InstCombineCalls.cpp revision 75f0d6953a8492ec21f3b82489090a1152f1f516
1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Support/CallSite.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19using namespace llvm;
20
21/// getPromotedType - Return the specified type promoted as it would be to pass
22/// though a va_arg area.
23static const Type *getPromotedType(const Type *Ty) {
24  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
25    if (ITy->getBitWidth() < 32)
26      return Type::getInt32Ty(Ty->getContext());
27  }
28  return Ty;
29}
30
31/// EnforceKnownAlignment - If the specified pointer points to an object that
32/// we control, modify the object's alignment to PrefAlign. This isn't
33/// often possible though. If alignment is important, a more reliable approach
34/// is to simply align all global variables and allocation instructions to
35/// their preferred alignment from the beginning.
36///
37static unsigned EnforceKnownAlignment(Value *V,
38                                      unsigned Align, unsigned PrefAlign) {
39
40  User *U = dyn_cast<User>(V);
41  if (!U) return Align;
42
43  switch (Operator::getOpcode(U)) {
44  default: break;
45  case Instruction::BitCast:
46    return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
47  case Instruction::GetElementPtr: {
48    // If all indexes are zero, it is just the alignment of the base pointer.
49    bool AllZeroOperands = true;
50    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
51      if (!isa<Constant>(*i) ||
52          !cast<Constant>(*i)->isNullValue()) {
53        AllZeroOperands = false;
54        break;
55      }
56
57    if (AllZeroOperands) {
58      // Treat this like a bitcast.
59      return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
60    }
61    break;
62  }
63  }
64
65  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
66    // If there is a large requested alignment and we can, bump up the alignment
67    // of the global.
68    if (!GV->isDeclaration()) {
69      if (GV->getAlignment() >= PrefAlign)
70        Align = GV->getAlignment();
71      else {
72        GV->setAlignment(PrefAlign);
73        Align = PrefAlign;
74      }
75    }
76  } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
77    // If there is a requested alignment and if this is an alloca, round up.
78    if (AI->getAlignment() >= PrefAlign)
79      Align = AI->getAlignment();
80    else {
81      AI->setAlignment(PrefAlign);
82      Align = PrefAlign;
83    }
84  }
85
86  return Align;
87}
88
89/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
90/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
91/// and it is more than the alignment of the ultimate object, see if we can
92/// increase the alignment of the ultimate object, making this check succeed.
93unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
94                                                  unsigned PrefAlign) {
95  unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
96                      sizeof(PrefAlign) * CHAR_BIT;
97  APInt Mask = APInt::getAllOnesValue(BitWidth);
98  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
99  ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
100  unsigned TrailZ = KnownZero.countTrailingOnes();
101  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
102
103  if (PrefAlign > Align)
104    Align = EnforceKnownAlignment(V, Align, PrefAlign);
105
106    // We don't need to make any adjustment.
107  return Align;
108}
109
110Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
111  unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
112  unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
113  unsigned MinAlign = std::min(DstAlign, SrcAlign);
114  unsigned CopyAlign = MI->getAlignment();
115
116  if (CopyAlign < MinAlign) {
117    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
118                                             MinAlign, false));
119    return MI;
120  }
121
122  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
123  // load/store.
124  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
125  if (MemOpLength == 0) return 0;
126
127  // Source and destination pointer types are always "i8*" for intrinsic.  See
128  // if the size is something we can handle with a single primitive load/store.
129  // A single load+store correctly handles overlapping memory in the memmove
130  // case.
131  unsigned Size = MemOpLength->getZExtValue();
132  if (Size == 0) return MI;  // Delete this mem transfer.
133
134  if (Size > 8 || (Size&(Size-1)))
135    return 0;  // If not 1/2/4/8 bytes, exit.
136
137  // Use an integer load+store unless we can find something better.
138  Type *NewPtrTy =
139            PointerType::getUnqual(IntegerType::get(MI->getContext(), Size<<3));
140
141  // Memcpy forces the use of i8* for the source and destination.  That means
142  // that if you're using memcpy to move one double around, you'll get a cast
143  // from double* to i8*.  We'd much rather use a double load+store rather than
144  // an i64 load+store, here because this improves the odds that the source or
145  // dest address will be promotable.  See if we can find a better type than the
146  // integer datatype.
147  Value *StrippedDest = MI->getOperand(1)->stripPointerCasts();
148  if (StrippedDest != MI->getOperand(1)) {
149    const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
150                                    ->getElementType();
151    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
152      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
153      // down through these levels if so.
154      while (!SrcETy->isSingleValueType()) {
155        if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
156          if (STy->getNumElements() == 1)
157            SrcETy = STy->getElementType(0);
158          else
159            break;
160        } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
161          if (ATy->getNumElements() == 1)
162            SrcETy = ATy->getElementType();
163          else
164            break;
165        } else
166          break;
167      }
168
169      if (SrcETy->isSingleValueType())
170        NewPtrTy = PointerType::getUnqual(SrcETy);
171    }
172  }
173
174
175  // If the memcpy/memmove provides better alignment info than we can
176  // infer, use it.
