InstCombineCalls.cpp revision 7fa30b8e5d2774867787a4e4db17bf27358e5aac
1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Support/CallSite.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19#include "llvm/Transforms/Utils/BuildLibCalls.h"
20using namespace llvm;
21
22/// getPromotedType - Return the specified type promoted as it would be to pass
23/// though a va_arg area.
24static const Type *getPromotedType(const Type *Ty) {
25  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
26    if (ITy->getBitWidth() < 32)
27      return Type::getInt32Ty(Ty->getContext());
28  }
29  return Ty;
30}
31
32/// EnforceKnownAlignment - If the specified pointer points to an object that
33/// we control, modify the object's alignment to PrefAlign. This isn't
34/// often possible though. If alignment is important, a more reliable approach
35/// is to simply align all global variables and allocation instructions to
36/// their preferred alignment from the beginning.
37///
38static unsigned EnforceKnownAlignment(Value *V,
39                                      unsigned Align, unsigned PrefAlign) {
40
41  User *U = dyn_cast<User>(V);
42  if (!U) return Align;
43
44  switch (Operator::getOpcode(U)) {
45  default: break;
46  case Instruction::BitCast:
47    return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
48  case Instruction::GetElementPtr: {
49    // If all indexes are zero, it is just the alignment of the base pointer.
50    bool AllZeroOperands = true;
51    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
52      if (!isa<Constant>(*i) ||
53          !cast<Constant>(*i)->isNullValue()) {
54        AllZeroOperands = false;
55        break;
56      }
57
58    if (AllZeroOperands) {
59      // Treat this like a bitcast.
60      return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
61    }
62    break;
63  }
64  }
65
66  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
67    // If there is a large requested alignment and we can, bump up the alignment
68    // of the global.
69    if (!GV->isDeclaration()) {
70      if (GV->getAlignment() >= PrefAlign)
71        Align = GV->getAlignment();
72      else {
73        GV->setAlignment(PrefAlign);
74        Align = PrefAlign;
75      }
76    }
77  } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
78    // If there is a requested alignment and if this is an alloca, round up.
79    if (AI->getAlignment() >= PrefAlign)
80      Align = AI->getAlignment();
81    else {
82      AI->setAlignment(PrefAlign);
83      Align = PrefAlign;
84    }
85  }
86
87  return Align;
88}
89
90/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
91/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
92/// and it is more than the alignment of the ultimate object, see if we can
93/// increase the alignment of the ultimate object, making this check succeed.
94unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
95                                                  unsigned PrefAlign) {
96  unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
97                      sizeof(PrefAlign) * CHAR_BIT;
98  APInt Mask = APInt::getAllOnesValue(BitWidth);
99  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
100  ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
101  unsigned TrailZ = KnownZero.countTrailingOnes();
102  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
103
104  if (PrefAlign > Align)
105    Align = EnforceKnownAlignment(V, Align, PrefAlign);
106
107    // We don't need to make any adjustment.
108  return Align;
109}
110
111Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
112  unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
113  unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
114  unsigned MinAlign = std::min(DstAlign, SrcAlign);
115  unsigned CopyAlign = MI->getAlignment();
116
117  if (CopyAlign < MinAlign) {
118    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
119                                             MinAlign, false));
120    return MI;
121  }
122
123  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
124  // load/store.
125  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
126  if (MemOpLength == 0) return 0;
127
128  // Source and destination pointer types are always "i8*" for intrinsic.  See
129  // if the size is something we can handle with a single primitive load/store.
130  // A single load+store correctly handles overlapping memory in the memmove
131  // case.
132  unsigned Size = MemOpLength->getZExtValue();
133  if (Size == 0) return MI;  // Delete this mem transfer.
134
135  if (Size > 8 || (Size&(Size-1)))
136    return 0;  // If not 1/2/4/8 bytes, exit.
137
138  // Use an integer load+store unless we can find something better.
