InstCombineCalls.cpp revision 240d42d18559a1f75558951ada556baaf289c7f0
1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Support/CallSite.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19#include "llvm/Transforms/Utils/BuildLibCalls.h"
20#include "llvm/Transforms/Utils/Local.h"
21using namespace llvm;
22
23/// getPromotedType - Return the specified type promoted as it would be to pass
24/// though a va_arg area.
25static const Type *getPromotedType(const Type *Ty) {
26  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
27    if (ITy->getBitWidth() < 32)
28      return Type::getInt32Ty(Ty->getContext());
29  }
30  return Ty;
31}
32
33
34Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
35  unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), TD);
36  unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), TD);
37  unsigned MinAlign = std::min(DstAlign, SrcAlign);
38  unsigned CopyAlign = MI->getAlignment();
39
40  if (CopyAlign < MinAlign) {
41    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
42                                             MinAlign, false));
43    return MI;
44  }
45
46  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
47  // load/store.
48  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
49  if (MemOpLength == 0) return 0;
50
51  // Source and destination pointer types are always "i8*" for intrinsic.  See
52  // if the size is something we can handle with a single primitive load/store.
53  // A single load+store correctly handles overlapping memory in the memmove
54  // case.
55  unsigned Size = MemOpLength->getZExtValue();
56  if (Size == 0) return MI;  // Delete this mem transfer.
57
58  if (Size > 8 || (Size&(Size-1)))
59    return 0;  // If not 1/2/4/8 bytes, exit.
60
61  // Use an integer load+store unless we can find something better.
62  unsigned SrcAddrSp =
63    cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
64  unsigned DstAddrSp =
65    cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
66
67  const IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
68  Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
69  Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
70
71  // Memcpy forces the use of i8* for the source and destination.  That means
72  // that if you're using memcpy to move one double around, you'll get a cast
73  // from double* to i8*.  We'd much rather use a double load+store rather than
74  // an i64 load+store, here because this improves the odds that the source or
75  // dest address will be promotable.  See if we can find a better type than the
76  // integer datatype.
77  Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
78  if (StrippedDest != MI->getArgOperand(0)) {
79    const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
80                                    ->getElementType();
81    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
82      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
83      // down through these levels if so.
84      while (!SrcETy->isSingleValueType()) {
85        if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
86          if (STy->getNumElements() == 1)
87            SrcETy = STy->getElementType(0);
88          else
89            break;
90        } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
91          if (ATy->getNumElements() == 1)
92            SrcETy = ATy->getElementType();
93          else
94            break;
95        } else
96          break;
97      }
98
99      if (SrcETy->isSingleValueType()) {
100        NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
101        NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
102      }
103    }
104  }
105
106
107  // If the memcpy/memmove provides better alignment info than we can
108  // infer, use it.
109  SrcAlign = std::max(SrcAlign, CopyAlign);
110  DstAlign = std::max(DstAlign, CopyAlign);
111
112  Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
113  Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
114  Instruction *L = new LoadInst(Src, "tmp", MI->isVolatile(), SrcAlign);
115  InsertNewInstBefore(L, *MI);
116  InsertNewInstBefore(new StoreInst(L, Dest, MI->isVolatile(), DstAlign),
117                      *MI);
118
119  // Set the size of the copy to 0, it will be deleted on the next iteration.
120  MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
121  return MI;
122}
123
124Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
125  unsigned Alignment = getKnownAlignment(MI->getDest(), TD);
126  if (MI->getAlignment() < Alignment) {
127    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
128                                             Alignment, false));
129    return MI;
130  }
131
132  // Extract the length and alignment and fill if they are constant.
133  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
134  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
135  if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
136    return 0;
137  uint64_t Len = LenC->getZExtValue();
138  Alignment = MI->getAlignment();
139
140  // If the length is zero, this is a no-op
141  if (Len == 0) return MI; // memset(d,c,0,a) -> noop
142
143  // memset(s,c,n) -> store s, c (for n=1,2,4,8)
144  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
145    const Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
146
147    Value *Dest = MI->getDest();
148    unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
149    Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
150    Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
151
152    // Alignment 0 is identity for alignment 1 for memset, but not store.
153    if (Alignment == 0) Alignment = 1;
154
155    // Extract the fill value and store.
156    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
157    InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
158                                      Dest, false, Alignment), *MI);
159
160    // Set the size of the copy to 0, it will be deleted on the next iteration.
161    MI->setLength(Constant::getNullValue(LenC->getType()));
162    return MI;
163  }
164
165  return 0;
166}
167
168/// visitCallInst - CallInst simplification.  This mostly only handles folding
169/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
170/// the heavy lifting.
171///
172Instruction *InstCombiner::visitCallInst(CallInst &CI) {
173  if (isFreeCall(&CI))
174    return visitFree(CI);
175  if (isMalloc(&CI))
176    return visitMalloc(CI);
177
178  // If the caller function is nounwind, mark the call as nounwind, even if the
179  // callee isn't.
180  if (CI.getParent()->getParent()->doesNotThrow() &&
181      !CI.doesNotThrow()) {
182    CI.setDoesNotThrow();
183    return &CI;
184  }
185
186  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
187  if (!II) return visitCallSite(&CI);
188
189  // Intrinsics cannot occur in an invoke, so handle them here instead of in
190  // visitCallSite.
