InstCombineCalls.cpp revision 63f932ca3c91ea8ac5b592158f5e8ef7de550547
1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Support/CallSite.h"
16#include "llvm/DataLayout.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19#include "llvm/Transforms/Utils/BuildLibCalls.h"
20#include "llvm/Transforms/Utils/Local.h"
21using namespace llvm;
22
23STATISTIC(NumSimplified, "Number of library calls simplified");
24
25/// getPromotedType - Return the specified type promoted as it would be to pass
26/// though a va_arg area.
27static Type *getPromotedType(Type *Ty) {
28  if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
29    if (ITy->getBitWidth() < 32)
30      return Type::getInt32Ty(Ty->getContext());
31  }
32  return Ty;
33}
34
35/// reduceToSingleValueType - Given an aggregate type which ultimately holds a
36/// single scalar element, like {{{type}}} or [1 x type], return type.
37static Type *reduceToSingleValueType(Type *T) {
38  while (!T->isSingleValueType()) {
39    if (StructType *STy = dyn_cast<StructType>(T)) {
40      if (STy->getNumElements() == 1)
41        T = STy->getElementType(0);
42      else
43        break;
44    } else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) {
45      if (ATy->getNumElements() == 1)
46        T = ATy->getElementType();
47      else
48        break;
49    } else
50      break;
51  }
52
53  return T;
54}
55
56Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
57  unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), TD);
58  unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), TD);
59  unsigned MinAlign = std::min(DstAlign, SrcAlign);
60  unsigned CopyAlign = MI->getAlignment();
61
62  if (CopyAlign < MinAlign) {
63    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
64                                             MinAlign, false));
65    return MI;
66  }
67
68  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
69  // load/store.
70  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
71  if (MemOpLength == 0) return 0;
72
73  // Source and destination pointer types are always "i8*" for intrinsic.  See
74  // if the size is something we can handle with a single primitive load/store.
75  // A single load+store correctly handles overlapping memory in the memmove
76  // case.
77  uint64_t Size = MemOpLength->getLimitedValue();
78  assert(Size && "0-sized memory transfering should be removed already.");
79
80  if (Size > 8 || (Size&(Size-1)))
81    return 0;  // If not 1/2/4/8 bytes, exit.
82
83  // Use an integer load+store unless we can find something better.
84  unsigned SrcAddrSp =
85    cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
86  unsigned DstAddrSp =
87    cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
88
89  IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
90  Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
91  Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
92
93  // Memcpy forces the use of i8* for the source and destination.  That means
94  // that if you're using memcpy to move one double around, you'll get a cast
95  // from double* to i8*.  We'd much rather use a double load+store rather than
96  // an i64 load+store, here because this improves the odds that the source or
97  // dest address will be promotable.  See if we can find a better type than the
98  // integer datatype.
99  Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
100  MDNode *CopyMD = 0;
101  if (StrippedDest != MI->getArgOperand(0)) {
102    Type *SrcETy = cast<PointerType>(StrippedDest->getType())
103                                    ->getElementType();
104    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
105      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
106      // down through these levels if so.
107      SrcETy = reduceToSingleValueType(SrcETy);
108
109      if (SrcETy->isSingleValueType()) {
110        NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
111        NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
112
113        // If the memcpy has metadata describing the members, see if we can
114        // get the TBAA tag describing our copy.
115        if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
116          if (M->getNumOperands() == 3 &&
117              M->getOperand(0) &&
118              isa<ConstantInt>(M->getOperand(0)) &&
119              cast<ConstantInt>(M->getOperand(0))->isNullValue() &&
120              M->getOperand(1) &&
121              isa<ConstantInt>(M->getOperand(1)) &&
122              cast<ConstantInt>(M->getOperand(1))->getValue() == Size &&
123              M->getOperand(2) &&
124              isa<MDNode>(M->getOperand(2)))
125            CopyMD = cast<MDNode>(M->getOperand(2));
126        }
127      }
128    }
129  }
130
131  // If the memcpy/memmove provides better alignment info than we can
132  // infer, use it.
133  SrcAlign = std::max(SrcAlign, CopyAlign);
134  DstAlign = std::max(DstAlign, CopyAlign);
135
136  Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
137  Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
138  LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
139  L->setAlignment(SrcAlign);
140  if (CopyMD)
141    L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
142  StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
143  S->setAlignment(DstAlign);
144  if (CopyMD)
145    S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
146
147  // Set the size of the copy to 0, it will be deleted on the next iteration.
148  MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
149  return MI;
150}
151
152Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
153  unsigned Alignment = getKnownAlignment(MI->getDest(), TD);
154  if (MI->getAlignment() < Alignment) {
155    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
156                                             Alignment, false));
157    return MI;
158  }
159
160  // Extract the length and alignment and fill if they are constant.
161  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
162  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
163  if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
164    return 0;
165  uint64_t Len = LenC->getLimitedValue();
166  Alignment = MI->getAlignment();
167  assert(Len && "0-sized memory setting should be removed already.");
168
169  // memset(s,c,n) -> store s, c (for n=1,2,4,8)
170  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
171    Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
172
173    Value *Dest = MI->getDest();
174    unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
175    Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
176    Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
177
178    // Alignment 0 is identity for alignment 1 for memset, but not store.
179    if (Alignment == 0) Alignment = 1;
180
181    // Extract the fill value and store.
182    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
183    StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
184                                        MI->isVolatile());
185    S->setAlignment(Alignment);
186
187    // Set the size of the copy to 0, it will be deleted on the next iteration.
188    MI->setLength(Constant::getNullValue(LenC->getType()));
189    return MI;
190  }
191
192  return 0;
193}
194
195/// visitCallInst - CallInst simplification.  This mostly only handles folding
196/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
197/// the heavy lifting.
198///
199Instruction *InstCombiner::visitCallInst(CallInst &CI) {
200  if (isFreeCall(&CI, TLI))
201    return visitFree(CI);
202
203  // If the caller function is nounwind, mark the call as nounwind, even if the
204  // callee isn't.
205  if (CI.getParent()->getParent()->doesNotThrow() &&
206      !CI.doesNotThrow()) {
207    CI.setDoesNotThrow();
208    return &CI;
209  }
210
211  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
212  if (!II) return visitCallSite(&CI);
213
214  // Intrinsics cannot occur in an invoke, so handle them here instead of in
215  // visitCallSite.