139  Type *NewPtrTy =
140            PointerType::getUnqual(IntegerType::get(MI->getContext(), Size<<3));
141
142  // Memcpy forces the use of i8* for the source and destination.  That means
143  // that if you're using memcpy to move one double around, you'll get a cast
144  // from double* to i8*.  We'd much rather use a double load+store rather than
145  // an i64 load+store, here because this improves the odds that the source or
146  // dest address will be promotable.  See if we can find a better type than the
147  // integer datatype.
148  Value *StrippedDest = MI->getOperand(1)->stripPointerCasts();
149  if (StrippedDest != MI->getOperand(1)) {
150    const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
151                                    ->getElementType();
152    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
153      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
154      // down through these levels if so.
155      while (!SrcETy->isSingleValueType()) {
156        if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
157          if (STy->getNumElements() == 1)
158            SrcETy = STy->getElementType(0);
159          else
160            break;
161        } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
162          if (ATy->getNumElements() == 1)
163            SrcETy = ATy->getElementType();
164          else
165            break;
166        } else
167          break;
168      }
169
170      if (SrcETy->isSingleValueType())
171        NewPtrTy = PointerType::getUnqual(SrcETy);
172    }
173  }
174
175
176  // If the memcpy/memmove provides better alignment info than we can
177  // infer, use it.
178  SrcAlign = std::max(SrcAlign, CopyAlign);
179  DstAlign = std::max(DstAlign, CopyAlign);
180
181  Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
182  Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
183  Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
184  InsertNewInstBefore(L, *MI);
185  InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
186
187  // Set the size of the copy to 0, it will be deleted on the next iteration.
188  MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
189  return MI;
190}
191
192Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
193  unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
194  if (MI->getAlignment() < Alignment) {
195    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
196                                             Alignment, false));
197    return MI;
198  }
199
200  // Extract the length and alignment and fill if they are constant.
201  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
202  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
203  if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
204    return 0;
205  uint64_t Len = LenC->getZExtValue();
206  Alignment = MI->getAlignment();
207
208  // If the length is zero, this is a no-op
209  if (Len == 0) return MI; // memset(d,c,0,a) -> noop
210
211  // memset(s,c,n) -> store s, c (for n=1,2,4,8)
212  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
213    const Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
214
215    Value *Dest = MI->getDest();
216    Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
217
218    // Alignment 0 is identity for alignment 1 for memset, but not store.
219    if (Alignment == 0) Alignment = 1;
220
221    // Extract the fill value and store.
222    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
223    InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
224                                      Dest, false, Alignment), *MI);
225
226    // Set the size of the copy to 0, it will be deleted on the next iteration.
227    MI->setLength(Constant::getNullValue(LenC->getType()));
228    return MI;
229  }
230
231  return 0;
232}
233
234/// visitCallInst - CallInst simplification.  This mostly only handles folding
235/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
236/// the heavy lifting.
237///
238Instruction *InstCombiner::visitCallInst(CallInst &CI) {
239  if (isFreeCall(&CI))
240    return visitFree(CI);
241
242  // If the caller function is nounwind, mark the call as nounwind, even if the
243  // callee isn't.
244  if (CI.getParent()->getParent()->doesNotThrow() &&
245      !CI.doesNotThrow()) {
246    CI.setDoesNotThrow();
247    return &CI;
248  }
249
250  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
251  if (!II) return visitCallSite(&CI);
252
253  // Intrinsics cannot occur in an invoke, so handle them here instead of in
254  // visitCallSite.
255  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
256    bool Changed = false;
257
258    // memmove/cpy/set of zero bytes is a noop.
259    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
260      if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
261
262      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
263        if (CI->getZExtValue() == 1) {
264          // Replace the instruction with just byte operations.  We would
265          // transform other cases to loads/stores, but we don't know if
266          // alignment is sufficient.
267        }
268    }
269
270    // If we have a memmove and the source operation is a constant global,
271    // then the source and dest pointers can't alias, so we can change this
272    // into a call to memcpy.
273    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
274      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
275        if (GVSrc->isConstant()) {
276          Module *M = CI.getParent()->getParent()->getParent();
277          Intrinsic::ID MemCpyID = Intrinsic::memcpy;
278          const Type *Tys[1];
279          Tys[0] = CI.getOperand(3)->getType();
280          CI.setOperand(0,
281                        Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
282          Changed = true;
283        }
284    }
285
286    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
287      // memmove(x,x,size) -> noop.