177  SrcAlign = std::max(SrcAlign, CopyAlign);
178  DstAlign = std::max(DstAlign, CopyAlign);
179
180  Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
181  Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
182  Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
183  InsertNewInstBefore(L, *MI);
184  InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
185
186  // Set the size of the copy to 0, it will be deleted on the next iteration.
187  MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
188  return MI;
189}
190
191Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
192  unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
193  if (MI->getAlignment() < Alignment) {
194    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
195                                             Alignment, false));
196    return MI;
197  }
198
199  // Extract the length and alignment and fill if they are constant.
200  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
201  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
202  if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
203    return 0;
204  uint64_t Len = LenC->getZExtValue();
205  Alignment = MI->getAlignment();
206
207  // If the length is zero, this is a no-op
208  if (Len == 0) return MI; // memset(d,c,0,a) -> noop
209
210  // memset(s,c,n) -> store s, c (for n=1,2,4,8)
211  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
212    const Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
213
214    Value *Dest = MI->getDest();
215    Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
216
217    // Alignment 0 is identity for alignment 1 for memset, but not store.
218    if (Alignment == 0) Alignment = 1;
219
220    // Extract the fill value and store.
221    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
222    InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
223                                      Dest, false, Alignment), *MI);
224
225    // Set the size of the copy to 0, it will be deleted on the next iteration.
226    MI->setLength(Constant::getNullValue(LenC->getType()));
227    return MI;
228  }
229
230  return 0;
231}
232
233/// visitCallInst - CallInst simplification.  This mostly only handles folding
234/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
235/// the heavy lifting.
236///
237Instruction *InstCombiner::visitCallInst(CallInst &CI) {
238  if (isFreeCall(&CI))
239    return visitFree(CI);
240
241  // If the caller function is nounwind, mark the call as nounwind, even if the
242  // callee isn't.
243  if (CI.getParent()->getParent()->doesNotThrow() &&
244      !CI.doesNotThrow()) {
245    CI.setDoesNotThrow();
246    return &CI;
247  }
248
249  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
250  if (!II) return visitCallSite(&CI);
251
252  // Intrinsics cannot occur in an invoke, so handle them here instead of in
253  // visitCallSite.
254  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
255    bool Changed = false;
256
257    // memmove/cpy/set of zero bytes is a noop.
258    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
259      if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
260
261      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
262        if (CI->getZExtValue() == 1) {
263          // Replace the instruction with just byte operations.  We would
264          // transform other cases to loads/stores, but we don't know if
265          // alignment is sufficient.
266        }
267    }
268
269    // If we have a memmove and the source operation is a constant global,
270    // then the source and dest pointers can't alias, so we can change this
271    // into a call to memcpy.
272    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
273      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
274        if (GVSrc->isConstant()) {
275          Module *M = CI.getParent()->getParent()->getParent();
276          Intrinsic::ID MemCpyID = Intrinsic::memcpy;
277          const Type *Tys[1];
278          Tys[0] = CI.getOperand(3)->getType();
279          CI.setOperand(0,
280                        Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
281          Changed = true;
282        }
283    }
284
285    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
286      // memmove(x,x,size) -> noop.
287      if (MTI->getSource() == MTI->getDest())
288        return EraseInstFromFunction(CI);
289    }
290
291    // If we can determine a pointer alignment that is bigger than currently
292    // set, update the alignment.
293    if (isa<MemTransferInst>(MI)) {
294      if (Instruction *I = SimplifyMemTransfer(MI))
295        return I;
296    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
297      if (Instruction *I = SimplifyMemSet(MSI))
298        return I;
299    }
300
301    if (Changed) return II;
302  }
303
304  switch (II->getIntrinsicID()) {
305  default: break;
306  case Intrinsic::objectsize: {
307    // We need target data for just about everything so depend on it.
308    if (!TD) break;
309
310    const Type *ReturnTy = CI.getType();
311    bool Min = (cast<ConstantInt>(II->getOperand(2))->getZExtValue() == 1);
312
313    // Get to the real allocated thing and offset as fast as possible.
314    Value *Op1 = II->getOperand(1)->stripPointerCasts();
315
316    // If we've stripped down to a single global variable that we
317    // can know the size of then just return that.
318    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
319      if (GV->hasDefinitiveInitializer()) {
320        Constant *C = GV->getInitializer();
321        uint64_t GlobalSize = TD->getTypeAllocSize(C->getType());
322        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, GlobalSize));
323      } else {
324        // Can't determine size of the GV.
325        Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
326        return ReplaceInstUsesWith(CI, RetVal);
327      }
328    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
329      // Get alloca size.
330      if (AI->getAllocatedType()->isSized()) {
331        uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
332        if (AI->isArrayAllocation()) {
333          const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
334          if (!C) break;
335          AllocaSize *= C->getZExtValue();
336        }
337        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, AllocaSize));
338      }
339    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op1)) {
340      // Only handle constant GEPs here.
