InstCombineCalls.cpp revision 23e75da7e0622528be3c3908b5fe3ae8857cdf65
1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Support/CallSite.h"
16#include "llvm/Target/TargetData.h"
17#include "llvm/Analysis/MemoryBuiltins.h"
18#include "llvm/Transforms/Utils/BuildLibCalls.h"
19#include "llvm/Transforms/Utils/Local.h"
20using namespace llvm;
21
22/// getPromotedType - Return the specified type promoted as it would be to pass
23/// though a va_arg area.
24static Type *getPromotedType(Type *Ty) {
25  if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
26    if (ITy->getBitWidth() < 32)
27      return Type::getInt32Ty(Ty->getContext());
28  }
29  return Ty;
30}
31
32
33Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
34  unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), TD);
35  unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), TD);
36  unsigned MinAlign = std::min(DstAlign, SrcAlign);
37  unsigned CopyAlign = MI->getAlignment();
38
39  if (CopyAlign < MinAlign) {
40    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
41                                             MinAlign, false));
42    return MI;
43  }
44
45  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
46  // load/store.
47  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
48  if (MemOpLength == 0) return 0;
49
50  // Source and destination pointer types are always "i8*" for intrinsic.  See
51  // if the size is something we can handle with a single primitive load/store.
52  // A single load+store correctly handles overlapping memory in the memmove
53  // case.
54  unsigned Size = MemOpLength->getZExtValue();
55  if (Size == 0) return MI;  // Delete this mem transfer.
56
57  if (Size > 8 || (Size&(Size-1)))
58    return 0;  // If not 1/2/4/8 bytes, exit.
59
60  // Use an integer load+store unless we can find something better.
61  unsigned SrcAddrSp =
62    cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
63  unsigned DstAddrSp =
64    cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
65
66  IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
67  Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
68  Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
69
70  // Memcpy forces the use of i8* for the source and destination.  That means
71  // that if you're using memcpy to move one double around, you'll get a cast
72  // from double* to i8*.  We'd much rather use a double load+store rather than
73  // an i64 load+store, here because this improves the odds that the source or
74  // dest address will be promotable.  See if we can find a better type than the
75  // integer datatype.
76  Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
77  if (StrippedDest != MI->getArgOperand(0)) {
78    Type *SrcETy = cast<PointerType>(StrippedDest->getType())
79                                    ->getElementType();
80    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
81      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
82      // down through these levels if so.
83      while (!SrcETy->isSingleValueType()) {
84        if (StructType *STy = dyn_cast<StructType>(SrcETy)) {
85          if (STy->getNumElements() == 1)
86            SrcETy = STy->getElementType(0);
87          else
88            break;
89        } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
90          if (ATy->getNumElements() == 1)
91            SrcETy = ATy->getElementType();
92          else
93            break;
94        } else
95          break;
96      }
97
98      if (SrcETy->isSingleValueType()) {
99        NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
100        NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
101      }
102    }
103  }
104
105
106  // If the memcpy/memmove provides better alignment info than we can
107  // infer, use it.
108  SrcAlign = std::max(SrcAlign, CopyAlign);
109  DstAlign = std::max(DstAlign, CopyAlign);
110
111  Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
112  Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
113  LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
114  L->setAlignment(SrcAlign);
115  StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
116  S->setAlignment(DstAlign);
117
118  // Set the size of the copy to 0, it will be deleted on the next iteration.
119  MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
120  return MI;
121}
122
123Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
124  unsigned Alignment = getKnownAlignment(MI->getDest(), TD);
125  if (MI->getAlignment() < Alignment) {
126    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
127                                             Alignment, false));
128    return MI;
129  }
130
131  // Extract the length and alignment and fill if they are constant.
132  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
133  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
134  if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
135    return 0;
136  uint64_t Len = LenC->getZExtValue();
137  Alignment = MI->getAlignment();
138
139  // If the length is zero, this is a no-op
140  if (Len == 0) return MI; // memset(d,c,0,a) -> noop
141
142  // memset(s,c,n) -> store s, c (for n=1,2,4,8)
143  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
144    Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
145
146    Value *Dest = MI->getDest();
147    unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
148    Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
149    Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
150
151    // Alignment 0 is identity for alignment 1 for memset, but not store.
152    if (Alignment == 0) Alignment = 1;
153
154    // Extract the fill value and store.
155    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
156    StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
157                                        MI->isVolatile());
158    S->setAlignment(Alignment);
159
160    // Set the size of the copy to 0, it will be deleted on the next iteration.
161    MI->setLength(Constant::getNullValue(LenC->getType()));
162    return MI;
163  }
164
165  return 0;
166}
167
168/// visitCallInst - CallInst simplification.  This mostly only handles folding
169/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
170/// the heavy lifting.
171///
172Instruction *InstCombiner::visitCallInst(CallInst &CI) {
173  if (isFreeCall(&CI))
174    return visitFree(CI);
175  if (extractMallocCall(&CI) || extractCallocCall(&CI))
176    return visitMalloc(CI);
177
178  // If the caller function is nounwind, mark the call as nounwind, even if the
179  // callee isn't.
180  if (CI.getParent()->getParent()->doesNotThrow() &&
181      !CI.doesNotThrow()) {
182    CI.setDoesNotThrow();
183    return &CI;
184  }
185
186  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
187  if (!II) return visitCallSite(&CI);
188
189  // Intrinsics cannot occur in an invoke, so handle them here instead of in
190  // visitCallSite.
191  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
192    bool Changed = false;
193
194    // memmove/cpy/set of zero bytes is a noop.
195    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
196      if (NumBytes->isNullValue())
197        return EraseInstFromFunction(CI);
198
199      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
200        if (CI->getZExtValue() == 1) {
201          // Replace the instruction with just byte operations.  We would
202          // transform other cases to loads/stores, but we don't know if
203          // alignment is sufficient.
204        }
205    }
206
207    // No other transformations apply to volatile transfers.
208    if (MI->isVolatile())
209      return 0;
210
211    // If we have a memmove and the source operation is a constant global,
212    // then the source and dest pointers can't alias, so we can change this
213    // into a call to memcpy.
214    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
215      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
216        if (GVSrc->isConstant()) {
217          Module *M = CI.getParent()->getParent()->getParent();
218          Intrinsic::ID MemCpyID = Intrinsic::memcpy;
219          Type *Tys[3] = { CI.getArgOperand(0)->getType(),
220                           CI.getArgOperand(1)->getType(),
221                           CI.getArgOperand(2)->getType() };
222          CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
223          Changed = true;
224        }
225    }
226
227    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
228      // memmove(x,x,size) -> noop.