216  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
217    bool Changed = false;
218
219    // memmove/cpy/set of zero bytes is a noop.
220    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
221      if (NumBytes->isNullValue())
222        return EraseInstFromFunction(CI);
223
224      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
225        if (CI->getZExtValue() == 1) {
226          // Replace the instruction with just byte operations.  We would
227          // transform other cases to loads/stores, but we don't know if
228          // alignment is sufficient.
229        }
230    }
231
232    // No other transformations apply to volatile transfers.
233    if (MI->isVolatile())
234      return 0;
235
236    // If we have a memmove and the source operation is a constant global,
237    // then the source and dest pointers can't alias, so we can change this
238    // into a call to memcpy.
239    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
240      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
241        if (GVSrc->isConstant()) {
242          Module *M = CI.getParent()->getParent()->getParent();
243          Intrinsic::ID MemCpyID = Intrinsic::memcpy;
244          Type *Tys[3] = { CI.getArgOperand(0)->getType(),
245                           CI.getArgOperand(1)->getType(),
246                           CI.getArgOperand(2)->getType() };
247          CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
248          Changed = true;
249        }
250    }
251
252    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
253      // memmove(x,x,size) -> noop.
254      if (MTI->getSource() == MTI->getDest())
255        return EraseInstFromFunction(CI);
256    }
257
258    // If we can determine a pointer alignment that is bigger than currently
259    // set, update the alignment.
260    if (isa<MemTransferInst>(MI)) {
261      if (Instruction *I = SimplifyMemTransfer(MI))
262        return I;
263    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
264      if (Instruction *I = SimplifyMemSet(MSI))
265        return I;
266    }
267
268    if (Changed) return II;
269  }
270
271  switch (II->getIntrinsicID()) {
272  default: break;
273  case Intrinsic::objectsize: {
274    uint64_t Size;
275    if (getObjectSize(II->getArgOperand(0), Size, TD, TLI))
276      return ReplaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size));
277    return 0;
278  }
279  case Intrinsic::bswap:
280    // bswap(bswap(x)) -> x
281    if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
282      if (Operand->getIntrinsicID() == Intrinsic::bswap)
283        return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
284
285    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
286    if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
287      if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
288        if (Operand->getIntrinsicID() == Intrinsic::bswap) {
289          unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
290                       TI->getType()->getPrimitiveSizeInBits();
291          Value *CV = ConstantInt::get(Operand->getType(), C);
292          Value *V = Builder->CreateLShr(Operand->getArgOperand(0), CV);
293          return new TruncInst(V, TI->getType());
294        }
295    }
296
297    break;
298  case Intrinsic::powi:
299    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
300      // powi(x, 0) -> 1.0
301      if (Power->isZero())
302        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
303      // powi(x, 1) -> x
304      if (Power->isOne())
305        return ReplaceInstUsesWith(CI, II->getArgOperand(0));
306      // powi(x, -1) -> 1/x
307      if (Power->isAllOnesValue())
308        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
309                                          II->getArgOperand(0));
310    }
311    break;
312  case Intrinsic::cttz: {
313    // If all bits below the first known one are known zero,
314    // this value is constant.
315    IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
316    // FIXME: Try to simplify vectors of integers.
317    if (!IT) break;
318    uint32_t BitWidth = IT->getBitWidth();
319    APInt KnownZero(BitWidth, 0);
320    APInt KnownOne(BitWidth, 0);
321    ComputeMaskedBits(II->getArgOperand(0), KnownZero, KnownOne);
322    unsigned TrailingZeros = KnownOne.countTrailingZeros();
323    APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
324    if ((Mask & KnownZero) == Mask)
325      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
326                                 APInt(BitWidth, TrailingZeros)));
327
328    }
329    break;
330  case Intrinsic::ctlz: {
331    // If all bits above the first known one are known zero,
332    // this value is constant.
333    IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
334    // FIXME: Try to simplify vectors of integers.
335    if (!IT) break;
336    uint32_t BitWidth = IT->getBitWidth();
337    APInt KnownZero(BitWidth, 0);
338    APInt KnownOne(BitWidth, 0);
339    ComputeMaskedBits(II->getArgOperand(0), KnownZero, KnownOne);
340    unsigned LeadingZeros = KnownOne.countLeadingZeros();
341    APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
342    if ((Mask & KnownZero) == Mask)
343      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
344                                 APInt(BitWidth, LeadingZeros)));
345
346    }
347    break;
348  case Intrinsic::uadd_with_overflow: {
349    Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
350    IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
351    uint32_t BitWidth = IT->getBitWidth();
352    APInt LHSKnownZero(BitWidth, 0);
353    APInt LHSKnownOne(BitWidth, 0);
354    ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
355    bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
356    bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
357
358    if (LHSKnownNegative || LHSKnownPositive) {
359      APInt RHSKnownZero(BitWidth, 0);
360      APInt RHSKnownOne(BitWidth, 0);
361      ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
362      bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
363      bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
364      if (LHSKnownNegative && RHSKnownNegative) {
365        // The sign bit is set in both cases: this MUST overflow.
366        // Create a simple add instruction, and insert it into the struct.
367        Value *Add = Builder->CreateAdd(LHS, RHS);
368        Add->takeName(&CI);
369        Constant *V[] = {
370          UndefValue::get(LHS->getType()),
371          ConstantInt::getTrue(II->getContext())
372        };
373        StructType *ST = cast<StructType>(II->getType());
374        Constant *Struct = ConstantStruct::get(ST, V);
375        return InsertValueInst::Create(Struct, Add, 0);
376      }
377
378      if (LHSKnownPositive && RHSKnownPositive) {
379        // The sign bit is clear in both cases: this CANNOT overflow.
380        // Create a simple add instruction, and insert it into the struct.
381        Value *Add = Builder->CreateNUWAdd(LHS, RHS);
382        Add->takeName(&CI);
383        Constant *V[] = {
384          UndefValue::get(LHS->getType()),
385          ConstantInt::getFalse(II->getContext())
386        };
387        StructType *ST = cast<StructType>(II->getType());
388        Constant *Struct = ConstantStruct::get(ST, V);
389        return InsertValueInst::Create(Struct, Add, 0);
390      }
391    }
392  }
393  // FALL THROUGH uadd into sadd
394  case Intrinsic::sadd_with_overflow:
395    // Canonicalize constants into the RHS.
