // If the caller function is nounwind, mark the call as nounwind, even if the
246  // callee isn't.
247  if (CI.getParent()->getParent()->doesNotThrow() &&
248      !CI.doesNotThrow()) {
249    CI.setDoesNotThrow();
250    return &CI;
251  }
252
253  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
254  if (!II) return visitCallSite(&CI);
255
256  // Intrinsics cannot occur in an invoke, so handle them here instead of in
257  // visitCallSite.
258  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
259    bool Changed = false;
260
261    // memmove/cpy/set of zero bytes is a noop.
262    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
263      if (NumBytes->isNullValue())
264        return EraseInstFromFunction(CI);
265
266      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
267        if (CI->getZExtValue() == 1) {
268          // Replace the instruction with just byte operations.  We would
269          // transform other cases to loads/stores, but we don't know if
270          // alignment is sufficient.
271        }
272    }
273
274    // No other transformations apply to volatile transfers.
275    if (MI->isVolatile())
276      return 0;
277
278    // If we have a memmove and the source operation is a constant global,
279    // then the source and dest pointers can't alias, so we can change this
280    // into a call to memcpy.
281    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
282      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
283        if (GVSrc->isConstant()) {
284          Module *M = CI.getParent()->getParent()->getParent();
285          Intrinsic::ID MemCpyID = Intrinsic::memcpy;
286          Type *Tys[3] = { CI.getArgOperand(0)->getType(),
287                           CI.getArgOperand(1)->getType(),
288                           CI.getArgOperand(2)->getType() };
289          CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
290          Changed = true;
291        }
292    }
293
294    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
295      // memmove(x,x,size) -> noop.
296      if (MTI->getSource() == MTI->getDest())
297        return EraseInstFromFunction(CI);
298    }
299
300    // If we can determine a pointer alignment that is bigger than currently
301    // set, update the alignment.
302    if (isa<MemTransferInst>(MI)) {
303      if (Instruction *I = SimplifyMemTransfer(MI))
304        return I;
305    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
306      if (Instruction *I = SimplifyMemSet(MSI))
307        return I;
308    }
309
310    if (Changed) return II;
311  }
312
313  switch (II->getIntrinsicID()) {
314  default: break;
315  case Intrinsic::objectsize: {
316    // We need target data for just about everything so depend on it.
317    if (!TD) return 0;
318
319    Type *ReturnTy = CI.getType();
320    uint64_t Penalty = cast<ConstantInt>(II->getArgOperand(2))->getZExtValue();
321
322    // Get to the real allocated thing and offset as fast as possible.
323    Value *Op1 = II->getArgOperand(0)->stripPointerCasts();
324    GEPOperator *GEP;
325
326    if ((GEP = dyn_cast<GEPOperator>(Op1))) {
327      // check if we will be able to get the offset
328      if (!GEP->hasAllConstantIndices() && Penalty < 2)
329        return 0;
330      Op1 = GEP->getPointerOperand()->stripPointerCasts();
331    }
332
333    uint64_t Size;
334    Value *SizeValue;
335    int ConstAlloc = computeAllocSize(Op1, Size, SizeValue, Penalty, TD,
336                                      Builder);
337
338    // Do not return "I don't know" here. Later optimization passes could
339    // make it possible to evaluate objectsize to a constant.
340    if (ConstAlloc == 2)
341      return 0;
342
343    uint64_t Offset = 0;
344    Value *OffsetValue = 0;
345
346    if (GEP) {
347      if (GEP->hasAllConstantIndices()) {
348        SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
349        assert(GEP->getPointerOperandType()->isPointerTy());
350        Offset = TD->getIndexedOffset(GEP->getPointerOperandType(), Ops);
351      } else
352        OffsetValue = EmitGEPOffset(GEP, true /*NoNUW*/);
353    }
354
355    if (!OffsetValue && ConstAlloc) {
356      if (Size < Offset) {
357        // Out of bounds
358        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, 0));
359      }
360      return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, Size-Offset));
361    }
362
363    if (!OffsetValue)
364      OffsetValue = ConstantInt::get(ReturnTy, Offset);
365    if (ConstAlloc)
366      SizeValue = ConstantInt::get(ReturnTy, Size);
367
368    Value *Val = Builder->CreateSub(SizeValue, OffsetValue);
369    // return 0 if there's an overflow
370    Value *Cmp = Builder->CreateICmpULT(SizeValue, OffsetValue);
371    Val = Builder->CreateSelect(Cmp, ConstantInt::get(ReturnTy, 0), Val);
372    return ReplaceInstUsesWith(CI, Val);
373  }
374  case Intrinsic::bswap:
375    // bswap(bswap(x)) -> x
376    if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
377      if (Operand->getIntrinsicID() == Intrinsic::bswap)
378        return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
379
380    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
381    if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
382      if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
383        if (Operand->getIntrinsicID() == Intrinsic::bswap) {
384          unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
385                       TI->getType()->getPrimitiveSizeInBits();
386          Value *CV = ConstantInt::get(Operand->getType(), C);
387          Value *V = Builder->CreateLShr(Operand->getArgOperand(0), CV);
388          return new TruncInst(V, TI->getType());
389        }
390    }
391
392    break;
393  case Intrinsic::powi:
394    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
395      // powi(x, 0) -> 1.0
396      if (Power->isZero())
397        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
398      // powi(x, 1) -> x
399      if (Power->isOne())
400        return ReplaceInstUsesWith(CI, II->getArgOperand(0));
401      // powi(x, -1) -> 1/x
402      if (Power->isAllOnesValue())
403        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
404                                          II->getArgOperand(0));
405    }
406    break;
407  case Intrinsic::cttz: {
408    // If all bits below the first known one are known zero,
409    // this value is constant.