191  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
192    bool Changed = false;
193
194    // memmove/cpy/set of zero bytes is a noop.
195    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
196      if (NumBytes->isNullValue())
197        return EraseInstFromFunction(CI);
198
199      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
200        if (CI->getZExtValue() == 1) {
201          // Replace the instruction with just byte operations.  We would
202          // transform other cases to loads/stores, but we don't know if
203          // alignment is sufficient.
204        }
205    }
206
207    // No other transformations apply to volatile transfers.
208    if (MI->isVolatile())
209      return 0;
210
211    // If we have a memmove and the source operation is a constant global,
212    // then the source and dest pointers can't alias, so we can change this
213    // into a call to memcpy.
214    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
215      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
216        if (GVSrc->isConstant()) {
217          Module *M = CI.getParent()->getParent()->getParent();
218          Intrinsic::ID MemCpyID = Intrinsic::memcpy;
219          const Type *Tys[3] = { CI.getArgOperand(0)->getType(),
220                                 CI.getArgOperand(1)->getType(),
221                                 CI.getArgOperand(2)->getType() };
222          CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys, 3));
223          Changed = true;
224        }
225    }
226
227    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
228      // memmove(x,x,size) -> noop.
229      if (MTI->getSource() == MTI->getDest())
230        return EraseInstFromFunction(CI);
231    }
232
233    // If we can determine a pointer alignment that is bigger than currently
234    // set, update the alignment.
235    if (isa<MemTransferInst>(MI)) {
236      if (Instruction *I = SimplifyMemTransfer(MI))
237        return I;
238    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
239      if (Instruction *I = SimplifyMemSet(MSI))
240        return I;
241    }
242
243    if (Changed) return II;
244  }
245
246  switch (II->getIntrinsicID()) {
247  default: break;
248  case Intrinsic::objectsize: {
249    // We need target data for just about everything so depend on it.
250    if (!TD) break;
251
252    const Type *ReturnTy = CI.getType();
253    uint64_t DontKnow = II->getArgOperand(1) == Builder->getTrue() ? 0 : -1ULL;
254
255    // Get to the real allocated thing and offset as fast as possible.
256    Value *Op1 = II->getArgOperand(0)->stripPointerCasts();
257
258    uint64_t Offset = 0;
259    uint64_t Size = -1ULL;
260
261    // Try to look through constant GEPs.
262    if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) {
263      if (!GEP->hasAllConstantIndices()) break;
264
265      // Get the current byte offset into the thing. Use the original
266      // operand in case we're looking through a bitcast.
267      SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
268      Offset = TD->getIndexedOffset(GEP->getPointerOperandType(),
269                                    Ops.data(), Ops.size());
270
271      Op1 = GEP->getPointerOperand()->stripPointerCasts();
272
273      // Make sure we're not a constant offset from an external
274      // global.
275      if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1))
276        if (!GV->hasDefinitiveInitializer()) break;
277    }
278
279    // If we've stripped down to a single global variable that we
280    // can know the size of then just return that.
281    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
282      if (GV->hasDefinitiveInitializer()) {
283        Constant *C = GV->getInitializer();
284        Size = TD->getTypeAllocSize(C->getType());
285      } else {
286        // Can't determine size of the GV.
287        Constant *RetVal = ConstantInt::get(ReturnTy, DontKnow);
288        return ReplaceInstUsesWith(CI, RetVal);
289      }
290    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
291      // Get alloca size.
292      if (AI->getAllocatedType()->isSized()) {
293        Size = TD->getTypeAllocSize(AI->getAllocatedType());
294        if (AI->isArrayAllocation()) {
295          const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
296          if (!C) break;
297          Size *= C->getZExtValue();
298        }
299      }
300    } else if (CallInst *MI = extractMallocCall(Op1)) {
301      // Get allocation size.
302      const Type* MallocType = getMallocAllocatedType(MI);
303      if (MallocType && MallocType->isSized())
304        if (Value *NElems = getMallocArraySize(MI, TD, true))
305          if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
306            Size = NElements->getZExtValue() * TD->getTypeAllocSize(MallocType);
307
308      // If there is no offset we can just return the size passed to malloc.
309      if (Offset == 0)
310        return ReplaceInstUsesWith(CI, MI->getArgOperand(0));
311    }
312
313    // Do not return "I don't know" here. Later optimization passes could
314    // make it possible to evaluate objectsize to a constant.
315    if (Size == -1ULL)
316      break;
317
318    if (Size < Offset) {
319      // Out of bound reference? Negative index normalized to large
320      // index? Just return "I don't know".