341      if (CE->getOpcode() != Instruction::GetElementPtr) break;
342      GEPOperator *GEP = cast<GEPOperator>(CE);
343
344      // Make sure we're not a constant offset from an external
345      // global.
346      Value *Operand = GEP->getPointerOperand();
347      Operand = Operand->stripPointerCasts();
348      if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Operand))
349        if (!GV->hasDefinitiveInitializer()) break;
350
351      // Get what we're pointing to and its size.
352      const PointerType *BaseType =
353        cast<PointerType>(Operand->getType());
354      uint64_t Size = TD->getTypeAllocSize(BaseType->getElementType());
355
356      // Get the current byte offset into the thing. Use the original
357      // operand in case we're looking through a bitcast.
358      SmallVector<Value*, 8> Ops(CE->op_begin()+1, CE->op_end());
359      const PointerType *OffsetType =
360        cast<PointerType>(GEP->getPointerOperand()->getType());
361      uint64_t Offset = TD->getIndexedOffset(OffsetType, &Ops[0], Ops.size());
362
363      if (Size < Offset) {
364        // Out of bound reference? Negative index normalized to large
365        // index? Just return "I don't know".
366        Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
367        return ReplaceInstUsesWith(CI, RetVal);
368      }
369
370      Constant *RetVal = ConstantInt::get(ReturnTy, Size-Offset);
371      return ReplaceInstUsesWith(CI, RetVal);
372
373    }
374
375    // Do not return "I don't know" here. Later optimization passes could
376    // make it possible to evaluate objectsize to a constant.
377    break;
378  }
379  case Intrinsic::bswap:
380    // bswap(bswap(x)) -> x
381    if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
382      if (Operand->getIntrinsicID() == Intrinsic::bswap)
383        return ReplaceInstUsesWith(CI, Operand->getOperand(1));
384
385    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
386    if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) {
387      if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
388        if (Operand->getIntrinsicID() == Intrinsic::bswap) {
389          unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
390                       TI->getType()->getPrimitiveSizeInBits();
391          Value *CV = ConstantInt::get(Operand->getType(), C);
392          Value *V = Builder->CreateLShr(Operand->getOperand(1), CV);
393          return new TruncInst(V, TI->getType());
394        }
395    }
396
397    break;
398  case Intrinsic::powi:
399    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) {
400      // powi(x, 0) -> 1.0
401      if (Power->isZero())
402        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
403      // powi(x, 1) -> x
404      if (Power->isOne())
405        return ReplaceInstUsesWith(CI, II->getOperand(1));
406      // powi(x, -1) -> 1/x
407      if (Power->isAllOnesValue())
408        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
409                                          II->getOperand(1));
410    }
411    break;
412  case Intrinsic::cttz: {
413    // If all bits below the first known one are known zero,
414    // this value is constant.
415    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
416    uint32_t BitWidth = IT->getBitWidth();
417    APInt KnownZero(BitWidth, 0);
418    APInt KnownOne(BitWidth, 0);
419    ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
420                      KnownZero, KnownOne);
421    unsigned TrailingZeros = KnownOne.countTrailingZeros();
422    APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
423    if ((Mask & KnownZero) == Mask)
424      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
425                                 APInt(BitWidth, TrailingZeros)));
426
427    }
428    break;
429  case Intrinsic::ctlz: {
430    // If all bits above the first known one are known zero,
431    // this value is constant.
432    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
433    uint32_t BitWidth = IT->getBitWidth();
434    APInt KnownZero(BitWidth, 0);
435    APInt KnownOne(BitWidth, 0);
436    ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
437                      KnownZero, KnownOne);
438    unsigned LeadingZeros = KnownOne.countLeadingZeros();
439    APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
440    if ((Mask & KnownZero) == Mask)
441      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
442                                 APInt(BitWidth, LeadingZeros)));
443
444    }
445    break;
446  case Intrinsic::uadd_with_overflow: {
447    Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
448    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
449    uint32_t BitWidth = IT->getBitWidth();
450    APInt Mask = APInt::getSignBit(BitWidth);
451    APInt LHSKnownZero(BitWidth, 0);
452    APInt LHSKnownOne(BitWidth, 0);
453    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
454    bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
455    bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
456
457    if (LHSKnownNegative || LHSKnownPositive) {
458      APInt RHSKnownZero(BitWidth, 0);
459      APInt RHSKnownOne(BitWidth, 0);
460      ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
461      bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
462      bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
463      if (LHSKnownNegative && RHSKnownNegative) {
464        // The sign bit is set in both cases: this MUST overflow.
465        // Create a simple add instruction, and insert it into the struct.
466        Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
467        Worklist.Add(Add);
468        Constant *V[] = {
469          UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
470        };
471        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
472        return InsertValueInst::Create(Struct, Add, 0);
473      }
474
475      if (LHSKnownPositive && RHSKnownPositive) {
476        // The sign bit is clear in both cases: this CANNOT overflow.