229      if (MTI->getSource() == MTI->getDest())
230        return EraseInstFromFunction(CI);
231    }
232
233    // If we can determine a pointer alignment that is bigger than currently
234    // set, update the alignment.
235    if (isa<MemTransferInst>(MI)) {
236      if (Instruction *I = SimplifyMemTransfer(MI))
237        return I;
238    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
239      if (Instruction *I = SimplifyMemSet(MSI))
240        return I;
241    }
242
243    if (Changed) return II;
244  }
245
246  switch (II->getIntrinsicID()) {
247  default: break;
248  case Intrinsic::objectsize: {
249    // We need target data for just about everything so depend on it.
250    if (!TD) return 0;
251
252    Type *ReturnTy = CI.getType();
253    uint64_t DontKnow = II->getArgOperand(1) == Builder->getTrue() ? 0 : -1ULL;
254
255    // Get to the real allocated thing and offset as fast as possible.
256    Value *Op1 = II->getArgOperand(0)->stripPointerCasts();
257
258    uint64_t Offset = 0;
259    uint64_t Size = -1ULL;
260
261    // Try to look through constant GEPs.
262    if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) {
263      if (!GEP->hasAllConstantIndices()) return 0;
264
265      // Get the current byte offset into the thing. Use the original
266      // operand in case we're looking through a bitcast.
267      SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
268      if (!GEP->getPointerOperandType()->isPointerTy())
269        return 0;
270      Offset = TD->getIndexedOffset(GEP->getPointerOperandType(), Ops);
271
272      Op1 = GEP->getPointerOperand()->stripPointerCasts();
273
274      // Make sure we're not a constant offset from an external
275      // global.
276      if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1))
277        if (!GV->hasDefinitiveInitializer()) return 0;
278    }
279
280    // If we've stripped down to a single global variable that we
281    // can know the size of then just return that.
282    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
283      if (GV->hasDefinitiveInitializer()) {
284        Constant *C = GV->getInitializer();
285        Size = TD->getTypeAllocSize(C->getType());
286      } else {
287        // Can't determine size of the GV.
288        Constant *RetVal = ConstantInt::get(ReturnTy, DontKnow);
289        return ReplaceInstUsesWith(CI, RetVal);
290      }
291    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
292      // Get alloca size.
293      if (AI->getAllocatedType()->isSized()) {
294        Size = TD->getTypeAllocSize(AI->getAllocatedType());
295        if (AI->isArrayAllocation()) {
296          const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
297          if (!C) return 0;
298          Size *= C->getZExtValue();
299        }
300      }
301    } else if (CallInst *MI = extractMallocCall(Op1)) {
302      // Get allocation size.
303      Value *Arg = MI->getArgOperand(0);
304      if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg))
305          Size = CI->getZExtValue();
306
307    } else if (CallInst *MI = extractCallocCall(Op1)) {
308      // Get allocation size.
309      Value *Arg1 = MI->getArgOperand(0);
310      Value *Arg2 = MI->getArgOperand(1);
311      if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Arg1))
312        if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Arg2))
313          Size = (CI1->getValue() * CI2->getValue()).getZExtValue();
314    }
315
316    // Do not return "I don't know" here. Later optimization passes could
317    // make it possible to evaluate objectsize to a constant.
318    if (Size == -1ULL)
319      return 0;
320
321    if (Size < Offset) {
322      // Out of bound reference? Negative index normalized to large
323      // index? Just return "I don't know".
324      return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, DontKnow));
325    }
326    return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, Size-Offset));
327  }
328  case Intrinsic::bswap:
329    // bswap(bswap(x)) -> x
330    if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
331      if (Operand->getIntrinsicID() == Intrinsic::bswap)
332        return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
333
334    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
335    if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
336      if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
337        if (Operand->getIntrinsicID() == Intrinsic::bswap) {
338          unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
339                       TI->getType()->getPrimitiveSizeInBits();
340          Value *CV = ConstantInt::get(Operand->getType(), C);
341          Value *V = Builder->CreateLShr(Operand->getArgOperand(0), CV);
342          return new TruncInst(V, TI->getType());
343        }
344    }
345
346    break;
347  case Intrinsic::powi:
348    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
349      // powi(x, 0) -> 1.0
350      if (Power->isZero())
351        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
352      // powi(x, 1) -> x
353      if (Power->isOne())
354        return ReplaceInstUsesWith(CI, II->getArgOperand(0));
355      // powi(x, -1) -> 1/x
356      if (Power->isAllOnesValue())
357        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
358                                          II->getArgOperand(0));
359    }
360    break;
361  case Intrinsic::cttz: {
362    // If all bits below the first known one are known zero,
363    // this value is constant.
364    IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
365    // FIXME: Try to simplify vectors of integers.
366    if (!IT) break;
367    uint32_t BitWidth = IT->getBitWidth();
368    APInt KnownZero(BitWidth, 0);
369    APInt KnownOne(BitWidth, 0);
370    ComputeMaskedBits(II->getArgOperand(0), KnownZero, KnownOne);
371    unsigned TrailingZeros = KnownOne.countTrailingZeros();
372    APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
373    if ((Mask & KnownZero) == Mask)
374      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
375                                 APInt(BitWidth, TrailingZeros)));
376
377    }
378    break;
379  case Intrinsic::ctlz: {
380    // If all bits above the first known one are known zero,
381    // this value is constant.
382    IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
383    // FIXME: Try to simplify vectors of integers.
384    if (!IT) break;
385    uint32_t BitWidth = IT->getBitWidth();
386    APInt KnownZero(BitWidth, 0);
387    APInt KnownOne(BitWidth, 0);
388    ComputeMaskedBits(II->getArgOperand(0), KnownZero, KnownOne);
389    unsigned LeadingZeros = KnownOne.countLeadingZeros();
390    APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
391    if ((Mask & KnownZero) == Mask)
392      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
393                                 APInt(BitWidth, LeadingZeros)));
394
395    }
396    break;
397  case Intrinsic::uadd_with_overflow: {
398    Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
399    IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
400    uint32_t BitWidth = IT->getBitWidth();
401    APInt LHSKnownZero(BitWidth, 0);
402    APInt LHSKnownOne(BitWidth, 0);
403    ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
404    bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
405    bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
406
407    if (LHSKnownNegative || LHSKnownPositive) {
408      APInt RHSKnownZero(BitWidth, 0);
409      APInt RHSKnownOne(BitWidth, 0);
410      ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
411      bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
412      bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
413      if (LHSKnownNegative && RHSKnownNegative) {
414        // The sign bit is set in both cases: this MUST overflow.