321      return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, DontKnow));
322    }
323    return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, Size-Offset));
324  }
325  case Intrinsic::bswap:
326    // bswap(bswap(x)) -> x
327    if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
328      if (Operand->getIntrinsicID() == Intrinsic::bswap)
329        return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
330
331    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
332    if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
333      if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
334        if (Operand->getIntrinsicID() == Intrinsic::bswap) {
335          unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
336                       TI->getType()->getPrimitiveSizeInBits();
337          Value *CV = ConstantInt::get(Operand->getType(), C);
338          Value *V = Builder->CreateLShr(Operand->getArgOperand(0), CV);
339          return new TruncInst(V, TI->getType());
340        }
341    }
342
343    break;
344  case Intrinsic::powi:
345    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
346      // powi(x, 0) -> 1.0
347      if (Power->isZero())
348        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
349      // powi(x, 1) -> x
350      if (Power->isOne())
351        return ReplaceInstUsesWith(CI, II->getArgOperand(0));
352      // powi(x, -1) -> 1/x
353      if (Power->isAllOnesValue())
354        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
355                                          II->getArgOperand(0));
356    }
357    break;
358  case Intrinsic::cttz: {
359    // If all bits below the first known one are known zero,
360    // this value is constant.
361    const IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
362    uint32_t BitWidth = IT->getBitWidth();
363    APInt KnownZero(BitWidth, 0);
364    APInt KnownOne(BitWidth, 0);
365    ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth),
366                      KnownZero, KnownOne);
367    unsigned TrailingZeros = KnownOne.countTrailingZeros();
368    APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
369    if ((Mask & KnownZero) == Mask)
370      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
371                                 APInt(BitWidth, TrailingZeros)));
372
373    }
374    break;
375  case Intrinsic::ctlz: {
376    // If all bits above the first known one are known zero,
377    // this value is constant.
378    const IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
379    uint32_t BitWidth = IT->getBitWidth();
380    APInt KnownZero(BitWidth, 0);
381    APInt KnownOne(BitWidth, 0);
382    ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth),
383                      KnownZero, KnownOne);
384    unsigned LeadingZeros = KnownOne.countLeadingZeros();
385    APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
386    if ((Mask & KnownZero) == Mask)
387      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
388                                 APInt(BitWidth, LeadingZeros)));
389
390    }
391    break;
392  case Intrinsic::uadd_with_overflow: {
393    Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
394    const IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
395    uint32_t BitWidth = IT->getBitWidth();
396    APInt Mask = APInt::getSignBit(BitWidth);
397    APInt LHSKnownZero(BitWidth, 0);
398    APInt LHSKnownOne(BitWidth, 0);
399    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
400    bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
401    bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
402
403    if (LHSKnownNegative || LHSKnownPositive) {
404      APInt RHSKnownZero(BitWidth, 0);
405      APInt RHSKnownOne(BitWidth, 0);
406      ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
407      bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
408      bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
409      if (LHSKnownNegative && RHSKnownNegative) {
410        // The sign bit is set in both cases: this MUST overflow.
411        // Create a simple add instruction, and insert it into the struct.
412        Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
413        Worklist.Add(Add);
414        Constant *V[] = {
415          UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
416        };
417        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
418        return InsertValueInst::Create(Struct, Add, 0);
419      }
420
421      if (LHSKnownPositive && RHSKnownPositive) {
422        // The sign bit is clear in both cases: this CANNOT overflow.
423        // Create a simple add instruction, and insert it into the struct.
424        Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
425        Worklist.Add(Add);
426        Constant *V[] = {
427          UndefValue::get(LHS->getType()),
428          ConstantInt::getFalse(II->getContext())
429        };
430        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
431        return InsertValueInst::Create(Struct, Add, 0);
432      }
433    }
434  }
435  // FALL THROUGH uadd into sadd
436  case Intrinsic::sadd_with_overflow:
437    // Canonicalize constants into the RHS.
438    if (isa<Constant>(II->getArgOperand(0)) &&
439        !isa<Constant>(II->getArgOperand(1))) {
440      Value *LHS = II->getArgOperand(0);
441      II->setArgOperand(0, II->getArgOperand(1));
442      II->setArgOperand(1, LHS);
443      return II;
444    }
445
446    // X + undef -> undef
447    if (isa<UndefValue>(II->getArgOperand(1)))
448      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
449
450    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
451      // X + 0 -> {X, false}
452      if (RHS->isZero()) {
453        Constant *V[] = {
454          UndefValue::get(II->getArgOperand(0)->getType()),
455          ConstantInt::getFalse(II->getContext())
456        };
457        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
458        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
459      }
460    }
461    break;
462  case Intrinsic::usub_with_overflow:
463  case Intrinsic::ssub_with_overflow:
464    // undef - X -> undef
465    // X - undef -> undef
466    if (isa<UndefValue>(II->getArgOperand(0)) ||
467        isa<UndefValue>(II->getArgOperand(1)))
468      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
469
470    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
471      // X - 0 -> {X, false}
472      if (RHS->isZero()) {
473        Constant *V[] = {
474          UndefValue::get(II->getArgOperand(0)->getType()),
475          ConstantInt::getFalse(II->getContext())
476        };
477        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
478        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
479      }
480    }
481    break;
482  case Intrinsic::umul_with_overflow:
483  case Intrinsic::smul_with_overflow:
484    // Canonicalize constants into the RHS.
