InstCombineCalls.cpp revision 3e22cb9ec30cd9b1be9b0f50e400f512124997e5
1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Support/CallSite.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19#include "llvm/Transforms/Utils/BuildLibCalls.h"
20#include "llvm/Transforms/Utils/Local.h"
21using namespace llvm;
22
23/// getPromotedType - Return the specified type promoted as it would be to pass
24/// though a va_arg area.
25static const Type *getPromotedType(const Type *Ty) {
26  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
27    if (ITy->getBitWidth() < 32)
28      return Type::getInt32Ty(Ty->getContext());
29  }
30  return Ty;
31}
32
33
34Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
35  unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), TD);
36  unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), TD);
37  unsigned MinAlign = std::min(DstAlign, SrcAlign);
38  unsigned CopyAlign = MI->getAlignment();
39
40  if (CopyAlign < MinAlign) {
41    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
42                                             MinAlign, false));
43    return MI;
44  }
45
46  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
47  // load/store.
48  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
49  if (MemOpLength == 0) return 0;
50
51  // Source and destination pointer types are always "i8*" for intrinsic.  See
52  // if the size is something we can handle with a single primitive load/store.
53  // A single load+store correctly handles overlapping memory in the memmove
54  // case.
55  unsigned Size = MemOpLength->getZExtValue();
56  if (Size == 0) return MI;  // Delete this mem transfer.
57
58  if (Size > 8 || (Size&(Size-1)))
59    return 0;  // If not 1/2/4/8 bytes, exit.
60
61  // Use an integer load+store unless we can find something better.
62  unsigned SrcAddrSp =
63    cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
64  unsigned DstAddrSp =
65    cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
66
67  const IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
68  Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
69  Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
70
71  // Memcpy forces the use of i8* for the source and destination.  That means
72  // that if you're using memcpy to move one double around, you'll get a cast
73  // from double* to i8*.  We'd much rather use a double load+store rather than
74  // an i64 load+store, here because this improves the odds that the source or
75  // dest address will be promotable.  See if we can find a better type than the
76  // integer datatype.
77  Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
78  if (StrippedDest != MI->getArgOperand(0)) {
79    const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
80                                    ->getElementType();
81    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
82      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
83      // down through these levels if so.
84      while (!SrcETy->isSingleValueType()) {
85        if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
86          if (STy->getNumElements() == 1)
87            SrcETy = STy->getElementType(0);
88          else
89            break;
90        } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
91          if (ATy->getNumElements() == 1)
92            SrcETy = ATy->getElementType();
93          else
94            break;
95        } else
96          break;
97      }
98
99      if (SrcETy->isSingleValueType()) {
100        NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
101        NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
102      }
103    }
104  }
105
106
107  // If the memcpy/memmove provides better alignment info than we can
108  // infer, use it.
109  SrcAlign = std::max(SrcAlign, CopyAlign);
110  DstAlign = std::max(DstAlign, CopyAlign);
111
112  Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
113  Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
114  Instruction *L = new LoadInst(Src, "tmp", MI->isVolatile(), SrcAlign);
115  InsertNewInstBefore(L, *MI);
116  InsertNewInstBefore(new StoreInst(L, Dest, MI->isVolatile(), DstAlign),
117                      *MI);
118
119  // Set the size of the copy to 0, it will be deleted on the next iteration.
120  MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
121  return MI;
122}
123
124Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
125  unsigned Alignment = getKnownAlignment(MI->getDest(), TD);
126  if (MI->getAlignment() < Alignment) {
127    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
128                                             Alignment, false));
129    return MI;
130  }
131
132  // Extract the length and alignment and fill if they are constant.
133  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
134  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
135  if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
136    return 0;
137  uint64_t Len = LenC->getZExtValue();
138  Alignment = MI->getAlignment();
139
140  // If the length is zero, this is a no-op
141  if (Len == 0) return MI; // memset(d,c,0,a) -> noop
142
143  // memset(s,c,n) -> store s, c (for n=1,2,4,8)
144  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
145    const Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
146
147    Value *Dest = MI->getDest();
148    unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
149    Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
150    Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
151
152    // Alignment 0 is identity for alignment 1 for memset, but not store.
153    if (Alignment == 0) Alignment = 1;
154
155    // Extract the fill value and store.
156    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
157    InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
158                                      Dest, false, Alignment), *MI);
159
160    // Set the size of the copy to 0, it will be deleted on the next iteration.
161    MI->setLength(Constant::getNullValue(LenC->getType()));
162    return MI;
163  }
164
165  return 0;
166}
167
168/// visitCallInst - CallInst simplification.  This mostly only handles folding
169/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
170/// the heavy lifting.
171///
172Instruction *InstCombiner::visitCallInst(CallInst &CI) {
173  if (isFreeCall(&CI))
174    return visitFree(CI);
175  if (isMalloc(&CI))
176    return visitMalloc(CI);
177
178  // If the caller function is nounwind, mark the call as nounwind, even if the
179  // callee isn't.
180  if (CI.getParent()->getParent()->doesNotThrow() &&
181      !CI.doesNotThrow()) {
182    CI.setDoesNotThrow();
183    return &CI;
184  }
185
186  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
187  if (!II) return visitCallSite(&CI);
188
189  // Intrinsics cannot occur in an invoke, so handle them here instead of in
190  // visitCallSite.
191  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
192    bool Changed = false;
193
194    // memmove/cpy/set of zero bytes is a noop.