288      if (MTI->getSource() == MTI->getDest())
289        return EraseInstFromFunction(CI);
290    }
291
292    // If we can determine a pointer alignment that is bigger than currently
293    // set, update the alignment.
294    if (isa<MemTransferInst>(MI)) {
295      if (Instruction *I = SimplifyMemTransfer(MI))
296        return I;
297    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
298      if (Instruction *I = SimplifyMemSet(MSI))
299        return I;
300    }
301
302    if (Changed) return II;
303  }
304
305  switch (II->getIntrinsicID()) {
306  default: break;
307  case Intrinsic::objectsize: {
308    // We need target data for just about everything so depend on it.
309    if (!TD) break;
310
311    const Type *ReturnTy = CI.getType();
312    bool Min = (cast<ConstantInt>(II->getOperand(2))->getZExtValue() == 1);
313
314    // Get to the real allocated thing and offset as fast as possible.
315    Value *Op1 = II->getOperand(1)->stripPointerCasts();
316
317    // If we've stripped down to a single global variable that we
318    // can know the size of then just return that.
319    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
320      if (GV->hasDefinitiveInitializer()) {
321        Constant *C = GV->getInitializer();
322        uint64_t GlobalSize = TD->getTypeAllocSize(C->getType());
323        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, GlobalSize));
324      } else {
325        // Can't determine size of the GV.
326        Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
327        return ReplaceInstUsesWith(CI, RetVal);
328      }
329    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
330      // Get alloca size.
331      if (AI->getAllocatedType()->isSized()) {
332        uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
333        if (AI->isArrayAllocation()) {
334          const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
335          if (!C) break;
336          AllocaSize *= C->getZExtValue();
337        }
338        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, AllocaSize));
339      }
340    } else if (CallInst *MI = extractMallocCall(Op1)) {
341      const Type* MallocType = getMallocAllocatedType(MI);
342      // Get alloca size.
343      if (MallocType && MallocType->isSized()) {
344        if (Value *NElems = getMallocArraySize(MI, TD, true)) {
345          if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
346        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy,
347               (NElements->getZExtValue() * TD->getTypeAllocSize(MallocType))));
348        }
349      }
350    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op1)) {
351      // Only handle constant GEPs here.
352      if (CE->getOpcode() != Instruction::GetElementPtr) break;
353      GEPOperator *GEP = cast<GEPOperator>(CE);
354
355      // Make sure we're not a constant offset from an external
356      // global.
357      Value *Operand = GEP->getPointerOperand();
358      Operand = Operand->stripPointerCasts();
359      if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Operand))
360        if (!GV->hasDefinitiveInitializer()) break;
361
362      // Get what we're pointing to and its size.
363      const PointerType *BaseType =
364        cast<PointerType>(Operand->getType());
365      uint64_t Size = TD->getTypeAllocSize(BaseType->getElementType());
366
367      // Get the current byte offset into the thing. Use the original
368      // operand in case we're looking through a bitcast.
369      SmallVector<Value*, 8> Ops(CE->op_begin()+1, CE->op_end());
370      const PointerType *OffsetType =
371        cast<PointerType>(GEP->getPointerOperand()->getType());
372      uint64_t Offset = TD->getIndexedOffset(OffsetType, &Ops[0], Ops.size());
373
374      if (Size < Offset) {
375        // Out of bound reference? Negative index normalized to large
376        // index? Just return "I don't know".
377        Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
378        return ReplaceInstUsesWith(CI, RetVal);
379      }
380
381      Constant *RetVal = ConstantInt::get(ReturnTy, Size-Offset);
382      return ReplaceInstUsesWith(CI, RetVal);
383
384    }
385
386    // Do not return "I don't know" here. Later optimization passes could
387    // make it possible to evaluate objectsize to a constant.