485    if (isa<Constant>(II->getArgOperand(0)) &&
486        !isa<Constant>(II->getArgOperand(1))) {
487      Value *LHS = II->getArgOperand(0);
488      II->setArgOperand(0, II->getArgOperand(1));
489      II->setArgOperand(1, LHS);
490      return II;
491    }
492
493    // X * undef -> undef
494    if (isa<UndefValue>(II->getArgOperand(1)))
495      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
496
497    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
498      // X*0 -> {0, false}
499      if (RHSI->isZero())
500        return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
501
502      // X * 1 -> {X, false}
503      if (RHSI->equalsInt(1)) {
504        Constant *V[] = {
505          UndefValue::get(II->getArgOperand(0)->getType()),
506          ConstantInt::getFalse(II->getContext())
507        };
508        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
509        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
510      }
511    }
512    break;
513  case Intrinsic::ppc_altivec_lvx:
514  case Intrinsic::ppc_altivec_lvxl:
515  case Intrinsic::x86_sse_loadu_ps:
516  case Intrinsic::x86_sse2_loadu_pd:
517  case Intrinsic::x86_sse2_loadu_dq:
518    // Turn PPC lvx     -> load if the pointer is known aligned.
519    // Turn X86 loadups -> load if the pointer is known aligned.
520    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
521      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
522                                         PointerType::getUnqual(II->getType()));
523      return new LoadInst(Ptr);
524    }
525    break;
526  case Intrinsic::ppc_altivec_stvx:
527  case Intrinsic::ppc_altivec_stvxl:
528    // Turn stvx -> store if the pointer is known aligned.
529    if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) {
530      const Type *OpPtrTy =
531        PointerType::getUnqual(II->getArgOperand(0)->getType());
532      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
533      return new StoreInst(II->getArgOperand(0), Ptr);
534    }
535    break;
536  case Intrinsic::x86_sse_storeu_ps:
537  case Intrinsic::x86_sse2_storeu_pd:
538  case Intrinsic::x86_sse2_storeu_dq:
539    // Turn X86 storeu -> store if the pointer is known aligned.
540    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
541      const Type *OpPtrTy =
542        PointerType::getUnqual(II->getArgOperand(1)->getType());
543      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
544      return new StoreInst(II->getArgOperand(1), Ptr);
545    }
546    break;
547
548  case Intrinsic::x86_sse_cvttss2si: {
549    // These intrinsics only demands the 0th element of its input vector.  If
550    // we can simplify the input based on that, do so now.
551    unsigned VWidth =
552      cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
553    APInt DemandedElts(VWidth, 1);
554    APInt UndefElts(VWidth, 0);
555    if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
556                                              DemandedElts, UndefElts)) {
557      II->setArgOperand(0, V);
558      return II;
559    }
560    break;
561  }
562
563  case Intrinsic::ppc_altivec_vperm:
564    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
565    if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getArgOperand(2))) {
566      assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
567
568      // Check that all of the elements are integer constants or undefs.
569      bool AllEltsOk = true;
570      for (unsigned i = 0; i != 16; ++i) {
571        if (!isa<ConstantInt>(Mask->getOperand(i)) &&
572            !isa<UndefValue>(Mask->getOperand(i))) {
573          AllEltsOk = false;
574          break;
575        }
576      }
577
578      if (AllEltsOk) {
579        // Cast the input vectors to byte vectors.
580        Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
581                                            Mask->getType());
582        Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
583                                            Mask->getType());
584        Value *Result = UndefValue::get(Op0->getType());
585
586        // Only extract each element once.
587        Value *ExtractedElts[32];
588        memset(ExtractedElts, 0, sizeof(ExtractedElts));
589
590        for (unsigned i = 0; i != 16; ++i) {
591          if (isa<UndefValue>(Mask->getOperand(i)))
592            continue;
593          unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
594          Idx &= 31;  // Match the hardware behavior.
595
596          if (ExtractedElts[Idx] == 0) {
597            ExtractedElts[Idx] =
598              Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
599                  ConstantInt::get(Type::getInt32Ty(II->getContext()),
600                                   Idx&15, false), "tmp");
601          }
602
603          // Insert this value into the result vector.
604          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
605                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
606                                          i, false), "tmp");
607        }
608        return CastInst::Create(Instruction::BitCast, Result, CI.getType());
609      }
610    }
611    break;
612
613  case Intrinsic::arm_neon_vld1:
614  case Intrinsic::arm_neon_vld2:
615  case Intrinsic::arm_neon_vld3:
616  case Intrinsic::arm_neon_vld4:
617  case Intrinsic::arm_neon_vld2lane:
618  case Intrinsic::arm_neon_vld3lane:
619  case Intrinsic::arm_neon_vld4lane:
620  case Intrinsic::arm_neon_vst1:
621  case Intrinsic::arm_neon_vst2:
622  case Intrinsic::arm_neon_vst3:
623  case Intrinsic::arm_neon_vst4:
624  case Intrinsic::arm_neon_vst2lane:
625  case Intrinsic::arm_neon_vst3lane:
626  case Intrinsic::arm_neon_vst4lane: {
627    unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), TD);
628    unsigned AlignArg = II->getNumArgOperands() - 1;
629    ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
630    if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
631      II->setArgOperand(AlignArg,
632                        ConstantInt::get(Type::getInt32Ty(II->getContext()),
633                                         MemAlign, false));
634      return II;
635    }
636    break;
637  }
638
639  case Intrinsic::stackrestore: {
640    // If the save is right next to the restore, remove the restore.  This can
641    // happen when variable allocas are DCE'd.