410    IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
411    // FIXME: Try to simplify vectors of integers.
412    if (!IT) break;
413    uint32_t BitWidth = IT->getBitWidth();
414    APInt KnownZero(BitWidth, 0);
415    APInt KnownOne(BitWidth, 0);
416    ComputeMaskedBits(II->getArgOperand(0), KnownZero, KnownOne);
417    unsigned TrailingZeros = KnownOne.countTrailingZeros();
418    APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
419    if ((Mask & KnownZero) == Mask)
420      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
421                                 APInt(BitWidth, TrailingZeros)));
422
423    }
424    break;
425  case Intrinsic::ctlz: {
426    // If all bits above the first known one are known zero,
427    // this value is constant.
428    IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
429    // FIXME: Try to simplify vectors of integers.
430    if (!IT) break;
431    uint32_t BitWidth = IT->getBitWidth();
432    APInt KnownZero(BitWidth, 0);
433    APInt KnownOne(BitWidth, 0);
434    ComputeMaskedBits(II->getArgOperand(0), KnownZero, KnownOne);
435    unsigned LeadingZeros = KnownOne.countLeadingZeros();
436    APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
437    if ((Mask & KnownZero) == Mask)
438      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
439                                 APInt(BitWidth, LeadingZeros)));
440
441    }
442    break;
443  case Intrinsic::uadd_with_overflow: {
444    Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
445    IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
446    uint32_t BitWidth = IT->getBitWidth();
447    APInt LHSKnownZero(BitWidth, 0);
448    APInt LHSKnownOne(BitWidth, 0);
449    ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
450    bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
451    bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
452
453    if (LHSKnownNegative || LHSKnownPositive) {
454      APInt RHSKnownZero(BitWidth, 0);
455      APInt RHSKnownOne(BitWidth, 0);
456      ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
457      bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
458      bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
459      if (LHSKnownNegative && RHSKnownNegative) {
460        // The sign bit is set in both cases: this MUST overflow.
461        // Create a simple add instruction, and insert it into the struct.
462        Value *Add = Builder->CreateAdd(LHS, RHS);
463        Add->takeName(&CI);
464        Constant *V[] = {
465          UndefValue::get(LHS->getType()),
466          ConstantInt::getTrue(II->getContext())
467        };
468        StructType *ST = cast<StructType>(II->getType());
469        Constant *Struct = ConstantStruct::get(ST, V);
470        return InsertValueInst::Create(Struct, Add, 0);
471      }
472
473      if (LHSKnownPositive && RHSKnownPositive) {
474        // The sign bit is clear in both cases: this CANNOT overflow.
475        // Create a simple add instruction, and insert it into the struct.
476        Value *Add = Builder->CreateNUWAdd(LHS, RHS);
477        Add->takeName(&CI);
478        Constant *V[] = {
479          UndefValue::get(LHS->getType()),
480          ConstantInt::getFalse(II->getContext())
481        };
482        StructType *ST = cast<StructType>(II->getType());
483        Constant *Struct = ConstantStruct::get(ST, V);
484        return InsertValueInst::Create(Struct, Add, 0);
485      }
486    }
487  }
488  // FALL THROUGH uadd into sadd
489  case Intrinsic::sadd_with_overflow:
490    // Canonicalize constants into the RHS.
491    if (isa<Constant>(II->getArgOperand(0)) &&
492        !isa<Constant>(II->getArgOperand(1))) {
493      Value *LHS = II->getArgOperand(0);
494      II->setArgOperand(0, II->getArgOperand(1));
495      II->setArgOperand(1, LHS);
496      return II;
497    }
498
499    // X + undef -> undef
500    if (isa<UndefValue>(II->getArgOperand(1)))
501      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
502
503    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
504      // X + 0 -> {X, false}
505      if (RHS->isZero()) {
506        Constant *V[] = {
507          UndefValue::get(II->getArgOperand(0)->getType()),
508          ConstantInt::getFalse(II->getContext())
509        };
510        Constant *Struct =
511          ConstantStruct::get(cast<StructType>(II->getType()), V);
512        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
513      }
514    }
515    break;
516  case Intrinsic::usub_with_overflow:
517  case Intrinsic::ssub_with_overflow:
518    // undef - X -> undef
519    // X - undef -> undef
520    if (isa<UndefValue>(II->getArgOperand(0)) ||
521        isa<UndefValue>(II->getArgOperand(1)))
522      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
523
524    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
525      // X - 0 -> {X, false}
526      if (RHS->isZero()) {
527        Constant *V[] = {
528          UndefValue::get(II->getArgOperand(0)->getType()),
529          ConstantInt::getFalse(II->getContext())
530        };
531        Constant *Struct =
532          ConstantStruct::get(cast<StructType>(II->getType()), V);
533        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
534      }
535    }
536    break;
537  case Intrinsic::umul_with_overflow: {
538    Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
539    unsigned BitWidth = cast<IntegerType>(LHS->getType())->getBitWidth();
540
541    APInt LHSKnownZero(BitWidth, 0);
542    APInt LHSKnownOne(BitWidth, 0);
543    ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
544    APInt RHSKnownZero(BitWidth, 0);
545    APInt RHSKnownOne(BitWidth, 0);
546    ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
547
548    // Get the largest possible values for each operand.
549    APInt LHSMax = ~LHSKnownZero;
550    APInt RHSMax = ~RHSKnownZero;
551
552    // If multiplying the maximum values does not overflow then we can turn
553    // this into a plain NUW mul.