388    break;
389  }
390  case Intrinsic::bswap:
391    // bswap(bswap(x)) -> x
392    if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
393      if (Operand->getIntrinsicID() == Intrinsic::bswap)
394        return ReplaceInstUsesWith(CI, Operand->getOperand(1));
395
396    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
397    if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) {
398      if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
399        if (Operand->getIntrinsicID() == Intrinsic::bswap) {
400          unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
401                       TI->getType()->getPrimitiveSizeInBits();
402          Value *CV = ConstantInt::get(Operand->getType(), C);
403          Value *V = Builder->CreateLShr(Operand->getOperand(1), CV);
404          return new TruncInst(V, TI->getType());
405        }
406    }
407
408    break;
409  case Intrinsic::powi:
410    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) {
411      // powi(x, 0) -> 1.0
412      if (Power->isZero())
413        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
414      // powi(x, 1) -> x
415      if (Power->isOne())
416        return ReplaceInstUsesWith(CI, II->getOperand(1));
417      // powi(x, -1) -> 1/x
418      if (Power->isAllOnesValue())
419        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
420                                          II->getOperand(1));
421    }
422    break;
423  case Intrinsic::cttz: {
424    // If all bits below the first known one are known zero,
425    // this value is constant.
426    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
427    uint32_t BitWidth = IT->getBitWidth();
428    APInt KnownZero(BitWidth, 0);
429    APInt KnownOne(BitWidth, 0);
430    ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
431                      KnownZero, KnownOne);
432    unsigned TrailingZeros = KnownOne.countTrailingZeros();
433    APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
434    if ((Mask & KnownZero) == Mask)
435      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
436                                 APInt(BitWidth, TrailingZeros)));
437
438    }
439    break;
440  case Intrinsic::ctlz: {
441    // If all bits above the first known one are known zero,
442    // this value is constant.
443    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
444    uint32_t BitWidth = IT->getBitWidth();
445    APInt KnownZero(BitWidth, 0);
446    APInt KnownOne(BitWidth, 0);
447    ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
448                      KnownZero, KnownOne);
449    unsigned LeadingZeros = KnownOne.countLeadingZeros();
450    APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
451    if ((Mask & KnownZero) == Mask)
452      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
453                                 APInt(BitWidth, LeadingZeros)));
454
455    }
456    break;
457  case Intrinsic::uadd_with_overflow: {
458    Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
459    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
460    uint32_t BitWidth = IT->getBitWidth();
461    APInt Mask = APInt::getSignBit(BitWidth);
462    APInt LHSKnownZero(BitWidth, 0);
463    APInt LHSKnownOne(BitWidth, 0);
464    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
465    bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
466    bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
467
468    if (LHSKnownNegative || LHSKnownPositive) {
469      APInt RHSKnownZero(BitWidth, 0);
470      APInt RHSKnownOne(BitWidth, 0);
471      ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
472      bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
473      bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
474      if (LHSKnownNegative && RHSKnownNegative) {
475        // The sign bit is set in both cases: this MUST overflow.
476        // Create a simple add instruction, and insert it into the struct.
477        Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
478        Worklist.Add(Add);
479        Constant *V[] = {
480          UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
481        };
482        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
483        return InsertValueInst::Create(Struct, Add, 0);
484      }
485
486      if (LHSKnownPositive && RHSKnownPositive) {
487        // The sign bit is clear in both cases: this CANNOT overflow.
488        // Create a simple add instruction, and insert it into the struct.
489        Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
490        Worklist.Add(Add);
491        Constant *V[] = {
492          UndefValue::get(LHS->getType()),
493          ConstantInt::getFalse(II->getContext())
494        };
495        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
496        return InsertValueInst::Create(Struct, Add, 0);
497      }
498    }
499  }
500  // FALL THROUGH uadd into sadd
501  case Intrinsic::sadd_with_overflow:
502    // Canonicalize constants into the RHS.