396    if (isa<Constant>(II->getArgOperand(0)) &&
397        !isa<Constant>(II->getArgOperand(1))) {
398      Value *LHS = II->getArgOperand(0);
399      II->setArgOperand(0, II->getArgOperand(1));
400      II->setArgOperand(1, LHS);
401      return II;
402    }
403
404    // X + undef -> undef
405    if (isa<UndefValue>(II->getArgOperand(1)))
406      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
407
408    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
409      // X + 0 -> {X, false}
410      if (RHS->isZero()) {
411        Constant *V[] = {
412          UndefValue::get(II->getArgOperand(0)->getType()),
413          ConstantInt::getFalse(II->getContext())
414        };
415        Constant *Struct =
416          ConstantStruct::get(cast<StructType>(II->getType()), V);
417        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
418      }
419    }
420    break;
421  case Intrinsic::usub_with_overflow:
422  case Intrinsic::ssub_with_overflow:
423    // undef - X -> undef
424    // X - undef -> undef
425    if (isa<UndefValue>(II->getArgOperand(0)) ||
426        isa<UndefValue>(II->getArgOperand(1)))
427      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
428
429    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
430      // X - 0 -> {X, false}
431      if (RHS->isZero()) {
432        Constant *V[] = {
433          UndefValue::get(II->getArgOperand(0)->getType()),
434          ConstantInt::getFalse(II->getContext())
435        };
436        Constant *Struct =
437          ConstantStruct::get(cast<StructType>(II->getType()), V);
438        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
439      }
440    }
441    break;
442  case Intrinsic::umul_with_overflow: {
443    Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
444    unsigned BitWidth = cast<IntegerType>(LHS->getType())->getBitWidth();
445
446    APInt LHSKnownZero(BitWidth, 0);
447    APInt LHSKnownOne(BitWidth, 0);
448    ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
449    APInt RHSKnownZero(BitWidth, 0);
450    APInt RHSKnownOne(BitWidth, 0);
451    ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
452
453    // Get the largest possible values for each operand.
454    APInt LHSMax = ~LHSKnownZero;
455    APInt RHSMax = ~RHSKnownZero;
456
457    // If multiplying the maximum values does not overflow then we can turn
458    // this into a plain NUW mul.
459    bool Overflow;
460    LHSMax.umul_ov(RHSMax, Overflow);
461    if (!Overflow) {
462      Value *Mul = Builder->CreateNUWMul(LHS, RHS, "umul_with_overflow");
463      Constant *V[] = {
464        UndefValue::get(LHS->getType()),
465        Builder->getFalse()
466      };
467      Constant *Struct = ConstantStruct::get(cast<StructType>(II->getType()),V);
468      return InsertValueInst::Create(Struct, Mul, 0);
469    }
470  } // FALL THROUGH
471  case Intrinsic::smul_with_overflow:
472    // Canonicalize constants into the RHS.
473    if (isa<Constant>(II->getArgOperand(0)) &&
474        !isa<Constant>(II->getArgOperand(1))) {
475      Value *LHS = II->getArgOperand(0);
476      II->setArgOperand(0, II->getArgOperand(1));
477      II->setArgOperand(1, LHS);
478      return II;
479    }
480
481    // X * undef -> undef
482    if (isa<UndefValue>(II->getArgOperand(1)))
483      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
484
485    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
486      // X*0 -> {0, false}
487      if (RHSI->isZero())
488        return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
489
490      // X * 1 -> {X, false}
491      if (RHSI->equalsInt(1)) {
492        Constant *V[] = {
493          UndefValue::get(II->getArgOperand(0)->getType()),
494          ConstantInt::getFalse(II->getContext())
495        };
496        Constant *Struct =
497          ConstantStruct::get(cast<StructType>(II->getType()), V);
498        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
499      }
500    }
501    break;
502  case Intrinsic::ppc_altivec_lvx:
503  case Intrinsic::ppc_altivec_lvxl:
504    // Turn PPC lvx -> load if the pointer is known aligned.
505    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
506      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
507                                         PointerType::getUnqual(II->getType()));
508      return new LoadInst(Ptr);
509    }
510    break;
511  case Intrinsic::ppc_altivec_stvx:
512  case Intrinsic::ppc_altivec_stvxl:
513    // Turn stvx -> store if the pointer is known aligned.
514    if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) {
515      Type *OpPtrTy =
516        PointerType::getUnqual(II->getArgOperand(0)->getType());
517      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
518      return new StoreInst(II->getArgOperand(0), Ptr);
519    }
520    break;
521  case Intrinsic::x86_sse_storeu_ps:
522  case Intrinsic::x86_sse2_storeu_pd:
523  case Intrinsic::x86_sse2_storeu_dq:
524    // Turn X86 storeu -> store if the pointer is known aligned.
525    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
526      Type *OpPtrTy =
527        PointerType::getUnqual(II->getArgOperand(1)->getType());
528      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
529      return new StoreInst(II->getArgOperand(1), Ptr);
530    }
531    break;
532
533  case Intrinsic::x86_sse_cvtss2si:
534  case Intrinsic::x86_sse_cvtss2si64:
535  case Intrinsic::x86_sse_cvttss2si:
536  case Intrinsic::x86_sse_cvttss2si64:
537  case Intrinsic::x86_sse2_cvtsd2si:
538  case Intrinsic::x86_sse2_cvtsd2si64:
539  case Intrinsic::x86_sse2_cvttsd2si:
540  case Intrinsic::x86_sse2_cvttsd2si64: {
541    // These intrinsics only demand the 0th element of their input vectors. If
542    // we can simplify the input based on that, do so now.
