InstCombineCalls.cpp revision 7b323a34fa034389e9e439f6c02eeb73e87ab9db
1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Support/CallSite.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19#include "llvm/Transforms/Utils/BuildLibCalls.h"
20using namespace llvm;
21
22/// getPromotedType - Return the specified type promoted as it would be to pass
23/// though a va_arg area.
24static const Type *getPromotedType(const Type *Ty) {
25  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
26    if (ITy->getBitWidth() < 32)
27      return Type::getInt32Ty(Ty->getContext());
28  }
29  return Ty;
30}
31
32/// EnforceKnownAlignment - If the specified pointer points to an object that
33/// we control, modify the object's alignment to PrefAlign. This isn't
34/// often possible though. If alignment is important, a more reliable approach
35/// is to simply align all global variables and allocation instructions to
36/// their preferred alignment from the beginning.
37///
38static unsigned EnforceKnownAlignment(Value *V,
39                                      unsigned Align, unsigned PrefAlign) {
40
41  User *U = dyn_cast<User>(V);
42  if (!U) return Align;
43
44  switch (Operator::getOpcode(U)) {
45  default: break;
46  case Instruction::BitCast:
47    return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
48  case Instruction::GetElementPtr: {
49    // If all indexes are zero, it is just the alignment of the base pointer.
50    bool AllZeroOperands = true;
51    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
52      if (!isa<Constant>(*i) ||
53          !cast<Constant>(*i)->isNullValue()) {
54        AllZeroOperands = false;
55        break;
56      }
57
58    if (AllZeroOperands) {
59      // Treat this like a bitcast.
60      return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
61    }
62    break;
63  }
64  }
65
66  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
67    // If there is a large requested alignment and we can, bump up the alignment
68    // of the global.
69    if (!GV->isDeclaration()) {
70      if (GV->getAlignment() >= PrefAlign)
71        Align = GV->getAlignment();
72      else {
73        GV->setAlignment(PrefAlign);
74        Align = PrefAlign;
75      }
76    }
77  } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
78    // If there is a requested alignment and if this is an alloca, round up.
79    if (AI->getAlignment() >= PrefAlign)
80      Align = AI->getAlignment();
81    else {
82      AI->setAlignment(PrefAlign);
83      Align = PrefAlign;
84    }
85  }
86
87  return Align;
88}
89
90/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
91/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
92/// and it is more than the alignment of the ultimate object, see if we can
93/// increase the alignment of the ultimate object, making this check succeed.
94unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
95                                                  unsigned PrefAlign) {
96  unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
97                      sizeof(PrefAlign) * CHAR_BIT;
98  APInt Mask = APInt::getAllOnesValue(BitWidth);
99  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
100  ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
101  unsigned TrailZ = KnownZero.countTrailingOnes();
102  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
103
104  if (PrefAlign > Align)
105    Align = EnforceKnownAlignment(V, Align, PrefAlign);
106
107    // We don't need to make any adjustment.
108  return Align;
109}
110
111Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
112  unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
113  unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
114  unsigned MinAlign = std::min(DstAlign, SrcAlign);
115  unsigned CopyAlign = MI->getAlignment();
116
117  if (CopyAlign < MinAlign) {
118    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
119                                             MinAlign, false));
120    return MI;
121  }
122
123  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
124  // load/store.
125  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
126  if (MemOpLength == 0) return 0;
127
128  // Source and destination pointer types are always "i8*" for intrinsic.  See
129  // if the size is something we can handle with a single primitive load/store.
130  // A single load+store correctly handles overlapping memory in the memmove
131  // case.
132  unsigned Size = MemOpLength->getZExtValue();
133  if (Size == 0) return MI;  // Delete this mem transfer.
134
135  if (Size > 8 || (Size&(Size-1)))
136    return 0;  // If not 1/2/4/8 bytes, exit.
137
138  // Use an integer load+store unless we can find something better.
139  Type *NewPtrTy =
140            PointerType::getUnqual(IntegerType::get(MI->getContext(), Size<<3));
141
142  // Memcpy forces the use of i8* for the source and destination.  That means
143  // that if you're using memcpy to move one double around, you'll get a cast
144  // from double* to i8*.  We'd much rather use a double load+store rather than
145  // an i64 load+store, here because this improves the odds that the source or
146  // dest address will be promotable.  See if we can find a better type than the
147  // integer datatype.
148  Value *StrippedDest = MI->getOperand(1)->stripPointerCasts();
149  if (StrippedDest != MI->getOperand(1)) {
150    const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
151                                    ->getElementType();
152    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
153      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
154      // down through these levels if so.
155      while (!SrcETy->isSingleValueType()) {
156        if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
157          if (STy->getNumElements() == 1)
158            SrcETy = STy->getElementType(0);
159          else
160            break;
161        } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
162          if (ATy->getNumElements() == 1)
163            SrcETy = ATy->getElementType();
164          else
165            break;
166        } else
167          break;
168      }
169
170      if (SrcETy->isSingleValueType())
171        NewPtrTy = PointerType::getUnqual(SrcETy);
172    }
173  }
174
175
176  // If the memcpy/memmove provides better alignment info than we can
177  // infer, use it.
178  SrcAlign = std::max(SrcAlign, CopyAlign);
179  DstAlign = std::max(DstAlign, CopyAlign);
180
181  Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
182  Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
183  Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
184  InsertNewInstBefore(L, *MI);
185  InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
186
187  // Set the size of the copy to 0, it will be deleted on the next iteration.
