InstCombineCalls.cpp revision 772fe17a6d07304ae2e6b3052bbb24ebb751f0f3
1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Support/CallSite.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19#include "llvm/Transforms/Utils/BuildLibCalls.h"
20#include "llvm/Transforms/Utils/Local.h"
21using namespace llvm;
22
23/// getPromotedType - Return the specified type promoted as it would be to pass
24/// though a va_arg area.
25static Type *getPromotedType(Type *Ty) {
26  if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
27    if (ITy->getBitWidth() < 32)
28      return Type::getInt32Ty(Ty->getContext());
29  }
30  return Ty;
31}
32
33
34Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
35  unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), TD);
36  unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), TD);
37  unsigned MinAlign = std::min(DstAlign, SrcAlign);
38  unsigned CopyAlign = MI->getAlignment();
39
40  if (CopyAlign < MinAlign) {
41    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
42                                             MinAlign, false));
43    return MI;
44  }
45
46  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
47  // load/store.
48  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
49  if (MemOpLength == 0) return 0;
50
51  // Source and destination pointer types are always "i8*" for intrinsic.  See
52  // if the size is something we can handle with a single primitive load/store.
53  // A single load+store correctly handles overlapping memory in the memmove
54  // case.
55  unsigned Size = MemOpLength->getZExtValue();
56  if (Size == 0) return MI;  // Delete this mem transfer.
57
58  if (Size > 8 || (Size&(Size-1)))
59    return 0;  // If not 1/2/4/8 bytes, exit.
60
61  // Use an integer load+store unless we can find something better.
62  unsigned SrcAddrSp =
63    cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
64  unsigned DstAddrSp =
65    cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
66
67  IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
68  Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
69  Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
70
71  // Memcpy forces the use of i8* for the source and destination.  That means
72  // that if you're using memcpy to move one double around, you'll get a cast
73  // from double* to i8*.  We'd much rather use a double load+store rather than
74  // an i64 load+store, here because this improves the odds that the source or
75  // dest address will be promotable.  See if we can find a better type than the
76  // integer datatype.
77  Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
78  if (StrippedDest != MI->getArgOperand(0)) {
79    Type *SrcETy = cast<PointerType>(StrippedDest->getType())
80                                    ->getElementType();
81    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
82      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
83      // down through these levels if so.
84      while (!SrcETy->isSingleValueType()) {
85        if (StructType *STy = dyn_cast<StructType>(SrcETy)) {
86          if (STy->getNumElements() == 1)
87            SrcETy = STy->getElementType(0);
88          else
89            break;
90        } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
91          if (ATy->getNumElements() == 1)
92            SrcETy = ATy->getElementType();
93          else
94            break;
95        } else
96          break;
97      }
98
99      if (SrcETy->isSingleValueType()) {
100        NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
101        NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
102      }
103    }
104  }
105
106
107  // If the memcpy/memmove provides better alignment info than we can
108  // infer, use it.
109  SrcAlign = std::max(SrcAlign, CopyAlign);
110  DstAlign = std::max(DstAlign, CopyAlign);
111
112  Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
113  Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
114  LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
115  L->setAlignment(SrcAlign);
116  StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
117  S->setAlignment(DstAlign);
118
119  // Set the size of the copy to 0, it will be deleted on the next iteration.
120  MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
121  return MI;
122}
123
124Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
125  unsigned Alignment = getKnownAlignment(MI->getDest(), TD);
126  if (MI->getAlignment() < Alignment) {
127    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
128                                             Alignment, false));
129    return MI;
130  }
131
132  // Extract the length and alignment and fill if they are constant.
133  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
134  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
135  if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
136    return 0;
137  uint64_t Len = LenC->getZExtValue();
138  Alignment = MI->getAlignment();
139
140  // If the length is zero, this is a no-op
141  if (Len == 0) return MI; // memset(d,c,0,a) -> noop
142
143  // memset(s,c,n) -> store s, c (for n=1,2,4,8)
144  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
145    Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
146
147    Value *Dest = MI->getDest();
148    unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
149    Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
150    Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
151
152    // Alignment 0 is identity for alignment 1 for memset, but not store.
153    if (Alignment == 0) Alignment = 1;
154
155    // Extract the fill value and store.
156    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
157    StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
158                                        MI->isVolatile());
159    S->setAlignment(Alignment);
160
161    // Set the size of the copy to 0, it will be deleted on the next iteration.
162    MI->setLength(Constant::getNullValue(LenC->getType()));
163    return MI;
164  }
165
166  return 0;
167}
168
169/// visitCallInst - CallInst simplification.  This mostly only handles folding
170/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
171/// the heavy lifting.
172///
173Instruction *InstCombiner::visitCallInst(CallInst &CI) {
174  if (isFreeCall(&CI))
175    return visitFree(CI);
176  if (isMalloc(&CI))
177    return visitMalloc(CI);
178
179  // If the caller function is nounwind, mark the call as nounwind, even if the
180  // callee isn't.
181  if (CI.getParent()->getParent()->doesNotThrow() &&
182      !CI.doesNotThrow()) {
183    CI.setDoesNotThrow();
184    return &CI;
185  }
186
187  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
188  if (!II) return visitCallSite(&CI);
189
190  // Intrinsics cannot occur in an invoke, so handle them here instead of in
191  // visitCallSite.
192  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
193    bool Changed = false;
194
195    // memmove/cpy/set of zero bytes is a noop.
196    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
197      if (NumBytes->isNullValue())
198        return EraseInstFromFunction(CI);
199
200      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
201        if (CI->getZExtValue() == 1) {
202          // Replace the instruction with just byte operations.  We would
203          // transform other cases to loads/stores, but we don't know if
204          // alignment is sufficient.