642    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
643      if (SS->getIntrinsicID() == Intrinsic::stacksave) {
644        BasicBlock::iterator BI = SS;
645        if (&*++BI == II)
646          return EraseInstFromFunction(CI);
647      }
648    }
649
650    // Scan down this block to see if there is another stack restore in the
651    // same block without an intervening call/alloca.
652    BasicBlock::iterator BI = II;
653    TerminatorInst *TI = II->getParent()->getTerminator();
654    bool CannotRemove = false;
655    for (++BI; &*BI != TI; ++BI) {
656      if (isa<AllocaInst>(BI) || isMalloc(BI)) {
657        CannotRemove = true;
658        break;
659      }
660      if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
661        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
662          // If there is a stackrestore below this one, remove this one.
663          if (II->getIntrinsicID() == Intrinsic::stackrestore)
664            return EraseInstFromFunction(CI);
665          // Otherwise, ignore the intrinsic.
666        } else {
667          // If we found a non-intrinsic call, we can't remove the stack
668          // restore.
669          CannotRemove = true;
670          break;
671        }
672      }
673    }
674
675    // If the stack restore is in a return/unwind block and if there are no
676    // allocas or calls between the restore and the return, nuke the restore.
677    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
678      return EraseInstFromFunction(CI);
679    break;
680  }
681  }
682
683  return visitCallSite(II);
684}
685
686// InvokeInst simplification
687//
688Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
689  return visitCallSite(&II);
690}
691
692/// isSafeToEliminateVarargsCast - If this cast does not affect the value
693/// passed through the varargs area, we can eliminate the use of the cast.
694static bool isSafeToEliminateVarargsCast(const CallSite CS,
695                                         const CastInst * const CI,
696                                         const TargetData * const TD,
697                                         const int ix) {
698  if (!CI->isLosslessCast())
699    return false;
700
701  // The size of ByVal arguments is derived from the type, so we
702  // can't change to a type with a different size.  If the size were
703  // passed explicitly we could avoid this check.
704  if (!CS.paramHasAttr(ix, Attribute::ByVal))
705    return true;
706
707  const Type* SrcTy =
708            cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
709  const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
710  if (!SrcTy->isSized() || !DstTy->isSized())
711    return false;
712  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
713    return false;
714  return true;
715}
716
717namespace {
718class InstCombineFortifiedLibCalls : public SimplifyFortifiedLibCalls {
719  InstCombiner *IC;
720protected:
721  void replaceCall(Value *With) {
722    NewInstruction = IC->ReplaceInstUsesWith(*CI, With);
723  }
724  bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
725    if (ConstantInt *SizeCI =
726                           dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
727      if (SizeCI->isAllOnesValue())
728        return true;
729      if (isString)
730        return SizeCI->getZExtValue() >=
731               GetStringLength(CI->getArgOperand(SizeArgOp));
732      if (ConstantInt *Arg = dyn_cast<ConstantInt>(
733                                                  CI->getArgOperand(SizeArgOp)))
734        return SizeCI->getZExtValue() >= Arg->getZExtValue();
735    }
736    return false;
737  }
738public:
739  InstCombineFortifiedLibCalls(InstCombiner *IC) : IC(IC), NewInstruction(0) { }
740  Instruction *NewInstruction;
741};
742} // end anonymous namespace
743
744// Try to fold some different type of calls here.
745// Currently we're only working with the checking functions, memcpy_chk,
746// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
747// strcat_chk and strncat_chk.
748Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
749  if (CI->getCalledFunction() == 0) return 0;
750
751  InstCombineFortifiedLibCalls Simplifier(this);
752  Simplifier.fold(CI, TD);
753  return Simplifier.NewInstruction;
754}
755
756// visitCallSite - Improvements for call and invoke instructions.
757//
758Instruction *InstCombiner::visitCallSite(CallSite CS) {
759  bool Changed = false;
760
761  // If the callee is a pointer to a function, attempt to move any casts to the
762  // arguments of the call/invoke.
763  Value *Callee = CS.getCalledValue();
764  if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
765    return 0;
766
767  if (Function *CalleeF = dyn_cast<Function>(Callee))
768    // If the call and callee calling conventions don't match, this call must
769    // be unreachable, as the call is undefined.
770    if (CalleeF->getCallingConv() != CS.getCallingConv() &&
771        // Only do this for calls to a function with a body.  A prototype may
772        // not actually end up matching the implementation's calling conv for a
773        // variety of reasons (e.g. it may be written in assembly).
774        !CalleeF->isDeclaration()) {
775      Instruction *OldCall = CS.getInstruction();
776      new StoreInst(ConstantInt::getTrue(Callee->getContext()),
777                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
778                                  OldCall);
779      // If OldCall dues not return void then replaceAllUsesWith undef.
780      // This allows ValueHandlers and custom metadata to adjust itself.
781      if (!OldCall->getType()->isVoidTy())
782        OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
783      if (isa<CallInst>(OldCall))
784        return EraseInstFromFunction(*OldCall);
785
786      // We cannot remove an invoke, because it would change the CFG, just
787      // change the callee to a null pointer.