188  MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
189  return MI;
190}
191
192Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
193  unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
194  if (MI->getAlignment() < Alignment) {
195    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
196                                             Alignment, false));
197    return MI;
198  }
199
200  // Extract the length and alignment and fill if they are constant.
201  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
202  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
203  if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
204    return 0;
205  uint64_t Len = LenC->getZExtValue();
206  Alignment = MI->getAlignment();
207
208  // If the length is zero, this is a no-op
209  if (Len == 0) return MI; // memset(d,c,0,a) -> noop
210
211  // memset(s,c,n) -> store s, c (for n=1,2,4,8)
212  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
213    const Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
214
215    Value *Dest = MI->getDest();
216    Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
217
218    // Alignment 0 is identity for alignment 1 for memset, but not store.
219    if (Alignment == 0) Alignment = 1;
220
221    // Extract the fill value and store.
222    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
223    InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
224                                      Dest, false, Alignment), *MI);
225
226    // Set the size of the copy to 0, it will be deleted on the next iteration.
227    MI->setLength(Constant::getNullValue(LenC->getType()));
228    return MI;
229  }
230
231  return 0;
232}
233
234/// visitCallInst - CallInst simplification.  This mostly only handles folding
235/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
236/// the heavy lifting.
237///
238Instruction *InstCombiner::visitCallInst(CallInst &CI) {
239  if (isFreeCall(&CI))
240    return visitFree(CI);
241
242  // If the caller function is nounwind, mark the call as nounwind, even if the
243  // callee isn't.
244  if (CI.getParent()->getParent()->doesNotThrow() &&
245      !CI.doesNotThrow()) {
246    CI.setDoesNotThrow();
247    return &CI;
248  }
249
250  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
251  if (!II) return visitCallSite(&CI);
252
253  // Intrinsics cannot occur in an invoke, so handle them here instead of in
254  // visitCallSite.
255  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
256    bool Changed = false;
257
258    // memmove/cpy/set of zero bytes is a noop.
259    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
260      if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
261
262      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
263        if (CI->getZExtValue() == 1) {
264          // Replace the instruction with just byte operations.  We would
265          // transform other cases to loads/stores, but we don't know if
266          // alignment is sufficient.
267        }
268    }
269
270    // If we have a memmove and the source operation is a constant global,
271    // then the source and dest pointers can't alias, so we can change this
272    // into a call to memcpy.
273    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
274      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
275        if (GVSrc->isConstant()) {
276          Module *M = CI.getParent()->getParent()->getParent();
277          Intrinsic::ID MemCpyID = Intrinsic::memcpy;
278          const Type *Tys[1];
279          Tys[0] = CI.getOperand(3)->getType();
280          CI.setOperand(0,
281                        Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
282          Changed = true;
283        }
284    }
285
286    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
287      // memmove(x,x,size) -> noop.
288      if (MTI->getSource() == MTI->getDest())
289        return EraseInstFromFunction(CI);
290    }
291
292    // If we can determine a pointer alignment that is bigger than currently
293    // set, update the alignment.
294    if (isa<MemTransferInst>(MI)) {
295      if (Instruction *I = SimplifyMemTransfer(MI))
296        return I;
297    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
298      if (Instruction *I = SimplifyMemSet(MSI))
299        return I;
300    }
301
302    if (Changed) return II;
303  }
304
305  switch (II->getIntrinsicID()) {
306  default: break;
307  case Intrinsic::objectsize: {
308    // We need target data for just about everything so depend on it.
309    if (!TD) break;
310
311    const Type *ReturnTy = CI.getType();
312    bool Min = (cast<ConstantInt>(II->getOperand(2))->getZExtValue() == 1);
313
314    // Get to the real allocated thing and offset as fast as possible.
315    Value *Op1 = II->getOperand(1)->stripPointerCasts();
316
317    // If we've stripped down to a single global variable that we
318    // can know the size of then just return that.
319    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
320      if (GV->hasDefinitiveInitializer()) {
321        Constant *C = GV->getInitializer();
322        uint64_t GlobalSize = TD->getTypeAllocSize(C->getType());
323        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, GlobalSize));
324      } else {
325        // Can't determine size of the GV.
326        Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
327        return ReplaceInstUsesWith(CI, RetVal);
328      }
329    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
330      // Get alloca size.
331      if (AI->getAllocatedType()->isSized()) {
332        uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
333        if (AI->isArrayAllocation()) {
334          const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
335          if (!C) break;
336          AllocaSize *= C->getZExtValue();
337        }
338        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, AllocaSize));
339      }
340    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op1)) {
341      // Only handle constant GEPs here.
342      if (CE->getOpcode() != Instruction::GetElementPtr) break;
343      GEPOperator *GEP = cast<GEPOperator>(CE);
344
345      // Make sure we're not a constant offset from an external
346      // global.
347      Value *Operand = GEP->getPointerOperand();
348      Operand = Operand->stripPointerCasts();
349      if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Operand))
350        if (!GV->hasDefinitiveInitializer()) break;
351
352      // Get what we're pointing to and its size.
353      const PointerType *BaseType =
354        cast<PointerType>(Operand->getType());
355      uint64_t Size = TD->getTypeAllocSize(BaseType->getElementType());
356
357      // Get the current byte offset into the thing. Use the original
358      // operand in case we're looking through a bitcast.
359      SmallVector<Value*, 8> Ops(CE->op_begin()+1, CE->op_end());
360      const PointerType *OffsetType =
361        cast<PointerType>(GEP->getPointerOperand()->getType());
362      uint64_t Offset = TD->getIndexedOffset(OffsetType, &Ops[0], Ops.size());
363
364      if (Size < Offset) {
365        // Out of bound reference? Negative index normalized to large
366        // index? Just return "I don't know".