205        }
206    }
207
208    // No other transformations apply to volatile transfers.
209    if (MI->isVolatile())
210      return 0;
211
212    // If we have a memmove and the source operation is a constant global,
213    // then the source and dest pointers can't alias, so we can change this
214    // into a call to memcpy.
215    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
216      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
217        if (GVSrc->isConstant()) {
218          Module *M = CI.getParent()->getParent()->getParent();
219          Intrinsic::ID MemCpyID = Intrinsic::memcpy;
220          Type *Tys[3] = { CI.getArgOperand(0)->getType(),
221                           CI.getArgOperand(1)->getType(),
222                           CI.getArgOperand(2)->getType() };
223          CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
224          Changed = true;
225        }
226    }
227
228    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
229      // memmove(x,x,size) -> noop.
230      if (MTI->getSource() == MTI->getDest())
231        return EraseInstFromFunction(CI);
232    }
233
234    // If we can determine a pointer alignment that is bigger than currently
235    // set, update the alignment.
236    if (isa<MemTransferInst>(MI)) {
237      if (Instruction *I = SimplifyMemTransfer(MI))
238        return I;
239    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
240      if (Instruction *I = SimplifyMemSet(MSI))
241        return I;
242    }
243
244    if (Changed) return II;
245  }
246
247  switch (II->getIntrinsicID()) {
248  default: break;
249  case Intrinsic::objectsize: {
250    // We need target data for just about everything so depend on it.
251    if (!TD) break;
252
253    Type *ReturnTy = CI.getType();
254    uint64_t DontKnow = II->getArgOperand(1) == Builder->getTrue() ? 0 : -1ULL;
255
256    // Get to the real allocated thing and offset as fast as possible.
257    Value *Op1 = II->getArgOperand(0)->stripPointerCasts();
258
259    uint64_t Offset = 0;
260    uint64_t Size = -1ULL;
261
262    // Try to look through constant GEPs.
263    if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) {
264      if (!GEP->hasAllConstantIndices()) break;
265
266      // Get the current byte offset into the thing. Use the original
267      // operand in case we're looking through a bitcast.
268      SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
269      Offset = TD->getIndexedOffset(GEP->getPointerOperandType(), Ops);
270
271      Op1 = GEP->getPointerOperand()->stripPointerCasts();
272
273      // Make sure we're not a constant offset from an external
274      // global.
275      if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1))
276        if (!GV->hasDefinitiveInitializer()) break;
277    }
278
279    // If we've stripped down to a single global variable that we
280    // can know the size of then just return that.
281    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
282      if (GV->hasDefinitiveInitializer()) {
283        Constant *C = GV->getInitializer();
284        Size = TD->getTypeAllocSize(C->getType());
285      } else {
286        // Can't determine size of the GV.
287        Constant *RetVal = ConstantInt::get(ReturnTy, DontKnow);
288        return ReplaceInstUsesWith(CI, RetVal);
289      }
290    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
291      // Get alloca size.
292      if (AI->getAllocatedType()->isSized()) {
293        Size = TD->getTypeAllocSize(AI->getAllocatedType());
294        if (AI->isArrayAllocation()) {
295          const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
296          if (!C) break;
297          Size *= C->getZExtValue();
298        }
299      }
300    } else if (CallInst *MI = extractMallocCall(Op1)) {
301      // Get allocation size.
302      Type* MallocType = getMallocAllocatedType(MI);
303      if (MallocType && MallocType->isSized())
304        if (Value *NElems = getMallocArraySize(MI, TD, true))
305          if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
306            Size = NElements->getZExtValue() * TD->getTypeAllocSize(MallocType);
307    }
308
309    // Do not return "I don't know" here. Later optimization passes could
310    // make it possible to evaluate objectsize to a constant.
311    if (Size == -1ULL)
312      break;
313
314    if (Size < Offset) {
315      // Out of bound reference? Negative index normalized to large
316      // index? Just return "I don't know".
317      return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, DontKnow));
318    }
319    return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, Size-Offset));
320  }
321  case Intrinsic::bswap:
322    // bswap(bswap(x)) -> x
323    if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
324      if (Operand->getIntrinsicID() == Intrinsic::bswap)
325        return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
326
327    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
328    if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
329      if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
330        if (Operand->getIntrinsicID() == Intrinsic::bswap) {
331          unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
332                       TI->getType()->getPrimitiveSizeInBits();
333          Value *CV = ConstantInt::get(Operand->getType(), C);
334          Value *V = Builder->CreateLShr(Operand->getArgOperand(0), CV);
335          return new TruncInst(V, TI->getType());
336        }
337    }
338
339    break;
340  case Intrinsic::powi:
341    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
342      // powi(x, 0) -> 1.0
343      if (Power->isZero())
344        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
345      // powi(x, 1) -> x
346      if (Power->isOne())
347        return ReplaceInstUsesWith(CI, II->getArgOperand(0));
348      // powi(x, -1) -> 1/x
349      if (Power->isAllOnesValue())
350        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
351                                          II->getArgOperand(0));
352    }
353    break;
354  case Intrinsic::cttz: {
355    // If all bits below the first known one are known zero,
356    // this value is constant.
357    IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
358    // FIXME: Try to simplify vectors of integers.
359    if (!IT) break;
360    uint32_t BitWidth = IT->getBitWidth();
361    APInt KnownZero(BitWidth, 0);
362    APInt KnownOne(BitWidth, 0);
363    ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth),
364                      KnownZero, KnownOne);
365    unsigned TrailingZeros = KnownOne.countTrailingZeros();
366    APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
367    if ((Mask & KnownZero) == Mask)
368      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
369                                 APInt(BitWidth, TrailingZeros)));
370
371    }
372    break;
373  case Intrinsic::ctlz: {
374    // If all bits above the first known one are known zero,
375    // this value is constant.