415        // Create a simple add instruction, and insert it into the struct.
416        Value *Add = Builder->CreateAdd(LHS, RHS);
417        Add->takeName(&CI);
418        Constant *V[] = {
419          UndefValue::get(LHS->getType()),
420          ConstantInt::getTrue(II->getContext())
421        };
422        StructType *ST = cast<StructType>(II->getType());
423        Constant *Struct = ConstantStruct::get(ST, V);
424        return InsertValueInst::Create(Struct, Add, 0);
425      }
426
427      if (LHSKnownPositive && RHSKnownPositive) {
428        // The sign bit is clear in both cases: this CANNOT overflow.
429        // Create a simple add instruction, and insert it into the struct.
430        Value *Add = Builder->CreateNUWAdd(LHS, RHS);
431        Add->takeName(&CI);
432        Constant *V[] = {
433          UndefValue::get(LHS->getType()),
434          ConstantInt::getFalse(II->getContext())
435        };
436        StructType *ST = cast<StructType>(II->getType());
437        Constant *Struct = ConstantStruct::get(ST, V);
438        return InsertValueInst::Create(Struct, Add, 0);
439      }
440    }
441  }
442  // FALL THROUGH uadd into sadd
443  case Intrinsic::sadd_with_overflow:
444    // Canonicalize constants into the RHS.
445    if (isa<Constant>(II->getArgOperand(0)) &&
446        !isa<Constant>(II->getArgOperand(1))) {
447      Value *LHS = II->getArgOperand(0);
448      II->setArgOperand(0, II->getArgOperand(1));
449      II->setArgOperand(1, LHS);
450      return II;
451    }
452
453    // X + undef -> undef
454    if (isa<UndefValue>(II->getArgOperand(1)))
455      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
456
457    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
458      // X + 0 -> {X, false}
459      if (RHS->isZero()) {
460        Constant *V[] = {
461          UndefValue::get(II->getArgOperand(0)->getType()),
462          ConstantInt::getFalse(II->getContext())
463        };
464        Constant *Struct =
465          ConstantStruct::get(cast<StructType>(II->getType()), V);
466        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
467      }
468    }
469    break;
470  case Intrinsic::usub_with_overflow:
471  case Intrinsic::ssub_with_overflow:
472    // undef - X -> undef
473    // X - undef -> undef
474    if (isa<UndefValue>(II->getArgOperand(0)) ||
475        isa<UndefValue>(II->getArgOperand(1)))
476      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
477
478    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
479      // X - 0 -> {X, false}
480      if (RHS->isZero()) {
481        Constant *V[] = {
482          UndefValue::get(II->getArgOperand(0)->getType()),
483          ConstantInt::getFalse(II->getContext())
484        };
485        Constant *Struct =
486          ConstantStruct::get(cast<StructType>(II->getType()), V);
487        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
488      }
489    }
490    break;
491  case Intrinsic::umul_with_overflow: {
492    Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
493    unsigned BitWidth = cast<IntegerType>(LHS->getType())->getBitWidth();
494
495    APInt LHSKnownZero(BitWidth, 0);
496    APInt LHSKnownOne(BitWidth, 0);
497    ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
498    APInt RHSKnownZero(BitWidth, 0);
499    APInt RHSKnownOne(BitWidth, 0);
500    ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
501
502    // Get the largest possible values for each operand.
503    APInt LHSMax = ~LHSKnownZero;
504    APInt RHSMax = ~RHSKnownZero;
505
506    // If multiplying the maximum values does not overflow then we can turn
507    // this into a plain NUW mul.
508    bool Overflow;
509    LHSMax.umul_ov(RHSMax, Overflow);
510    if (!Overflow) {
511      Value *Mul = Builder->CreateNUWMul(LHS, RHS, "umul_with_overflow");
512      Constant *V[] = {
513        UndefValue::get(LHS->getType()),
514        Builder->getFalse()
515      };
516      Constant *Struct = ConstantStruct::get(cast<StructType>(II->getType()),V);
517      return InsertValueInst::Create(Struct, Mul, 0);
518    }
519  } // FALL THROUGH
520  case Intrinsic::smul_with_overflow:
521    // Canonicalize constants into the RHS.
522    if (isa<Constant>(II->getArgOperand(0)) &&
523        !isa<Constant>(II->getArgOperand(1))) {
524      Value *LHS = II->getArgOperand(0);
525      II->setArgOperand(0, II->getArgOperand(1));
526      II->setArgOperand(1, LHS);
527      return II;
528    }
529
530    // X * undef -> undef
531    if (isa<UndefValue>(II->getArgOperand(1)))
532      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
533
534    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
535      // X*0 -> {0, false}
536      if (RHSI->isZero())
537        return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
538
539      // X * 1 -> {X, false}
540      if (RHSI->equalsInt(1)) {
541        Constant *V[] = {
542          UndefValue::get(II->getArgOperand(0)->getType()),
543          ConstantInt::getFalse(II->getContext())
544        };
545        Constant *Struct =
546          ConstantStruct::get(cast<StructType>(II->getType()), V);
547        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
548      }
549    }
550    break;
551  case Intrinsic::ppc_altivec_lvx:
552  case Intrinsic::ppc_altivec_lvxl:
553    // Turn PPC lvx -> load if the pointer is known aligned.
554    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
555      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
556                                         PointerType::getUnqual(II->getType()));
557      return new LoadInst(Ptr);
558    }
559    break;
560  case Intrinsic::ppc_altivec_stvx:
561  case Intrinsic::ppc_altivec_stvxl:
562    // Turn stvx -> store if the pointer is known aligned.
563    if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) {
564      Type *OpPtrTy =
565        PointerType::getUnqual(II->getArgOperand(0)->getType());
566      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
567      return new StoreInst(II->getArgOperand(0), Ptr);
568    }
569    break;
570  case Intrinsic::x86_sse_storeu_ps:
571  case Intrinsic::x86_sse2_storeu_pd:
572  case Intrinsic::x86_sse2_storeu_dq:
573    // Turn X86 storeu -> store if the pointer is known aligned.