477        // Create a simple add instruction, and insert it into the struct.
478        Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
479        Worklist.Add(Add);
480        Constant *V[] = {
481          UndefValue::get(LHS->getType()),
482          ConstantInt::getFalse(II->getContext())
483        };
484        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
485        return InsertValueInst::Create(Struct, Add, 0);
486      }
487    }
488  }
489  // FALL THROUGH uadd into sadd
490  case Intrinsic::sadd_with_overflow:
491    // Canonicalize constants into the RHS.
492    if (isa<Constant>(II->getOperand(1)) &&
493        !isa<Constant>(II->getOperand(2))) {
494      Value *LHS = II->getOperand(1);
495      II->setOperand(1, II->getOperand(2));
496      II->setOperand(2, LHS);
497      return II;
498    }
499
500    // X + undef -> undef
501    if (isa<UndefValue>(II->getOperand(2)))
502      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
503
504    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
505      // X + 0 -> {X, false}
506      if (RHS->isZero()) {
507        Constant *V[] = {
508          UndefValue::get(II->getOperand(0)->getType()),
509          ConstantInt::getFalse(II->getContext())
510        };
511        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
512        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
513      }
514    }
515    break;
516  case Intrinsic::usub_with_overflow:
517  case Intrinsic::ssub_with_overflow:
518    // undef - X -> undef
519    // X - undef -> undef
520    if (isa<UndefValue>(II->getOperand(1)) ||
521        isa<UndefValue>(II->getOperand(2)))
522      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
523
524    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
525      // X - 0 -> {X, false}
526      if (RHS->isZero()) {
527        Constant *V[] = {
528          UndefValue::get(II->getOperand(1)->getType()),
529          ConstantInt::getFalse(II->getContext())
530        };
531        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
532        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
533      }
534    }
535    break;
536  case Intrinsic::umul_with_overflow:
537  case Intrinsic::smul_with_overflow:
538    // Canonicalize constants into the RHS.
539    if (isa<Constant>(II->getOperand(1)) &&
540        !isa<Constant>(II->getOperand(2))) {
541      Value *LHS = II->getOperand(1);
542      II->setOperand(1, II->getOperand(2));
543      II->setOperand(2, LHS);
544      return II;
545    }
546
547    // X * undef -> undef
548    if (isa<UndefValue>(II->getOperand(2)))
549      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
550
551    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
552      // X*0 -> {0, false}
553      if (RHSI->isZero())
554        return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
555
556      // X * 1 -> {X, false}
557      if (RHSI->equalsInt(1)) {
558        Constant *V[] = {
559          UndefValue::get(II->getOperand(1)->getType()),
560          ConstantInt::getFalse(II->getContext())
561        };
562        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
563        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
564      }
565    }
566    break;
567  case Intrinsic::ppc_altivec_lvx:
568  case Intrinsic::ppc_altivec_lvxl:
569  case Intrinsic::x86_sse_loadu_ps:
570  case Intrinsic::x86_sse2_loadu_pd:
571  case Intrinsic::x86_sse2_loadu_dq:
572    // Turn PPC lvx     -> load if the pointer is known aligned.
573    // Turn X86 loadups -> load if the pointer is known aligned.
574    if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
575      Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
576                                         PointerType::getUnqual(II->getType()));
577      return new LoadInst(Ptr);
578    }
579    break;
580  case Intrinsic::ppc_altivec_stvx:
581  case Intrinsic::ppc_altivec_stvxl:
582    // Turn stvx -> store if the pointer is known aligned.
583    if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
584      const Type *OpPtrTy =
585        PointerType::getUnqual(II->getOperand(1)->getType());
586      Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
587      return new StoreInst(II->getOperand(1), Ptr);
588    }
589    break;
590  case Intrinsic::x86_sse_storeu_ps:
591  case Intrinsic::x86_sse2_storeu_pd:
592  case Intrinsic::x86_sse2_storeu_dq:
593    // Turn X86 storeu -> store if the pointer is known aligned.
594    if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
595      const Type *OpPtrTy =
596        PointerType::getUnqual(II->getOperand(2)->getType());
597      Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
598      return new StoreInst(II->getOperand(2), Ptr);
599    }
600    break;
601
602  case Intrinsic::x86_sse_cvttss2si: {
603    // These intrinsics only demands the 0th element of its input vector.  If
604    // we can simplify the input based on that, do so now.
605    unsigned VWidth =
606      cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
607    APInt DemandedElts(VWidth, 1);
608    APInt UndefElts(VWidth, 0);
609    if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
610                                              UndefElts)) {
611      II->setOperand(1, V);
612      return II;
613    }
614    break;
615  }
616
617  case Intrinsic::ppc_altivec_vperm:
618    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
619    if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
620      assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
621
622      // Check that all of the elements are integer constants or undefs.