543    unsigned VWidth =
544      cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
545    APInt DemandedElts(VWidth, 1);
546    APInt UndefElts(VWidth, 0);
547    if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
548                                              DemandedElts, UndefElts)) {
549      II->setArgOperand(0, V);
550      return II;
551    }
552    break;
553  }
554
555
556  case Intrinsic::x86_sse41_pmovsxbw:
557  case Intrinsic::x86_sse41_pmovsxwd:
558  case Intrinsic::x86_sse41_pmovsxdq:
559  case Intrinsic::x86_sse41_pmovzxbw:
560  case Intrinsic::x86_sse41_pmovzxwd:
561  case Intrinsic::x86_sse41_pmovzxdq: {
562    // pmov{s|z}x ignores the upper half of their input vectors.
563    unsigned VWidth =
564      cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
565    unsigned LowHalfElts = VWidth / 2;
566    APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
567    APInt UndefElts(VWidth, 0);
568    if (Value *TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0),
569                                                 InputDemandedElts,
570                                                 UndefElts)) {
571      II->setArgOperand(0, TmpV);
572      return II;
573    }
574    break;
575  }
576
577  case Intrinsic::ppc_altivec_vperm:
578    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
579    if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
580      assert(Mask->getType()->getVectorNumElements() == 16 &&
581             "Bad type for intrinsic!");
582
583      // Check that all of the elements are integer constants or undefs.
584      bool AllEltsOk = true;
585      for (unsigned i = 0; i != 16; ++i) {
586        Constant *Elt = Mask->getAggregateElement(i);
587        if (Elt == 0 ||
588            !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
589          AllEltsOk = false;
590          break;
591        }
592      }
593
594      if (AllEltsOk) {
595        // Cast the input vectors to byte vectors.
596        Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
597                                            Mask->getType());
598        Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
599                                            Mask->getType());
600        Value *Result = UndefValue::get(Op0->getType());
601
602        // Only extract each element once.
603        Value *ExtractedElts[32];
604        memset(ExtractedElts, 0, sizeof(ExtractedElts));
605
606        for (unsigned i = 0; i != 16; ++i) {
607          if (isa<UndefValue>(Mask->getAggregateElement(i)))
608            continue;
609          unsigned Idx =
610            cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
611          Idx &= 31;  // Match the hardware behavior.
612
613          if (ExtractedElts[Idx] == 0) {
614            ExtractedElts[Idx] =
615              Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
616                                            Builder->getInt32(Idx&15));
617          }
618
619          // Insert this value into the result vector.
620          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
621                                                Builder->getInt32(i));
622        }
623        return CastInst::Create(Instruction::BitCast, Result, CI.getType());
624      }
625    }
626    break;
627
628  case Intrinsic::arm_neon_vld1:
629  case Intrinsic::arm_neon_vld2:
630  case Intrinsic::arm_neon_vld3:
631  case Intrinsic::arm_neon_vld4:
632  case Intrinsic::arm_neon_vld2lane:
633  case Intrinsic::arm_neon_vld3lane:
634  case Intrinsic::arm_neon_vld4lane:
635  case Intrinsic::arm_neon_vst1:
636  case Intrinsic::arm_neon_vst2:
637  case Intrinsic::arm_neon_vst3:
638  case Intrinsic::arm_neon_vst4:
639  case Intrinsic::arm_neon_vst2lane:
640  case Intrinsic::arm_neon_vst3lane:
641  case Intrinsic::arm_neon_vst4lane: {
642    unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), TD);
643    unsigned AlignArg = II->getNumArgOperands() - 1;
644    ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
645    if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
646      II->setArgOperand(AlignArg,
647                        ConstantInt::get(Type::getInt32Ty(II->getContext()),
648                                         MemAlign, false));
649      return II;
650    }
651    break;
652  }
653
654  case Intrinsic::arm_neon_vmulls:
655  case Intrinsic::arm_neon_vmullu: {
656    Value *Arg0 = II->getArgOperand(0);
657    Value *Arg1 = II->getArgOperand(1);
658
659    // Handle mul by zero first:
660    if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
661      return ReplaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
662    }
663
664    // Check for constant LHS & RHS - in this case we just simplify.
665    bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu);
666    VectorType *NewVT = cast<VectorType>(II->getType());
667    unsigned NewWidth = NewVT->getElementType()->getIntegerBitWidth();
668    if (ConstantDataVector *CV0 = dyn_cast<ConstantDataVector>(Arg0)) {
669      if (ConstantDataVector *CV1 = dyn_cast<ConstantDataVector>(Arg1)) {
670        VectorType* VT = cast<VectorType>(CV0->getType());
671        SmallVector<Constant*, 4> NewElems;
672        for (unsigned i = 0; i < VT->getNumElements(); ++i) {
673          APInt CV0E =
674            (cast<ConstantInt>(CV0->getAggregateElement(i)))->getValue();
675          CV0E = Zext ? CV0E.zext(NewWidth) : CV0E.sext(NewWidth);
676          APInt CV1E =
677            (cast<ConstantInt>(CV1->getAggregateElement(i)))->getValue();
678          CV1E = Zext ? CV1E.zext(NewWidth) : CV1E.sext(NewWidth);
679          NewElems.push_back(
680            ConstantInt::get(NewVT->getElementType(), CV0E * CV1E));
681        }
682        return ReplaceInstUsesWith(CI, ConstantVector::get(NewElems));
683      }
684
685      // Couldn't simplify - cannonicalize constant to the RHS.
686      std::swap(Arg0, Arg1);
687    }
688
689    // Handle mul by one:
690    if (ConstantDataVector *CV1 = dyn_cast<ConstantDataVector>(Arg1)) {
691      if (ConstantInt *Splat =
692            dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) {
693        if (Splat->isOne()) {
694          if (Zext)
695            return CastInst::CreateZExtOrBitCast(Arg0, II->getType());
696          // else
697          return CastInst::CreateSExtOrBitCast(Arg0, II->getType());
698        }
699      }
700    }
701
702    break;
703  }
704
705  case Intrinsic::stackrestore: {
706    // If the save is right next to the restore, remove the restore.  This can
707    // happen when variable allocas are DCE'd.
708    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
709      if (SS->getIntrinsicID() == Intrinsic::stacksave) {
710        BasicBlock::iterator BI = SS;
711        if (&*++BI == II)
712          return EraseInstFromFunction(CI);
713      }
714    }
715
716    // Scan down this block to see if there is another stack restore in the
717    // same block without an intervening call/alloca.