376    IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
377    // FIXME: Try to simplify vectors of integers.
378    if (!IT) break;
379    uint32_t BitWidth = IT->getBitWidth();
380    APInt KnownZero(BitWidth, 0);
381    APInt KnownOne(BitWidth, 0);
382    ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth),
383                      KnownZero, KnownOne);
384    unsigned LeadingZeros = KnownOne.countLeadingZeros();
385    APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
386    if ((Mask & KnownZero) == Mask)
387      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
388                                 APInt(BitWidth, LeadingZeros)));
389
390    }
391    break;
392  case Intrinsic::uadd_with_overflow: {
393    Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
394    IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
395    uint32_t BitWidth = IT->getBitWidth();
396    APInt Mask = APInt::getSignBit(BitWidth);
397    APInt LHSKnownZero(BitWidth, 0);
398    APInt LHSKnownOne(BitWidth, 0);
399    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
400    bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
401    bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
402
403    if (LHSKnownNegative || LHSKnownPositive) {
404      APInt RHSKnownZero(BitWidth, 0);
405      APInt RHSKnownOne(BitWidth, 0);
406      ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
407      bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
408      bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
409      if (LHSKnownNegative && RHSKnownNegative) {
410        // The sign bit is set in both cases: this MUST overflow.
411        // Create a simple add instruction, and insert it into the struct.
412        Value *Add = Builder->CreateAdd(LHS, RHS);
413        Add->takeName(&CI);
414        Constant *V[] = {
415          UndefValue::get(LHS->getType()),
416          ConstantInt::getTrue(II->getContext())
417        };
418        StructType *ST = cast<StructType>(II->getType());
419        Constant *Struct = ConstantStruct::get(ST, V);
420        return InsertValueInst::Create(Struct, Add, 0);
421      }
422
423      if (LHSKnownPositive && RHSKnownPositive) {
424        // The sign bit is clear in both cases: this CANNOT overflow.
425        // Create a simple add instruction, and insert it into the struct.
426        Value *Add = Builder->CreateNUWAdd(LHS, RHS);
427        Add->takeName(&CI);
428        Constant *V[] = {
429          UndefValue::get(LHS->getType()),
430          ConstantInt::getFalse(II->getContext())
431        };
432        StructType *ST = cast<StructType>(II->getType());
433        Constant *Struct = ConstantStruct::get(ST, V);
434        return InsertValueInst::Create(Struct, Add, 0);
435      }
436    }
437  }
438  // FALL THROUGH uadd into sadd
439  case Intrinsic::sadd_with_overflow:
440    // Canonicalize constants into the RHS.
441    if (isa<Constant>(II->getArgOperand(0)) &&
442        !isa<Constant>(II->getArgOperand(1))) {
443      Value *LHS = II->getArgOperand(0);
444      II->setArgOperand(0, II->getArgOperand(1));
445      II->setArgOperand(1, LHS);
446      return II;
447    }
448
449    // X + undef -> undef
450    if (isa<UndefValue>(II->getArgOperand(1)))
451      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
452
453    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
454      // X + 0 -> {X, false}
455      if (RHS->isZero()) {
456        Constant *V[] = {
457          UndefValue::get(II->getArgOperand(0)->getType()),
458          ConstantInt::getFalse(II->getContext())
459        };
460        Constant *Struct =
461          ConstantStruct::get(cast<StructType>(II->getType()), V);
462        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
463      }
464    }
465    break;
466  case Intrinsic::usub_with_overflow:
467  case Intrinsic::ssub_with_overflow:
468    // undef - X -> undef
469    // X - undef -> undef
470    if (isa<UndefValue>(II->getArgOperand(0)) ||
471        isa<UndefValue>(II->getArgOperand(1)))
472      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
473
474    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
475      // X - 0 -> {X, false}
476      if (RHS->isZero()) {
477        Constant *V[] = {
478          UndefValue::get(II->getArgOperand(0)->getType()),
479          ConstantInt::getFalse(II->getContext())
480        };
481        Constant *Struct =
482          ConstantStruct::get(cast<StructType>(II->getType()), V);
483        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
484      }
485    }
486    break;
487  case Intrinsic::umul_with_overflow: {
488    Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
489    unsigned BitWidth = cast<IntegerType>(LHS->getType())->getBitWidth();
490    APInt Mask = APInt::getAllOnesValue(BitWidth);
491
492    APInt LHSKnownZero(BitWidth, 0);
493    APInt LHSKnownOne(BitWidth, 0);
494    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
495    APInt RHSKnownZero(BitWidth, 0);
496    APInt RHSKnownOne(BitWidth, 0);
497    ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
498
499    // Get the largest possible values for each operand.
500    APInt LHSMax = ~LHSKnownZero;
501    APInt RHSMax = ~RHSKnownZero;
502
503    // If multiplying the maximum values does not overflow then we can turn
504    // this into a plain NUW mul.
505    bool Overflow;
506    LHSMax.umul_ov(RHSMax, Overflow);
507    if (!Overflow) {
508      Value *Mul = Builder->CreateNUWMul(LHS, RHS, "umul_with_overflow");
509      Constant *V[] = {
510        UndefValue::get(LHS->getType()),
511        Builder->getFalse()
512      };
513      Constant *Struct = ConstantStruct::get(cast<StructType>(II->getType()),V);
514      return InsertValueInst::Create(Struct, Mul, 0);
515    }
516  } // FALL THROUGH
517  case Intrinsic::smul_with_overflow:
518    // Canonicalize constants into the RHS.