623      bool AllEltsOk = true;
624      for (unsigned i = 0; i != 16; ++i) {
625        if (!isa<ConstantInt>(Mask->getOperand(i)) &&
626            !isa<UndefValue>(Mask->getOperand(i))) {
627          AllEltsOk = false;
628          break;
629        }
630      }
631
632      if (AllEltsOk) {
633        // Cast the input vectors to byte vectors.
634        Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
635        Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
636        Value *Result = UndefValue::get(Op0->getType());
637
638        // Only extract each element once.
639        Value *ExtractedElts[32];
640        memset(ExtractedElts, 0, sizeof(ExtractedElts));
641
642        for (unsigned i = 0; i != 16; ++i) {
643          if (isa<UndefValue>(Mask->getOperand(i)))
644            continue;
645          unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
646          Idx &= 31;  // Match the hardware behavior.
647
648          if (ExtractedElts[Idx] == 0) {
649            ExtractedElts[Idx] =
650              Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
651                  ConstantInt::get(Type::getInt32Ty(II->getContext()),
652                                   Idx&15, false), "tmp");
653          }
654
655          // Insert this value into the result vector.
656          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
657                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
658                                          i, false), "tmp");
659        }
660        return CastInst::Create(Instruction::BitCast, Result, CI.getType());
661      }
662    }
663    break;
664
665  case Intrinsic::stackrestore: {
666    // If the save is right next to the restore, remove the restore.  This can
667    // happen when variable allocas are DCE'd.
668    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
669      if (SS->getIntrinsicID() == Intrinsic::stacksave) {
670        BasicBlock::iterator BI = SS;
671        if (&*++BI == II)
672          return EraseInstFromFunction(CI);
673      }
674    }
675
676    // Scan down this block to see if there is another stack restore in the
677    // same block without an intervening call/alloca.
678    BasicBlock::iterator BI = II;
679    TerminatorInst *TI = II->getParent()->getTerminator();
680    bool CannotRemove = false;
681    for (++BI; &*BI != TI; ++BI) {
682      if (isa<AllocaInst>(BI) || isMalloc(BI)) {
683        CannotRemove = true;
684        break;
685      }
686      if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
687        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
688          // If there is a stackrestore below this one, remove this one.
689          if (II->getIntrinsicID() == Intrinsic::stackrestore)
690            return EraseInstFromFunction(CI);
691          // Otherwise, ignore the intrinsic.
692        } else {
693          // If we found a non-intrinsic call, we can't remove the stack
694          // restore.
695          CannotRemove = true;
696          break;
697        }
698      }
699    }
700
701    // If the stack restore is in a return/unwind block and if there are no
702    // allocas or calls between the restore and the return, nuke the restore.
703    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
704      return EraseInstFromFunction(CI);
705    break;
706  }
707  }
708
709  return visitCallSite(II);
710}
711
712// InvokeInst simplification
713//
714Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
715  return visitCallSite(&II);
716}
717
718/// isSafeToEliminateVarargsCast - If this cast does not affect the value
719/// passed through the varargs area, we can eliminate the use of the cast.
720static bool isSafeToEliminateVarargsCast(const CallSite CS,
721                                         const CastInst * const CI,
722                                         const TargetData * const TD,
723                                         const int ix) {
724  if (!CI->isLosslessCast())
725    return false;
726
727  // The size of ByVal arguments is derived from the type, so we
728  // can't change to a type with a different size.  If the size were
729  // passed explicitly we could avoid this check.
730  if (!CS.paramHasAttr(ix, Attribute::ByVal))
731    return true;
732
733  const Type* SrcTy =
734            cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
735  const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
736  if (!SrcTy->isSized() || !DstTy->isSized())
737    return false;
738  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
739    return false;
740  return true;
741}
742
743// visitCallSite - Improvements for call and invoke instructions.
744//
745Instruction *InstCombiner::visitCallSite(CallSite CS) {
746  bool Changed = false;
747
748  // If the callee is a constexpr cast of a function, attempt to move the cast
749  // to the arguments of the call/invoke.
750  if (transformConstExprCastCall(CS)) return 0;
751
752  Value *Callee = CS.getCalledValue();
753
754  if (Function *CalleeF = dyn_cast<Function>(Callee))
755    // If the call and callee calling conventions don't match, this call must
756    // be unreachable, as the call is undefined.
757    if (CalleeF->getCallingConv() != CS.getCallingConv() &&
758        // Only do this for calls to a function with a body.  A prototype may
759        // not actually end up matching the implementation's calling conv for a
760        // variety of reasons (e.g. it may be written in assembly).
761        !CalleeF->isDeclaration()) {
762      Instruction *OldCall = CS.getInstruction();
763      new StoreInst(ConstantInt::getTrue(Callee->getContext()),
764                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
765                                  OldCall);
766      // If OldCall dues not return void then replaceAllUsesWith undef.
767      // This allows ValueHandlers and custom metadata to adjust itself.
768      if (!OldCall->getType()->isVoidTy())
769        OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
770      if (isa<CallInst>(OldCall))
771        return EraseInstFromFunction(*OldCall);
772
773      // We cannot remove an invoke, because it would change the CFG, just
774      // change the callee to a null pointer.