718    BasicBlock::iterator BI = II;
719    TerminatorInst *TI = II->getParent()->getTerminator();
720    bool CannotRemove = false;
721    for (++BI; &*BI != TI; ++BI) {
722      if (isa<AllocaInst>(BI)) {
723        CannotRemove = true;
724        break;
725      }
726      if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
727        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
728          // If there is a stackrestore below this one, remove this one.
729          if (II->getIntrinsicID() == Intrinsic::stackrestore)
730            return EraseInstFromFunction(CI);
731          // Otherwise, ignore the intrinsic.
732        } else {
733          // If we found a non-intrinsic call, we can't remove the stack
734          // restore.
735          CannotRemove = true;
736          break;
737        }
738      }
739    }
740
741    // If the stack restore is in a return, resume, or unwind block and if there
742    // are no allocas or calls between the restore and the return, nuke the
743    // restore.
744    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
745      return EraseInstFromFunction(CI);
746    break;
747  }
748  }
749
750  return visitCallSite(II);
751}
752
753// InvokeInst simplification
754//
755Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
756  return visitCallSite(&II);
757}
758
759/// isSafeToEliminateVarargsCast - If this cast does not affect the value
760/// passed through the varargs area, we can eliminate the use of the cast.
761static bool isSafeToEliminateVarargsCast(const CallSite CS,
762                                         const CastInst * const CI,
763                                         const DataLayout * const TD,
764                                         const int ix) {
765  if (!CI->isLosslessCast())
766    return false;
767
768  // The size of ByVal arguments is derived from the type, so we
769  // can't change to a type with a different size.  If the size were
770  // passed explicitly we could avoid this check.
771  if (!CS.isByValArgument(ix))
772    return true;
773
774  Type* SrcTy =
775            cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
776  Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
777  if (!SrcTy->isSized() || !DstTy->isSized())
778    return false;
779  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
780    return false;
781  return true;
782}
783
784// Try to fold some different type of calls here.
785// Currently we're only working with the checking functions, memcpy_chk,
786// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
787// strcat_chk and strncat_chk.
788Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const DataLayout *TD) {
789  if (CI->getCalledFunction() == 0) return 0;
790
791  if (Value *With = Simplifier->optimizeCall(CI)) {
792    ++NumSimplified;
793    return CI->use_empty() ? CI : ReplaceInstUsesWith(*CI, With);
794  }
795
796  return 0;
797}
798
799static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) {
800  // Strip off at most one level of pointer casts, looking for an alloca.  This
801  // is good enough in practice and simpler than handling any number of casts.
802  Value *Underlying = TrampMem->stripPointerCasts();
803  if (Underlying != TrampMem &&
804      (!Underlying->hasOneUse() || *Underlying->use_begin() != TrampMem))
805    return 0;
806  if (!isa<AllocaInst>(Underlying))
807    return 0;
808
809  IntrinsicInst *InitTrampoline = 0;
810  for (Value::use_iterator I = TrampMem->use_begin(), E = TrampMem->use_end();
811       I != E; I++) {
812    IntrinsicInst *II = dyn_cast<IntrinsicInst>(*I);
813    if (!II)
814      return 0;
815    if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
816      if (InitTrampoline)
817        // More than one init_trampoline writes to this value.  Give up.
818        return 0;
819      InitTrampoline = II;
820      continue;
821    }
822    if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
823      // Allow any number of calls to adjust.trampoline.
824      continue;
825    return 0;
826  }
827
828  // No call to init.trampoline found.
829  if (!InitTrampoline)
830    return 0;
831
832  // Check that the alloca is being used in the expected way.
833  if (InitTrampoline->getOperand(0) != TrampMem)
834    return 0;
835
836  return InitTrampoline;
837}
838
839static IntrinsicInst *FindInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
840                                               Value *TrampMem) {
841  // Visit all the previous instructions in the basic block, and try to find a
842  // init.trampoline which has a direct path to the adjust.trampoline.
843  for (BasicBlock::iterator I = AdjustTramp,
844       E = AdjustTramp->getParent()->begin(); I != E; ) {
845    Instruction *Inst = --I;
846    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
847      if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
848          II->getOperand(0) == TrampMem)
849        return II;
850    if (Inst->mayWriteToMemory())
851      return 0;
852  }
853  return 0;
854}
855
856// Given a call to llvm.adjust.trampoline, find and return the corresponding
857// call to llvm.init.trampoline if the call to the trampoline can be optimized
858// to a direct call to a function.  Otherwise return NULL.
859//
860static IntrinsicInst *FindInitTrampoline(Value *Callee) {
861  Callee = Callee->stripPointerCasts();
862  IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
863  if (!AdjustTramp ||
864      AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
865    return 0;
866
867  Value *TrampMem = AdjustTramp->getOperand(0);
868
869  if (IntrinsicInst *IT = FindInitTrampolineFromAlloca(TrampMem))
870    return IT;
871  if (IntrinsicInst *IT = FindInitTrampolineFromBB(AdjustTramp, TrampMem))
872    return IT;
873  return 0;
874}
875
876// visitCallSite - Improvements for call and invoke instructions.
877//
878Instruction *InstCombiner::visitCallSite(CallSite CS) {
879  if (isAllocLikeFn(CS.getInstruction(), TLI))
880    return visitAllocSite(*CS.getInstruction());
881
882  bool Changed = false;
883
884  // If the callee is a pointer to a function, attempt to move any casts to the
885  // arguments of the call/invoke.
886  Value *Callee = CS.getCalledValue();
887  if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
888    return 0;
889
890  if (Function *CalleeF = dyn_cast<Function>(Callee))
891    // If the call and callee calling conventions don't match, this call must
892    // be unreachable, as the call is undefined.
893    if (CalleeF->getCallingConv() != CS.getCallingConv() &&
894        // Only do this for calls to a function with a body.  A prototype may
895        // not actually end up matching the implementation's calling conv for a
896        // variety of reasons (e.g. it may be written in assembly).
897        !CalleeF->isDeclaration()) {
898      Instruction *OldCall = CS.getInstruction();
899      new StoreInst(ConstantInt::getTrue(Callee->getContext()),
900                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
901                                  OldCall);
902      // If OldCall dues not return void then replaceAllUsesWith undef.