519    if (isa<Constant>(II->getArgOperand(0)) &&
520        !isa<Constant>(II->getArgOperand(1))) {
521      Value *LHS = II->getArgOperand(0);
522      II->setArgOperand(0, II->getArgOperand(1));
523      II->setArgOperand(1, LHS);
524      return II;
525    }
526
527    // X * undef -> undef
528    if (isa<UndefValue>(II->getArgOperand(1)))
529      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
530
531    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
532      // X*0 -> {0, false}
533      if (RHSI->isZero())
534        return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
535
536      // X * 1 -> {X, false}
537      if (RHSI->equalsInt(1)) {
538        Constant *V[] = {
539          UndefValue::get(II->getArgOperand(0)->getType()),
540          ConstantInt::getFalse(II->getContext())
541        };
542        Constant *Struct =
543          ConstantStruct::get(cast<StructType>(II->getType()), V);
544        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
545      }
546    }
547    break;
548  case Intrinsic::ppc_altivec_lvx:
549  case Intrinsic::ppc_altivec_lvxl:
550    // Turn PPC lvx -> load if the pointer is known aligned.
551    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
552      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
553                                         PointerType::getUnqual(II->getType()));
554      return new LoadInst(Ptr);
555    }
556    break;
557  case Intrinsic::ppc_altivec_stvx:
558  case Intrinsic::ppc_altivec_stvxl:
559    // Turn stvx -> store if the pointer is known aligned.
560    if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) {
561      Type *OpPtrTy =
562        PointerType::getUnqual(II->getArgOperand(0)->getType());
563      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
564      return new StoreInst(II->getArgOperand(0), Ptr);
565    }
566    break;
567  case Intrinsic::x86_sse_storeu_ps:
568  case Intrinsic::x86_sse2_storeu_pd:
569  case Intrinsic::x86_sse2_storeu_dq:
570    // Turn X86 storeu -> store if the pointer is known aligned.
571    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
572      Type *OpPtrTy =
573        PointerType::getUnqual(II->getArgOperand(1)->getType());
574      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
575      return new StoreInst(II->getArgOperand(1), Ptr);
576    }
577    break;
578
579  case Intrinsic::x86_sse_cvtss2si:
580  case Intrinsic::x86_sse_cvtss2si64:
581  case Intrinsic::x86_sse_cvttss2si:
582  case Intrinsic::x86_sse_cvttss2si64:
583  case Intrinsic::x86_sse2_cvtsd2si:
584  case Intrinsic::x86_sse2_cvtsd2si64:
585  case Intrinsic::x86_sse2_cvttsd2si:
586  case Intrinsic::x86_sse2_cvttsd2si64: {
587    // These intrinsics only demand the 0th element of their input vectors. If
588    // we can simplify the input based on that, do so now.
589    unsigned VWidth =
590      cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
591    APInt DemandedElts(VWidth, 1);
592    APInt UndefElts(VWidth, 0);
593    if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
594                                              DemandedElts, UndefElts)) {
595      II->setArgOperand(0, V);
596      return II;
597    }
598    break;
599  }
600
601
602  case Intrinsic::x86_sse41_pmovsxbw:
603  case Intrinsic::x86_sse41_pmovsxwd:
604  case Intrinsic::x86_sse41_pmovsxdq:
605  case Intrinsic::x86_sse41_pmovzxbw:
606  case Intrinsic::x86_sse41_pmovzxwd:
607  case Intrinsic::x86_sse41_pmovzxdq: {
608    // pmov{s|z}x ignores the upper half of their input vectors.
609    unsigned VWidth =
610      cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
611    unsigned LowHalfElts = VWidth / 2;
612    APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
613    APInt UndefElts(VWidth, 0);
614    if (Value *TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0),
615                                                 InputDemandedElts,
616                                                 UndefElts)) {
617      II->setArgOperand(0, TmpV);
618      return II;
619    }
620    break;
621  }
622
623  case Intrinsic::ppc_altivec_vperm:
624    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
625    if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getArgOperand(2))) {
626      assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
627
628      // Check that all of the elements are integer constants or undefs.
629      bool AllEltsOk = true;
630      for (unsigned i = 0; i != 16; ++i) {
631        if (!isa<ConstantInt>(Mask->getOperand(i)) &&
632            !isa<UndefValue>(Mask->getOperand(i))) {
633          AllEltsOk = false;
634          break;
635        }
636      }
637
638      if (AllEltsOk) {
639        // Cast the input vectors to byte vectors.
640        Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
641                                            Mask->getType());
642        Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
643                                            Mask->getType());
644        Value *Result = UndefValue::get(Op0->getType());
645
646        // Only extract each element once.
647        Value *ExtractedElts[32];
648        memset(ExtractedElts, 0, sizeof(ExtractedElts));
649
650        for (unsigned i = 0; i != 16; ++i) {
651          if (isa<UndefValue>(Mask->getOperand(i)))
652            continue;
653          unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
654          Idx &= 31;  // Match the hardware behavior.
655
656          if (ExtractedElts[Idx] == 0) {
657            ExtractedElts[Idx] =
658              Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
659                  ConstantInt::get(Type::getInt32Ty(II->getContext()),
660                                   Idx&15, false), "tmp");
661          }
662
663          // Insert this value into the result vector.