775      cast<InvokeInst>(OldCall)->setOperand(0,
776                                    Constant::getNullValue(CalleeF->getType()));
777      return 0;
778    }
779
780  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
781    // This instruction is not reachable, just remove it.  We insert a store to
782    // undef so that we know that this code is not reachable, despite the fact
783    // that we can't modify the CFG here.
784    new StoreInst(ConstantInt::getTrue(Callee->getContext()),
785               UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
786                  CS.getInstruction());
787
788    // If CS dues not return void then replaceAllUsesWith undef.
789    // This allows ValueHandlers and custom metadata to adjust itself.
790    if (!CS.getInstruction()->getType()->isVoidTy())
791      CS.getInstruction()->
792        replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
793
794    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
795      // Don't break the CFG, insert a dummy cond branch.
796      BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
797                         ConstantInt::getTrue(Callee->getContext()), II);
798    }
799    return EraseInstFromFunction(*CS.getInstruction());
800  }
801
802  if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
803    if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
804      if (In->getIntrinsicID() == Intrinsic::init_trampoline)
805        return transformCallThroughTrampoline(CS);
806
807  const PointerType *PTy = cast<PointerType>(Callee->getType());
808  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
809  if (FTy->isVarArg()) {
810    int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
811    // See if we can optimize any arguments passed through the varargs area of
812    // the call.
813    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
814           E = CS.arg_end(); I != E; ++I, ++ix) {
815      CastInst *CI = dyn_cast<CastInst>(*I);
816      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
817        *I = CI->getOperand(0);
818        Changed = true;
819      }
820    }
821  }
822
823  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
824    // Inline asm calls cannot throw - mark them 'nounwind'.
825    CS.setDoesNotThrow();
826    Changed = true;
827  }
828
829  return Changed ? CS.getInstruction() : 0;
830}
831
832// transformConstExprCastCall - If the callee is a constexpr cast of a function,
833// attempt to move the cast to the arguments of the call/invoke.
834//
835bool InstCombiner::transformConstExprCastCall(CallSite CS) {
836  if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
837  ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
838  if (CE->getOpcode() != Instruction::BitCast ||
839      !isa<Function>(CE->getOperand(0)))
840    return false;
841  Function *Callee = cast<Function>(CE->getOperand(0));
842  Instruction *Caller = CS.getInstruction();
843  const AttrListPtr &CallerPAL = CS.getAttributes();
844
845  // Okay, this is a cast from a function to a different type.  Unless doing so
846  // would cause a type conversion of one of our arguments, change this call to
847  // be a direct call with arguments casted to the appropriate types.
848  //
849  const FunctionType *FT = Callee->getFunctionType();
850  const Type *OldRetTy = Caller->getType();
851  const Type *NewRetTy = FT->getReturnType();
852
853  if (NewRetTy->isStructTy())
854    return false; // TODO: Handle multiple return values.
855
856  // Check to see if we are changing the return type...
857  if (OldRetTy != NewRetTy) {
858    if (Callee->isDeclaration() &&
859        // Conversion is ok if changing from one pointer type to another or from
860        // a pointer to an integer of the same size.
861        !((OldRetTy->isPointerTy() || !TD ||
862           OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
863          (NewRetTy->isPointerTy() || !TD ||
864           NewRetTy == TD->getIntPtrType(Caller->getContext()))))
865      return false;   // Cannot transform this return value.
866
867    if (!Caller->use_empty() &&
868        // void -> non-void is handled specially
869        !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
870      return false;   // Cannot transform this return value.
871
872    if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
873      Attributes RAttrs = CallerPAL.getRetAttributes();
874      if (RAttrs & Attribute::typeIncompatible(NewRetTy))
875        return false;   // Attribute not compatible with transformed value.
876    }
877
878    // If the callsite is an invoke instruction, and the return value is used by
879    // a PHI node in a successor, we cannot change the return type of the call
880    // because there is no place to put the cast instruction (without breaking
881    // the critical edge).  Bail out in this case.
882    if (!Caller->use_empty())
883      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
884        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
885             UI != E; ++UI)
886          if (PHINode *PN = dyn_cast<PHINode>(*UI))
887            if (PN->getParent() == II->getNormalDest() ||
888                PN->getParent() == II->getUnwindDest())
889              return false;
890  }
891
892  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
893  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
894
895  CallSite::arg_iterator AI = CS.arg_begin();
896  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
897    const Type *ParamTy = FT->getParamType(i);
898    const Type *ActTy = (*AI)->getType();
899
900    if (!CastInst::isCastable(ActTy, ParamTy))
901      return false;   // Cannot transform this parameter value.
902
903    if (CallerPAL.getParamAttributes(i + 1)
904        & Attribute::typeIncompatible(ParamTy))
905      return false;   // Attribute not compatible with transformed value.