503    if (isa<Constant>(II->getOperand(1)) &&
504        !isa<Constant>(II->getOperand(2))) {
505      Value *LHS = II->getOperand(1);
506      II->setOperand(1, II->getOperand(2));
507      II->setOperand(2, LHS);
508      return II;
509    }
510
511    // X + undef -> undef
512    if (isa<UndefValue>(II->getOperand(2)))
513      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
514
515    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
516      // X + 0 -> {X, false}
517      if (RHS->isZero()) {
518        Constant *V[] = {
519          UndefValue::get(II->getOperand(0)->getType()),
520          ConstantInt::getFalse(II->getContext())
521        };
522        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
523        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
524      }
525    }
526    break;
527  case Intrinsic::usub_with_overflow:
528  case Intrinsic::ssub_with_overflow:
529    // undef - X -> undef
530    // X - undef -> undef
531    if (isa<UndefValue>(II->getOperand(1)) ||
532        isa<UndefValue>(II->getOperand(2)))
533      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
534
535    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
536      // X - 0 -> {X, false}
537      if (RHS->isZero()) {
538        Constant *V[] = {
539          UndefValue::get(II->getOperand(1)->getType()),
540          ConstantInt::getFalse(II->getContext())
541        };
542        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
543        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
544      }
545    }
546    break;
547  case Intrinsic::umul_with_overflow:
548  case Intrinsic::smul_with_overflow:
549    // Canonicalize constants into the RHS.
550    if (isa<Constant>(II->getOperand(1)) &&
551        !isa<Constant>(II->getOperand(2))) {
552      Value *LHS = II->getOperand(1);
553      II->setOperand(1, II->getOperand(2));
554      II->setOperand(2, LHS);
555      return II;
556    }
557
558    // X * undef -> undef
559    if (isa<UndefValue>(II->getOperand(2)))
560      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
561
562    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
563      // X*0 -> {0, false}
564      if (RHSI->isZero())
565        return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
566
567      // X * 1 -> {X, false}
568      if (RHSI->equalsInt(1)) {
569        Constant *V[] = {
570          UndefValue::get(II->getOperand(1)->getType()),
571          ConstantInt::getFalse(II->getContext())
572        };
573        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
574        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
575      }
576    }
577    break;
578  case Intrinsic::ppc_altivec_lvx:
579  case Intrinsic::ppc_altivec_lvxl:
580  case Intrinsic::x86_sse_loadu_ps:
581  case Intrinsic::x86_sse2_loadu_pd:
582  case Intrinsic::x86_sse2_loadu_dq:
583    // Turn PPC lvx     -> load if the pointer is known aligned.
584    // Turn X86 loadups -> load if the pointer is known aligned.
585    if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
586      Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
587                                         PointerType::getUnqual(II->getType()));
588      return new LoadInst(Ptr);
589    }
590    break;
591  case Intrinsic::ppc_altivec_stvx:
592  case Intrinsic::ppc_altivec_stvxl:
593    // Turn stvx -> store if the pointer is known aligned.
594    if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
595      const Type *OpPtrTy =
596        PointerType::getUnqual(II->getOperand(1)->getType());
597      Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
598      return new StoreInst(II->getOperand(1), Ptr);
599    }
600    break;
601  case Intrinsic::x86_sse_storeu_ps:
602  case Intrinsic::x86_sse2_storeu_pd:
603  case Intrinsic::x86_sse2_storeu_dq:
604    // Turn X86 storeu -> store if the pointer is known aligned.
605    if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
606      const Type *OpPtrTy =
607        PointerType::getUnqual(II->getOperand(2)->getType());
608      Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
609      return new StoreInst(II->getOperand(2), Ptr);
610    }
611    break;
612
613  case Intrinsic::x86_sse_cvttss2si: {
614    // These intrinsics only demands the 0th element of its input vector.  If
615    // we can simplify the input based on that, do so now.
616    unsigned VWidth =
617      cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
618    APInt DemandedElts(VWidth, 1);
619    APInt UndefElts(VWidth, 0);
620    if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
621                                              UndefElts)) {
622      II->setOperand(1, V);
623      return II;
624    }
625    break;
626  }
627
628  case Intrinsic::ppc_altivec_vperm:
629    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
630    if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
631      assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
632
633      // Check that all of the elements are integer constants or undefs.