574    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
575      Type *OpPtrTy =
576        PointerType::getUnqual(II->getArgOperand(1)->getType());
577      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
578      return new StoreInst(II->getArgOperand(1), Ptr);
579    }
580    break;
581
582  case Intrinsic::x86_sse_cvtss2si:
583  case Intrinsic::x86_sse_cvtss2si64:
584  case Intrinsic::x86_sse_cvttss2si:
585  case Intrinsic::x86_sse_cvttss2si64:
586  case Intrinsic::x86_sse2_cvtsd2si:
587  case Intrinsic::x86_sse2_cvtsd2si64:
588  case Intrinsic::x86_sse2_cvttsd2si:
589  case Intrinsic::x86_sse2_cvttsd2si64: {
590    // These intrinsics only demand the 0th element of their input vectors. If
591    // we can simplify the input based on that, do so now.
592    unsigned VWidth =
593      cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
594    APInt DemandedElts(VWidth, 1);
595    APInt UndefElts(VWidth, 0);
596    if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
597                                              DemandedElts, UndefElts)) {
598      II->setArgOperand(0, V);
599      return II;
600    }
601    break;
602  }
603
604
605  case Intrinsic::x86_sse41_pmovsxbw:
606  case Intrinsic::x86_sse41_pmovsxwd:
607  case Intrinsic::x86_sse41_pmovsxdq:
608  case Intrinsic::x86_sse41_pmovzxbw:
609  case Intrinsic::x86_sse41_pmovzxwd:
610  case Intrinsic::x86_sse41_pmovzxdq: {
611    // pmov{s|z}x ignores the upper half of their input vectors.
612    unsigned VWidth =
613      cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
614    unsigned LowHalfElts = VWidth / 2;
615    APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
616    APInt UndefElts(VWidth, 0);
617    if (Value *TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0),
618                                                 InputDemandedElts,
619                                                 UndefElts)) {
620      II->setArgOperand(0, TmpV);
621      return II;
622    }
623    break;
624  }
625
626  case Intrinsic::ppc_altivec_vperm:
627    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
628    if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
629      assert(Mask->getType()->getVectorNumElements() == 16 &&
630             "Bad type for intrinsic!");
631
632      // Check that all of the elements are integer constants or undefs.
633      bool AllEltsOk = true;
634      for (unsigned i = 0; i != 16; ++i) {
635        Constant *Elt = Mask->getAggregateElement(i);
636        if (Elt == 0 ||
637            !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
638          AllEltsOk = false;
639          break;
640        }
641      }
642
643      if (AllEltsOk) {
644        // Cast the input vectors to byte vectors.
645        Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
646                                            Mask->getType());
647        Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
648                                            Mask->getType());
649        Value *Result = UndefValue::get(Op0->getType());
650
651        // Only extract each element once.
652        Value *ExtractedElts[32];
653        memset(ExtractedElts, 0, sizeof(ExtractedElts));
654
655        for (unsigned i = 0; i != 16; ++i) {
656          if (isa<UndefValue>(Mask->getAggregateElement(i)))
657            continue;
658          unsigned Idx =
659            cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
660          Idx &= 31;  // Match the hardware behavior.
661
662          if (ExtractedElts[Idx] == 0) {
663            ExtractedElts[Idx] =
664              Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
665                                            Builder->getInt32(Idx&15));
666          }
667
668          // Insert this value into the result vector.
669          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
670                                                Builder->getInt32(i));
671        }
672        return CastInst::Create(Instruction::BitCast, Result, CI.getType());
673      }
674    }
675    break;
676
677  case Intrinsic::arm_neon_vld1:
678  case Intrinsic::arm_neon_vld2:
679  case Intrinsic::arm_neon_vld3:
680  case Intrinsic::arm_neon_vld4:
681  case Intrinsic::arm_neon_vld2lane:
682  case Intrinsic::arm_neon_vld3lane:
683  case Intrinsic::arm_neon_vld4lane:
684  case Intrinsic::arm_neon_vst1:
685  case Intrinsic::arm_neon_vst2:
686  case Intrinsic::arm_neon_vst3:
687  case Intrinsic::arm_neon_vst4:
688  case Intrinsic::arm_neon_vst2lane:
689  case Intrinsic::arm_neon_vst3lane:
690  case Intrinsic::arm_neon_vst4lane: {
691    unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), TD);
692    unsigned AlignArg = II->getNumArgOperands() - 1;
693    ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
694    if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
695      II->setArgOperand(AlignArg,
696                        ConstantInt::get(Type::getInt32Ty(II->getContext()),
697                                         MemAlign, false));
698      return II;
699    }
700    break;
701  }
702
703  case Intrinsic::arm_neon_vmulls:
704  case Intrinsic::arm_neon_vmullu: {
705    Value *Arg0 = II->getArgOperand(0);
706    Value *Arg1 = II->getArgOperand(1);
707
708    // Handle mul by zero first:
709    if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
710      return ReplaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
711    }
712
713    // Check for constant LHS & RHS - in this case we just simplify.
714    bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu);
715    VectorType *NewVT = cast<VectorType>(II->getType());
716    unsigned NewWidth = NewVT->getElementType()->getIntegerBitWidth();
717    if (ConstantDataVector *CV0 = dyn_cast<ConstantDataVector>(Arg0)) {
718      if (ConstantDataVector *CV1 = dyn_cast<ConstantDataVector>(Arg1)) {
719        VectorType* VT = cast<VectorType>(CV0->getType());
720        SmallVector<Constant*, 4> NewElems;
721        for (unsigned i = 0; i < VT->getNumElements(); ++i) {
722          APInt CV0E =
723            (cast<ConstantInt>(CV0->getAggregateElement(i)))->getValue();
724          CV0E = Zext ? CV0E.zext(NewWidth) : CV0E.sext(NewWidth);
725          APInt CV1E =
726            (cast<ConstantInt>(CV1->getAggregateElement(i)))->getValue();
727          CV1E = Zext ? CV1E.zext(NewWidth) : CV1E.sext(NewWidth);
728          NewElems.push_back(
729            ConstantInt::get(NewVT->getElementType(), CV0E * CV1E));
730        }
731        return ReplaceInstUsesWith(CI, ConstantVector::get(NewElems));
732      }
733
734      // Couldn't simplify - cannonicalize constant to the RHS.