554    bool Overflow;
555    LHSMax.umul_ov(RHSMax, Overflow);
556    if (!Overflow) {
557      Value *Mul = Builder->CreateNUWMul(LHS, RHS, "umul_with_overflow");
558      Constant *V[] = {
559        UndefValue::get(LHS->getType()),
560        Builder->getFalse()
561      };
562      Constant *Struct = ConstantStruct::get(cast<StructType>(II->getType()),V);
563      return InsertValueInst::Create(Struct, Mul, 0);
564    }
565  } // FALL THROUGH
566  case Intrinsic::smul_with_overflow:
567    // Canonicalize constants into the RHS.
568    if (isa<Constant>(II->getArgOperand(0)) &&
569        !isa<Constant>(II->getArgOperand(1))) {
570      Value *LHS = II->getArgOperand(0);
571      II->setArgOperand(0, II->getArgOperand(1));
572      II->setArgOperand(1, LHS);
573      return II;
574    }
575
576    // X * undef -> undef
577    if (isa<UndefValue>(II->getArgOperand(1)))
578      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
579
580    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
581      // X*0 -> {0, false}
582      if (RHSI->isZero())
583        return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
584
585      // X * 1 -> {X, false}
586      if (RHSI->equalsInt(1)) {
587        Constant *V[] = {
588          UndefValue::get(II->getArgOperand(0)->getType()),
589          ConstantInt::getFalse(II->getContext())
590        };
591        Constant *Struct =
592          ConstantStruct::get(cast<StructType>(II->getType()), V);
593        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
594      }
595    }
596    break;
597  case Intrinsic::ppc_altivec_lvx:
598  case Intrinsic::ppc_altivec_lvxl:
599    // Turn PPC lvx -> load if the pointer is known aligned.
600    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
601      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
602                                         PointerType::getUnqual(II->getType()));
603      return new LoadInst(Ptr);
604    }
605    break;
606  case Intrinsic::ppc_altivec_stvx:
607  case Intrinsic::ppc_altivec_stvxl:
608    // Turn stvx -> store if the pointer is known aligned.
609    if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) {
610      Type *OpPtrTy =
611        PointerType::getUnqual(II->getArgOperand(0)->getType());
612      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
613      return new StoreInst(II->getArgOperand(0), Ptr);
614    }
615    break;
616  case Intrinsic::x86_sse_storeu_ps:
617  case Intrinsic::x86_sse2_storeu_pd:
618  case Intrinsic::x86_sse2_storeu_dq:
619    // Turn X86 storeu -> store if the pointer is known aligned.
620    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
621      Type *OpPtrTy =
622        PointerType::getUnqual(II->getArgOperand(1)->getType());
623      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
624      return new StoreInst(II->getArgOperand(1), Ptr);
625    }
626    break;
627
628  case Intrinsic::x86_sse_cvtss2si:
629  case Intrinsic::x86_sse_cvtss2si64:
630  case Intrinsic::x86_sse_cvttss2si:
631  case Intrinsic::x86_sse_cvttss2si64:
632  case Intrinsic::x86_sse2_cvtsd2si:
633  case Intrinsic::x86_sse2_cvtsd2si64:
634  case Intrinsic::x86_sse2_cvttsd2si:
635  case Intrinsic::x86_sse2_cvttsd2si64: {
636    // These intrinsics only demand the 0th element of their input vectors. If
637    // we can simplify the input based on that, do so now.
638    unsigned VWidth =
639      cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
640    APInt DemandedElts(VWidth, 1);
641    APInt UndefElts(VWidth, 0);
642    if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
643                                              DemandedElts, UndefElts)) {
644      II->setArgOperand(0, V);
645      return II;
646    }
647    break;
648  }
649
650
651  case Intrinsic::x86_sse41_pmovsxbw:
652  case Intrinsic::x86_sse41_pmovsxwd:
653  case Intrinsic::x86_sse41_pmovsxdq:
654  case Intrinsic::x86_sse41_pmovzxbw:
655  case Intrinsic::x86_sse41_pmovzxwd:
656  case Intrinsic::x86_sse41_pmovzxdq: {
657    // pmov{s|z}x ignores the upper half of their input vectors.
658    unsigned VWidth =
659      cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
660    unsigned LowHalfElts = VWidth / 2;
661    APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
662    APInt UndefElts(VWidth, 0);
663    if (Value *TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0),
664                                                 InputDemandedElts,
665                                                 UndefElts)) {
666      II->setArgOperand(0, TmpV);
667      return II;
668    }
669    break;
670  }
671
672  case Intrinsic::ppc_altivec_vperm:
673    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
674    if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
675      assert(Mask->getType()->getVectorNumElements() == 16 &&
676             "Bad type for intrinsic!");
677
678      // Check that all of the elements are integer constants or undefs.
679      bool AllEltsOk = true;
680      for (unsigned i = 0; i != 16; ++i) {
681        Constant *Elt = Mask->getAggregateElement(i);
682        if (Elt == 0 ||
683            !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
684          AllEltsOk = false;
685          break;
686        }
687      }
688
689      if (AllEltsOk) {
690        // Cast the input vectors to byte vectors.
691        Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
692                                            Mask->getType());
693        Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
694                                            Mask->getType());
695        Value *Result = UndefValue::get(Op0->getType());
696
697        // Only extract each element once.
698        Value *ExtractedElts[32];
699        memset(ExtractedElts, 0, sizeof(ExtractedElts));
700
701        for (unsigned i = 0; i != 16; ++i) {
702          if (isa<UndefValue>(Mask->getAggregateElement(i)))
703            continue;
704          unsigned Idx =
705            cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
706          Idx &= 31;  // Match the hardware behavior.
707
708          if (ExtractedElts[Idx] == 0) {
709            ExtractedElts[Idx] =
710              Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
711                                            Builder->getInt32(Idx&15));
712          }
713
714          // Insert this value into the result vector.