195    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
196      if (NumBytes->isNullValue())
197        return EraseInstFromFunction(CI);
198
199      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
200        if (CI->getZExtValue() == 1) {
201          // Replace the instruction with just byte operations.  We would
202          // transform other cases to loads/stores, but we don't know if
203          // alignment is sufficient.
204        }
205    }
206
207    // No other transformations apply to volatile transfers.
208    if (MI->isVolatile())
209      return 0;
210
211    // If we have a memmove and the source operation is a constant global,
212    // then the source and dest pointers can't alias, so we can change this
213    // into a call to memcpy.
214    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
215      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
216        if (GVSrc->isConstant()) {
217          Module *M = CI.getParent()->getParent()->getParent();
218          Intrinsic::ID MemCpyID = Intrinsic::memcpy;
219          const Type *Tys[3] = { CI.getArgOperand(0)->getType(),
220                                 CI.getArgOperand(1)->getType(),
221                                 CI.getArgOperand(2)->getType() };
222          CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys, 3));
223          Changed = true;
224        }
225    }
226
227    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
228      // memmove(x,x,size) -> noop.
229      if (MTI->getSource() == MTI->getDest())
230        return EraseInstFromFunction(CI);
231    }
232
233    // If we can determine a pointer alignment that is bigger than currently
234    // set, update the alignment.
235    if (isa<MemTransferInst>(MI)) {
236      if (Instruction *I = SimplifyMemTransfer(MI))
237        return I;
238    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
239      if (Instruction *I = SimplifyMemSet(MSI))
240        return I;
241    }
242
243    if (Changed) return II;
244  }
245
246  switch (II->getIntrinsicID()) {
247  default: break;
248  case Intrinsic::objectsize: {
249    // We need target data for just about everything so depend on it.
250    if (!TD) break;
251
252    const Type *ReturnTy = CI.getType();
253    uint64_t DontKnow = II->getArgOperand(1) == Builder->getTrue() ? 0 : -1ULL;
254
255    // Get to the real allocated thing and offset as fast as possible.
256    Value *Op1 = II->getArgOperand(0)->stripPointerCasts();
257
258    uint64_t Offset = 0;
259    uint64_t Size = -1ULL;
260
261    // Try to look through constant GEPs.
262    if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) {
263      if (!GEP->hasAllConstantIndices()) break;
264
265      // Get the current byte offset into the thing. Use the original
266      // operand in case we're looking through a bitcast.
267      SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
268      Offset = TD->getIndexedOffset(GEP->getPointerOperandType(),
269                                    Ops.data(), Ops.size());
270
271      Op1 = GEP->getPointerOperand()->stripPointerCasts();
272
273      // Make sure we're not a constant offset from an external
274      // global.
275      if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1))
276        if (!GV->hasDefinitiveInitializer()) break;
277    }
278
279    // If we've stripped down to a single global variable that we
280    // can know the size of then just return that.
281    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
282      if (GV->hasDefinitiveInitializer()) {
283        Constant *C = GV->getInitializer();
284        Size = TD->getTypeAllocSize(C->getType());
285      } else {
286        // Can't determine size of the GV.
287        Constant *RetVal = ConstantInt::get(ReturnTy, DontKnow);
288        return ReplaceInstUsesWith(CI, RetVal);
289      }
290    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
291      // Get alloca size.
292      if (AI->getAllocatedType()->isSized()) {
293        Size = TD->getTypeAllocSize(AI->getAllocatedType());
294        if (AI->isArrayAllocation()) {
295          const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
296          if (!C) break;
297          Size *= C->getZExtValue();
298        }
299      }
300    } else if (CallInst *MI = extractMallocCall(Op1)) {
301      // Get allocation size.
302      const Type* MallocType = getMallocAllocatedType(MI);
303      if (MallocType && MallocType->isSized())
304        if (Value *NElems = getMallocArraySize(MI, TD, true))
305          if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
306            Size = NElements->getZExtValue() * TD->getTypeAllocSize(MallocType);
307    }
308
309    // Do not return "I don't know" here. Later optimization passes could
310    // make it possible to evaluate objectsize to a constant.
311    if (Size == -1ULL)
312      break;
313
314    if (Size < Offset) {
315      // Out of bound reference? Negative index normalized to large
316      // index? Just return "I don't know".
317      return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, DontKnow));
318    }
319    return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, Size-Offset));
320  }
321  case Intrinsic::bswap:
322    // bswap(bswap(x)) -> x
323    if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
324      if (Operand->getIntrinsicID() == Intrinsic::bswap)
325        return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
326
327    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
328    if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
329      if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
330        if (Operand->getIntrinsicID() == Intrinsic::bswap) {
331          unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
332                       TI->getType()->getPrimitiveSizeInBits();
333          Value *CV = ConstantInt::get(Operand->getType(), C);
334          Value *V = Builder->CreateLShr(Operand->getArgOperand(0), CV);
335          return new TruncInst(V, TI->getType());
336        }
337    }
338
339    break;
340  case Intrinsic::powi:
341    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
342      // powi(x, 0) -> 1.0
343      if (Power->isZero())
344        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
345      // powi(x, 1) -> x
346      if (Power->isOne())
347        return ReplaceInstUsesWith(CI, II->getArgOperand(0));
348      // powi(x, -1) -> 1/x
349      if (Power->isAllOnesValue())
350        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
351                                          II->getArgOperand(0));
352    }
353    break;
354  case Intrinsic::cttz: {
355    // If all bits below the first known one are known zero,
356    // this value is constant.