906
907    // Converting from one pointer type to another or between a pointer and an
908    // integer of the same size is safe even if we do not have a body.
909    bool isConvertible = ActTy == ParamTy ||
910      (TD && ((ParamTy->isPointerTy() ||
911      ParamTy == TD->getIntPtrType(Caller->getContext())) &&
912              (ActTy->isPointerTy() ||
913              ActTy == TD->getIntPtrType(Caller->getContext()))));
914    if (Callee->isDeclaration() && !isConvertible) return false;
915  }
916
917  if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
918      Callee->isDeclaration())
919    return false;   // Do not delete arguments unless we have a function body.
920
921  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
922      !CallerPAL.isEmpty())
923    // In this case we have more arguments than the new function type, but we
924    // won't be dropping them.  Check that these extra arguments have attributes
925    // that are compatible with being a vararg call argument.
926    for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
927      if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
928        break;
929      Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
930      if (PAttrs & Attribute::VarArgsIncompatible)
931        return false;
932    }
933
934  // Okay, we decided that this is a safe thing to do: go ahead and start
935  // inserting cast instructions as necessary...
936  std::vector<Value*> Args;
937  Args.reserve(NumActualArgs);
938  SmallVector<AttributeWithIndex, 8> attrVec;
939  attrVec.reserve(NumCommonArgs);
940
941  // Get any return attributes.
942  Attributes RAttrs = CallerPAL.getRetAttributes();
943
944  // If the return value is not being used, the type may not be compatible
945  // with the existing attributes.  Wipe out any problematic attributes.
946  RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
947
948  // Add the new return attributes.
949  if (RAttrs)
950    attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
951
952  AI = CS.arg_begin();
953  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
954    const Type *ParamTy = FT->getParamType(i);
955    if ((*AI)->getType() == ParamTy) {
956      Args.push_back(*AI);
957    } else {
958      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
959          false, ParamTy, false);
960      Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
961    }
962
963    // Add any parameter attributes.
964    if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
965      attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
966  }
967
968  // If the function takes more arguments than the call was taking, add them
969  // now.
970  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
971    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
972
973  // If we are removing arguments to the function, emit an obnoxious warning.
974  if (FT->getNumParams() < NumActualArgs) {
975    if (!FT->isVarArg()) {
976      errs() << "WARNING: While resolving call to function '"
977             << Callee->getName() << "' arguments were dropped!\n";
978    } else {
979      // Add all of the arguments in their promoted form to the arg list.
980      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
981        const Type *PTy = getPromotedType((*AI)->getType());
982        if (PTy != (*AI)->getType()) {
983          // Must promote to pass through va_arg area!
984          Instruction::CastOps opcode =
985            CastInst::getCastOpcode(*AI, false, PTy, false);
986          Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
987        } else {
988          Args.push_back(*AI);
989        }
990
991        // Add any parameter attributes.
992        if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
993          attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
994      }
995    }
996  }
997
998  if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
999    attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
1000
1001  if (NewRetTy->isVoidTy())
1002    Caller->setName("");   // Void type should not have a name.
1003
1004  const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
1005                                                     attrVec.end());
1006
1007  Instruction *NC;
1008  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1009    NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
1010                            Args.begin(), Args.end(),
1011                            Caller->getName(), Caller);
1012    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1013    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1014  } else {
1015    NC = CallInst::Create(Callee, Args.begin(), Args.end(),
1016                          Caller->getName(), Caller);
1017    CallInst *CI = cast<CallInst>(Caller);
1018    if (CI->isTailCall())
1019      cast<CallInst>(NC)->setTailCall();
1020    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1021    cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1022  }
1023
1024  // Insert a cast of the return type as necessary.
1025  Value *NV = NC;
1026  if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1027    if (!NV->getType()->isVoidTy()) {
1028      Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
1029                                                            OldRetTy, false);
1030      NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
1031
1032      // If this is an invoke instruction, we should insert it after the first
1033      // non-phi, instruction in the normal successor block.
1034      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1035        BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
1036        InsertNewInstBefore(NC, *I);
1037      } else {
1038        // Otherwise, it's a call, just insert cast right after the call instr
1039        InsertNewInstBefore(NC, *Caller);
1040      }
1041      Worklist.AddUsersToWorkList(*Caller);
1042    } else {
1043      NV = UndefValue::get(Caller->getType());
1044    }
1045  }
1046
1047
1048  if (!Caller->use_empty())
1049    Caller->replaceAllUsesWith(NV);
1050
1051  EraseInstFromFunction(*Caller);
1052  return true;
1053}
1054
1055// transformCallThroughTrampoline - Turn a call to a function created by the
1056// init_trampoline intrinsic into a direct call to the underlying function.
1057//
1058Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
1059  Value *Callee = CS.getCalledValue();
1060  const PointerType *PTy = cast<PointerType>(Callee->getType());
1061  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1062  const AttrListPtr &Attrs = CS.getAttributes();
1063
1064  // If the call already has the 'nest' attribute somewhere then give up -
1065  // otherwise 'nest' would occur twice after splicing in the chain.