788      cast<InvokeInst>(OldCall)->setCalledFunction(
789                                    Constant::getNullValue(CalleeF->getType()));
790      return 0;
791    }
792
793  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
794    // This instruction is not reachable, just remove it.  We insert a store to
795    // undef so that we know that this code is not reachable, despite the fact
796    // that we can't modify the CFG here.
797    new StoreInst(ConstantInt::getTrue(Callee->getContext()),
798               UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
799                  CS.getInstruction());
800
801    // If CS does not return void then replaceAllUsesWith undef.
802    // This allows ValueHandlers and custom metadata to adjust itself.
803    if (!CS.getInstruction()->getType()->isVoidTy())
804      CS.getInstruction()->
805        replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
806
807    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
808      // Don't break the CFG, insert a dummy cond branch.
809      BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
810                         ConstantInt::getTrue(Callee->getContext()), II);
811    }
812    return EraseInstFromFunction(*CS.getInstruction());
813  }
814
815  if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
816    if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
817      if (In->getIntrinsicID() == Intrinsic::init_trampoline)
818        return transformCallThroughTrampoline(CS);
819
820  const PointerType *PTy = cast<PointerType>(Callee->getType());
821  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
822  if (FTy->isVarArg()) {
823    int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
824    // See if we can optimize any arguments passed through the varargs area of
825    // the call.
826    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
827           E = CS.arg_end(); I != E; ++I, ++ix) {
828      CastInst *CI = dyn_cast<CastInst>(*I);
829      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
830        *I = CI->getOperand(0);
831        Changed = true;
832      }
833    }
834  }
835
836  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
837    // Inline asm calls cannot throw - mark them 'nounwind'.
838    CS.setDoesNotThrow();
839    Changed = true;
840  }
841
842  // Try to optimize the call if possible, we require TargetData for most of
843  // this.  None of these calls are seen as possibly dead so go ahead and
844  // delete the instruction now.
845  if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
846    Instruction *I = tryOptimizeCall(CI, TD);
847    // If we changed something return the result, etc. Otherwise let
848    // the fallthrough check.
849    if (I) return EraseInstFromFunction(*I);
850  }
851
852  return Changed ? CS.getInstruction() : 0;
853}
854
855// transformConstExprCastCall - If the callee is a constexpr cast of a function,
856// attempt to move the cast to the arguments of the call/invoke.
857//
858bool InstCombiner::transformConstExprCastCall(CallSite CS) {
859  Function *Callee =
860    dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
861  if (Callee == 0)
862    return false;
863  Instruction *Caller = CS.getInstruction();
864  const AttrListPtr &CallerPAL = CS.getAttributes();
865
866  // Okay, this is a cast from a function to a different type.  Unless doing so
867  // would cause a type conversion of one of our arguments, change this call to
868  // be a direct call with arguments casted to the appropriate types.
869  //
870  const FunctionType *FT = Callee->getFunctionType();
871  const Type *OldRetTy = Caller->getType();
872  const Type *NewRetTy = FT->getReturnType();
873
874  if (NewRetTy->isStructTy())
875    return false; // TODO: Handle multiple return values.
876
877  // Check to see if we are changing the return type...
878  if (OldRetTy != NewRetTy) {
879    if (Callee->isDeclaration() &&
880        // Conversion is ok if changing from one pointer type to another or from
881        // a pointer to an integer of the same size.
882        !((OldRetTy->isPointerTy() || !TD ||
883           OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
884          (NewRetTy->isPointerTy() || !TD ||
885           NewRetTy == TD->getIntPtrType(Caller->getContext()))))
886      return false;   // Cannot transform this return value.
887
888    if (!Caller->use_empty() &&
889        // void -> non-void is handled specially
890        !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
891      return false;   // Cannot transform this return value.
892
893    if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
894      Attributes RAttrs = CallerPAL.getRetAttributes();
895      if (RAttrs & Attribute::typeIncompatible(NewRetTy))
896        return false;   // Attribute not compatible with transformed value.
897    }
898
899    // If the callsite is an invoke instruction, and the return value is used by
900    // a PHI node in a successor, we cannot change the return type of the call
901    // because there is no place to put the cast instruction (without breaking
902    // the critical edge).  Bail out in this case.
903    if (!Caller->use_empty())
904      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
905        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
906             UI != E; ++UI)
907          if (PHINode *PN = dyn_cast<PHINode>(*UI))
908            if (PN->getParent() == II->getNormalDest() ||
909                PN->getParent() == II->getUnwindDest())
910              return false;
911  }
912
913  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
914  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
915
916  CallSite::arg_iterator AI = CS.arg_begin();
917  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
918    const Type *ParamTy = FT->getParamType(i);
919    const Type *ActTy = (*AI)->getType();
920
921    if (!CastInst::isCastable(ActTy, ParamTy))
922      return false;   // Cannot transform this parameter value.
923
924    unsigned Attrs = CallerPAL.getParamAttributes(i + 1);
925    if (Attrs & Attribute::typeIncompatible(ParamTy))
926      return false;   // Attribute not compatible with transformed value.
927
928    // If the parameter is passed as a byval argument, then we have to have a
929    // sized type and the sized type has to have the same size as the old type.