634      bool AllEltsOk = true;
635      for (unsigned i = 0; i != 16; ++i) {
636        if (!isa<ConstantInt>(Mask->getOperand(i)) &&
637            !isa<UndefValue>(Mask->getOperand(i))) {
638          AllEltsOk = false;
639          break;
640        }
641      }
642
643      if (AllEltsOk) {
644        // Cast the input vectors to byte vectors.
645        Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
646        Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
647        Value *Result = UndefValue::get(Op0->getType());
648
649        // Only extract each element once.
650        Value *ExtractedElts[32];
651        memset(ExtractedElts, 0, sizeof(ExtractedElts));
652
653        for (unsigned i = 0; i != 16; ++i) {
654          if (isa<UndefValue>(Mask->getOperand(i)))
655            continue;
656          unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
657          Idx &= 31;  // Match the hardware behavior.
658
659          if (ExtractedElts[Idx] == 0) {
660            ExtractedElts[Idx] =
661              Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
662                  ConstantInt::get(Type::getInt32Ty(II->getContext()),
663                                   Idx&15, false), "tmp");
664          }
665
666          // Insert this value into the result vector.
667          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
668                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
669                                          i, false), "tmp");
670        }
671        return CastInst::Create(Instruction::BitCast, Result, CI.getType());
672      }
673    }
674    break;
675
676  case Intrinsic::stackrestore: {
677    // If the save is right next to the restore, remove the restore.  This can
678    // happen when variable allocas are DCE'd.
679    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
680      if (SS->getIntrinsicID() == Intrinsic::stacksave) {
681        BasicBlock::iterator BI = SS;
682        if (&*++BI == II)
683          return EraseInstFromFunction(CI);
684      }
685    }
686
687    // Scan down this block to see if there is another stack restore in the
688    // same block without an intervening call/alloca.
689    BasicBlock::iterator BI = II;
690    TerminatorInst *TI = II->getParent()->getTerminator();
691    bool CannotRemove = false;
692    for (++BI; &*BI != TI; ++BI) {
693      if (isa<AllocaInst>(BI) || isMalloc(BI)) {
694        CannotRemove = true;
695        break;
696      }
697      if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
698        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
699          // If there is a stackrestore below this one, remove this one.
700          if (II->getIntrinsicID() == Intrinsic::stackrestore)
701            return EraseInstFromFunction(CI);
702          // Otherwise, ignore the intrinsic.
703        } else {
704          // If we found a non-intrinsic call, we can't remove the stack
705          // restore.
706          CannotRemove = true;
707          break;
708        }
709      }
710    }
711
712    // If the stack restore is in a return/unwind block and if there are no
713    // allocas or calls between the restore and the return, nuke the restore.
714    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
715      return EraseInstFromFunction(CI);
716    break;
717  }
718  }
719
720  return visitCallSite(II);
721}
722
723// InvokeInst simplification
724//
725Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
726  return visitCallSite(&II);
727}
728
729/// isSafeToEliminateVarargsCast - If this cast does not affect the value
730/// passed through the varargs area, we can eliminate the use of the cast.
731static bool isSafeToEliminateVarargsCast(const CallSite CS,
732                                         const CastInst * const CI,
733                                         const TargetData * const TD,
734                                         const int ix) {
735  if (!CI->isLosslessCast())
736    return false;
737
738  // The size of ByVal arguments is derived from the type, so we
739  // can't change to a type with a different size.  If the size were
740  // passed explicitly we could avoid this check.
741  if (!CS.paramHasAttr(ix, Attribute::ByVal))
742    return true;
743
744  const Type* SrcTy =
745            cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
746  const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
747  if (!SrcTy->isSized() || !DstTy->isSized())
748    return false;
749  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
750    return false;
751  return true;
752}
753
754// Try to fold some different type of calls here.
755// Currently we're only working with the checking functions, memcpy_chk,
756// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
757// strcat_chk and strncat_chk.
758Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
759  if (CI->getCalledFunction() == 0) return 0;
760
761  StringRef Name = CI->getCalledFunction()->getName();
762  BasicBlock *BB = CI->getParent();
763  IRBuilder<> B(CI->getParent()->getContext());
764
765  // Set the builder to the instruction after the call.