735      std::swap(Arg0, Arg1);
736    }
737
738    // Handle mul by one:
739    if (ConstantDataVector *CV1 = dyn_cast<ConstantDataVector>(Arg1)) {
740      if (ConstantInt *Splat =
741            dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) {
742        if (Splat->isOne()) {
743          if (Zext)
744            return CastInst::CreateZExtOrBitCast(Arg0, II->getType());
745          // else
746          return CastInst::CreateSExtOrBitCast(Arg0, II->getType());
747        }
748      }
749    }
750
751    break;
752  }
753
754  case Intrinsic::stackrestore: {
755    // If the save is right next to the restore, remove the restore.  This can
756    // happen when variable allocas are DCE'd.
757    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
758      if (SS->getIntrinsicID() == Intrinsic::stacksave) {
759        BasicBlock::iterator BI = SS;
760        if (&*++BI == II)
761          return EraseInstFromFunction(CI);
762      }
763    }
764
765    // Scan down this block to see if there is another stack restore in the
766    // same block without an intervening call/alloca.
767    BasicBlock::iterator BI = II;
768    TerminatorInst *TI = II->getParent()->getTerminator();
769    bool CannotRemove = false;
770    for (++BI; &*BI != TI; ++BI) {
771      if (isa<AllocaInst>(BI) || isMalloc(BI)) {
772        CannotRemove = true;
773        break;
774      }
775      if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
776        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
777          // If there is a stackrestore below this one, remove this one.
778          if (II->getIntrinsicID() == Intrinsic::stackrestore)
779            return EraseInstFromFunction(CI);
780          // Otherwise, ignore the intrinsic.
781        } else {
782          // If we found a non-intrinsic call, we can't remove the stack
783          // restore.
784          CannotRemove = true;
785          break;
786        }
787      }
788    }
789
790    // If the stack restore is in a return, resume, or unwind block and if there
791    // are no allocas or calls between the restore and the return, nuke the
792    // restore.
793    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
794      return EraseInstFromFunction(CI);
795    break;
796  }
797  }
798
799  return visitCallSite(II);
800}
801
802// InvokeInst simplification
803//
804Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
805  return visitCallSite(&II);
806}
807
808/// isSafeToEliminateVarargsCast - If this cast does not affect the value
809/// passed through the varargs area, we can eliminate the use of the cast.
810static bool isSafeToEliminateVarargsCast(const CallSite CS,
811                                         const CastInst * const CI,
812                                         const TargetData * const TD,
813                                         const int ix) {
814  if (!CI->isLosslessCast())
815    return false;
816
817  // The size of ByVal arguments is derived from the type, so we
818  // can't change to a type with a different size.  If the size were
819  // passed explicitly we could avoid this check.
820  if (!CS.isByValArgument(ix))
821    return true;
822
823  Type* SrcTy =
824            cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
825  Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
826  if (!SrcTy->isSized() || !DstTy->isSized())
827    return false;
828  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
829    return false;
830  return true;
831}
832
833namespace {
834class InstCombineFortifiedLibCalls : public SimplifyFortifiedLibCalls {
835  InstCombiner *IC;
836protected:
837  void replaceCall(Value *With) {
838    NewInstruction = IC->ReplaceInstUsesWith(*CI, With);
839  }
840  bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
841    if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
842      return true;
843    if (ConstantInt *SizeCI =
844                           dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
845      if (SizeCI->isAllOnesValue())
846        return true;
847      if (isString) {
848        uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
849        // If the length is 0 we don't know how long it is and so we can't
850        // remove the check.
851        if (Len == 0) return false;
852        return SizeCI->getZExtValue() >= Len;
853      }
854      if (ConstantInt *Arg = dyn_cast<ConstantInt>(
855                                                  CI->getArgOperand(SizeArgOp)))
856        return SizeCI->getZExtValue() >= Arg->getZExtValue();
857    }
858    return false;
859  }
860public:
861  InstCombineFortifiedLibCalls(InstCombiner *IC) : IC(IC), NewInstruction(0) { }
862  Instruction *NewInstruction;
863};
864} // end anonymous namespace
865
866// Try to fold some different type of calls here.
867// Currently we're only working with the checking functions, memcpy_chk,
868// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
869// strcat_chk and strncat_chk.
870Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
871  if (CI->getCalledFunction() == 0) return 0;
872
873  InstCombineFortifiedLibCalls Simplifier(this);
874  Simplifier.fold(CI, TD);
875  return Simplifier.NewInstruction;
876}
877
878static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) {
879  // Strip off at most one level of pointer casts, looking for an alloca.  This
880  // is good enough in practice and simpler than handling any number of casts.
881  Value *Underlying = TrampMem->stripPointerCasts();
882  if (Underlying != TrampMem &&
883      (!Underlying->hasOneUse() || *Underlying->use_begin() != TrampMem))
884    return 0;
885  if (!isa<AllocaInst>(Underlying))
886    return 0;
887
888  IntrinsicInst *InitTrampoline = 0;
889  for (Value::use_iterator I = TrampMem->use_begin(), E = TrampMem->use_end();
890       I != E; I++) {
891    IntrinsicInst *II = dyn_cast<IntrinsicInst>(*I);
892    if (!II)
893      return 0;
894    if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
895      if (InitTrampoline)
896        // More than one init_trampoline writes to this value.  Give up.
897        return 0;
898      InitTrampoline = II;
899      continue;
900    }
901    if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
902      // Allow any number of calls to adjust.trampoline.
903      continue;
904    return 0;
905  }
906
907  // No call to init.trampoline found.
908  if (!InitTrampoline)
909    return 0;
910
911  // Check that the alloca is being used in the expected way.
912  if (InitTrampoline->getOperand(0) != TrampMem)
913    return 0;
914
915  return InitTrampoline;
916}
917
918static IntrinsicInst *FindInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
919                                               Value *TrampMem) {
920  // Visit all the previous instructions in the basic block, and try to find a
921  // init.trampoline which has a direct path to the adjust.trampoline.
922  for (BasicBlock::iterator I = AdjustTramp,
923       E = AdjustTramp->getParent()->begin(); I != E; ) {
924    Instruction *Inst = --I;
925    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
926      if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
927          II->getOperand(0) == TrampMem)
928        return II;
929    if (Inst->mayWriteToMemory())
930      return 0;
931  }
932  return 0;
933}
934
935// Given a call to llvm.adjust.trampoline, find and return the corresponding
936// call to llvm.init.trampoline if the call to the trampoline can be optimized
937// to a direct call to a function.  Otherwise return NULL.