930    if (ParamTy != ActTy && (Attrs & Attribute::ByVal)) {
931      const PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
932      if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
933        return false;
934
935      const Type *CurElTy = cast<PointerType>(ActTy)->getElementType();
936      if (TD->getTypeAllocSize(CurElTy) !=
937          TD->getTypeAllocSize(ParamPTy->getElementType()))
938        return false;
939    }
940
941    // Converting from one pointer type to another or between a pointer and an
942    // integer of the same size is safe even if we do not have a body.
943    bool isConvertible = ActTy == ParamTy ||
944      (TD && ((ParamTy->isPointerTy() ||
945      ParamTy == TD->getIntPtrType(Caller->getContext())) &&
946              (ActTy->isPointerTy() ||
947              ActTy == TD->getIntPtrType(Caller->getContext()))));
948    if (Callee->isDeclaration() && !isConvertible) return false;
949  }
950
951  if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
952      Callee->isDeclaration())
953    return false;   // Do not delete arguments unless we have a function body.
954
955  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
956      !CallerPAL.isEmpty())
957    // In this case we have more arguments than the new function type, but we
958    // won't be dropping them.  Check that these extra arguments have attributes
959    // that are compatible with being a vararg call argument.
960    for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
961      if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
962        break;
963      Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
964      if (PAttrs & Attribute::VarArgsIncompatible)
965        return false;
966    }
967
968  // Okay, we decided that this is a safe thing to do: go ahead and start
969  // inserting cast instructions as necessary...
970  std::vector<Value*> Args;
971  Args.reserve(NumActualArgs);
972  SmallVector<AttributeWithIndex, 8> attrVec;
973  attrVec.reserve(NumCommonArgs);
974
975  // Get any return attributes.
976  Attributes RAttrs = CallerPAL.getRetAttributes();
977
978  // If the return value is not being used, the type may not be compatible
979  // with the existing attributes.  Wipe out any problematic attributes.
980  RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
981
982  // Add the new return attributes.
983  if (RAttrs)
984    attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
985
986  AI = CS.arg_begin();
987  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
988    const Type *ParamTy = FT->getParamType(i);
989    if ((*AI)->getType() == ParamTy) {
990      Args.push_back(*AI);
991    } else {
992      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
993          false, ParamTy, false);
994      Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
995    }
996
997    // Add any parameter attributes.
998    if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
999      attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1000  }
1001
1002  // If the function takes more arguments than the call was taking, add them
1003  // now.
1004  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1005    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1006
1007  // If we are removing arguments to the function, emit an obnoxious warning.
1008  if (FT->getNumParams() < NumActualArgs) {
1009    if (!FT->isVarArg()) {
1010      errs() << "WARNING: While resolving call to function '"
1011             << Callee->getName() << "' arguments were dropped!\n";
1012    } else {
1013      // Add all of the arguments in their promoted form to the arg list.
1014      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1015        const Type *PTy = getPromotedType((*AI)->getType());
1016        if (PTy != (*AI)->getType()) {
1017          // Must promote to pass through va_arg area!
1018          Instruction::CastOps opcode =
1019            CastInst::getCastOpcode(*AI, false, PTy, false);
1020          Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
1021        } else {
1022          Args.push_back(*AI);
1023        }
1024
1025        // Add any parameter attributes.
1026        if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1027          attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1028      }
1029    }
1030  }
1031
1032  if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
1033    attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
1034
1035  if (NewRetTy->isVoidTy())
1036    Caller->setName("");   // Void type should not have a name.
1037
1038  const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
1039                                                     attrVec.end());
1040
1041  Instruction *NC;
1042  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1043    NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
1044                            Args.begin(), Args.end(),
1045                            Caller->getName(), Caller);
1046    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1047    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1048  } else {
1049    NC = CallInst::Create(Callee, Args.begin(), Args.end(),
1050                          Caller->getName(), Caller);
1051    CallInst *CI = cast<CallInst>(Caller);
1052    if (CI->isTailCall())
1053      cast<CallInst>(NC)->setTailCall();
1054    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1055    cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1056  }
1057
1058  // Insert a cast of the return type as necessary.
1059  Value *NV = NC;
1060  if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1061    if (!NV->getType()->isVoidTy()) {
1062      Instruction::CastOps opcode =
1063        CastInst::getCastOpcode(NC, false, OldRetTy, false);
1064      NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
1065
1066      // If this is an invoke instruction, we should insert it after the first
1067      // non-phi, instruction in the normal successor block.
1068      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1069        BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
1070        InsertNewInstBefore(NC, *I);
1071      } else {
1072        // Otherwise, it's a call, just insert cast right after the call.
1073        InsertNewInstBefore(NC, *Caller);
1074      }
1075      Worklist.AddUsersToWorkList(*Caller);
1076    } else {
1077      NV = UndefValue::get(Caller->getType());
1078    }
1079  }
1080
1081  if (!Caller->use_empty())
1082    Caller->replaceAllUsesWith(NV);
1083
1084  EraseInstFromFunction(*Caller);
1085  return true;
1086}
1087
1088// transformCallThroughTrampoline - Turn a call to a function created by the
1089// init_trampoline intrinsic into a direct call to the underlying function.