715          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
716                                                Builder->getInt32(i));
717        }
718        return CastInst::Create(Instruction::BitCast, Result, CI.getType());
719      }
720    }
721    break;
722
723  case Intrinsic::arm_neon_vld1:
724  case Intrinsic::arm_neon_vld2:
725  case Intrinsic::arm_neon_vld3:
726  case Intrinsic::arm_neon_vld4:
727  case Intrinsic::arm_neon_vld2lane:
728  case Intrinsic::arm_neon_vld3lane:
729  case Intrinsic::arm_neon_vld4lane:
730  case Intrinsic::arm_neon_vst1:
731  case Intrinsic::arm_neon_vst2:
732  case Intrinsic::arm_neon_vst3:
733  case Intrinsic::arm_neon_vst4:
734  case Intrinsic::arm_neon_vst2lane:
735  case Intrinsic::arm_neon_vst3lane:
736  case Intrinsic::arm_neon_vst4lane: {
737    unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), TD);
738    unsigned AlignArg = II->getNumArgOperands() - 1;
739    ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
740    if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
741      II->setArgOperand(AlignArg,
742                        ConstantInt::get(Type::getInt32Ty(II->getContext()),
743                                         MemAlign, false));
744      return II;
745    }
746    break;
747  }
748
749  case Intrinsic::arm_neon_vmulls:
750  case Intrinsic::arm_neon_vmullu: {
751    Value *Arg0 = II->getArgOperand(0);
752    Value *Arg1 = II->getArgOperand(1);
753
754    // Handle mul by zero first:
755    if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
756      return ReplaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
757    }
758
759    // Check for constant LHS & RHS - in this case we just simplify.
760    bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu);
761    VectorType *NewVT = cast<VectorType>(II->getType());
762    unsigned NewWidth = NewVT->getElementType()->getIntegerBitWidth();
763    if (ConstantDataVector *CV0 = dyn_cast<ConstantDataVector>(Arg0)) {
764      if (ConstantDataVector *CV1 = dyn_cast<ConstantDataVector>(Arg1)) {
765        VectorType* VT = cast<VectorType>(CV0->getType());
766        SmallVector<Constant*, 4> NewElems;
767        for (unsigned i = 0; i < VT->getNumElements(); ++i) {
768          APInt CV0E =
769            (cast<ConstantInt>(CV0->getAggregateElement(i)))->getValue();
770          CV0E = Zext ? CV0E.zext(NewWidth) : CV0E.sext(NewWidth);
771          APInt CV1E =
772            (cast<ConstantInt>(CV1->getAggregateElement(i)))->getValue();
773          CV1E = Zext ? CV1E.zext(NewWidth) : CV1E.sext(NewWidth);
774          NewElems.push_back(
775            ConstantInt::get(NewVT->getElementType(), CV0E * CV1E));
776        }
777        return ReplaceInstUsesWith(CI, ConstantVector::get(NewElems));
778      }
779
780      // Couldn't simplify - cannonicalize constant to the RHS.
781      std::swap(Arg0, Arg1);
782    }
783
784    // Handle mul by one:
785    if (ConstantDataVector *CV1 = dyn_cast<ConstantDataVector>(Arg1)) {
786      if (ConstantInt *Splat =
787            dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) {
788        if (Splat->isOne()) {
789          if (Zext)
790            return CastInst::CreateZExtOrBitCast(Arg0, II->getType());
791          // else
792          return CastInst::CreateSExtOrBitCast(Arg0, II->getType());
793        }
794      }
795    }
796
797    break;
798  }
799
800  case Intrinsic::stackrestore: {
801    // If the save is right next to the restore, remove the restore.  This can
802    // happen when variable allocas are DCE'd.
803    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
804      if (SS->getIntrinsicID() == Intrinsic::stacksave) {
805        BasicBlock::iterator BI = SS;
806        if (&*++BI == II)
807          return EraseInstFromFunction(CI);
808      }
809    }
810
811    // Scan down this block to see if there is another stack restore in the
812    // same block without an intervening call/alloca.
813    BasicBlock::iterator BI = II;
814    TerminatorInst *TI = II->getParent()->getTerminator();
815    bool CannotRemove = false;
816    for (++BI; &*BI != TI; ++BI) {
817      if (isa<AllocaInst>(BI) || isMalloc(BI)) {
818        CannotRemove = true;
819        break;
820      }
821      if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
822        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
823          // If there is a stackrestore below this one, remove this one.
824          if (II->getIntrinsicID() == Intrinsic::stackrestore)
825            return EraseInstFromFunction(CI);
826          // Otherwise, ignore the intrinsic.
827        } else {
828          // If we found a non-intrinsic call, we can't remove the stack
829          // restore.
830          CannotRemove = true;
831          break;
832        }
833      }
834    }
835
836    // If the stack restore is in a return, resume, or unwind block and if there
837    // are no allocas or calls between the restore and the return, nuke the
838    // restore.
839    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
840      return EraseInstFromFunction(CI);
841    break;
842  }
843  }
844
845  return visitCallSite(II);
846}
847
848// InvokeInst simplification
849//
850Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
851  return visitCallSite(&II);
852}
853
854/// isSafeToEliminateVarargsCast - If this cast does not affect the value
855/// passed through the varargs area, we can eliminate the use of the cast.
856static bool isSafeToEliminateVarargsCast(const CallSite CS,
857                                         const CastInst * const CI,
858                                         const TargetData * const TD,
859                                         const int ix) {
860  if (!CI->isLosslessCast())
861    return false;
862
863  // The size of ByVal arguments is derived from the type, so we
864  // can't change to a type with a different size.  If the size were
865  // passed explicitly we could avoid this check.