938//
939static IntrinsicInst *FindInitTrampoline(Value *Callee) {
940  Callee = Callee->stripPointerCasts();
941  IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
942  if (!AdjustTramp ||
943      AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
944    return 0;
945
946  Value *TrampMem = AdjustTramp->getOperand(0);
947
948  if (IntrinsicInst *IT = FindInitTrampolineFromAlloca(TrampMem))
949    return IT;
950  if (IntrinsicInst *IT = FindInitTrampolineFromBB(AdjustTramp, TrampMem))
951    return IT;
952  return 0;
953}
954
955// visitCallSite - Improvements for call and invoke instructions.
956//
957Instruction *InstCombiner::visitCallSite(CallSite CS) {
958  bool Changed = false;
959
960  // If the callee is a pointer to a function, attempt to move any casts to the
961  // arguments of the call/invoke.
962  Value *Callee = CS.getCalledValue();
963  if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
964    return 0;
965
966  if (Function *CalleeF = dyn_cast<Function>(Callee))
967    // If the call and callee calling conventions don't match, this call must
968    // be unreachable, as the call is undefined.
969    if (CalleeF->getCallingConv() != CS.getCallingConv() &&
970        // Only do this for calls to a function with a body.  A prototype may
971        // not actually end up matching the implementation's calling conv for a
972        // variety of reasons (e.g. it may be written in assembly).
973        !CalleeF->isDeclaration()) {
974      Instruction *OldCall = CS.getInstruction();
975      new StoreInst(ConstantInt::getTrue(Callee->getContext()),
976                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
977                                  OldCall);
978      // If OldCall dues not return void then replaceAllUsesWith undef.
979      // This allows ValueHandlers and custom metadata to adjust itself.
980      if (!OldCall->getType()->isVoidTy())
981        ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
982      if (isa<CallInst>(OldCall))
983        return EraseInstFromFunction(*OldCall);
984
985      // We cannot remove an invoke, because it would change the CFG, just
986      // change the callee to a null pointer.
987      cast<InvokeInst>(OldCall)->setCalledFunction(
988                                    Constant::getNullValue(CalleeF->getType()));
989      return 0;
990    }
991
992  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
993    // This instruction is not reachable, just remove it.  We insert a store to
994    // undef so that we know that this code is not reachable, despite the fact
995    // that we can't modify the CFG here.
996    new StoreInst(ConstantInt::getTrue(Callee->getContext()),
997               UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
998                  CS.getInstruction());
999
1000    // If CS does not return void then replaceAllUsesWith undef.
1001    // This allows ValueHandlers and custom metadata to adjust itself.
1002    if (!CS.getInstruction()->getType()->isVoidTy())
1003      ReplaceInstUsesWith(*CS.getInstruction(),
1004                          UndefValue::get(CS.getInstruction()->getType()));
1005
1006    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1007      // Don't break the CFG, insert a dummy cond branch.
1008      BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
1009                         ConstantInt::getTrue(Callee->getContext()), II);
1010    }
1011    return EraseInstFromFunction(*CS.getInstruction());
1012  }
1013
1014  if (IntrinsicInst *II = FindInitTrampoline(Callee))
1015    return transformCallThroughTrampoline(CS, II);
1016
1017  PointerType *PTy = cast<PointerType>(Callee->getType());
1018  FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1019  if (FTy->isVarArg()) {
1020    int ix = FTy->getNumParams();
1021    // See if we can optimize any arguments passed through the varargs area of
1022    // the call.
1023    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
1024           E = CS.arg_end(); I != E; ++I, ++ix) {
1025      CastInst *CI = dyn_cast<CastInst>(*I);
1026      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
1027        *I = CI->getOperand(0);
1028        Changed = true;
1029      }
1030    }
1031  }
1032
1033  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
1034    // Inline asm calls cannot throw - mark them 'nounwind'.
1035    CS.setDoesNotThrow();
1036    Changed = true;
1037  }
1038
1039  // Try to optimize the call if possible, we require TargetData for most of
1040  // this.  None of these calls are seen as possibly dead so go ahead and
1041  // delete the instruction now.
1042  if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
1043    Instruction *I = tryOptimizeCall(CI, TD);
1044    // If we changed something return the result, etc. Otherwise let
1045    // the fallthrough check.
1046    if (I) return EraseInstFromFunction(*I);
1047  }
1048
1049  return Changed ? CS.getInstruction() : 0;
1050}
1051
1052// transformConstExprCastCall - If the callee is a constexpr cast of a function,
1053// attempt to move the cast to the arguments of the call/invoke.
1054//
1055bool InstCombiner::transformConstExprCastCall(CallSite CS) {
1056  Function *Callee =
1057    dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
1058  if (Callee == 0)
1059    return false;
1060  Instruction *Caller = CS.getInstruction();
1061  const AttrListPtr &CallerPAL = CS.getAttributes();
1062
1063  // Okay, this is a cast from a function to a different type.  Unless doing so
1064  // would cause a type conversion of one of our arguments, change this call to
1065  // be a direct call with arguments casted to the appropriate types.
1066  //
1067  FunctionType *FT = Callee->getFunctionType();
1068  Type *OldRetTy = Caller->getType();
1069  Type *NewRetTy = FT->getReturnType();
1070
1071  if (NewRetTy->isStructTy())
1072    return false; // TODO: Handle multiple return values.
1073
1074  // Check to see if we are changing the return type...
1075  if (OldRetTy != NewRetTy) {
1076    if (Callee->isDeclaration() &&
1077        // Conversion is ok if changing from one pointer type to another or from
1078        // a pointer to an integer of the same size.
1079        !((OldRetTy->isPointerTy() || !TD ||
1080           OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
1081          (NewRetTy->isPointerTy() || !TD ||
1082           NewRetTy == TD->getIntPtrType(Caller->getContext()))))
1083      return false;   // Cannot transform this return value.
1084
1085    if (!Caller->use_empty() &&
1086        // void -> non-void is handled specially
1087        !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
1088      return false;   // Cannot transform this return value.