367        Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
368        return ReplaceInstUsesWith(CI, RetVal);
369      }
370
371      Constant *RetVal = ConstantInt::get(ReturnTy, Size-Offset);
372      return ReplaceInstUsesWith(CI, RetVal);
373
374    }
375
376    // Do not return "I don't know" here. Later optimization passes could
377    // make it possible to evaluate objectsize to a constant.
378    break;
379  }
380  case Intrinsic::bswap:
381    // bswap(bswap(x)) -> x
382    if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
383      if (Operand->getIntrinsicID() == Intrinsic::bswap)
384        return ReplaceInstUsesWith(CI, Operand->getOperand(1));
385
386    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
387    if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) {
388      if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
389        if (Operand->getIntrinsicID() == Intrinsic::bswap) {
390          unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
391                       TI->getType()->getPrimitiveSizeInBits();
392          Value *CV = ConstantInt::get(Operand->getType(), C);
393          Value *V = Builder->CreateLShr(Operand->getOperand(1), CV);
394          return new TruncInst(V, TI->getType());
395        }
396    }
397
398    break;
399  case Intrinsic::powi:
400    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) {
401      // powi(x, 0) -> 1.0
402      if (Power->isZero())
403        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
404      // powi(x, 1) -> x
405      if (Power->isOne())
406        return ReplaceInstUsesWith(CI, II->getOperand(1));
407      // powi(x, -1) -> 1/x
408      if (Power->isAllOnesValue())
409        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
410                                          II->getOperand(1));
411    }
412    break;
413  case Intrinsic::cttz: {
414    // If all bits below the first known one are known zero,
415    // this value is constant.
416    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
417    uint32_t BitWidth = IT->getBitWidth();
418    APInt KnownZero(BitWidth, 0);
419    APInt KnownOne(BitWidth, 0);
420    ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
421                      KnownZero, KnownOne);
422    unsigned TrailingZeros = KnownOne.countTrailingZeros();
423    APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
424    if ((Mask & KnownZero) == Mask)
425      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
426                                 APInt(BitWidth, TrailingZeros)));
427
428    }
429    break;
430  case Intrinsic::ctlz: {
431    // If all bits above the first known one are known zero,
432    // this value is constant.
433    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
434    uint32_t BitWidth = IT->getBitWidth();
435    APInt KnownZero(BitWidth, 0);
436    APInt KnownOne(BitWidth, 0);
437    ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
438                      KnownZero, KnownOne);
439    unsigned LeadingZeros = KnownOne.countLeadingZeros();
440    APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
441    if ((Mask & KnownZero) == Mask)
442      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
443                                 APInt(BitWidth, LeadingZeros)));
444
445    }
446    break;
447  case Intrinsic::uadd_with_overflow: {
448    Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
449    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
450    uint32_t BitWidth = IT->getBitWidth();
451    APInt Mask = APInt::getSignBit(BitWidth);
452    APInt LHSKnownZero(BitWidth, 0);
453    APInt LHSKnownOne(BitWidth, 0);
454    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
455    bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
456    bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
457
458    if (LHSKnownNegative || LHSKnownPositive) {
459      APInt RHSKnownZero(BitWidth, 0);
460      APInt RHSKnownOne(BitWidth, 0);
461      ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
462      bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
463      bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
464      if (LHSKnownNegative && RHSKnownNegative) {
465        // The sign bit is set in both cases: this MUST overflow.
466        // Create a simple add instruction, and insert it into the struct.
467        Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
468        Worklist.Add(Add);
469        Constant *V[] = {
470          UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
471        };
472        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
473        return InsertValueInst::Create(Struct, Add, 0);
474      }
475
476      if (LHSKnownPositive && RHSKnownPositive) {
477        // The sign bit is clear in both cases: this CANNOT overflow.
478        // Create a simple add instruction, and insert it into the struct.
479        Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
480        Worklist.Add(Add);
481        Constant *V[] = {
482          UndefValue::get(LHS->getType()),
483          ConstantInt::getFalse(II->getContext())
484        };
485        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
486        return InsertValueInst::Create(Struct, Add, 0);
487      }
488    }
489  }
490  // FALL THROUGH uadd into sadd
491  case Intrinsic::sadd_with_overflow:
492    // Canonicalize constants into the RHS.
493    if (isa<Constant>(II->getOperand(1)) &&
494        !isa<Constant>(II->getOperand(2))) {
495      Value *LHS = II->getOperand(1);
496      II->setOperand(1, II->getOperand(2));
497      II->setOperand(2, LHS);
498      return II;
499    }
500
501    // X + undef -> undef
502    if (isa<UndefValue>(II->getOperand(2)))
503      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
504
505    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
506      // X + 0 -> {X, false}
507      if (RHS->isZero()) {
508        Constant *V[] = {
509          UndefValue::get(II->getOperand(0)->getType()),
510          ConstantInt::getFalse(II->getContext())
511        };
512        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
513        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
514      }
515    }
516    break;
517  case Intrinsic::usub_with_overflow:
518  case Intrinsic::ssub_with_overflow:
519    // undef - X -> undef
520    // X - undef -> undef
521    if (isa<UndefValue>(II->getOperand(1)) ||
522        isa<UndefValue>(II->getOperand(2)))
523      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
524
525    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
526      // X - 0 -> {X, false}
527      if (RHS->isZero()) {
528        Constant *V[] = {
529          UndefValue::get(II->getOperand(1)->getType()),
530          ConstantInt::getFalse(II->getContext())
531        };
532        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
533        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
534      }
535    }
536    break;
537  case Intrinsic::umul_with_overflow:
538  case Intrinsic::smul_with_overflow:
539    // Canonicalize constants into the RHS.