866  if (!CS.isByValArgument(ix))
867    return true;
868
869  Type* SrcTy =
870            cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
871  Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
872  if (!SrcTy->isSized() || !DstTy->isSized())
873    return false;
874  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
875    return false;
876  return true;
877}
878
879namespace {
880class InstCombineFortifiedLibCalls : public SimplifyFortifiedLibCalls {
881  InstCombiner *IC;
882protected:
883  void replaceCall(Value *With) {
884    NewInstruction = IC->ReplaceInstUsesWith(*CI, With);
885  }
886  bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
887    if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
888      return true;
889    if (ConstantInt *SizeCI =
890                           dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
891      if (SizeCI->isAllOnesValue())
892        return true;
893      if (isString) {
894        uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
895        // If the length is 0 we don't know how long it is and so we can't
896        // remove the check.
897        if (Len == 0) return false;
898        return SizeCI->getZExtValue() >= Len;
899      }
900      if (ConstantInt *Arg = dyn_cast<ConstantInt>(
901                                                  CI->getArgOperand(SizeArgOp)))
902        return SizeCI->getZExtValue() >= Arg->getZExtValue();
903    }
904    return false;
905  }
906public:
907  InstCombineFortifiedLibCalls(InstCombiner *IC) : IC(IC), NewInstruction(0) { }
908  Instruction *NewInstruction;
909};
910} // end anonymous namespace
911
912// Try to fold some different type of calls here.
913// Currently we're only working with the checking functions, memcpy_chk,
914// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
915// strcat_chk and strncat_chk.
916Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
917  if (CI->getCalledFunction() == 0) return 0;
918
919  InstCombineFortifiedLibCalls Simplifier(this);
920  Simplifier.fold(CI, TD);
921  return Simplifier.NewInstruction;
922}
923
924static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) {
925  // Strip off at most one level of pointer casts, looking for an alloca.  This
926  // is good enough in practice and simpler than handling any number of casts.
927  Value *Underlying = TrampMem->stripPointerCasts();
928  if (Underlying != TrampMem &&
929      (!Underlying->hasOneUse() || *Underlying->use_begin() != TrampMem))
930    return 0;
931  if (!isa<AllocaInst>(Underlying))
932    return 0;
933
934  IntrinsicInst *InitTrampoline = 0;
935  for (Value::use_iterator I = TrampMem->use_begin(), E = TrampMem->use_end();
936       I != E; I++) {
937    IntrinsicInst *II = dyn_cast<IntrinsicInst>(*I);
938    if (!II)
939      return 0;
940    if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
941      if (InitTrampoline)
942        // More than one init_trampoline writes to this value.  Give up.
943        return 0;
944      InitTrampoline = II;
945      continue;
946    }
947    if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
948      // Allow any number of calls to adjust.trampoline.
949      continue;
950    return 0;
951  }
952
953  // No call to init.trampoline found.
954  if (!InitTrampoline)
955    return 0;
956
957  // Check that the alloca is being used in the expected way.
958  if (InitTrampoline->getOperand(0) != TrampMem)
959    return 0;
960
961  return InitTrampoline;
962}
963
964static IntrinsicInst *FindInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
965                                               Value *TrampMem) {
966  // Visit all the previous instructions in the basic block, and try to find a
967  // init.trampoline which has a direct path to the adjust.trampoline.
968  for (BasicBlock::iterator I = AdjustTramp,
969       E = AdjustTramp->getParent()->begin(); I != E; ) {
970    Instruction *Inst = --I;
971    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
972      if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
973          II->getOperand(0) == TrampMem)
974        return II;
975    if (Inst->mayWriteToMemory())
976      return 0;
977  }
978  return 0;
979}
980
981// Given a call to llvm.adjust.trampoline, find and return the corresponding
982// call to llvm.init.trampoline if the call to the trampoline can be optimized
983// to a direct call to a function.  Otherwise return NULL.
984//
985static IntrinsicInst *FindInitTrampoline(Value *Callee) {
986  Callee = Callee->stripPointerCasts();
987  IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
988  if (!AdjustTramp ||
989      AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
990    return 0;
991
992  Value *TrampMem = AdjustTramp->getOperand(0);
993
994  if (IntrinsicInst *IT = FindInitTrampolineFromAlloca(TrampMem))
995    return IT;
996  if (IntrinsicInst *IT = FindInitTrampolineFromBB(AdjustTramp, TrampMem))
997    return IT;
998  return 0;
999}
1000
1001// visitCallSite - Improvements for call and invoke instructions.
1002//
1003Instruction *InstCombiner::visitCallSite(CallSite CS) {
1004  bool Changed = false;
1005
1006  // If the callee is a pointer to a function, attempt to move any casts to the
1007  // arguments of the call/invoke.
1008  Value *Callee = CS.getCalledValue();
1009  if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
1010    return 0;
1011
1012  if (Function *CalleeF = dyn_cast<Function>(Callee))
1013    // If the call and callee calling conventions don't match, this call must
1014    // be unreachable, as the call is undefined.
1015    if (CalleeF->getCallingConv() != CS.getCallingConv() &&
1016        // Only do this for calls to a function with a body.  A prototype may
1017        // not actually end up matching the implementation's calling conv for a
1018        // variety of reasons (e.g. it may be written in assembly).
1019        !CalleeF->isDeclaration()) {
1020      Instruction *OldCall = CS.getInstruction();
1021      new StoreInst(ConstantInt::getTrue(Callee->getContext()),
1022                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
1023                                  OldCall);
1024      // If OldCall dues not return void then replaceAllUsesWith undef.
1025      // This allows ValueHandlers and custom metadata to adjust itself.