1089
1090    if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
1091      Attributes RAttrs = CallerPAL.getRetAttributes();
1092      if (RAttrs & Attribute::typeIncompatible(NewRetTy))
1093        return false;   // Attribute not compatible with transformed value.
1094    }
1095
1096    // If the callsite is an invoke instruction, and the return value is used by
1097    // a PHI node in a successor, we cannot change the return type of the call
1098    // because there is no place to put the cast instruction (without breaking
1099    // the critical edge).  Bail out in this case.
1100    if (!Caller->use_empty())
1101      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
1102        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
1103             UI != E; ++UI)
1104          if (PHINode *PN = dyn_cast<PHINode>(*UI))
1105            if (PN->getParent() == II->getNormalDest() ||
1106                PN->getParent() == II->getUnwindDest())
1107              return false;
1108  }
1109
1110  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
1111  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
1112
1113  CallSite::arg_iterator AI = CS.arg_begin();
1114  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
1115    Type *ParamTy = FT->getParamType(i);
1116    Type *ActTy = (*AI)->getType();
1117
1118    if (!CastInst::isCastable(ActTy, ParamTy))
1119      return false;   // Cannot transform this parameter value.
1120
1121    Attributes Attrs = CallerPAL.getParamAttributes(i + 1);
1122    if (Attrs & Attribute::typeIncompatible(ParamTy))
1123      return false;   // Attribute not compatible with transformed value.
1124
1125    // If the parameter is passed as a byval argument, then we have to have a
1126    // sized type and the sized type has to have the same size as the old type.
1127    if (ParamTy != ActTy && (Attrs & Attribute::ByVal)) {
1128      PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
1129      if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
1130        return false;
1131
1132      Type *CurElTy = cast<PointerType>(ActTy)->getElementType();
1133      if (TD->getTypeAllocSize(CurElTy) !=
1134          TD->getTypeAllocSize(ParamPTy->getElementType()))
1135        return false;
1136    }
1137
1138    // Converting from one pointer type to another or between a pointer and an
1139    // integer of the same size is safe even if we do not have a body.
1140    bool isConvertible = ActTy == ParamTy ||
1141      (TD && ((ParamTy->isPointerTy() ||
1142      ParamTy == TD->getIntPtrType(Caller->getContext())) &&
1143              (ActTy->isPointerTy() ||
1144              ActTy == TD->getIntPtrType(Caller->getContext()))));
1145    if (Callee->isDeclaration() && !isConvertible) return false;
1146  }
1147
1148  if (Callee->isDeclaration()) {
1149    // Do not delete arguments unless we have a function body.
1150    if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
1151      return false;
1152
1153    // If the callee is just a declaration, don't change the varargsness of the
1154    // call.  We don't want to introduce a varargs call where one doesn't
1155    // already exist.
1156    PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
1157    if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
1158      return false;
1159
1160    // If both the callee and the cast type are varargs, we still have to make
1161    // sure the number of fixed parameters are the same or we have the same
1162    // ABI issues as if we introduce a varargs call.
1163    if (FT->isVarArg() &&
1164        cast<FunctionType>(APTy->getElementType())->isVarArg() &&
1165        FT->getNumParams() !=
1166        cast<FunctionType>(APTy->getElementType())->getNumParams())
1167      return false;
1168  }
1169
1170  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
1171      !CallerPAL.isEmpty())
1172    // In this case we have more arguments than the new function type, but we
1173    // won't be dropping them.  Check that these extra arguments have attributes
1174    // that are compatible with being a vararg call argument.
1175    for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
1176      if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
1177        break;
1178      Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
1179      if (PAttrs & Attribute::VarArgsIncompatible)
1180        return false;
1181    }
1182
1183
1184  // Okay, we decided that this is a safe thing to do: go ahead and start
1185  // inserting cast instructions as necessary.
1186  std::vector<Value*> Args;
1187  Args.reserve(NumActualArgs);
1188  SmallVector<AttributeWithIndex, 8> attrVec;
1189  attrVec.reserve(NumCommonArgs);
1190
1191  // Get any return attributes.
1192  Attributes RAttrs = CallerPAL.getRetAttributes();
1193
1194  // If the return value is not being used, the type may not be compatible
1195  // with the existing attributes.  Wipe out any problematic attributes.
1196  RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
1197
1198  // Add the new return attributes.
1199  if (RAttrs)
1200    attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
1201
1202  AI = CS.arg_begin();
1203  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
1204    Type *ParamTy = FT->getParamType(i);
1205    if ((*AI)->getType() == ParamTy) {
1206      Args.push_back(*AI);
1207    } else {
1208      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
1209          false, ParamTy, false);
1210      Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy));
1211    }
1212
1213    // Add any parameter attributes.
1214    if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1215      attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1216  }
1217
1218  // If the function takes more arguments than the call was taking, add them
1219  // now.
1220  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1221    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1222
1223  // If we are removing arguments to the function, emit an obnoxious warning.
1224  if (FT->getNumParams() < NumActualArgs) {
1225    if (!FT->isVarArg()) {
1226      errs() << "WARNING: While resolving call to function '"
1227             << Callee->getName() << "' arguments were dropped!\n";
1228    } else {
1229      // Add all of the arguments in their promoted form to the arg list.
1230      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1231        Type *PTy = getPromotedType((*AI)->getType());
1232        if (PTy != (*AI)->getType()) {
1233          // Must promote to pass through va_arg area!
1234          Instruction::CastOps opcode =
1235            CastInst::getCastOpcode(*AI, false, PTy, false);
1236          Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
1237        } else {
1238          Args.push_back(*AI);
1239        }
1240
1241        // Add any parameter attributes.
1242        if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1243          attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1244      }
1245    }
1246  }
1247
1248  if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
1249    attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
1250
1251  if (NewRetTy->isVoidTy())
1252    Caller->setName("");   // Void type should not have a name.
1253
1254  const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
1255                                                     attrVec.end());
1256
1257  Instruction *NC;
1258  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1259    NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
1260                               II->getUnwindDest(), Args);
1261    NC->takeName(II);
1262    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1263    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1264  } else {
1265    CallInst *CI = cast<CallInst>(Caller);
1266    NC = Builder->CreateCall(Callee, Args);
1267    NC->takeName(CI);
1268    if (CI->isTailCall())
1269      cast<CallInst>(NC)->setTailCall();
1270    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1271    cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1272  }
1273
1274  // Insert a cast of the return type as necessary.