664          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
665                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
666                                          i, false), "tmp");
667        }
668        return CastInst::Create(Instruction::BitCast, Result, CI.getType());
669      }
670    }
671    break;
672
673  case Intrinsic::arm_neon_vld1:
674  case Intrinsic::arm_neon_vld2:
675  case Intrinsic::arm_neon_vld3:
676  case Intrinsic::arm_neon_vld4:
677  case Intrinsic::arm_neon_vld2lane:
678  case Intrinsic::arm_neon_vld3lane:
679  case Intrinsic::arm_neon_vld4lane:
680  case Intrinsic::arm_neon_vst1:
681  case Intrinsic::arm_neon_vst2:
682  case Intrinsic::arm_neon_vst3:
683  case Intrinsic::arm_neon_vst4:
684  case Intrinsic::arm_neon_vst2lane:
685  case Intrinsic::arm_neon_vst3lane:
686  case Intrinsic::arm_neon_vst4lane: {
687    unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), TD);
688    unsigned AlignArg = II->getNumArgOperands() - 1;
689    ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
690    if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
691      II->setArgOperand(AlignArg,
692                        ConstantInt::get(Type::getInt32Ty(II->getContext()),
693                                         MemAlign, false));
694      return II;
695    }
696    break;
697  }
698
699  case Intrinsic::stackrestore: {
700    // If the save is right next to the restore, remove the restore.  This can
701    // happen when variable allocas are DCE'd.
702    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
703      if (SS->getIntrinsicID() == Intrinsic::stacksave) {
704        BasicBlock::iterator BI = SS;
705        if (&*++BI == II)
706          return EraseInstFromFunction(CI);
707      }
708    }
709
710    // Scan down this block to see if there is another stack restore in the
711    // same block without an intervening call/alloca.
712    BasicBlock::iterator BI = II;
713    TerminatorInst *TI = II->getParent()->getTerminator();
714    bool CannotRemove = false;
715    for (++BI; &*BI != TI; ++BI) {
716      if (isa<AllocaInst>(BI) || isMalloc(BI)) {
717        CannotRemove = true;
718        break;
719      }
720      if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
721        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
722          // If there is a stackrestore below this one, remove this one.
723          if (II->getIntrinsicID() == Intrinsic::stackrestore)
724            return EraseInstFromFunction(CI);
725          // Otherwise, ignore the intrinsic.
726        } else {
727          // If we found a non-intrinsic call, we can't remove the stack
728          // restore.
729          CannotRemove = true;
730          break;
731        }
732      }
733    }
734
735    // If the stack restore is in a return, resume, or unwind block and if there
736    // are no allocas or calls between the restore and the return, nuke the
737    // restore.
738    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI) ||
739                          isa<UnwindInst>(TI)))
740      return EraseInstFromFunction(CI);
741    break;
742  }
743  }
744
745  return visitCallSite(II);
746}
747
748// InvokeInst simplification
749//
750Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
751  return visitCallSite(&II);
752}
753
754/// isSafeToEliminateVarargsCast - If this cast does not affect the value
755/// passed through the varargs area, we can eliminate the use of the cast.
756static bool isSafeToEliminateVarargsCast(const CallSite CS,
757                                         const CastInst * const CI,
758                                         const TargetData * const TD,
759                                         const int ix) {
760  if (!CI->isLosslessCast())
761    return false;
762
763  // The size of ByVal arguments is derived from the type, so we
764  // can't change to a type with a different size.  If the size were
765  // passed explicitly we could avoid this check.
766  if (!CS.paramHasAttr(ix, Attribute::ByVal))
767    return true;
768
769  Type* SrcTy =
770            cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
771  Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
772  if (!SrcTy->isSized() || !DstTy->isSized())
773    return false;
774  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
775    return false;
776  return true;
777}
778
779namespace {
780class InstCombineFortifiedLibCalls : public SimplifyFortifiedLibCalls {
781  InstCombiner *IC;
782protected:
783  void replaceCall(Value *With) {
784    NewInstruction = IC->ReplaceInstUsesWith(*CI, With);
785  }
786  bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
787    if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
788      return true;
789    if (ConstantInt *SizeCI =
790                           dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
791      if (SizeCI->isAllOnesValue())
792        return true;
793      if (isString) {
794        uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
795        // If the length is 0 we don't know how long it is and so we can't
796        // remove the check.
797        if (Len == 0) return false;
798        return SizeCI->getZExtValue() >= Len;
799      }
800      if (ConstantInt *Arg = dyn_cast<ConstantInt>(
801                                                  CI->getArgOperand(SizeArgOp)))
802        return SizeCI->getZExtValue() >= Arg->getZExtValue();
803    }
804    return false;
805  }
806public:
807  InstCombineFortifiedLibCalls(InstCombiner *IC) : IC(IC), NewInstruction(0) { }
808  Instruction *NewInstruction;
809};
810} // end anonymous namespace
811
812// Try to fold some different type of calls here.
813// Currently we're only working with the checking functions, memcpy_chk,
814// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
815// strcat_chk and strncat_chk.
816Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
817  if (CI->getCalledFunction() == 0) return 0;
818
819  InstCombineFortifiedLibCalls Simplifier(this);
820  Simplifier.fold(CI, TD);
821  return Simplifier.NewInstruction;
822}
823
824// visitCallSite - Improvements for call and invoke instructions.
825//
826Instruction *InstCombiner::visitCallSite(CallSite CS) {
827  bool Changed = false;
828
829  // If the callee is a pointer to a function, attempt to move any casts to the
830  // arguments of the call/invoke.
831  Value *Callee = CS.getCalledValue();
832  if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
833    return 0;
834
835  if (Function *CalleeF = dyn_cast<Function>(Callee))
836    // If the call and callee calling conventions don't match, this call must
837    // be unreachable, as the call is undefined.