540    if (isa<Constant>(II->getOperand(1)) &&
541        !isa<Constant>(II->getOperand(2))) {
542      Value *LHS = II->getOperand(1);
543      II->setOperand(1, II->getOperand(2));
544      II->setOperand(2, LHS);
545      return II;
546    }
547
548    // X * undef -> undef
549    if (isa<UndefValue>(II->getOperand(2)))
550      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
551
552    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
553      // X*0 -> {0, false}
554      if (RHSI->isZero())
555        return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
556
557      // X * 1 -> {X, false}
558      if (RHSI->equalsInt(1)) {
559        Constant *V[] = {
560          UndefValue::get(II->getOperand(1)->getType()),
561          ConstantInt::getFalse(II->getContext())
562        };
563        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
564        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
565      }
566    }
567    break;
568  case Intrinsic::ppc_altivec_lvx:
569  case Intrinsic::ppc_altivec_lvxl:
570  case Intrinsic::x86_sse_loadu_ps:
571  case Intrinsic::x86_sse2_loadu_pd:
572  case Intrinsic::x86_sse2_loadu_dq:
573    // Turn PPC lvx     -> load if the pointer is known aligned.
574    // Turn X86 loadups -> load if the pointer is known aligned.
575    if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
576      Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
577                                         PointerType::getUnqual(II->getType()));
578      return new LoadInst(Ptr);
579    }
580    break;
581  case Intrinsic::ppc_altivec_stvx:
582  case Intrinsic::ppc_altivec_stvxl:
583    // Turn stvx -> store if the pointer is known aligned.
584    if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
585      const Type *OpPtrTy =
586        PointerType::getUnqual(II->getOperand(1)->getType());
587      Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
588      return new StoreInst(II->getOperand(1), Ptr);
589    }
590    break;
591  case Intrinsic::x86_sse_storeu_ps:
592  case Intrinsic::x86_sse2_storeu_pd:
593  case Intrinsic::x86_sse2_storeu_dq:
594    // Turn X86 storeu -> store if the pointer is known aligned.
595    if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
596      const Type *OpPtrTy =
597        PointerType::getUnqual(II->getOperand(2)->getType());
598      Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
599      return new StoreInst(II->getOperand(2), Ptr);
600    }
601    break;
602
603  case Intrinsic::x86_sse_cvttss2si: {
604    // These intrinsics only demands the 0th element of its input vector.  If
605    // we can simplify the input based on that, do so now.
606    unsigned VWidth =
607      cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
608    APInt DemandedElts(VWidth, 1);
609    APInt UndefElts(VWidth, 0);
610    if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
611                                              UndefElts)) {
612      II->setOperand(1, V);
613      return II;
614    }
615    break;
616  }
617
618  case Intrinsic::ppc_altivec_vperm:
619    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
620    if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
621      assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
622
623      // Check that all of the elements are integer constants or undefs.
624      bool AllEltsOk = true;
625      for (unsigned i = 0; i != 16; ++i) {
626        if (!isa<ConstantInt>(Mask->getOperand(i)) &&
627            !isa<UndefValue>(Mask->getOperand(i))) {
628          AllEltsOk = false;
629          break;
630        }
631      }
632
633      if (AllEltsOk) {
634        // Cast the input vectors to byte vectors.
635        Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
636        Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
637        Value *Result = UndefValue::get(Op0->getType());
638
639        // Only extract each element once.
640        Value *ExtractedElts[32];
641        memset(ExtractedElts, 0, sizeof(ExtractedElts));
642
643        for (unsigned i = 0; i != 16; ++i) {
644          if (isa<UndefValue>(Mask->getOperand(i)))
645            continue;
646          unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
647          Idx &= 31;  // Match the hardware behavior.
648
649          if (ExtractedElts[Idx] == 0) {
650            ExtractedElts[Idx] =
651              Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
652                  ConstantInt::get(Type::getInt32Ty(II->getContext()),
653                                   Idx&15, false), "tmp");
654          }
655
656          // Insert this value into the result vector.
657          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
658                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
659                                          i, false), "tmp");
660        }
661        return CastInst::Create(Instruction::BitCast, Result, CI.getType());
662      }
663    }
664    break;
665
666  case Intrinsic::stackrestore: {
667    // If the save is right next to the restore, remove the restore.  This can
668    // happen when variable allocas are DCE'd.
669    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
670      if (SS->getIntrinsicID() == Intrinsic::stacksave) {
671        BasicBlock::iterator BI = SS;
672        if (&*++BI == II)
673          return EraseInstFromFunction(CI);
674      }
675    }
676
677    // Scan down this block to see if there is another stack restore in the
678    // same block without an intervening call/alloca.
679    BasicBlock::iterator BI = II;
680    TerminatorInst *TI = II->getParent()->getTerminator();
681    bool CannotRemove = false;
682    for (++BI; &*BI != TI; ++BI) {
683      if (isa<AllocaInst>(BI) || isMalloc(BI)) {
684        CannotRemove = true;
685        break;
686      }
687      if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
688        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
689          // If there is a stackrestore below this one, remove this one.
690          if (II->getIntrinsicID() == Intrinsic::stackrestore)
691            return EraseInstFromFunction(CI);
692          // Otherwise, ignore the intrinsic.
693        } else {
694          // If we found a non-intrinsic call, we can't remove the stack
695          // restore.