1275  Value *NV = NC;
1276  if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1277    if (!NV->getType()->isVoidTy()) {
1278      Instruction::CastOps opcode =
1279        CastInst::getCastOpcode(NC, false, OldRetTy, false);
1280      NV = NC = CastInst::Create(opcode, NC, OldRetTy);
1281      NC->setDebugLoc(Caller->getDebugLoc());
1282
1283      // If this is an invoke instruction, we should insert it after the first
1284      // non-phi, instruction in the normal successor block.
1285      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1286        BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
1287        InsertNewInstBefore(NC, *I);
1288      } else {
1289        // Otherwise, it's a call, just insert cast right after the call.
1290        InsertNewInstBefore(NC, *Caller);
1291      }
1292      Worklist.AddUsersToWorkList(*Caller);
1293    } else {
1294      NV = UndefValue::get(Caller->getType());
1295    }
1296  }
1297
1298  if (!Caller->use_empty())
1299    ReplaceInstUsesWith(*Caller, NV);
1300
1301  EraseInstFromFunction(*Caller);
1302  return true;
1303}
1304
1305// transformCallThroughTrampoline - Turn a call to a function created by
1306// init_trampoline / adjust_trampoline intrinsic pair into a direct call to the
1307// underlying function.
1308//
1309Instruction *
1310InstCombiner::transformCallThroughTrampoline(CallSite CS,
1311                                             IntrinsicInst *Tramp) {
1312  Value *Callee = CS.getCalledValue();
1313  PointerType *PTy = cast<PointerType>(Callee->getType());
1314  FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1315  const AttrListPtr &Attrs = CS.getAttributes();
1316
1317  // If the call already has the 'nest' attribute somewhere then give up -
1318  // otherwise 'nest' would occur twice after splicing in the chain.
1319  if (Attrs.hasAttrSomewhere(Attribute::Nest))
1320    return 0;
1321
1322  assert(Tramp &&
1323         "transformCallThroughTrampoline called with incorrect CallSite.");
1324
1325  Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
1326  PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1327  FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1328
1329  const AttrListPtr &NestAttrs = NestF->getAttributes();
1330  if (!NestAttrs.isEmpty()) {
1331    unsigned NestIdx = 1;
1332    Type *NestTy = 0;
1333    Attributes NestAttr = Attribute::None;
1334
1335    // Look for a parameter marked with the 'nest' attribute.
1336    for (FunctionType::param_iterator I = NestFTy->param_begin(),
1337         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1338      if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1339        // Record the parameter type and any other attributes.
1340        NestTy = *I;
1341        NestAttr = NestAttrs.getParamAttributes(NestIdx);
1342        break;
1343      }
1344
1345    if (NestTy) {
1346      Instruction *Caller = CS.getInstruction();
1347      std::vector<Value*> NewArgs;
1348      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1349
1350      SmallVector<AttributeWithIndex, 8> NewAttrs;
1351      NewAttrs.reserve(Attrs.getNumSlots() + 1);
1352
1353      // Insert the nest argument into the call argument list, which may
1354      // mean appending it.  Likewise for attributes.
1355
1356      // Add any result attributes.
1357      if (Attributes Attr = Attrs.getRetAttributes())
1358        NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1359
1360      {
1361        unsigned Idx = 1;
1362        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1363        do {
1364          if (Idx == NestIdx) {
1365            // Add the chain argument and attributes.
1366            Value *NestVal = Tramp->getArgOperand(2);
1367            if (NestVal->getType() != NestTy)
1368              NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
1369            NewArgs.push_back(NestVal);
1370            NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1371          }
1372
1373          if (I == E)
1374            break;
1375
1376          // Add the original argument and attributes.
1377          NewArgs.push_back(*I);
1378          if (Attributes Attr = Attrs.getParamAttributes(Idx))
1379            NewAttrs.push_back
1380              (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1381
1382          ++Idx, ++I;
1383        } while (1);
1384      }
1385
1386      // Add any function attributes.
1387      if (Attributes Attr = Attrs.getFnAttributes())
1388        NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1389
1390      // The trampoline may have been bitcast to a bogus type (FTy).
1391      // Handle this by synthesizing a new function type, equal to FTy
1392      // with the chain parameter inserted.
1393
1394      std::vector<Type*> NewTypes;
1395      NewTypes.reserve(FTy->getNumParams()+1);
1396
1397      // Insert the chain's type into the list of parameter types, which may
1398      // mean appending it.
1399      {
1400        unsigned Idx = 1;
1401        FunctionType::param_iterator I = FTy->param_begin(),
1402          E = FTy->param_end();
1403
1404        do {
1405          if (Idx == NestIdx)
1406            // Add the chain's type.
1407            NewTypes.push_back(NestTy);
1408
1409          if (I == E)
1410            break;
1411
1412          // Add the original type.
1413          NewTypes.push_back(*I);
1414
1415          ++Idx, ++I;
1416        } while (1);
1417      }
1418
1419      // Replace the trampoline call with a direct call.  Let the generic
1420      // code sort out any function type mismatches.
1421      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1422                                                FTy->isVarArg());
1423      Constant *NewCallee =
1424        NestF->getType() == PointerType::getUnqual(NewFTy) ?
1425        NestF : ConstantExpr::getBitCast(NestF,
1426                                         PointerType::getUnqual(NewFTy));
1427      const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
1428                                                   NewAttrs.end());
1429
1430      Instruction *NewCaller;
1431      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1432        NewCaller = InvokeInst::Create(NewCallee,
1433                                       II->getNormalDest(), II->getUnwindDest(),
1434                                       NewArgs);
1435        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1436        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1437      } else {
1438        NewCaller = CallInst::Create(NewCallee, NewArgs);
1439        if (cast<CallInst>(Caller)->isTailCall())
1440          cast<CallInst>(NewCaller)->setTailCall();
1441        cast<CallInst>(NewCaller)->
1442          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1443        cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1444      }
1445
1446      return NewCaller;
1447    }
1448  }
1449
1450  // Replace the trampoline call with a direct call.  Since there is no 'nest'
1451  // parameter, there is no need to adjust the argument list.  Let the generic
1452  // code sort out any function type mismatches.
1453  Constant *NewCallee =
1454    NestF->getType() == PTy ? NestF :
1455                              ConstantExpr::getBitCast(NestF, PTy);
1456  CS.setCalledFunction(NewCallee);
1457  return CS.getInstruction();
1458}
1459