1090//
1091Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
1092  Value *Callee = CS.getCalledValue();
1093  const PointerType *PTy = cast<PointerType>(Callee->getType());
1094  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1095  const AttrListPtr &Attrs = CS.getAttributes();
1096
1097  // If the call already has the 'nest' attribute somewhere then give up -
1098  // otherwise 'nest' would occur twice after splicing in the chain.
1099  if (Attrs.hasAttrSomewhere(Attribute::Nest))
1100    return 0;
1101
1102  IntrinsicInst *Tramp =
1103    cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
1104
1105  Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
1106  const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1107  const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1108
1109  const AttrListPtr &NestAttrs = NestF->getAttributes();
1110  if (!NestAttrs.isEmpty()) {
1111    unsigned NestIdx = 1;
1112    const Type *NestTy = 0;
1113    Attributes NestAttr = Attribute::None;
1114
1115    // Look for a parameter marked with the 'nest' attribute.
1116    for (FunctionType::param_iterator I = NestFTy->param_begin(),
1117         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1118      if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1119        // Record the parameter type and any other attributes.
1120        NestTy = *I;
1121        NestAttr = NestAttrs.getParamAttributes(NestIdx);
1122        break;
1123      }
1124
1125    if (NestTy) {
1126      Instruction *Caller = CS.getInstruction();
1127      std::vector<Value*> NewArgs;
1128      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1129
1130      SmallVector<AttributeWithIndex, 8> NewAttrs;
1131      NewAttrs.reserve(Attrs.getNumSlots() + 1);
1132
1133      // Insert the nest argument into the call argument list, which may
1134      // mean appending it.  Likewise for attributes.
1135
1136      // Add any result attributes.
1137      if (Attributes Attr = Attrs.getRetAttributes())
1138        NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1139
1140      {
1141        unsigned Idx = 1;
1142        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1143        do {
1144          if (Idx == NestIdx) {
1145            // Add the chain argument and attributes.
1146            Value *NestVal = Tramp->getArgOperand(2);
1147            if (NestVal->getType() != NestTy)
1148              NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
1149            NewArgs.push_back(NestVal);
1150            NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1151          }
1152
1153          if (I == E)
1154            break;
1155
1156          // Add the original argument and attributes.
1157          NewArgs.push_back(*I);
1158          if (Attributes Attr = Attrs.getParamAttributes(Idx))
1159            NewAttrs.push_back
1160              (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1161
1162          ++Idx, ++I;
1163        } while (1);
1164      }
1165
1166      // Add any function attributes.
1167      if (Attributes Attr = Attrs.getFnAttributes())
1168        NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1169
1170      // The trampoline may have been bitcast to a bogus type (FTy).
1171      // Handle this by synthesizing a new function type, equal to FTy
1172      // with the chain parameter inserted.
1173
1174      std::vector<const Type*> NewTypes;
1175      NewTypes.reserve(FTy->getNumParams()+1);
1176
1177      // Insert the chain's type into the list of parameter types, which may
1178      // mean appending it.
1179      {
1180        unsigned Idx = 1;
1181        FunctionType::param_iterator I = FTy->param_begin(),
1182          E = FTy->param_end();
1183
1184        do {
1185          if (Idx == NestIdx)
1186            // Add the chain's type.
1187            NewTypes.push_back(NestTy);
1188
1189          if (I == E)
1190            break;
1191
1192          // Add the original type.
1193          NewTypes.push_back(*I);
1194
1195          ++Idx, ++I;
1196        } while (1);
1197      }
1198
1199      // Replace the trampoline call with a direct call.  Let the generic
1200      // code sort out any function type mismatches.
1201      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1202                                                FTy->isVarArg());
1203      Constant *NewCallee =
1204        NestF->getType() == PointerType::getUnqual(NewFTy) ?
1205        NestF : ConstantExpr::getBitCast(NestF,
1206                                         PointerType::getUnqual(NewFTy));
1207      const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
1208                                                   NewAttrs.end());
1209
1210      Instruction *NewCaller;
1211      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1212        NewCaller = InvokeInst::Create(NewCallee,
1213                                       II->getNormalDest(), II->getUnwindDest(),
1214                                       NewArgs.begin(), NewArgs.end(),
1215                                       Caller->getName(), Caller);
1216        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1217        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1218      } else {
1219        NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
1220                                     Caller->getName(), Caller);
1221        if (cast<CallInst>(Caller)->isTailCall())
1222          cast<CallInst>(NewCaller)->setTailCall();
1223        cast<CallInst>(NewCaller)->
1224          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1225        cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1226      }
1227      if (!Caller->getType()->isVoidTy())
1228        Caller->replaceAllUsesWith(NewCaller);
1229      Caller->eraseFromParent();
1230      Worklist.Remove(Caller);
1231      return 0;
1232    }
1233  }
1234
1235  // Replace the trampoline call with a direct call.  Since there is no 'nest'
1236  // parameter, there is no need to adjust the argument list.  Let the generic
1237  // code sort out any function type mismatches.
1238  Constant *NewCallee =
1239    NestF->getType() == PTy ? NestF :
1240                              ConstantExpr::getBitCast(NestF, PTy);
1241  CS.setCalledFunction(NewCallee);
1242  return CS.getInstruction();
1243}
1244
1245