696          CannotRemove = true;
697          break;
698        }
699      }
700    }
701
702    // If the stack restore is in a return/unwind block and if there are no
703    // allocas or calls between the restore and the return, nuke the restore.
704    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
705      return EraseInstFromFunction(CI);
706    break;
707  }
708  }
709
710  return visitCallSite(II);
711}
712
713// InvokeInst simplification
714//
715Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
716  return visitCallSite(&II);
717}
718
719/// isSafeToEliminateVarargsCast - If this cast does not affect the value
720/// passed through the varargs area, we can eliminate the use of the cast.
721static bool isSafeToEliminateVarargsCast(const CallSite CS,
722                                         const CastInst * const CI,
723                                         const TargetData * const TD,
724                                         const int ix) {
725  if (!CI->isLosslessCast())
726    return false;
727
728  // The size of ByVal arguments is derived from the type, so we
729  // can't change to a type with a different size.  If the size were
730  // passed explicitly we could avoid this check.
731  if (!CS.paramHasAttr(ix, Attribute::ByVal))
732    return true;
733
734  const Type* SrcTy =
735            cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
736  const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
737  if (!SrcTy->isSized() || !DstTy->isSized())
738    return false;
739  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
740    return false;
741  return true;
742}
743
744// Try to fold some different type of calls here.
745// Currently we're only working with the checking functions, memcpy_chk,
746// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
747// strcat_chk and strncat_chk.
748Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
749  if (CI->getCalledFunction() == 0) return 0;
750
751  StringRef Name = CI->getCalledFunction()->getName();
752  BasicBlock *BB = CI->getParent();
753  IRBuilder<> B(CI->getParent()->getContext());
754
755  // Set the builder to the instruction after the call.
756  B.SetInsertPoint(BB, CI);
757
758  if (Name == "__memcpy_chk") {
759    ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
760    if (!SizeCI)
761      return 0;
762    ConstantInt *SizeArg = dyn_cast<ConstantInt>(CI->getOperand(3));
763    if (!SizeArg)
764      return 0;
765    if (SizeCI->isAllOnesValue() ||
766        SizeCI->getZExtValue() <= SizeArg->getZExtValue()) {
767      EmitMemCpy(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3),
768                 1, B, TD);
769      return ReplaceInstUsesWith(*CI, CI->getOperand(1));
770    }
771    return 0;
772  }
773
774  // Should be similar to memcpy.
775  if (Name == "__mempcpy_chk") {
776    return 0;
777  }
778
779  if (Name == "__memmove_chk") {
780    ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
781    if (!SizeCI)
782      return 0;
783    ConstantInt *SizeArg = dyn_cast<ConstantInt>(CI->getOperand(3));
784    if (!SizeArg)
785      return 0;
786    if (SizeCI->isAllOnesValue() ||
787        SizeCI->getZExtValue() <= SizeArg->getZExtValue()) {
788      EmitMemMove(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3),
789                  1, B, TD);
790      return ReplaceInstUsesWith(*CI, CI->getOperand(1));
791    }
792    return 0;
793  }
794
795  if (Name == "__memset_chk") {
796    ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
797    if (!SizeCI)
798      return 0;
799    ConstantInt *SizeArg = dyn_cast<ConstantInt>(CI->getOperand(3));
800    if (!SizeArg)
801      return 0;
802    if (SizeCI->isAllOnesValue() ||
803        SizeCI->getZExtValue() <= SizeArg->getZExtValue()) {
804      Value *Val = B.CreateIntCast(CI->getOperand(2), B.getInt8Ty(),
805                                   false);
806      EmitMemSet(CI->getOperand(1), Val,  CI->getOperand(3), B, TD);
807      return ReplaceInstUsesWith(*CI, CI->getOperand(1));
808    }
809    return 0;
810  }
811
812  if (Name == "__strcpy_chk") {
813    ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(3));
814    if (!SizeCI)
815      return 0;
816    // If a) we don't have any length information, or b) we know this will
817    // fit then just lower to a plain strcpy. Otherwise we'll keep our
818    // strcpy_chk call which may fail at runtime if the size is too long.
819    // TODO: It might be nice to get a maximum length out of the possible
820    // string lengths for varying.
821    if (SizeCI->isAllOnesValue() ||
822      SizeCI->getZExtValue() >= GetStringLength(CI->getOperand(2))) {
823      Value *Ret = EmitStrCpy(CI->getOperand(1), CI->getOperand(2), B, TD);
824      return ReplaceInstUsesWith(*CI, Ret);
825    }
826    return 0;
827  }
828
829  // Should be similar to strcpy.
830  if (Name == "__stpcpy_chk") {
831    return 0;
832  }
833
834  if (Name == "__strncpy_chk") {
835    ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
836    if (!SizeCI)
837      return 0;
838    ConstantInt *SizeArg = dyn_cast<ConstantInt>(CI->getOperand(3));
839    if (!SizeArg)
840      return 0;
841    if (SizeCI->isAllOnesValue() ||
842        SizeCI->getZExtValue() <= SizeArg->getZExtValue()) {
843      Value *Ret = EmitStrCpy(CI->getOperand(1), CI->getOperand(2), B, TD);
844      return ReplaceInstUsesWith(*CI, Ret);
845    }
846    return 0;
847  }
848
849  if (Name == "__strcat_chk") {
850    return 0;
851  }
852
853  if (Name == "__strncat_chk") {
854    return 0;
855  }
856
857  return 0;
858}
859
860// visitCallSite - Improvements for call and invoke instructions.