357    const IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
358    uint32_t BitWidth = IT->getBitWidth();
359    APInt KnownZero(BitWidth, 0);
360    APInt KnownOne(BitWidth, 0);
361    ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth),
362                      KnownZero, KnownOne);
363    unsigned TrailingZeros = KnownOne.countTrailingZeros();
364    APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
365    if ((Mask & KnownZero) == Mask)
366      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
367                                 APInt(BitWidth, TrailingZeros)));
368
369    }
370    break;
371  case Intrinsic::ctlz: {
372    // If all bits above the first known one are known zero,
373    // this value is constant.
374    const IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
375    uint32_t BitWidth = IT->getBitWidth();
376    APInt KnownZero(BitWidth, 0);
377    APInt KnownOne(BitWidth, 0);
378    ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth),
379                      KnownZero, KnownOne);
380    unsigned LeadingZeros = KnownOne.countLeadingZeros();
381    APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
382    if ((Mask & KnownZero) == Mask)
383      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
384                                 APInt(BitWidth, LeadingZeros)));
385
386    }
387    break;
388  case Intrinsic::uadd_with_overflow: {
389    Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
390    const IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
391    uint32_t BitWidth = IT->getBitWidth();
392    APInt Mask = APInt::getSignBit(BitWidth);
393    APInt LHSKnownZero(BitWidth, 0);
394    APInt LHSKnownOne(BitWidth, 0);
395    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
396    bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
397    bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
398
399    if (LHSKnownNegative || LHSKnownPositive) {
400      APInt RHSKnownZero(BitWidth, 0);
401      APInt RHSKnownOne(BitWidth, 0);
402      ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
403      bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
404      bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
405      if (LHSKnownNegative && RHSKnownNegative) {
406        // The sign bit is set in both cases: this MUST overflow.
407        // Create a simple add instruction, and insert it into the struct.
408        Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
409        Worklist.Add(Add);
410        Constant *V[] = {
411          UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
412        };
413        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
414        return InsertValueInst::Create(Struct, Add, 0);
415      }
416
417      if (LHSKnownPositive && RHSKnownPositive) {
418        // The sign bit is clear in both cases: this CANNOT overflow.
419        // Create a simple add instruction, and insert it into the struct.
420        Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
421        Worklist.Add(Add);
422        Constant *V[] = {
423          UndefValue::get(LHS->getType()),
424          ConstantInt::getFalse(II->getContext())
425        };
426        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
427        return InsertValueInst::Create(Struct, Add, 0);
428      }
429    }
430  }
431  // FALL THROUGH uadd into sadd
432  case Intrinsic::sadd_with_overflow:
433    // Canonicalize constants into the RHS.
434    if (isa<Constant>(II->getArgOperand(0)) &&
435        !isa<Constant>(II->getArgOperand(1))) {
436      Value *LHS = II->getArgOperand(0);
437      II->setArgOperand(0, II->getArgOperand(1));
438      II->setArgOperand(1, LHS);
439      return II;
440    }
441
442    // X + undef -> undef
443    if (isa<UndefValue>(II->getArgOperand(1)))
444      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
445
446    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
447      // X + 0 -> {X, false}
448      if (RHS->isZero()) {
449        Constant *V[] = {
450          UndefValue::get(II->getArgOperand(0)->getType()),
451          ConstantInt::getFalse(II->getContext())
452        };
453        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
454        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
455      }
456    }
457    break;
458  case Intrinsic::usub_with_overflow:
459  case Intrinsic::ssub_with_overflow:
460    // undef - X -> undef
461    // X - undef -> undef
462    if (isa<UndefValue>(II->getArgOperand(0)) ||
463        isa<UndefValue>(II->getArgOperand(1)))
464      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
465
466    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
467      // X - 0 -> {X, false}
468      if (RHS->isZero()) {
469        Constant *V[] = {
470          UndefValue::get(II->getArgOperand(0)->getType()),
471          ConstantInt::getFalse(II->getContext())
472        };
473        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
474        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
475      }
476    }
477    break;
478  case Intrinsic::umul_with_overflow: {
479    Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
480    unsigned BitWidth = cast<IntegerType>(LHS->getType())->getBitWidth();
481    APInt Mask = APInt::getAllOnesValue(BitWidth);
482
483    APInt LHSKnownZero(BitWidth, 0);
484    APInt LHSKnownOne(BitWidth, 0);
485    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
486    APInt RHSKnownZero(BitWidth, 0);
487    APInt RHSKnownOne(BitWidth, 0);
488    ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
489
490    // Get the largest possible values for each operand.
491    APInt LHSMax = ~LHSKnownZero;
492    APInt RHSMax = ~RHSKnownZero;
493
494    // If multiplying the maximum values does not overflow then we can turn
495    // this into a plain NUW mul.
496    bool Overflow;
497    LHSMax.umul_ov(RHSMax, Overflow);
498    if (!Overflow) {
499      Value *Mul = Builder->CreateNUWMul(LHS, RHS, "umul_with_overflow");
500      Constant *V[] = {
501        UndefValue::get(LHS->getType()),
502        Builder->getFalse()
503      };
504      Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
505      return InsertValueInst::Create(Struct, Mul, 0);
506    }
507  } // FALL THROUGH
508  case Intrinsic::smul_with_overflow:
509    // Canonicalize constants into the RHS.