838    if (CalleeF->getCallingConv() != CS.getCallingConv() &&
839        // Only do this for calls to a function with a body.  A prototype may
840        // not actually end up matching the implementation's calling conv for a
841        // variety of reasons (e.g. it may be written in assembly).
842        !CalleeF->isDeclaration()) {
843      Instruction *OldCall = CS.getInstruction();
844      new StoreInst(ConstantInt::getTrue(Callee->getContext()),
845                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
846                                  OldCall);
847      // If OldCall dues not return void then replaceAllUsesWith undef.
848      // This allows ValueHandlers and custom metadata to adjust itself.
849      if (!OldCall->getType()->isVoidTy())
850        ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
851      if (isa<CallInst>(OldCall))
852        return EraseInstFromFunction(*OldCall);
853
854      // We cannot remove an invoke, because it would change the CFG, just
855      // change the callee to a null pointer.
856      cast<InvokeInst>(OldCall)->setCalledFunction(
857                                    Constant::getNullValue(CalleeF->getType()));
858      return 0;
859    }
860
861  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
862    // This instruction is not reachable, just remove it.  We insert a store to
863    // undef so that we know that this code is not reachable, despite the fact
864    // that we can't modify the CFG here.
865    new StoreInst(ConstantInt::getTrue(Callee->getContext()),
866               UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
867                  CS.getInstruction());
868
869    // If CS does not return void then replaceAllUsesWith undef.
870    // This allows ValueHandlers and custom metadata to adjust itself.
871    if (!CS.getInstruction()->getType()->isVoidTy())
872      ReplaceInstUsesWith(*CS.getInstruction(),
873                          UndefValue::get(CS.getInstruction()->getType()));
874
875    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
876      // Don't break the CFG, insert a dummy cond branch.
877      BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
878                         ConstantInt::getTrue(Callee->getContext()), II);
879    }
880    return EraseInstFromFunction(*CS.getInstruction());
881  }
882
883  if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
884    if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
885      if (In->getIntrinsicID() == Intrinsic::init_trampoline)
886        return transformCallThroughTrampoline(CS);
887
888  PointerType *PTy = cast<PointerType>(Callee->getType());
889  FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
890  if (FTy->isVarArg()) {
891    int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
892    // See if we can optimize any arguments passed through the varargs area of
893    // the call.
894    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
895           E = CS.arg_end(); I != E; ++I, ++ix) {
896      CastInst *CI = dyn_cast<CastInst>(*I);
897      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
898        *I = CI->getOperand(0);
899        Changed = true;
900      }
901    }
902  }
903
904  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
905    // Inline asm calls cannot throw - mark them 'nounwind'.
906    CS.setDoesNotThrow();
907    Changed = true;
908  }
909
910  // Try to optimize the call if possible, we require TargetData for most of
911  // this.  None of these calls are seen as possibly dead so go ahead and
912  // delete the instruction now.
913  if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
914    Instruction *I = tryOptimizeCall(CI, TD);
915    // If we changed something return the result, etc. Otherwise let
916    // the fallthrough check.
917    if (I) return EraseInstFromFunction(*I);
918  }
919
920  return Changed ? CS.getInstruction() : 0;
921}
922
923// transformConstExprCastCall - If the callee is a constexpr cast of a function,
924// attempt to move the cast to the arguments of the call/invoke.
925//
926bool InstCombiner::transformConstExprCastCall(CallSite CS) {
927  Function *Callee =
928    dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
929  if (Callee == 0)
930    return false;
931  Instruction *Caller = CS.getInstruction();
932  const AttrListPtr &CallerPAL = CS.getAttributes();
933
934  // Okay, this is a cast from a function to a different type.  Unless doing so
935  // would cause a type conversion of one of our arguments, change this call to
936  // be a direct call with arguments casted to the appropriate types.
937  //
938  FunctionType *FT = Callee->getFunctionType();
939  Type *OldRetTy = Caller->getType();
940  Type *NewRetTy = FT->getReturnType();
941
942  if (NewRetTy->isStructTy())
943    return false; // TODO: Handle multiple return values.
944
945  // Check to see if we are changing the return type...
946  if (OldRetTy != NewRetTy) {
947    if (Callee->isDeclaration() &&
948        // Conversion is ok if changing from one pointer type to another or from
949        // a pointer to an integer of the same size.
950        !((OldRetTy->isPointerTy() || !TD ||
951           OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
952          (NewRetTy->isPointerTy() || !TD ||
953           NewRetTy == TD->getIntPtrType(Caller->getContext()))))
954      return false;   // Cannot transform this return value.
955
956    if (!Caller->use_empty() &&
957        // void -> non-void is handled specially
958        !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
959      return false;   // Cannot transform this return value.
960
961    if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
962      Attributes RAttrs = CallerPAL.getRetAttributes();
963      if (RAttrs & Attribute::typeIncompatible(NewRetTy))
964        return false;   // Attribute not compatible with transformed value.
965    }
966
967    // If the callsite is an invoke instruction, and the return value is used by
968    // a PHI node in a successor, we cannot change the return type of the call
969    // because there is no place to put the cast instruction (without breaking
970    // the critical edge).  Bail out in this case.
971    if (!Caller->use_empty())
972      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
973        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
974             UI != E; ++UI)
975          if (PHINode *PN = dyn_cast<PHINode>(*UI))
976            if (PN->getParent() == II->getNormalDest() ||
977                PN->getParent() == II->getUnwindDest())
978              return false;
979  }
980
981  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
982  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
983
984  CallSite::arg_iterator AI = CS.arg_begin();
985  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
986    Type *ParamTy = FT->getParamType(i);
987    Type *ActTy = (*AI)->getType();
988
989    if (!CastInst::isCastable(ActTy, ParamTy))
990      return false;   // Cannot transform this parameter value.