861//
862Instruction *InstCombiner::visitCallSite(CallSite CS) {
863  bool Changed = false;
864
865  // If the callee is a constexpr cast of a function, attempt to move the cast
866  // to the arguments of the call/invoke.
867  if (transformConstExprCastCall(CS)) return 0;
868
869  Value *Callee = CS.getCalledValue();
870
871  if (Function *CalleeF = dyn_cast<Function>(Callee))
872    // If the call and callee calling conventions don't match, this call must
873    // be unreachable, as the call is undefined.
874    if (CalleeF->getCallingConv() != CS.getCallingConv() &&
875        // Only do this for calls to a function with a body.  A prototype may
876        // not actually end up matching the implementation's calling conv for a
877        // variety of reasons (e.g. it may be written in assembly).
878        !CalleeF->isDeclaration()) {
879      Instruction *OldCall = CS.getInstruction();
880      new StoreInst(ConstantInt::getTrue(Callee->getContext()),
881                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
882                                  OldCall);
883      // If OldCall dues not return void then replaceAllUsesWith undef.
884      // This allows ValueHandlers and custom metadata to adjust itself.
885      if (!OldCall->getType()->isVoidTy())
886        OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
887      if (isa<CallInst>(OldCall))
888        return EraseInstFromFunction(*OldCall);
889
890      // We cannot remove an invoke, because it would change the CFG, just
891      // change the callee to a null pointer.
892      cast<InvokeInst>(OldCall)->setOperand(0,
893                                    Constant::getNullValue(CalleeF->getType()));
894      return 0;
895    }
896
897  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
898    // This instruction is not reachable, just remove it.  We insert a store to
899    // undef so that we know that this code is not reachable, despite the fact
900    // that we can't modify the CFG here.
901    new StoreInst(ConstantInt::getTrue(Callee->getContext()),
902               UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
903                  CS.getInstruction());
904
905    // If CS dues not return void then replaceAllUsesWith undef.
906    // This allows ValueHandlers and custom metadata to adjust itself.
907    if (!CS.getInstruction()->getType()->isVoidTy())
908      CS.getInstruction()->
909        replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
910
911    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
912      // Don't break the CFG, insert a dummy cond branch.
913      BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
914                         ConstantInt::getTrue(Callee->getContext()), II);
915    }
916    return EraseInstFromFunction(*CS.getInstruction());
917  }
918
919  if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
920    if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
921      if (In->getIntrinsicID() == Intrinsic::init_trampoline)
922        return transformCallThroughTrampoline(CS);
923
924  const PointerType *PTy = cast<PointerType>(Callee->getType());
925  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
926  if (FTy->isVarArg()) {
927    int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
928    // See if we can optimize any arguments passed through the varargs area of
929    // the call.
930    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
931           E = CS.arg_end(); I != E; ++I, ++ix) {
932      CastInst *CI = dyn_cast<CastInst>(*I);
933      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
934        *I = CI->getOperand(0);
935        Changed = true;
936      }
937    }
938  }
939
940  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
941    // Inline asm calls cannot throw - mark them 'nounwind'.
942    CS.setDoesNotThrow();
943    Changed = true;
944  }
945
946  // Try to optimize the call if possible, we require TargetData for most of
947  // this.  None of these calls are seen as possibly dead so go ahead and
948  // delete the instruction now.
949  if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
950    Instruction *I = tryOptimizeCall(CI, TD);
951    // If we changed something return the result, etc. Otherwise let
952    // the fallthrough check.
953    if (I) return EraseInstFromFunction(*I);
954  }
955
956  return Changed ? CS.getInstruction() : 0;
957}
958
959// transformConstExprCastCall - If the callee is a constexpr cast of a function,
960// attempt to move the cast to the arguments of the call/invoke.
961//
962bool InstCombiner::transformConstExprCastCall(CallSite CS) {
963  if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
964  ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
965  if (CE->getOpcode() != Instruction::BitCast ||
966      !isa<Function>(CE->getOperand(0)))
967    return false;
968  Function *Callee = cast<Function>(CE->getOperand(0));
969  Instruction *Caller = CS.getInstruction();
970  const AttrListPtr &CallerPAL = CS.getAttributes();
971
972  // Okay, this is a cast from a function to a different type.  Unless doing so
973  // would cause a type conversion of one of our arguments, change this call to
974  // be a direct call with arguments casted to the appropriate types.
975  //
976  const FunctionType *FT = Callee->getFunctionType();
977  const Type *OldRetTy = Caller->getType();
978  const Type *NewRetTy = FT->getReturnType();
979
980  if (NewRetTy->isStructTy())
981    return false; // TODO: Handle multiple return values.
982
983  // Check to see if we are changing the return type...
984  if (OldRetTy != NewRetTy) {
985    if (Callee->isDeclaration() &&
986        // Conversion is ok if changing from one pointer type to another or from
987        // a pointer to an integer of the same size.
988        !((OldRetTy->isPointerTy() || !TD ||
989           OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
990          (NewRetTy->isPointerTy() || !TD ||
991           NewRetTy == TD->getIntPtrType(Caller->getContext()))))
992      return false;   // Cannot transform this return value.
993
994    if (!Caller->use_empty() &&
995        // void -> non-void is handled specially
996        !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
997      return false;   // Cannot transform this return value.
998
999    if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
1000      Attributes RAttrs = CallerPAL.getRetAttributes();
1001      if (RAttrs & Attribute::typeIncompatible(NewRetTy))
1002        return false;   // Attribute not compatible with transformed value.
1003    }
1004
1005    // If the callsite is an invoke instruction, and the return value is used by
1006    // a PHI node in a successor, we cannot change the return type of the call
1007    // because there is no place to put the cast instruction (without breaking
1008    // the critical edge).  Bail out in this case.