510    if (isa<Constant>(II->getArgOperand(0)) &&
511        !isa<Constant>(II->getArgOperand(1))) {
512      Value *LHS = II->getArgOperand(0);
513      II->setArgOperand(0, II->getArgOperand(1));
514      II->setArgOperand(1, LHS);
515      return II;
516    }
517
518    // X * undef -> undef
519    if (isa<UndefValue>(II->getArgOperand(1)))
520      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
521
522    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
523      // X*0 -> {0, false}
524      if (RHSI->isZero())
525        return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
526
527      // X * 1 -> {X, false}
528      if (RHSI->equalsInt(1)) {
529        Constant *V[] = {
530          UndefValue::get(II->getArgOperand(0)->getType()),
531          ConstantInt::getFalse(II->getContext())
532        };
533        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
534        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
535      }
536    }
537    break;
538  case Intrinsic::ppc_altivec_lvx:
539  case Intrinsic::ppc_altivec_lvxl:
540    // Turn PPC lvx -> load if the pointer is known aligned.
541    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
542      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
543                                         PointerType::getUnqual(II->getType()));
544      return new LoadInst(Ptr);
545    }
546    break;
547  case Intrinsic::ppc_altivec_stvx:
548  case Intrinsic::ppc_altivec_stvxl:
549    // Turn stvx -> store if the pointer is known aligned.
550    if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) {
551      const Type *OpPtrTy =
552        PointerType::getUnqual(II->getArgOperand(0)->getType());
553      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
554      return new StoreInst(II->getArgOperand(0), Ptr);
555    }
556    break;
557  case Intrinsic::x86_sse_storeu_ps:
558  case Intrinsic::x86_sse2_storeu_pd:
559  case Intrinsic::x86_sse2_storeu_dq:
560    // Turn X86 storeu -> store if the pointer is known aligned.
561    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
562      const Type *OpPtrTy =
563        PointerType::getUnqual(II->getArgOperand(1)->getType());
564      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
565      return new StoreInst(II->getArgOperand(1), Ptr);
566    }
567    break;
568
569  case Intrinsic::x86_sse_cvtss2si:
570  case Intrinsic::x86_sse_cvtss2si64:
571  case Intrinsic::x86_sse_cvttss2si:
572  case Intrinsic::x86_sse_cvttss2si64:
573  case Intrinsic::x86_sse2_cvtsd2si:
574  case Intrinsic::x86_sse2_cvtsd2si64:
575  case Intrinsic::x86_sse2_cvttsd2si:
576  case Intrinsic::x86_sse2_cvttsd2si64: {
577    // These intrinsics only demand the 0th element of their input vectors. If
578    // we can simplify the input based on that, do so now.
579    unsigned VWidth =
580      cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
581    APInt DemandedElts(VWidth, 1);
582    APInt UndefElts(VWidth, 0);
583    if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
584                                              DemandedElts, UndefElts)) {
585      II->setArgOperand(0, V);
586      return II;
587    }
588    break;
589  }
590
591
592  case Intrinsic::x86_sse41_pmovsxbw:
593  case Intrinsic::x86_sse41_pmovsxwd:
594  case Intrinsic::x86_sse41_pmovsxdq:
595  case Intrinsic::x86_sse41_pmovzxbw:
596  case Intrinsic::x86_sse41_pmovzxwd:
597  case Intrinsic::x86_sse41_pmovzxdq: {
598    unsigned VWidth =
599      cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
600    unsigned LowHalfElts = VWidth / 2;
601    APInt InputDemandedElts(VWidth, 0);
602    InputDemandedElts = InputDemandedElts.getBitsSet(VWidth, 0, LowHalfElts);
603    APInt UndefElts(VWidth, 0);
604    if (Value *TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0),
605                                                 InputDemandedElts,
606                                                 UndefElts)) {
607      II->setArgOperand(0, TmpV);
608      return II;
609    }
610    break;
611  }
612
613  case Intrinsic::ppc_altivec_vperm:
614    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
615    if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getArgOperand(2))) {
616      assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
617
618      // Check that all of the elements are integer constants or undefs.
619      bool AllEltsOk = true;
620      for (unsigned i = 0; i != 16; ++i) {
621        if (!isa<ConstantInt>(Mask->getOperand(i)) &&
622            !isa<UndefValue>(Mask->getOperand(i))) {
623          AllEltsOk = false;
624          break;
625        }
626      }
627
628      if (AllEltsOk) {
629        // Cast the input vectors to byte vectors.
630        Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
631                                            Mask->getType());
632        Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
633                                            Mask->getType());
634        Value *Result = UndefValue::get(Op0->getType());
635
636        // Only extract each element once.
637        Value *ExtractedElts[32];
638        memset(ExtractedElts, 0, sizeof(ExtractedElts));
639
640        for (unsigned i = 0; i != 16; ++i) {
641          if (isa<UndefValue>(Mask->getOperand(i)))
642            continue;
643          unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
644          Idx &= 31;  // Match the hardware behavior.
645
646          if (ExtractedElts[Idx] == 0) {
647            ExtractedElts[Idx] =
648              Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
649                  ConstantInt::get(Type::getInt32Ty(II->getContext()),
650                                   Idx&15, false), "tmp");
651          }
652
653          // Insert this value into the result vector.