1066  if (Attrs.hasAttrSomewhere(Attribute::Nest))
1067    return 0;
1068
1069  IntrinsicInst *Tramp =
1070    cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
1071
1072  Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
1073  const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1074  const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1075
1076  const AttrListPtr &NestAttrs = NestF->getAttributes();
1077  if (!NestAttrs.isEmpty()) {
1078    unsigned NestIdx = 1;
1079    const Type *NestTy = 0;
1080    Attributes NestAttr = Attribute::None;
1081
1082    // Look for a parameter marked with the 'nest' attribute.
1083    for (FunctionType::param_iterator I = NestFTy->param_begin(),
1084         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1085      if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1086        // Record the parameter type and any other attributes.
1087        NestTy = *I;
1088        NestAttr = NestAttrs.getParamAttributes(NestIdx);
1089        break;
1090      }
1091
1092    if (NestTy) {
1093      Instruction *Caller = CS.getInstruction();
1094      std::vector<Value*> NewArgs;
1095      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1096
1097      SmallVector<AttributeWithIndex, 8> NewAttrs;
1098      NewAttrs.reserve(Attrs.getNumSlots() + 1);
1099
1100      // Insert the nest argument into the call argument list, which may
1101      // mean appending it.  Likewise for attributes.
1102
1103      // Add any result attributes.
1104      if (Attributes Attr = Attrs.getRetAttributes())
1105        NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1106
1107      {
1108        unsigned Idx = 1;
1109        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1110        do {
1111          if (Idx == NestIdx) {
1112            // Add the chain argument and attributes.
1113            Value *NestVal = Tramp->getOperand(3);
1114            if (NestVal->getType() != NestTy)
1115              NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
1116            NewArgs.push_back(NestVal);
1117            NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1118          }
1119
1120          if (I == E)
1121            break;
1122
1123          // Add the original argument and attributes.
1124          NewArgs.push_back(*I);
1125          if (Attributes Attr = Attrs.getParamAttributes(Idx))
1126            NewAttrs.push_back
1127              (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1128
1129          ++Idx, ++I;
1130        } while (1);
1131      }
1132
1133      // Add any function attributes.
1134      if (Attributes Attr = Attrs.getFnAttributes())
1135        NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1136
1137      // The trampoline may have been bitcast to a bogus type (FTy).
1138      // Handle this by synthesizing a new function type, equal to FTy
1139      // with the chain parameter inserted.
1140
1141      std::vector<const Type*> NewTypes;
1142      NewTypes.reserve(FTy->getNumParams()+1);
1143
1144      // Insert the chain's type into the list of parameter types, which may
1145      // mean appending it.
1146      {
1147        unsigned Idx = 1;
1148        FunctionType::param_iterator I = FTy->param_begin(),
1149          E = FTy->param_end();
1150
1151        do {
1152          if (Idx == NestIdx)
1153            // Add the chain's type.
1154            NewTypes.push_back(NestTy);
1155
1156          if (I == E)
1157            break;
1158
1159          // Add the original type.
1160          NewTypes.push_back(*I);
1161
1162          ++Idx, ++I;
1163        } while (1);
1164      }
1165
1166      // Replace the trampoline call with a direct call.  Let the generic
1167      // code sort out any function type mismatches.
1168      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1169                                                FTy->isVarArg());
1170      Constant *NewCallee =
1171        NestF->getType() == PointerType::getUnqual(NewFTy) ?
1172        NestF : ConstantExpr::getBitCast(NestF,
1173                                         PointerType::getUnqual(NewFTy));
1174      const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
1175                                                   NewAttrs.end());
1176
1177      Instruction *NewCaller;
1178      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1179        NewCaller = InvokeInst::Create(NewCallee,
1180                                       II->getNormalDest(), II->getUnwindDest(),
1181                                       NewArgs.begin(), NewArgs.end(),
1182                                       Caller->getName(), Caller);
1183        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1184        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1185      } else {
1186        NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
1187                                     Caller->getName(), Caller);
1188        if (cast<CallInst>(Caller)->isTailCall())
1189          cast<CallInst>(NewCaller)->setTailCall();
1190        cast<CallInst>(NewCaller)->
1191          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1192        cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1193      }
1194      if (!Caller->getType()->isVoidTy())
1195        Caller->replaceAllUsesWith(NewCaller);
1196      Caller->eraseFromParent();
1197      Worklist.Remove(Caller);
1198      return 0;
1199    }
1200  }
1201
1202  // Replace the trampoline call with a direct call.  Since there is no 'nest'
1203  // parameter, there is no need to adjust the argument list.  Let the generic
1204  // code sort out any function type mismatches.
1205  Constant *NewCallee =
1206    NestF->getType() == PTy ? NestF :
1207                              ConstantExpr::getBitCast(NestF, PTy);
1208  CS.setCalledFunction(NewCallee);
1209  return CS.getInstruction();
1210}
1211
1212