903      // This allows ValueHandlers and custom metadata to adjust itself.
904      if (!OldCall->getType()->isVoidTy())
905        ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
906      if (isa<CallInst>(OldCall))
907        return EraseInstFromFunction(*OldCall);
908
909      // We cannot remove an invoke, because it would change the CFG, just
910      // change the callee to a null pointer.
911      cast<InvokeInst>(OldCall)->setCalledFunction(
912                                    Constant::getNullValue(CalleeF->getType()));
913      return 0;
914    }
915
916  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
917    // If CS does not return void then replaceAllUsesWith undef.
918    // This allows ValueHandlers and custom metadata to adjust itself.
919    if (!CS.getInstruction()->getType()->isVoidTy())
920      ReplaceInstUsesWith(*CS.getInstruction(),
921                          UndefValue::get(CS.getInstruction()->getType()));
922
923    if (isa<InvokeInst>(CS.getInstruction())) {
924      // Can't remove an invoke because we cannot change the CFG.
925      return 0;
926    }
927
928    // This instruction is not reachable, just remove it.  We insert a store to
929    // undef so that we know that this code is not reachable, despite the fact
930    // that we can't modify the CFG here.
931    new StoreInst(ConstantInt::getTrue(Callee->getContext()),
932                  UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
933                  CS.getInstruction());
934
935    return EraseInstFromFunction(*CS.getInstruction());
936  }
937
938  if (IntrinsicInst *II = FindInitTrampoline(Callee))
939    return transformCallThroughTrampoline(CS, II);
940
941  PointerType *PTy = cast<PointerType>(Callee->getType());
942  FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
943  if (FTy->isVarArg()) {
944    int ix = FTy->getNumParams();
945    // See if we can optimize any arguments passed through the varargs area of
946    // the call.
947    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
948           E = CS.arg_end(); I != E; ++I, ++ix) {
949      CastInst *CI = dyn_cast<CastInst>(*I);
950      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
951        *I = CI->getOperand(0);
952        Changed = true;
953      }
954    }
955  }
956
957  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
958    // Inline asm calls cannot throw - mark them 'nounwind'.
959    CS.setDoesNotThrow();
960    Changed = true;
961  }
962
963  // Try to optimize the call if possible, we require DataLayout for most of
964  // this.  None of these calls are seen as possibly dead so go ahead and
965  // delete the instruction now.
966  if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
967    Instruction *I = tryOptimizeCall(CI, TD);
968    // If we changed something return the result, etc. Otherwise let
969    // the fallthrough check.
970    if (I) return EraseInstFromFunction(*I);
971  }
972
973  return Changed ? CS.getInstruction() : 0;
974}
975
976// transformConstExprCastCall - If the callee is a constexpr cast of a function,
977// attempt to move the cast to the arguments of the call/invoke.
978//
979bool InstCombiner::transformConstExprCastCall(CallSite CS) {
980  Function *Callee =
981    dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
982  if (Callee == 0)
983    return false;
984  Instruction *Caller = CS.getInstruction();
985  const AttrListPtr &CallerPAL = CS.getAttributes();
986
987  // Okay, this is a cast from a function to a different type.  Unless doing so
988  // would cause a type conversion of one of our arguments, change this call to
989  // be a direct call with arguments casted to the appropriate types.
990  //
991  FunctionType *FT = Callee->getFunctionType();
992  Type *OldRetTy = Caller->getType();
993  Type *NewRetTy = FT->getReturnType();
994
995  if (NewRetTy->isStructTy())
996    return false; // TODO: Handle multiple return values.
997
998  // Check to see if we are changing the return type...
999  if (OldRetTy != NewRetTy) {
1000    if (Callee->isDeclaration() &&
1001        // Conversion is ok if changing from one pointer type to another or from
1002        // a pointer to an integer of the same size.
1003        !((OldRetTy->isPointerTy() || !TD ||
1004           OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
1005          (NewRetTy->isPointerTy() || !TD ||
1006           NewRetTy == TD->getIntPtrType(Caller->getContext()))))
1007      return false;   // Cannot transform this return value.
1008
1009    if (!Caller->use_empty() &&
1010        // void -> non-void is handled specially
1011        !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
1012      return false;   // Cannot transform this return value.
1013
1014    if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
1015      AttrBuilder RAttrs = CallerPAL.getRetAttributes();
1016      if (RAttrs.hasAttributes(Attributes::typeIncompatible(NewRetTy)))
1017        return false;   // Attribute not compatible with transformed value.
1018    }
1019
1020    // If the callsite is an invoke instruction, and the return value is used by
1021    // a PHI node in a successor, we cannot change the return type of the call
1022    // because there is no place to put the cast instruction (without breaking
1023    // the critical edge).  Bail out in this case.
1024    if (!Caller->use_empty())
1025      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
1026        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
1027             UI != E; ++UI)
1028          if (PHINode *PN = dyn_cast<PHINode>(*UI))
1029            if (PN->getParent() == II->getNormalDest() ||
1030                PN->getParent() == II->getUnwindDest())
1031              return false;
1032  }
1033
1034  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
1035  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
1036
1037  CallSite::arg_iterator AI = CS.arg_begin();
1038  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
1039    Type *ParamTy = FT->getParamType(i);
1040    Type *ActTy = (*AI)->getType();
1041
1042    if (!CastInst::isCastable(ActTy, ParamTy))
1043      return false;   // Cannot transform this parameter value.
1044
1045    Attributes Attrs = CallerPAL.getParamAttributes(i + 1);
1046    if (AttrBuilder(Attrs).
1047          hasAttributes(Attributes::typeIncompatible(ParamTy)))
1048      return false;   // Attribute not compatible with transformed value.
1049
1050    // If the parameter is passed as a byval argument, then we have to have a
1051    // sized type and the sized type has to have the same size as the old type.
1052    if (ParamTy != ActTy && Attrs.hasAttribute(Attributes::ByVal)) {
1053      PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
1054      if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
1055        return false;
1056
1057      Type *CurElTy = cast<PointerType>(ActTy)->getElementType();
1058      if (TD->getTypeAllocSize(CurElTy) !=
1059          TD->getTypeAllocSize(ParamPTy->getElementType()))
1060        return false;
1061    }
1062
1063    // Converting from one pointer type to another or between a pointer and an
1064    // integer of the same size is safe even if we do not have a body.