1009    if (!Caller->use_empty())
1010      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
1011        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
1012             UI != E; ++UI)
1013          if (PHINode *PN = dyn_cast<PHINode>(*UI))
1014            if (PN->getParent() == II->getNormalDest() ||
1015                PN->getParent() == II->getUnwindDest())
1016              return false;
1017  }
1018
1019  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
1020  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
1021
1022  CallSite::arg_iterator AI = CS.arg_begin();
1023  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
1024    const Type *ParamTy = FT->getParamType(i);
1025    const Type *ActTy = (*AI)->getType();
1026
1027    if (!CastInst::isCastable(ActTy, ParamTy))
1028      return false;   // Cannot transform this parameter value.
1029
1030    if (CallerPAL.getParamAttributes(i + 1)
1031        & Attribute::typeIncompatible(ParamTy))
1032      return false;   // Attribute not compatible with transformed value.
1033
1034    // Converting from one pointer type to another or between a pointer and an
1035    // integer of the same size is safe even if we do not have a body.
1036    bool isConvertible = ActTy == ParamTy ||
1037      (TD && ((ParamTy->isPointerTy() ||
1038      ParamTy == TD->getIntPtrType(Caller->getContext())) &&
1039              (ActTy->isPointerTy() ||
1040              ActTy == TD->getIntPtrType(Caller->getContext()))));
1041    if (Callee->isDeclaration() && !isConvertible) return false;
1042  }
1043
1044  if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
1045      Callee->isDeclaration())
1046    return false;   // Do not delete arguments unless we have a function body.
1047
1048  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
1049      !CallerPAL.isEmpty())
1050    // In this case we have more arguments than the new function type, but we
1051    // won't be dropping them.  Check that these extra arguments have attributes
1052    // that are compatible with being a vararg call argument.
1053    for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
1054      if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
1055        break;
1056      Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
1057      if (PAttrs & Attribute::VarArgsIncompatible)
1058        return false;
1059    }
1060
1061  // Okay, we decided that this is a safe thing to do: go ahead and start
1062  // inserting cast instructions as necessary...
1063  std::vector<Value*> Args;
1064  Args.reserve(NumActualArgs);
1065  SmallVector<AttributeWithIndex, 8> attrVec;
1066  attrVec.reserve(NumCommonArgs);
1067
1068  // Get any return attributes.
1069  Attributes RAttrs = CallerPAL.getRetAttributes();
1070
1071  // If the return value is not being used, the type may not be compatible
1072  // with the existing attributes.  Wipe out any problematic attributes.
1073  RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
1074
1075  // Add the new return attributes.
1076  if (RAttrs)
1077    attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
1078
1079  AI = CS.arg_begin();
1080  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
1081    const Type *ParamTy = FT->getParamType(i);
1082    if ((*AI)->getType() == ParamTy) {
1083      Args.push_back(*AI);
1084    } else {
1085      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
1086          false, ParamTy, false);
1087      Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
1088    }
1089
1090    // Add any parameter attributes.
1091    if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1092      attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1093  }
1094
1095  // If the function takes more arguments than the call was taking, add them
1096  // now.
1097  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1098    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1099
1100  // If we are removing arguments to the function, emit an obnoxious warning.
1101  if (FT->getNumParams() < NumActualArgs) {
1102    if (!FT->isVarArg()) {
1103      errs() << "WARNING: While resolving call to function '"
1104             << Callee->getName() << "' arguments were dropped!\n";
1105    } else {
1106      // Add all of the arguments in their promoted form to the arg list.
1107      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1108        const Type *PTy = getPromotedType((*AI)->getType());
1109        if (PTy != (*AI)->getType()) {
1110          // Must promote to pass through va_arg area!
1111          Instruction::CastOps opcode =
1112            CastInst::getCastOpcode(*AI, false, PTy, false);
1113          Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
1114        } else {
1115          Args.push_back(*AI);
1116        }
1117
1118        // Add any parameter attributes.
1119        if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1120          attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1121      }
1122    }
1123  }
1124
1125  if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
1126    attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
1127
1128  if (NewRetTy->isVoidTy())
1129    Caller->setName("");   // Void type should not have a name.
1130
1131  const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
1132                                                     attrVec.end());
1133
1134  Instruction *NC;
1135  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1136    NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
1137                            Args.begin(), Args.end(),
1138                            Caller->getName(), Caller);
1139    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1140    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1141  } else {
1142    NC = CallInst::Create(Callee, Args.begin(), Args.end(),
1143                          Caller->getName(), Caller);
1144    CallInst *CI = cast<CallInst>(Caller);
1145    if (CI->isTailCall())
1146      cast<CallInst>(NC)->setTailCall();
1147    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1148    cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1149  }
1150
1151  // Insert a cast of the return type as necessary.
1152  Value *NV = NC;
1153  if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1154    if (!NV->getType()->isVoidTy()) {
1155      Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
1156                                                            OldRetTy, false);
1157      NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
1158
1159      // If this is an invoke instruction, we should insert it after the first
1160      // non-phi, instruction in the normal successor block.
1161      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1162        BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
1163        InsertNewInstBefore(NC, *I);
1164      } else {
1165        // Otherwise, it's a call, just insert cast right after the call instr
1166        InsertNewInstBefore(NC, *Caller);
1167      }
1168      Worklist.AddUsersToWorkList(*Caller);
1169    } else {
1170      NV = UndefValue::get(Caller->getType());
1171    }
1172  }
1173
1174
1175  if (!Caller->use_empty())
1176    Caller->replaceAllUsesWith(NV);
1177
1178  EraseInstFromFunction(*Caller);
1179  return true;
1180}
1181
1182// transformCallThroughTrampoline - Turn a call to a function created by the
1183// init_trampoline intrinsic into a direct call to the underlying function.