654          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
655                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
656                                          i, false), "tmp");
657        }
658        return CastInst::Create(Instruction::BitCast, Result, CI.getType());
659      }
660    }
661    break;
662
663  case Intrinsic::arm_neon_vld1:
664  case Intrinsic::arm_neon_vld2:
665  case Intrinsic::arm_neon_vld3:
666  case Intrinsic::arm_neon_vld4:
667  case Intrinsic::arm_neon_vld2lane:
668  case Intrinsic::arm_neon_vld3lane:
669  case Intrinsic::arm_neon_vld4lane:
670  case Intrinsic::arm_neon_vst1:
671  case Intrinsic::arm_neon_vst2:
672  case Intrinsic::arm_neon_vst3:
673  case Intrinsic::arm_neon_vst4:
674  case Intrinsic::arm_neon_vst2lane:
675  case Intrinsic::arm_neon_vst3lane:
676  case Intrinsic::arm_neon_vst4lane: {
677    unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), TD);
678    unsigned AlignArg = II->getNumArgOperands() - 1;
679    ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
680    if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
681      II->setArgOperand(AlignArg,
682                        ConstantInt::get(Type::getInt32Ty(II->getContext()),
683                                         MemAlign, false));
684      return II;
685    }
686    break;
687  }
688
689  case Intrinsic::stackrestore: {
690    // If the save is right next to the restore, remove the restore.  This can
691    // happen when variable allocas are DCE'd.
692    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
693      if (SS->getIntrinsicID() == Intrinsic::stacksave) {
694        BasicBlock::iterator BI = SS;
695        if (&*++BI == II)
696          return EraseInstFromFunction(CI);
697      }
698    }
699
700    // Scan down this block to see if there is another stack restore in the
701    // same block without an intervening call/alloca.
702    BasicBlock::iterator BI = II;
703    TerminatorInst *TI = II->getParent()->getTerminator();
704    bool CannotRemove = false;
705    for (++BI; &*BI != TI; ++BI) {
706      if (isa<AllocaInst>(BI) || isMalloc(BI)) {
707        CannotRemove = true;
708        break;
709      }
710      if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
711        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
712          // If there is a stackrestore below this one, remove this one.
713          if (II->getIntrinsicID() == Intrinsic::stackrestore)
714            return EraseInstFromFunction(CI);
715          // Otherwise, ignore the intrinsic.
716        } else {
717          // If we found a non-intrinsic call, we can't remove the stack
718          // restore.
719          CannotRemove = true;
720          break;
721        }
722      }
723    }
724
725    // If the stack restore is in a return/unwind block and if there are no
726    // allocas or calls between the restore and the return, nuke the restore.
727    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
728      return EraseInstFromFunction(CI);
729    break;
730  }
731  }
732
733  return visitCallSite(II);
734}
735
736// InvokeInst simplification
737//
738Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
739  return visitCallSite(&II);
740}
741
742/// isSafeToEliminateVarargsCast - If this cast does not affect the value
743/// passed through the varargs area, we can eliminate the use of the cast.
744static bool isSafeToEliminateVarargsCast(const CallSite CS,
745                                         const CastInst * const CI,
746                                         const TargetData * const TD,
747                                         const int ix) {
748  if (!CI->isLosslessCast())
749    return false;
750
751  // The size of ByVal arguments is derived from the type, so we
752  // can't change to a type with a different size.  If the size were
753  // passed explicitly we could avoid this check.
754  if (!CS.paramHasAttr(ix, Attribute::ByVal))
755    return true;
756
757  const Type* SrcTy =
758            cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
759  const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
760  if (!SrcTy->isSized() || !DstTy->isSized())
761    return false;
762  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
763    return false;
764  return true;
765}
766
767namespace {
768class InstCombineFortifiedLibCalls : public SimplifyFortifiedLibCalls {
769  InstCombiner *IC;
770protected:
771  void replaceCall(Value *With) {
772    NewInstruction = IC->ReplaceInstUsesWith(*CI, With);
773  }
774  bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
775    if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
776      return true;
777    if (ConstantInt *SizeCI =
778                           dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
779      if (SizeCI->isAllOnesValue())
780        return true;
781      if (isString) {
782        uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
783        // If the length is 0 we don't know how long it is and so we can't
784        // remove the check.
785        if (Len == 0) return false;
786        return SizeCI->getZExtValue() >= Len;
787      }
788      if (ConstantInt *Arg = dyn_cast<ConstantInt>(
789                                                  CI->getArgOperand(SizeArgOp)))
790        return SizeCI->getZExtValue() >= Arg->getZExtValue();
791    }
792    return false;
793  }
794public:
795  InstCombineFortifiedLibCalls(InstCombiner *IC) : IC(IC), NewInstruction(0) { }
796  Instruction *NewInstruction;
797};
798} // end anonymous namespace
799
800// Try to fold some different type of calls here.
801// Currently we're only working with the checking functions, memcpy_chk,
802// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
803// strcat_chk and strncat_chk.
804Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
805  if (CI->getCalledFunction() == 0) return 0;
806
807  InstCombineFortifiedLibCalls Simplifier(this);
808  Simplifier.fold(CI, TD);
809  return Simplifier.NewInstruction;
810}
811
812// visitCallSite - Improvements for call and invoke instructions.
813//
814Instruction *InstCombiner::visitCallSite(CallSite CS) {
815  bool Changed = false;
816
817  // If the callee is a pointer to a function, attempt to move any casts to the
818  // arguments of the call/invoke.
819  Value *Callee = CS.getCalledValue();
820  if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
821    return 0;
822
823  if (Function *CalleeF = dyn_cast<Function>(Callee))
824    // If the call and callee calling conventions don't match, this call must
825    // be unreachable, as the call is undefined.
826    if (CalleeF->getCallingConv() != CS.getCallingConv() &&
827        // Only do this for calls to a function with a body.  A prototype may
828        // not actually end up matching the implementation's calling conv for a
829        // variety of reasons (e.g. it may be written in assembly).
830        !CalleeF->isDeclaration()) {
831      Instruction *OldCall = CS.getInstruction();
832      new StoreInst(ConstantInt::getTrue(Callee->getContext()),
833                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
834                                  OldCall);
835      // If OldCall dues not return void then replaceAllUsesWith undef.