991
992    unsigned Attrs = CallerPAL.getParamAttributes(i + 1);
993    if (Attrs & Attribute::typeIncompatible(ParamTy))
994      return false;   // Attribute not compatible with transformed value.
995
996    // If the parameter is passed as a byval argument, then we have to have a
997    // sized type and the sized type has to have the same size as the old type.
998    if (ParamTy != ActTy && (Attrs & Attribute::ByVal)) {
999      PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
1000      if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
1001        return false;
1002
1003      Type *CurElTy = cast<PointerType>(ActTy)->getElementType();
1004      if (TD->getTypeAllocSize(CurElTy) !=
1005          TD->getTypeAllocSize(ParamPTy->getElementType()))
1006        return false;
1007    }
1008
1009    // Converting from one pointer type to another or between a pointer and an
1010    // integer of the same size is safe even if we do not have a body.
1011    bool isConvertible = ActTy == ParamTy ||
1012      (TD && ((ParamTy->isPointerTy() ||
1013      ParamTy == TD->getIntPtrType(Caller->getContext())) &&
1014              (ActTy->isPointerTy() ||
1015              ActTy == TD->getIntPtrType(Caller->getContext()))));
1016    if (Callee->isDeclaration() && !isConvertible) return false;
1017  }
1018
1019  if (Callee->isDeclaration()) {
1020    // Do not delete arguments unless we have a function body.
1021    if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
1022      return false;
1023
1024    // If the callee is just a declaration, don't change the varargsness of the
1025    // call.  We don't want to introduce a varargs call where one doesn't
1026    // already exist.
1027    PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
1028    if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
1029      return false;
1030  }
1031
1032  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
1033      !CallerPAL.isEmpty())
1034    // In this case we have more arguments than the new function type, but we
1035    // won't be dropping them.  Check that these extra arguments have attributes
1036    // that are compatible with being a vararg call argument.
1037    for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
1038      if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
1039        break;
1040      Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
1041      if (PAttrs & Attribute::VarArgsIncompatible)
1042        return false;
1043    }
1044
1045
1046  // Okay, we decided that this is a safe thing to do: go ahead and start
1047  // inserting cast instructions as necessary.
1048  std::vector<Value*> Args;
1049  Args.reserve(NumActualArgs);
1050  SmallVector<AttributeWithIndex, 8> attrVec;
1051  attrVec.reserve(NumCommonArgs);
1052
1053  // Get any return attributes.
1054  Attributes RAttrs = CallerPAL.getRetAttributes();
1055
1056  // If the return value is not being used, the type may not be compatible
1057  // with the existing attributes.  Wipe out any problematic attributes.
1058  RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
1059
1060  // Add the new return attributes.
1061  if (RAttrs)
1062    attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
1063
1064  AI = CS.arg_begin();
1065  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
1066    Type *ParamTy = FT->getParamType(i);
1067    if ((*AI)->getType() == ParamTy) {
1068      Args.push_back(*AI);
1069    } else {
1070      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
1071          false, ParamTy, false);
1072      Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
1073    }
1074
1075    // Add any parameter attributes.
1076    if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1077      attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1078  }
1079
1080  // If the function takes more arguments than the call was taking, add them
1081  // now.
1082  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1083    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1084
1085  // If we are removing arguments to the function, emit an obnoxious warning.
1086  if (FT->getNumParams() < NumActualArgs) {
1087    if (!FT->isVarArg()) {
1088      errs() << "WARNING: While resolving call to function '"
1089             << Callee->getName() << "' arguments were dropped!\n";
1090    } else {
1091      // Add all of the arguments in their promoted form to the arg list.
1092      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1093        Type *PTy = getPromotedType((*AI)->getType());
1094        if (PTy != (*AI)->getType()) {
1095          // Must promote to pass through va_arg area!
1096          Instruction::CastOps opcode =
1097            CastInst::getCastOpcode(*AI, false, PTy, false);
1098          Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
1099        } else {
1100          Args.push_back(*AI);
1101        }
1102
1103        // Add any parameter attributes.
1104        if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1105          attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1106      }
1107    }
1108  }
1109
1110  if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
1111    attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
1112
1113  if (NewRetTy->isVoidTy())
1114    Caller->setName("");   // Void type should not have a name.
1115
1116  const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
1117                                                     attrVec.end());
1118
1119  Instruction *NC;
1120  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1121    NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
1122                               II->getUnwindDest(), Args);
1123    NC->takeName(II);
1124    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1125    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1126  } else {
1127    CallInst *CI = cast<CallInst>(Caller);
1128    NC = Builder->CreateCall(Callee, Args);
1129    NC->takeName(CI);
1130    if (CI->isTailCall())
1131      cast<CallInst>(NC)->setTailCall();
1132    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1133    cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1134  }
1135
1136  // Insert a cast of the return type as necessary.
1137  Value *NV = NC;
1138  if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1139    if (!NV->getType()->isVoidTy()) {
1140      Instruction::CastOps opcode =
1141        CastInst::getCastOpcode(NC, false, OldRetTy, false);
1142      NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
1143      NC->setDebugLoc(Caller->getDebugLoc());
1144
1145      // If this is an invoke instruction, we should insert it after the first
1146      // non-phi, instruction in the normal successor block.
1147      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1148        BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
1149        InsertNewInstBefore(NC, *I);
1150      } else {
1151        // Otherwise, it's a call, just insert cast right after the call.