766  B.SetInsertPoint(BB, CI);
767
768  if (Name == "__memcpy_chk") {
769    ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
770    if (!SizeCI)
771      return 0;
772    ConstantInt *SizeArg = dyn_cast<ConstantInt>(CI->getOperand(3));
773    if (!SizeArg)
774      return 0;
775    if (SizeCI->isAllOnesValue() ||
776        SizeCI->getZExtValue() <= SizeArg->getZExtValue()) {
777      EmitMemCpy(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3),
778                 1, B, TD);
779      return ReplaceInstUsesWith(*CI, CI->getOperand(1));
780    }
781    return 0;
782  }
783
784  // Should be similar to memcpy.
785  if (Name == "__mempcpy_chk") {
786    return 0;
787  }
788
789  if (Name == "__memmove_chk") {
790    ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
791    if (!SizeCI)
792      return 0;
793    ConstantInt *SizeArg = dyn_cast<ConstantInt>(CI->getOperand(3));
794    if (!SizeArg)
795      return 0;
796    if (SizeCI->isAllOnesValue() ||
797        SizeCI->getZExtValue() <= SizeArg->getZExtValue()) {
798      EmitMemMove(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3),
799                  1, B, TD);
800      return ReplaceInstUsesWith(*CI, CI->getOperand(1));
801    }
802    return 0;
803  }
804
805  if (Name == "__memset_chk") {
806    ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
807    if (!SizeCI)
808      return 0;
809    ConstantInt *SizeArg = dyn_cast<ConstantInt>(CI->getOperand(3));
810    if (!SizeArg)
811      return 0;
812    if (SizeCI->isAllOnesValue() ||
813        SizeCI->getZExtValue() <= SizeArg->getZExtValue()) {
814      Value *Val = B.CreateIntCast(CI->getOperand(2), B.getInt8Ty(),
815                                   false);
816      EmitMemSet(CI->getOperand(1), Val,  CI->getOperand(3), B, TD);
817      return ReplaceInstUsesWith(*CI, CI->getOperand(1));
818    }
819    return 0;
820  }
821
822  if (Name == "__strcpy_chk" || Name == "__stpcpy_chk") {
823    ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(3));
824    if (!SizeCI)
825      return 0;
826    // If a) we don't have any length information, or b) we know this will
827    // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
828    // st[rp]cpy_chk call which may fail at runtime if the size is too long.
829    // TODO: It might be nice to get a maximum length out of the possible
830    // string lengths for varying.
831    if (SizeCI->isAllOnesValue() ||
832      SizeCI->getZExtValue() >= GetStringLength(CI->getOperand(2))) {
833      Value *Ret = EmitStrCpy(CI->getOperand(1), CI->getOperand(2), B, TD,
834                              Name.substr(2, 6));
835      return ReplaceInstUsesWith(*CI, Ret);
836    }
837    return 0;
838  }
839
840  if (Name == "__strncpy_chk") {
841    ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
842    if (!SizeCI)
843      return 0;
844    ConstantInt *SizeArg = dyn_cast<ConstantInt>(CI->getOperand(3));
845    if (!SizeArg)
846      return 0;
847    if (SizeCI->isAllOnesValue() ||
848        SizeCI->getZExtValue() <= SizeArg->getZExtValue()) {
849      Value *Ret = EmitStrNCpy(CI->getOperand(1), CI->getOperand(2),
850                               CI->getOperand(3), B, TD);
851      return ReplaceInstUsesWith(*CI, Ret);
852    }
853    return 0;
854  }
855
856  if (Name == "__strcat_chk") {
857    return 0;
858  }
859
860  if (Name == "__strncat_chk") {
861    return 0;
862  }
863
864  return 0;
865}
866
867// visitCallSite - Improvements for call and invoke instructions.
868//
869Instruction *InstCombiner::visitCallSite(CallSite CS) {
870  bool Changed = false;
871
872  // If the callee is a constexpr cast of a function, attempt to move the cast
873  // to the arguments of the call/invoke.