1184//
1185Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
1186  Value *Callee = CS.getCalledValue();
1187  const PointerType *PTy = cast<PointerType>(Callee->getType());
1188  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1189  const AttrListPtr &Attrs = CS.getAttributes();
1190
1191  // If the call already has the 'nest' attribute somewhere then give up -
1192  // otherwise 'nest' would occur twice after splicing in the chain.
1193  if (Attrs.hasAttrSomewhere(Attribute::Nest))
1194    return 0;
1195
1196  IntrinsicInst *Tramp =
1197    cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
1198
1199  Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
1200  const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1201  const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1202
1203  const AttrListPtr &NestAttrs = NestF->getAttributes();
1204  if (!NestAttrs.isEmpty()) {
1205    unsigned NestIdx = 1;
1206    const Type *NestTy = 0;
1207    Attributes NestAttr = Attribute::None;
1208
1209    // Look for a parameter marked with the 'nest' attribute.
1210    for (FunctionType::param_iterator I = NestFTy->param_begin(),
1211         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1212      if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1213        // Record the parameter type and any other attributes.
1214        NestTy = *I;
1215        NestAttr = NestAttrs.getParamAttributes(NestIdx);
1216        break;
1217      }
1218
1219    if (NestTy) {
1220      Instruction *Caller = CS.getInstruction();
1221      std::vector<Value*> NewArgs;
1222      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1223
1224      SmallVector<AttributeWithIndex, 8> NewAttrs;
1225      NewAttrs.reserve(Attrs.getNumSlots() + 1);
1226
1227      // Insert the nest argument into the call argument list, which may
1228      // mean appending it.  Likewise for attributes.
1229
1230      // Add any result attributes.
1231      if (Attributes Attr = Attrs.getRetAttributes())
1232        NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1233
1234      {
1235        unsigned Idx = 1;
1236        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1237        do {
1238          if (Idx == NestIdx) {
1239            // Add the chain argument and attributes.
1240            Value *NestVal = Tramp->getOperand(3);
1241            if (NestVal->getType() != NestTy)
1242              NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
1243            NewArgs.push_back(NestVal);
1244            NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1245          }
1246
1247          if (I == E)
1248            break;
1249
1250          // Add the original argument and attributes.
1251          NewArgs.push_back(*I);
1252          if (Attributes Attr = Attrs.getParamAttributes(Idx))
1253            NewAttrs.push_back
1254              (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1255
1256          ++Idx, ++I;
1257        } while (1);
1258      }
1259
1260      // Add any function attributes.
1261      if (Attributes Attr = Attrs.getFnAttributes())
1262        NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1263
1264      // The trampoline may have been bitcast to a bogus type (FTy).
1265      // Handle this by synthesizing a new function type, equal to FTy
1266      // with the chain parameter inserted.
1267
1268      std::vector<const Type*> NewTypes;
1269      NewTypes.reserve(FTy->getNumParams()+1);
1270
1271      // Insert the chain's type into the list of parameter types, which may
1272      // mean appending it.
1273      {
1274        unsigned Idx = 1;
1275        FunctionType::param_iterator I = FTy->param_begin(),
1276          E = FTy->param_end();
1277
1278        do {
1279          if (Idx == NestIdx)
1280            // Add the chain's type.
1281            NewTypes.push_back(NestTy);
1282
1283          if (I == E)
1284            break;
1285
1286          // Add the original type.
1287          NewTypes.push_back(*I);
1288
1289          ++Idx, ++I;
1290        } while (1);
1291      }
1292
1293      // Replace the trampoline call with a direct call.  Let the generic
1294      // code sort out any function type mismatches.
1295      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1296                                                FTy->isVarArg());
1297      Constant *NewCallee =
1298        NestF->getType() == PointerType::getUnqual(NewFTy) ?
1299        NestF : ConstantExpr::getBitCast(NestF,
1300                                         PointerType::getUnqual(NewFTy));
1301      const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
1302                                                   NewAttrs.end());
1303
1304      Instruction *NewCaller;
1305      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1306        NewCaller = InvokeInst::Create(NewCallee,
1307                                       II->getNormalDest(), II->getUnwindDest(),
1308                                       NewArgs.begin(), NewArgs.end(),
1309                                       Caller->getName(), Caller);
1310        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1311        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1312      } else {
1313        NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
1314                                     Caller->getName(), Caller);
1315        if (cast<CallInst>(Caller)->isTailCall())
1316          cast<CallInst>(NewCaller)->setTailCall();
1317        cast<CallInst>(NewCaller)->
1318          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1319        cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1320      }
1321      if (!Caller->getType()->isVoidTy())
1322        Caller->replaceAllUsesWith(NewCaller);
1323      Caller->eraseFromParent();
1324      Worklist.Remove(Caller);
1325      return 0;
1326    }
1327  }
1328
1329  // Replace the trampoline call with a direct call.  Since there is no 'nest'
1330  // parameter, there is no need to adjust the argument list.  Let the generic
1331  // code sort out any function type mismatches.
1332  Constant *NewCallee =
1333    NestF->getType() == PTy ? NestF :
1334                              ConstantExpr::getBitCast(NestF, PTy);
1335  CS.setCalledFunction(NewCallee);
1336  return CS.getInstruction();
1337}
1338
1339