1026      if (!OldCall->getType()->isVoidTy())
1027        ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
1028      if (isa<CallInst>(OldCall))
1029        return EraseInstFromFunction(*OldCall);
1030
1031      // We cannot remove an invoke, because it would change the CFG, just
1032      // change the callee to a null pointer.
1033      cast<InvokeInst>(OldCall)->setCalledFunction(
1034                                    Constant::getNullValue(CalleeF->getType()));
1035      return 0;
1036    }
1037
1038  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1039    // This instruction is not reachable, just remove it.  We insert a store to
1040    // undef so that we know that this code is not reachable, despite the fact
1041    // that we can't modify the CFG here.
1042    new StoreInst(ConstantInt::getTrue(Callee->getContext()),
1043               UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
1044                  CS.getInstruction());
1045
1046    // If CS does not return void then replaceAllUsesWith undef.
1047    // This allows ValueHandlers and custom metadata to adjust itself.
1048    if (!CS.getInstruction()->getType()->isVoidTy())
1049      ReplaceInstUsesWith(*CS.getInstruction(),
1050                          UndefValue::get(CS.getInstruction()->getType()));
1051
1052    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1053      // Don't break the CFG, insert a dummy cond branch.
1054      BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
1055                         ConstantInt::getTrue(Callee->getContext()), II);
1056    }
1057    return EraseInstFromFunction(*CS.getInstruction());
1058  }
1059
1060  if (IntrinsicInst *II = FindInitTrampoline(Callee))
1061    return transformCallThroughTrampoline(CS, II);
1062
1063  PointerType *PTy = cast<PointerType>(Callee->getType());
1064  FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1065  if (FTy->isVarArg()) {
1066    int ix = FTy->getNumParams();
1067    // See if we can optimize any arguments passed through the varargs area of
1068    // the call.
1069    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
1070           E = CS.arg_end(); I != E; ++I, ++ix) {
1071      CastInst *CI = dyn_cast<CastInst>(*I);
1072      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
1073        *I = CI->getOperand(0);
1074        Changed = true;
1075      }
1076    }
1077  }
1078
1079  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
1080    // Inline asm calls cannot throw - mark them 'nounwind'.
1081    CS.setDoesNotThrow();
1082    Changed = true;
1083  }
1084
1085  // Try to optimize the call if possible, we require TargetData for most of
1086  // this.  None of these calls are seen as possibly dead so go ahead and
1087  // delete the instruction now.
1088  if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
1089    Instruction *I = tryOptimizeCall(CI, TD);
1090    // If we changed something return the result, etc. Otherwise let
1091    // the fallthrough check.
1092    if (I) return EraseInstFromFunction(*I);
1093  }
1094
1095  return Changed ? CS.getInstruction() : 0;
1096}
1097
1098// transformConstExprCastCall - If the callee is a constexpr cast of a function,
1099// attempt to move the cast to the arguments of the call/invoke.
1100//
1101bool InstCombiner::transformConstExprCastCall(CallSite CS) {
1102  Function *Callee =
1103    dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
1104  if (Callee == 0)
1105    return false;
1106  Instruction *Caller = CS.getInstruction();
1107  const AttrListPtr &CallerPAL = CS.getAttributes();
1108
1109  // Okay, this is a cast from a function to a different type.  Unless doing so
1110  // would cause a type conversion of one of our arguments, change this call to
1111  // be a direct call with arguments casted to the appropriate types.
1112  //
1113  FunctionType *FT = Callee->getFunctionType();
1114  Type *OldRetTy = Caller->getType();
1115  Type *NewRetTy = FT->getReturnType();
1116
1117  if (NewRetTy->isStructTy())
1118    return false; // TODO: Handle multiple return values.
1119
1120  // Check to see if we are changing the return type...
1121  if (OldRetTy != NewRetTy) {
1122    if (Callee->isDeclaration() &&
1123        // Conversion is ok if changing from one pointer type to another or from
1124        // a pointer to an integer of the same size.
1125        !((OldRetTy->isPointerTy() || !TD ||
1126           OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
1127          (NewRetTy->isPointerTy() || !TD ||
1128           NewRetTy == TD->getIntPtrType(Caller->getContext()))))
1129      return false;   // Cannot transform this return value.
1130
1131    if (!Caller->use_empty() &&
1132        // void -> non-void is handled specially
1133        !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
1134      return false;   // Cannot transform this return value.
1135
1136    if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
1137      Attributes RAttrs = CallerPAL.getRetAttributes();
1138      if (RAttrs & Attribute::typeIncompatible(NewRetTy))
1139        return false;   // Attribute not compatible with transformed value.
1140    }
1141
1142    // If the callsite is an invoke instruction, and the return value is used by
1143    // a PHI node in a successor, we cannot change the return type of the call
1144    // because there is no place to put the cast instruction (without breaking
1145    // the critical edge).  Bail out in this case.
1146    if (!Caller->use_empty())
1147      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
1148        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
1149             UI != E; ++UI)
1150          if (PHINode *PN = dyn_cast<PHINode>(*UI))
1151            if (PN->getParent() == II->getNormalDest() ||
1152                PN->getParent() == II->getUnwindDest())
1153              return false;
1154  }
1155
1156  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
1157  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
1158
1159  CallSite::arg_iterator AI = CS.arg_begin();
1160  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
1161    Type *ParamTy = FT->getParamType(i);
1162    Type *ActTy = (*AI)->getType();
1163
1164    if (!CastInst::isCastable(ActTy, ParamTy))
1165      return false;   // Cannot transform this parameter value.
1166
1167    Attributes Attrs = CallerPAL.getParamAttributes(i + 1);
1168    if (Attrs & Attribute::typeIncompatible(ParamTy))
1169      return false;   // Attribute not compatible with transformed value.
1170
1171    // If the parameter is passed as a byval argument, then we have to have a
1172    // sized type and the sized type has to have the same size as the old type.