836      // This allows ValueHandlers and custom metadata to adjust itself.
837      if (!OldCall->getType()->isVoidTy())
838        ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
839      if (isa<CallInst>(OldCall))
840        return EraseInstFromFunction(*OldCall);
841
842      // We cannot remove an invoke, because it would change the CFG, just
843      // change the callee to a null pointer.
844      cast<InvokeInst>(OldCall)->setCalledFunction(
845                                    Constant::getNullValue(CalleeF->getType()));
846      return 0;
847    }
848
849  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
850    // This instruction is not reachable, just remove it.  We insert a store to
851    // undef so that we know that this code is not reachable, despite the fact
852    // that we can't modify the CFG here.
853    new StoreInst(ConstantInt::getTrue(Callee->getContext()),
854               UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
855                  CS.getInstruction());
856
857    // If CS does not return void then replaceAllUsesWith undef.
858    // This allows ValueHandlers and custom metadata to adjust itself.
859    if (!CS.getInstruction()->getType()->isVoidTy())
860      ReplaceInstUsesWith(*CS.getInstruction(),
861                          UndefValue::get(CS.getInstruction()->getType()));
862
863    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
864      // Don't break the CFG, insert a dummy cond branch.
865      BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
866                         ConstantInt::getTrue(Callee->getContext()), II);
867    }
868    return EraseInstFromFunction(*CS.getInstruction());
869  }
870
871  if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
872    if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
873      if (In->getIntrinsicID() == Intrinsic::init_trampoline)
874        return transformCallThroughTrampoline(CS);
875
876  const PointerType *PTy = cast<PointerType>(Callee->getType());
877  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
878  if (FTy->isVarArg()) {
879    int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
880    // See if we can optimize any arguments passed through the varargs area of
881    // the call.
882    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
883           E = CS.arg_end(); I != E; ++I, ++ix) {
884      CastInst *CI = dyn_cast<CastInst>(*I);
885      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
886        *I = CI->getOperand(0);
887        Changed = true;
888      }
889    }
890  }
891
892  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
893    // Inline asm calls cannot throw - mark them 'nounwind'.
894    CS.setDoesNotThrow();
895    Changed = true;
896  }
897
898  // Try to optimize the call if possible, we require TargetData for most of
899  // this.  None of these calls are seen as possibly dead so go ahead and
900  // delete the instruction now.
901  if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
902    Instruction *I = tryOptimizeCall(CI, TD);
903    // If we changed something return the result, etc. Otherwise let
904    // the fallthrough check.
905    if (I) return EraseInstFromFunction(*I);
906  }
907
908  return Changed ? CS.getInstruction() : 0;
909}
910
911// transformConstExprCastCall - If the callee is a constexpr cast of a function,
912// attempt to move the cast to the arguments of the call/invoke.
913//
914bool InstCombiner::transformConstExprCastCall(CallSite CS) {
915  Function *Callee =
916    dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
917  if (Callee == 0)
918    return false;
919  Instruction *Caller = CS.getInstruction();
920  const AttrListPtr &CallerPAL = CS.getAttributes();
921
922  // Okay, this is a cast from a function to a different type.  Unless doing so
923  // would cause a type conversion of one of our arguments, change this call to
924  // be a direct call with arguments casted to the appropriate types.
925  //
926  const FunctionType *FT = Callee->getFunctionType();
927  const Type *OldRetTy = Caller->getType();
928  const Type *NewRetTy = FT->getReturnType();
929
930  if (NewRetTy->isStructTy())
931    return false; // TODO: Handle multiple return values.
932
933  // Check to see if we are changing the return type...
934  if (OldRetTy != NewRetTy) {
935    if (Callee->isDeclaration() &&
936        // Conversion is ok if changing from one pointer type to another or from
937        // a pointer to an integer of the same size.
938        !((OldRetTy->isPointerTy() || !TD ||
939           OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
940          (NewRetTy->isPointerTy() || !TD ||
941           NewRetTy == TD->getIntPtrType(Caller->getContext()))))
942      return false;   // Cannot transform this return value.
943
944    if (!Caller->use_empty() &&
945        // void -> non-void is handled specially
946        !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
947      return false;   // Cannot transform this return value.
948
949    if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
950      Attributes RAttrs = CallerPAL.getRetAttributes();
951      if (RAttrs & Attribute::typeIncompatible(NewRetTy))
952        return false;   // Attribute not compatible with transformed value.
953    }
954
955    // If the callsite is an invoke instruction, and the return value is used by
956    // a PHI node in a successor, we cannot change the return type of the call
957    // because there is no place to put the cast instruction (without breaking
958    // the critical edge).  Bail out in this case.
959    if (!Caller->use_empty())
960      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
961        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
962             UI != E; ++UI)
963          if (PHINode *PN = dyn_cast<PHINode>(*UI))
964            if (PN->getParent() == II->getNormalDest() ||
965                PN->getParent() == II->getUnwindDest())
966              return false;
967  }
968
969  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
970  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
971
972  CallSite::arg_iterator AI = CS.arg_begin();
973  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
974    const Type *ParamTy = FT->getParamType(i);
975    const Type *ActTy = (*AI)->getType();
976
977    if (!CastInst::isCastable(ActTy, ParamTy))
978      return false;   // Cannot transform this parameter value.
979
980    unsigned Attrs = CallerPAL.getParamAttributes(i + 1);
981    if (Attrs & Attribute::typeIncompatible(ParamTy))
982      return false;   // Attribute not compatible with transformed value.