1152        InsertNewInstBefore(NC, *Caller);
1153      }
1154      Worklist.AddUsersToWorkList(*Caller);
1155    } else {
1156      NV = UndefValue::get(Caller->getType());
1157    }
1158  }
1159
1160  if (!Caller->use_empty())
1161    ReplaceInstUsesWith(*Caller, NV);
1162
1163  EraseInstFromFunction(*Caller);
1164  return true;
1165}
1166
1167// transformCallThroughTrampoline - Turn a call to a function created by the
1168// init_trampoline intrinsic into a direct call to the underlying function.
1169//
1170Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
1171  Value *Callee = CS.getCalledValue();
1172  PointerType *PTy = cast<PointerType>(Callee->getType());
1173  FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1174  const AttrListPtr &Attrs = CS.getAttributes();
1175
1176  // If the call already has the 'nest' attribute somewhere then give up -
1177  // otherwise 'nest' would occur twice after splicing in the chain.
1178  if (Attrs.hasAttrSomewhere(Attribute::Nest))
1179    return 0;
1180
1181  IntrinsicInst *Tramp =
1182    cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
1183
1184  Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
1185  PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1186  FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1187
1188  const AttrListPtr &NestAttrs = NestF->getAttributes();
1189  if (!NestAttrs.isEmpty()) {
1190    unsigned NestIdx = 1;
1191    Type *NestTy = 0;
1192    Attributes NestAttr = Attribute::None;
1193
1194    // Look for a parameter marked with the 'nest' attribute.
1195    for (FunctionType::param_iterator I = NestFTy->param_begin(),
1196         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1197      if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1198        // Record the parameter type and any other attributes.
1199        NestTy = *I;
1200        NestAttr = NestAttrs.getParamAttributes(NestIdx);
1201        break;
1202      }
1203
1204    if (NestTy) {
1205      Instruction *Caller = CS.getInstruction();
1206      std::vector<Value*> NewArgs;
1207      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1208
1209      SmallVector<AttributeWithIndex, 8> NewAttrs;
1210      NewAttrs.reserve(Attrs.getNumSlots() + 1);
1211
1212      // Insert the nest argument into the call argument list, which may
1213      // mean appending it.  Likewise for attributes.
1214
1215      // Add any result attributes.
1216      if (Attributes Attr = Attrs.getRetAttributes())
1217        NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1218
1219      {
1220        unsigned Idx = 1;
1221        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1222        do {
1223          if (Idx == NestIdx) {
1224            // Add the chain argument and attributes.
1225            Value *NestVal = Tramp->getArgOperand(2);
1226            if (NestVal->getType() != NestTy)
1227              NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
1228            NewArgs.push_back(NestVal);
1229            NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1230          }
1231
1232          if (I == E)
1233            break;
1234
1235          // Add the original argument and attributes.
1236          NewArgs.push_back(*I);
1237          if (Attributes Attr = Attrs.getParamAttributes(Idx))
1238            NewAttrs.push_back
1239              (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1240
1241          ++Idx, ++I;
1242        } while (1);
1243      }
1244
1245      // Add any function attributes.
1246      if (Attributes Attr = Attrs.getFnAttributes())
1247        NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1248
1249      // The trampoline may have been bitcast to a bogus type (FTy).
1250      // Handle this by synthesizing a new function type, equal to FTy
1251      // with the chain parameter inserted.
1252
1253      std::vector<Type*> NewTypes;
1254      NewTypes.reserve(FTy->getNumParams()+1);
1255
1256      // Insert the chain's type into the list of parameter types, which may
1257      // mean appending it.
1258      {
1259        unsigned Idx = 1;
1260        FunctionType::param_iterator I = FTy->param_begin(),
1261          E = FTy->param_end();
1262
1263        do {
1264          if (Idx == NestIdx)
1265            // Add the chain's type.
1266            NewTypes.push_back(NestTy);
1267
1268          if (I == E)
1269            break;
1270
1271          // Add the original type.
1272          NewTypes.push_back(*I);
1273
1274          ++Idx, ++I;
1275        } while (1);
1276      }
1277
1278      // Replace the trampoline call with a direct call.  Let the generic
1279      // code sort out any function type mismatches.
1280      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1281                                                FTy->isVarArg());
1282      Constant *NewCallee =
1283        NestF->getType() == PointerType::getUnqual(NewFTy) ?
1284        NestF : ConstantExpr::getBitCast(NestF,
1285                                         PointerType::getUnqual(NewFTy));
1286      const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
1287                                                   NewAttrs.end());
1288
1289      Instruction *NewCaller;
1290      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1291        NewCaller = InvokeInst::Create(NewCallee,
1292                                       II->getNormalDest(), II->getUnwindDest(),
1293                                       NewArgs);
1294        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1295        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1296      } else {
1297        NewCaller = CallInst::Create(NewCallee, NewArgs);
1298        if (cast<CallInst>(Caller)->isTailCall())
1299          cast<CallInst>(NewCaller)->setTailCall();
1300        cast<CallInst>(NewCaller)->
1301          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1302        cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1303      }
1304
1305      return NewCaller;
1306    }
1307  }
1308
1309  // Replace the trampoline call with a direct call.  Since there is no 'nest'
1310  // parameter, there is no need to adjust the argument list.  Let the generic
1311  // code sort out any function type mismatches.
1312  Constant *NewCallee =
1313    NestF->getType() == PTy ? NestF :
1314                              ConstantExpr::getBitCast(NestF, PTy);
1315  CS.setCalledFunction(NewCallee);
1316  return CS.getInstruction();
1317}
1318
1319