1173    if (ParamTy != ActTy && (Attrs & Attribute::ByVal)) {
1174      PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
1175      if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
1176        return false;
1177
1178      Type *CurElTy = cast<PointerType>(ActTy)->getElementType();
1179      if (TD->getTypeAllocSize(CurElTy) !=
1180          TD->getTypeAllocSize(ParamPTy->getElementType()))
1181        return false;
1182    }
1183
1184    // Converting from one pointer type to another or between a pointer and an
1185    // integer of the same size is safe even if we do not have a body.
1186    bool isConvertible = ActTy == ParamTy ||
1187      (TD && ((ParamTy->isPointerTy() ||
1188      ParamTy == TD->getIntPtrType(Caller->getContext())) &&
1189              (ActTy->isPointerTy() ||
1190              ActTy == TD->getIntPtrType(Caller->getContext()))));
1191    if (Callee->isDeclaration() && !isConvertible) return false;
1192  }
1193
1194  if (Callee->isDeclaration()) {
1195    // Do not delete arguments unless we have a function body.
1196    if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
1197      return false;
1198
1199    // If the callee is just a declaration, don't change the varargsness of the
1200    // call.  We don't want to introduce a varargs call where one doesn't
1201    // already exist.
1202    PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
1203    if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
1204      return false;
1205
1206    // If both the callee and the cast type are varargs, we still have to make
1207    // sure the number of fixed parameters are the same or we have the same
1208    // ABI issues as if we introduce a varargs call.
1209    if (FT->isVarArg() &&
1210        cast<FunctionType>(APTy->getElementType())->isVarArg() &&
1211        FT->getNumParams() !=
1212        cast<FunctionType>(APTy->getElementType())->getNumParams())
1213      return false;
1214  }
1215
1216  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
1217      !CallerPAL.isEmpty())
1218    // In this case we have more arguments than the new function type, but we
1219    // won't be dropping them.  Check that these extra arguments have attributes
1220    // that are compatible with being a vararg call argument.
1221    for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
1222      if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
1223        break;
1224      Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
1225      if (PAttrs & Attribute::VarArgsIncompatible)
1226        return false;
1227    }
1228
1229
1230  // Okay, we decided that this is a safe thing to do: go ahead and start
1231  // inserting cast instructions as necessary.
1232  std::vector<Value*> Args;
1233  Args.reserve(NumActualArgs);
1234  SmallVector<AttributeWithIndex, 8> attrVec;
1235  attrVec.reserve(NumCommonArgs);
1236
1237  // Get any return attributes.
1238  Attributes RAttrs = CallerPAL.getRetAttributes();
1239
1240  // If the return value is not being used, the type may not be compatible
1241  // with the existing attributes.  Wipe out any problematic attributes.
1242  RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
1243
1244  // Add the new return attributes.
1245  if (RAttrs)
1246    attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
1247
1248  AI = CS.arg_begin();
1249  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
1250    Type *ParamTy = FT->getParamType(i);
1251    if ((*AI)->getType() == ParamTy) {
1252      Args.push_back(*AI);
1253    } else {
1254      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
1255          false, ParamTy, false);
1256      Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy));
1257    }
1258
1259    // Add any parameter attributes.
1260    if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1261      attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1262  }
1263
1264  // If the function takes more arguments than the call was taking, add them
1265  // now.
1266  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1267    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1268
1269  // If we are removing arguments to the function, emit an obnoxious warning.
1270  if (FT->getNumParams() < NumActualArgs) {
1271    if (!FT->isVarArg()) {
1272      errs() << "WARNING: While resolving call to function '"
1273             << Callee->getName() << "' arguments were dropped!\n";
1274    } else {
1275      // Add all of the arguments in their promoted form to the arg list.
1276      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1277        Type *PTy = getPromotedType((*AI)->getType());
1278        if (PTy != (*AI)->getType()) {
1279          // Must promote to pass through va_arg area!
1280          Instruction::CastOps opcode =
1281            CastInst::getCastOpcode(*AI, false, PTy, false);
1282          Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
1283        } else {
1284          Args.push_back(*AI);
1285        }
1286
1287        // Add any parameter attributes.
1288        if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1289          attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1290      }
1291    }
1292  }
1293
1294  if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
1295    attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
1296
1297  if (NewRetTy->isVoidTy())
1298    Caller->setName("");   // Void type should not have a name.
1299
1300  const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
1301                                                     attrVec.end());
1302
1303  Instruction *NC;
1304  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1305    NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
1306                               II->getUnwindDest(), Args);
1307    NC->takeName(II);
1308    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1309    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1310  } else {
1311    CallInst *CI = cast<CallInst>(Caller);
1312    NC = Builder->CreateCall(Callee, Args);
1313    NC->takeName(CI);
1314    if (CI->isTailCall())
1315      cast<CallInst>(NC)->setTailCall();
1316    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1317    cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1318  }
1319
1320  // Insert a cast of the return type as necessary.
1321  Value *NV = NC;
1322  if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1323    if (!NV->getType()->isVoidTy()) {
1324      Instruction::CastOps opcode =
1325        CastInst::getCastOpcode(NC, false, OldRetTy, false);
1326      NV = NC = CastInst::Create(opcode, NC, OldRetTy);
1327      NC->setDebugLoc(Caller->getDebugLoc());
1328
1329      // If this is an invoke instruction, we should insert it after the first
1330      // non-phi, instruction in the normal successor block.
1331      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1332        BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
1333        InsertNewInstBefore(NC, *I);
1334      } else {
1335        // Otherwise, it's a call, just insert cast right after the call.