983
984    // If the parameter is passed as a byval argument, then we have to have a
985    // sized type and the sized type has to have the same size as the old type.
986    if (ParamTy != ActTy && (Attrs & Attribute::ByVal)) {
987      const PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
988      if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
989        return false;
990
991      const Type *CurElTy = cast<PointerType>(ActTy)->getElementType();
992      if (TD->getTypeAllocSize(CurElTy) !=
993          TD->getTypeAllocSize(ParamPTy->getElementType()))
994        return false;
995    }
996
997    // Converting from one pointer type to another or between a pointer and an
998    // integer of the same size is safe even if we do not have a body.
999    bool isConvertible = ActTy == ParamTy ||
1000      (TD && ((ParamTy->isPointerTy() ||
1001      ParamTy == TD->getIntPtrType(Caller->getContext())) &&
1002              (ActTy->isPointerTy() ||
1003              ActTy == TD->getIntPtrType(Caller->getContext()))));
1004    if (Callee->isDeclaration() && !isConvertible) return false;
1005  }
1006
1007  if (Callee->isDeclaration()) {
1008    // Do not delete arguments unless we have a function body.
1009    if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
1010      return false;
1011
1012    // If the callee is just a declaration, don't change the varargsness of the
1013    // call.  We don't want to introduce a varargs call where one doesn't
1014    // already exist.
1015    const PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
1016    if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
1017      return false;
1018  }
1019
1020  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
1021      !CallerPAL.isEmpty())
1022    // In this case we have more arguments than the new function type, but we
1023    // won't be dropping them.  Check that these extra arguments have attributes
1024    // that are compatible with being a vararg call argument.
1025    for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
1026      if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
1027        break;
1028      Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
1029      if (PAttrs & Attribute::VarArgsIncompatible)
1030        return false;
1031    }
1032
1033
1034  // Okay, we decided that this is a safe thing to do: go ahead and start
1035  // inserting cast instructions as necessary.
1036  std::vector<Value*> Args;
1037  Args.reserve(NumActualArgs);
1038  SmallVector<AttributeWithIndex, 8> attrVec;
1039  attrVec.reserve(NumCommonArgs);
1040
1041  // Get any return attributes.
1042  Attributes RAttrs = CallerPAL.getRetAttributes();
1043
1044  // If the return value is not being used, the type may not be compatible
1045  // with the existing attributes.  Wipe out any problematic attributes.
1046  RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
1047
1048  // Add the new return attributes.
1049  if (RAttrs)
1050    attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
1051
1052  AI = CS.arg_begin();
1053  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
1054    const Type *ParamTy = FT->getParamType(i);
1055    if ((*AI)->getType() == ParamTy) {
1056      Args.push_back(*AI);
1057    } else {
1058      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
1059          false, ParamTy, false);
1060      Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
1061    }
1062
1063    // Add any parameter attributes.
1064    if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1065      attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1066  }
1067
1068  // If the function takes more arguments than the call was taking, add them
1069  // now.
1070  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1071    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1072
1073  // If we are removing arguments to the function, emit an obnoxious warning.
1074  if (FT->getNumParams() < NumActualArgs) {
1075    if (!FT->isVarArg()) {
1076      errs() << "WARNING: While resolving call to function '"
1077             << Callee->getName() << "' arguments were dropped!\n";
1078    } else {
1079      // Add all of the arguments in their promoted form to the arg list.
1080      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1081        const Type *PTy = getPromotedType((*AI)->getType());
1082        if (PTy != (*AI)->getType()) {
1083          // Must promote to pass through va_arg area!
1084          Instruction::CastOps opcode =
1085            CastInst::getCastOpcode(*AI, false, PTy, false);
1086          Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
1087        } else {
1088          Args.push_back(*AI);
1089        }
1090
1091        // Add any parameter attributes.
1092        if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1093          attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1094      }
1095    }
1096  }
1097
1098  if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
1099    attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
1100
1101  if (NewRetTy->isVoidTy())
1102    Caller->setName("");   // Void type should not have a name.
1103
1104  const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
1105                                                     attrVec.end());
1106
1107  Instruction *NC;
1108  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1109    NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
1110                            Args.begin(), Args.end(),
1111                            Caller->getName(), Caller);
1112    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1113    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1114  } else {
1115    NC = CallInst::Create(Callee, Args.begin(), Args.end(),
1116                          Caller->getName(), Caller);
1117    CallInst *CI = cast<CallInst>(Caller);
1118    if (CI->isTailCall())
1119      cast<CallInst>(NC)->setTailCall();
1120    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1121    cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1122  }
1123
1124  // Insert a cast of the return type as necessary.
1125  Value *NV = NC;
1126  if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1127    if (!NV->getType()->isVoidTy()) {
1128      Instruction::CastOps opcode =
1129        CastInst::getCastOpcode(NC, false, OldRetTy, false);
1130      NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
1131
1132      // If this is an invoke instruction, we should insert it after the first
1133      // non-phi, instruction in the normal successor block.
1134      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1135        BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
1136        InsertNewInstBefore(NC, *I);
1137      } else {
1138        // Otherwise, it's a call, just insert cast right after the call.
1139        InsertNewInstBefore(NC, *Caller);
1140      }
1141      Worklist.AddUsersToWorkList(*Caller);
1142    } else {
1143      NV = UndefValue::get(Caller->getType());
1144    }
1145  }
1146
1147  if (!Caller->use_empty())
1148    ReplaceInstUsesWith(*Caller, NV);
1149
1150  EraseInstFromFunction(*Caller);
1151  return true;
1152}
1153
1154// transformCallThroughTrampoline - Turn a call to a function created by the
1155// init_trampoline intrinsic into a direct call to the underlying function.