1065    bool isConvertible = ActTy == ParamTy ||
1066      (TD && ((ParamTy->isPointerTy() ||
1067      ParamTy == TD->getIntPtrType(Caller->getContext())) &&
1068              (ActTy->isPointerTy() ||
1069              ActTy == TD->getIntPtrType(Caller->getContext()))));
1070    if (Callee->isDeclaration() && !isConvertible) return false;
1071  }
1072
1073  if (Callee->isDeclaration()) {
1074    // Do not delete arguments unless we have a function body.
1075    if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
1076      return false;
1077
1078    // If the callee is just a declaration, don't change the varargsness of the
1079    // call.  We don't want to introduce a varargs call where one doesn't
1080    // already exist.
1081    PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
1082    if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
1083      return false;
1084
1085    // If both the callee and the cast type are varargs, we still have to make
1086    // sure the number of fixed parameters are the same or we have the same
1087    // ABI issues as if we introduce a varargs call.
1088    if (FT->isVarArg() &&
1089        cast<FunctionType>(APTy->getElementType())->isVarArg() &&
1090        FT->getNumParams() !=
1091        cast<FunctionType>(APTy->getElementType())->getNumParams())
1092      return false;
1093  }
1094
1095  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
1096      !CallerPAL.isEmpty())
1097    // In this case we have more arguments than the new function type, but we
1098    // won't be dropping them.  Check that these extra arguments have attributes
1099    // that are compatible with being a vararg call argument.
1100    for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
1101      if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
1102        break;
1103      Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
1104      if (PAttrs.hasIncompatibleWithVarArgsAttrs())
1105        return false;
1106    }
1107
1108
1109  // Okay, we decided that this is a safe thing to do: go ahead and start
1110  // inserting cast instructions as necessary.
1111  std::vector<Value*> Args;
1112  Args.reserve(NumActualArgs);
1113  SmallVector<AttributeWithIndex, 8> attrVec;
1114  attrVec.reserve(NumCommonArgs);
1115
1116  // Get any return attributes.
1117  AttrBuilder RAttrs = CallerPAL.getRetAttributes();
1118
1119  // If the return value is not being used, the type may not be compatible
1120  // with the existing attributes.  Wipe out any problematic attributes.
1121  RAttrs.removeAttributes(Attributes::typeIncompatible(NewRetTy));
1122
1123  // Add the new return attributes.
1124  if (RAttrs.hasAttributes())
1125    attrVec.push_back(
1126      AttributeWithIndex::get(AttrListPtr::ReturnIndex,
1127                              Attributes::get(FT->getContext(), RAttrs)));
1128
1129  AI = CS.arg_begin();
1130  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
1131    Type *ParamTy = FT->getParamType(i);
1132    if ((*AI)->getType() == ParamTy) {
1133      Args.push_back(*AI);
1134    } else {
1135      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
1136          false, ParamTy, false);
1137      Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy));
1138    }
1139
1140    // Add any parameter attributes.
1141    Attributes PAttrs = CallerPAL.getParamAttributes(i + 1);
1142    if (PAttrs.hasAttributes())
1143      attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1144  }
1145
1146  // If the function takes more arguments than the call was taking, add them
1147  // now.
1148  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1149    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1150
1151  // If we are removing arguments to the function, emit an obnoxious warning.
1152  if (FT->getNumParams() < NumActualArgs) {
1153    if (!FT->isVarArg()) {
1154      errs() << "WARNING: While resolving call to function '"
1155             << Callee->getName() << "' arguments were dropped!\n";
1156    } else {
1157      // Add all of the arguments in their promoted form to the arg list.
1158      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1159        Type *PTy = getPromotedType((*AI)->getType());
1160        if (PTy != (*AI)->getType()) {
1161          // Must promote to pass through va_arg area!
1162          Instruction::CastOps opcode =
1163            CastInst::getCastOpcode(*AI, false, PTy, false);
1164          Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
1165        } else {
1166          Args.push_back(*AI);
1167        }
1168
1169        // Add any parameter attributes.
1170        Attributes PAttrs = CallerPAL.getParamAttributes(i + 1);
1171        if (PAttrs.hasAttributes())
1172          attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1173      }
1174    }
1175  }
1176
1177  Attributes FnAttrs = CallerPAL.getFnAttributes();
1178  if (FnAttrs.hasAttributes())
1179    attrVec.push_back(AttributeWithIndex::get(AttrListPtr::FunctionIndex,
1180                                              FnAttrs));
1181
1182  if (NewRetTy->isVoidTy())
1183    Caller->setName("");   // Void type should not have a name.
1184
1185  const AttrListPtr &NewCallerPAL = AttrListPtr::get(Callee->getContext(),
1186                                                     attrVec);
1187
1188  Instruction *NC;
1189  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1190    NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
1191                               II->getUnwindDest(), Args);
1192    NC->takeName(II);
1193    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1194    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1195  } else {
1196    CallInst *CI = cast<CallInst>(Caller);
1197    NC = Builder->CreateCall(Callee, Args);
1198    NC->takeName(CI);
1199    if (CI->isTailCall())
1200      cast<CallInst>(NC)->setTailCall();
1201    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1202    cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1203  }
1204
1205  // Insert a cast of the return type as necessary.
1206  Value *NV = NC;
1207  if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1208    if (!NV->getType()->isVoidTy()) {
1209      Instruction::CastOps opcode =
1210        CastInst::getCastOpcode(NC, false, OldRetTy, false);
1211      NV = NC = CastInst::Create(opcode, NC, OldRetTy);
1212      NC->setDebugLoc(Caller->getDebugLoc());
1213
1214      // If this is an invoke instruction, we should insert it after the first
1215      // non-phi, instruction in the normal successor block.
1216      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1217        BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
1218        InsertNewInstBefore(NC, *I);
1219      } else {
1220        // Otherwise, it's a call, just insert cast right after the call.