1336        InsertNewInstBefore(NC, *Caller);
1337      }
1338      Worklist.AddUsersToWorkList(*Caller);
1339    } else {
1340      NV = UndefValue::get(Caller->getType());
1341    }
1342  }
1343
1344  if (!Caller->use_empty())
1345    ReplaceInstUsesWith(*Caller, NV);
1346
1347  EraseInstFromFunction(*Caller);
1348  return true;
1349}
1350
1351// transformCallThroughTrampoline - Turn a call to a function created by
1352// init_trampoline / adjust_trampoline intrinsic pair into a direct call to the
1353// underlying function.
1354//
1355Instruction *
1356InstCombiner::transformCallThroughTrampoline(CallSite CS,
1357                                             IntrinsicInst *Tramp) {
1358  Value *Callee = CS.getCalledValue();
1359  PointerType *PTy = cast<PointerType>(Callee->getType());
1360  FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1361  const AttrListPtr &Attrs = CS.getAttributes();
1362
1363  // If the call already has the 'nest' attribute somewhere then give up -
1364  // otherwise 'nest' would occur twice after splicing in the chain.
1365  if (Attrs.hasAttrSomewhere(Attribute::Nest))
1366    return 0;
1367
1368  assert(Tramp &&
1369         "transformCallThroughTrampoline called with incorrect CallSite.");
1370
1371  Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
1372  PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1373  FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1374
1375  const AttrListPtr &NestAttrs = NestF->getAttributes();
1376  if (!NestAttrs.isEmpty()) {
1377    unsigned NestIdx = 1;
1378    Type *NestTy = 0;
1379    Attributes NestAttr = Attribute::None;
1380
1381    // Look for a parameter marked with the 'nest' attribute.
1382    for (FunctionType::param_iterator I = NestFTy->param_begin(),
1383         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1384      if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1385        // Record the parameter type and any other attributes.
1386        NestTy = *I;
1387        NestAttr = NestAttrs.getParamAttributes(NestIdx);
1388        break;
1389      }
1390
1391    if (NestTy) {
1392      Instruction *Caller = CS.getInstruction();
1393      std::vector<Value*> NewArgs;
1394      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1395
1396      SmallVector<AttributeWithIndex, 8> NewAttrs;
1397      NewAttrs.reserve(Attrs.getNumSlots() + 1);
1398
1399      // Insert the nest argument into the call argument list, which may
1400      // mean appending it.  Likewise for attributes.
1401
1402      // Add any result attributes.
1403      if (Attributes Attr = Attrs.getRetAttributes())
1404        NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1405
1406      {
1407        unsigned Idx = 1;
1408        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1409        do {
1410          if (Idx == NestIdx) {
1411            // Add the chain argument and attributes.
1412            Value *NestVal = Tramp->getArgOperand(2);
1413            if (NestVal->getType() != NestTy)
1414              NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
1415            NewArgs.push_back(NestVal);
1416            NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1417          }
1418
1419          if (I == E)
1420            break;
1421
1422          // Add the original argument and attributes.
1423          NewArgs.push_back(*I);
1424          if (Attributes Attr = Attrs.getParamAttributes(Idx))
1425            NewAttrs.push_back
1426              (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1427
1428          ++Idx, ++I;
1429        } while (1);
1430      }
1431
1432      // Add any function attributes.
1433      if (Attributes Attr = Attrs.getFnAttributes())
1434        NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1435
1436      // The trampoline may have been bitcast to a bogus type (FTy).
1437      // Handle this by synthesizing a new function type, equal to FTy
1438      // with the chain parameter inserted.
1439
1440      std::vector<Type*> NewTypes;
1441      NewTypes.reserve(FTy->getNumParams()+1);
1442
1443      // Insert the chain's type into the list of parameter types, which may
1444      // mean appending it.
1445      {
1446        unsigned Idx = 1;
1447        FunctionType::param_iterator I = FTy->param_begin(),
1448          E = FTy->param_end();
1449
1450        do {
1451          if (Idx == NestIdx)
1452            // Add the chain's type.
1453            NewTypes.push_back(NestTy);
1454
1455          if (I == E)
1456            break;
1457
1458          // Add the original type.
1459          NewTypes.push_back(*I);
1460
1461          ++Idx, ++I;
1462        } while (1);
1463      }
1464
1465      // Replace the trampoline call with a direct call.  Let the generic
1466      // code sort out any function type mismatches.
1467      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1468                                                FTy->isVarArg());
1469      Constant *NewCallee =
1470        NestF->getType() == PointerType::getUnqual(NewFTy) ?
1471        NestF : ConstantExpr::getBitCast(NestF,
1472                                         PointerType::getUnqual(NewFTy));
1473      const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
1474                                                   NewAttrs.end());
1475
1476      Instruction *NewCaller;
1477      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1478        NewCaller = InvokeInst::Create(NewCallee,
1479                                       II->getNormalDest(), II->getUnwindDest(),
1480                                       NewArgs);
1481        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1482        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1483      } else {
1484        NewCaller = CallInst::Create(NewCallee, NewArgs);
1485        if (cast<CallInst>(Caller)->isTailCall())
1486          cast<CallInst>(NewCaller)->setTailCall();
1487        cast<CallInst>(NewCaller)->
1488          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1489        cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1490      }
1491
1492      return NewCaller;
1493    }
1494  }
1495
1496  // Replace the trampoline call with a direct call.  Since there is no 'nest'
1497  // parameter, there is no need to adjust the argument list.  Let the generic
1498  // code sort out any function type mismatches.
1499  Constant *NewCallee =
1500    NestF->getType() == PTy ? NestF :
1501                              ConstantExpr::getBitCast(NestF, PTy);
1502  CS.setCalledFunction(NewCallee);
1503  return CS.getInstruction();
1504}
1505