1156//
1157Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
1158  Value *Callee = CS.getCalledValue();
1159  const PointerType *PTy = cast<PointerType>(Callee->getType());
1160  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1161  const AttrListPtr &Attrs = CS.getAttributes();
1162
1163  // If the call already has the 'nest' attribute somewhere then give up -
1164  // otherwise 'nest' would occur twice after splicing in the chain.
1165  if (Attrs.hasAttrSomewhere(Attribute::Nest))
1166    return 0;
1167
1168  IntrinsicInst *Tramp =
1169    cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
1170
1171  Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
1172  const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1173  const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1174
1175  const AttrListPtr &NestAttrs = NestF->getAttributes();
1176  if (!NestAttrs.isEmpty()) {
1177    unsigned NestIdx = 1;
1178    const Type *NestTy = 0;
1179    Attributes NestAttr = Attribute::None;
1180
1181    // Look for a parameter marked with the 'nest' attribute.
1182    for (FunctionType::param_iterator I = NestFTy->param_begin(),
1183         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1184      if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1185        // Record the parameter type and any other attributes.
1186        NestTy = *I;
1187        NestAttr = NestAttrs.getParamAttributes(NestIdx);
1188        break;
1189      }
1190
1191    if (NestTy) {
1192      Instruction *Caller = CS.getInstruction();
1193      std::vector<Value*> NewArgs;
1194      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1195
1196      SmallVector<AttributeWithIndex, 8> NewAttrs;
1197      NewAttrs.reserve(Attrs.getNumSlots() + 1);
1198
1199      // Insert the nest argument into the call argument list, which may
1200      // mean appending it.  Likewise for attributes.
1201
1202      // Add any result attributes.
1203      if (Attributes Attr = Attrs.getRetAttributes())
1204        NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1205
1206      {
1207        unsigned Idx = 1;
1208        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1209        do {
1210          if (Idx == NestIdx) {
1211            // Add the chain argument and attributes.
1212            Value *NestVal = Tramp->getArgOperand(2);
1213            if (NestVal->getType() != NestTy)
1214              NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
1215            NewArgs.push_back(NestVal);
1216            NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1217          }
1218
1219          if (I == E)
1220            break;
1221
1222          // Add the original argument and attributes.
1223          NewArgs.push_back(*I);
1224          if (Attributes Attr = Attrs.getParamAttributes(Idx))
1225            NewAttrs.push_back
1226              (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1227
1228          ++Idx, ++I;
1229        } while (1);
1230      }
1231
1232      // Add any function attributes.
1233      if (Attributes Attr = Attrs.getFnAttributes())
1234        NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1235
1236      // The trampoline may have been bitcast to a bogus type (FTy).
1237      // Handle this by synthesizing a new function type, equal to FTy
1238      // with the chain parameter inserted.
1239
1240      std::vector<const Type*> NewTypes;
1241      NewTypes.reserve(FTy->getNumParams()+1);
1242
1243      // Insert the chain's type into the list of parameter types, which may
1244      // mean appending it.
1245      {
1246        unsigned Idx = 1;
1247        FunctionType::param_iterator I = FTy->param_begin(),
1248          E = FTy->param_end();
1249
1250        do {
1251          if (Idx == NestIdx)
1252            // Add the chain's type.
1253            NewTypes.push_back(NestTy);
1254
1255          if (I == E)
1256            break;
1257
1258          // Add the original type.
1259          NewTypes.push_back(*I);
1260
1261          ++Idx, ++I;
1262        } while (1);
1263      }
1264
1265      // Replace the trampoline call with a direct call.  Let the generic
1266      // code sort out any function type mismatches.
1267      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1268                                                FTy->isVarArg());
1269      Constant *NewCallee =
1270        NestF->getType() == PointerType::getUnqual(NewFTy) ?
1271        NestF : ConstantExpr::getBitCast(NestF,
1272                                         PointerType::getUnqual(NewFTy));
1273      const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
1274                                                   NewAttrs.end());
1275
1276      Instruction *NewCaller;
1277      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1278        NewCaller = InvokeInst::Create(NewCallee,
1279                                       II->getNormalDest(), II->getUnwindDest(),
1280                                       NewArgs.begin(), NewArgs.end(),
1281                                       Caller->getName(), Caller);
1282        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1283        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1284      } else {
1285        NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
1286                                     Caller->getName(), Caller);
1287        if (cast<CallInst>(Caller)->isTailCall())
1288          cast<CallInst>(NewCaller)->setTailCall();
1289        cast<CallInst>(NewCaller)->
1290          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1291        cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1292      }
1293      if (!Caller->getType()->isVoidTy())
1294        ReplaceInstUsesWith(*Caller, NewCaller);
1295      Caller->eraseFromParent();
1296      Worklist.Remove(Caller);
1297      return 0;
1298    }
1299  }
1300
1301  // Replace the trampoline call with a direct call.  Since there is no 'nest'
1302  // parameter, there is no need to adjust the argument list.  Let the generic
1303  // code sort out any function type mismatches.
1304  Constant *NewCallee =
1305    NestF->getType() == PTy ? NestF :
1306                              ConstantExpr::getBitCast(NestF, PTy);
1307  CS.setCalledFunction(NewCallee);
1308  return CS.getInstruction();
1309}
1310
1311