1221        InsertNewInstBefore(NC, *Caller);
1222      }
1223      Worklist.AddUsersToWorkList(*Caller);
1224    } else {
1225      NV = UndefValue::get(Caller->getType());
1226    }
1227  }
1228
1229  if (!Caller->use_empty())
1230    ReplaceInstUsesWith(*Caller, NV);
1231
1232  EraseInstFromFunction(*Caller);
1233  return true;
1234}
1235
1236// transformCallThroughTrampoline - Turn a call to a function created by
1237// init_trampoline / adjust_trampoline intrinsic pair into a direct call to the
1238// underlying function.
1239//
1240Instruction *
1241InstCombiner::transformCallThroughTrampoline(CallSite CS,
1242                                             IntrinsicInst *Tramp) {
1243  Value *Callee = CS.getCalledValue();
1244  PointerType *PTy = cast<PointerType>(Callee->getType());
1245  FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1246  const AttrListPtr &Attrs = CS.getAttributes();
1247
1248  // If the call already has the 'nest' attribute somewhere then give up -
1249  // otherwise 'nest' would occur twice after splicing in the chain.
1250  for (unsigned I = 0, E = Attrs.getNumAttrs(); I != E; ++I)
1251    if (Attrs.getAttributesAtIndex(I).hasAttribute(Attributes::Nest))
1252      return 0;
1253
1254  assert(Tramp &&
1255         "transformCallThroughTrampoline called with incorrect CallSite.");
1256
1257  Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
1258  PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1259  FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1260
1261  const AttrListPtr &NestAttrs = NestF->getAttributes();
1262  if (!NestAttrs.isEmpty()) {
1263    unsigned NestIdx = 1;
1264    Type *NestTy = 0;
1265    Attributes NestAttr;
1266
1267    // Look for a parameter marked with the 'nest' attribute.
1268    for (FunctionType::param_iterator I = NestFTy->param_begin(),
1269         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1270      if (NestAttrs.getParamAttributes(NestIdx).hasAttribute(Attributes::Nest)){
1271        // Record the parameter type and any other attributes.
1272        NestTy = *I;
1273        NestAttr = NestAttrs.getParamAttributes(NestIdx);
1274        break;
1275      }
1276
1277    if (NestTy) {
1278      Instruction *Caller = CS.getInstruction();
1279      std::vector<Value*> NewArgs;
1280      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1281
1282      SmallVector<AttributeWithIndex, 8> NewAttrs;
1283      NewAttrs.reserve(Attrs.getNumSlots() + 1);
1284
1285      // Insert the nest argument into the call argument list, which may
1286      // mean appending it.  Likewise for attributes.
1287
1288      // Add any result attributes.
1289      Attributes Attr = Attrs.getRetAttributes();
1290      if (Attr.hasAttributes())
1291        NewAttrs.push_back(AttributeWithIndex::get(AttrListPtr::ReturnIndex,
1292                                                   Attr));
1293
1294      {
1295        unsigned Idx = 1;
1296        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1297        do {
1298          if (Idx == NestIdx) {
1299            // Add the chain argument and attributes.
1300            Value *NestVal = Tramp->getArgOperand(2);
1301            if (NestVal->getType() != NestTy)
1302              NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
1303            NewArgs.push_back(NestVal);
1304            NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1305          }
1306
1307          if (I == E)
1308            break;
1309
1310          // Add the original argument and attributes.
1311          NewArgs.push_back(*I);
1312          Attr = Attrs.getParamAttributes(Idx);
1313          if (Attr.hasAttributes())
1314            NewAttrs.push_back
1315              (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1316
1317          ++Idx, ++I;
1318        } while (1);
1319      }
1320
1321      // Add any function attributes.
1322      Attr = Attrs.getFnAttributes();
1323      if (Attr.hasAttributes())
1324        NewAttrs.push_back(AttributeWithIndex::get(AttrListPtr::FunctionIndex,
1325                                                   Attr));
1326
1327      // The trampoline may have been bitcast to a bogus type (FTy).
1328      // Handle this by synthesizing a new function type, equal to FTy
1329      // with the chain parameter inserted.
1330
1331      std::vector<Type*> NewTypes;
1332      NewTypes.reserve(FTy->getNumParams()+1);
1333
1334      // Insert the chain's type into the list of parameter types, which may
1335      // mean appending it.
1336      {
1337        unsigned Idx = 1;
1338        FunctionType::param_iterator I = FTy->param_begin(),
1339          E = FTy->param_end();
1340
1341        do {
1342          if (Idx == NestIdx)
1343            // Add the chain's type.
1344            NewTypes.push_back(NestTy);
1345
1346          if (I == E)
1347            break;
1348
1349          // Add the original type.
1350          NewTypes.push_back(*I);
1351
1352          ++Idx, ++I;
1353        } while (1);
1354      }
1355
1356      // Replace the trampoline call with a direct call.  Let the generic
1357      // code sort out any function type mismatches.
1358      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1359                                                FTy->isVarArg());
1360      Constant *NewCallee =
1361        NestF->getType() == PointerType::getUnqual(NewFTy) ?
1362        NestF : ConstantExpr::getBitCast(NestF,
1363                                         PointerType::getUnqual(NewFTy));
1364      const AttrListPtr &NewPAL = AttrListPtr::get(FTy->getContext(), NewAttrs);
1365
1366      Instruction *NewCaller;
1367      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1368        NewCaller = InvokeInst::Create(NewCallee,
1369                                       II->getNormalDest(), II->getUnwindDest(),
1370                                       NewArgs);
1371        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1372        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1373      } else {
1374        NewCaller = CallInst::Create(NewCallee, NewArgs);
1375        if (cast<CallInst>(Caller)->isTailCall())
1376          cast<CallInst>(NewCaller)->setTailCall();
1377        cast<CallInst>(NewCaller)->
1378          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1379        cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1380      }
1381
1382      return NewCaller;
1383    }
1384  }
1385
1386  // Replace the trampoline call with a direct call.  Since there is no 'nest'
1387  // parameter, there is no need to adjust the argument list.  Let the generic
1388  // code sort out any function type mismatches.
1389  Constant *NewCallee =
1390    NestF->getType() == PTy ? NestF :
1391                              ConstantExpr::getBitCast(NestF, PTy);
1392  CS.setCalledFunction(NewCallee);
1393  return CS.getInstruction();
1394}
1395