874  if (transformConstExprCastCall(CS)) return 0;
875
876  Value *Callee = CS.getCalledValue();
877
878  if (Function *CalleeF = dyn_cast<Function>(Callee))
879    // If the call and callee calling conventions don't match, this call must
880    // be unreachable, as the call is undefined.
881    if (CalleeF->getCallingConv() != CS.getCallingConv() &&
882        // Only do this for calls to a function with a body.  A prototype may
883        // not actually end up matching the implementation's calling conv for a
884        // variety of reasons (e.g. it may be written in assembly).
885        !CalleeF->isDeclaration()) {
886      Instruction *OldCall = CS.getInstruction();
887      new StoreInst(ConstantInt::getTrue(Callee->getContext()),
888                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
889                                  OldCall);
890      // If OldCall dues not return void then replaceAllUsesWith undef.
891      // This allows ValueHandlers and custom metadata to adjust itself.
892      if (!OldCall->getType()->isVoidTy())
893        OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
894      if (isa<CallInst>(OldCall))
895        return EraseInstFromFunction(*OldCall);
896
897      // We cannot remove an invoke, because it would change the CFG, just
898      // change the callee to a null pointer.
899      cast<InvokeInst>(OldCall)->setOperand(0,
900                                    Constant::getNullValue(CalleeF->getType()));
901      return 0;
902    }
903
904  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
905    // This instruction is not reachable, just remove it.  We insert a store to
906    // undef so that we know that this code is not reachable, despite the fact
907    // that we can't modify the CFG here.
908    new StoreInst(ConstantInt::getTrue(Callee->getContext()),
909               UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
910                  CS.getInstruction());
911
912    // If CS dues not return void then replaceAllUsesWith undef.
913    // This allows ValueHandlers and custom metadata to adjust itself.
914    if (!CS.getInstruction()->getType()->isVoidTy())
915      CS.getInstruction()->
916        replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
917
918    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
919      // Don't break the CFG, insert a dummy cond branch.
920      BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
921                         ConstantInt::getTrue(Callee->getContext()), II);
922    }
923    return EraseInstFromFunction(*CS.getInstruction());
924  }
925
926  if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
927    if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
928      if (In->getIntrinsicID() == Intrinsic::init_trampoline)
929        return transformCallThroughTrampoline(CS);
930
931  const PointerType *PTy = cast<PointerType>(Callee->getType());
932  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
933  if (FTy->isVarArg()) {
934    int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
935    // See if we can optimize any arguments passed through the varargs area of
936    // the call.
937    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
938           E = CS.arg_end(); I != E; ++I, ++ix) {
939      CastInst *CI = dyn_cast<CastInst>(*I);
940      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
941        *I = CI->getOperand(0);
942        Changed = true;
943      }
944    }
945  }
946
947  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
948    // Inline asm calls cannot throw - mark them 'nounwind'.
949    CS.setDoesNotThrow();
950    Changed = true;
951  }
952
953  // Try to optimize the call if possible, we require TargetData for most of
954  // this.  None of these calls are seen as possibly dead so go ahead and
955  // delete the instruction now.
956  if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
957    Instruction *I = tryOptimizeCall(CI, TD);
958    // If we changed something return the result, etc. Otherwise let
959    // the fallthrough check.
960    if (I) return EraseInstFromFunction(*I);
961  }
962
963  return Changed ? CS.getInstruction() : 0;
964}
965
966// transformConstExprCastCall - If the callee is a constexpr cast of a function,
967// attempt to move the cast to the arguments of the call/invoke.
968//
969bool InstCombiner::transformConstExprCastCall(CallSite CS) {
970  if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
971  ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
972  if (CE->getOpcode() != Instruction::BitCast ||
973      !isa<Function>(CE->getOperand(0)))
974    return false;
975  Function *Callee = cast<Function>(CE->getOperand(0));
976  Instruction *Caller = CS.getInstruction();
977  const AttrListPtr &CallerPAL = CS.getAttributes();
978
979  // Okay, this is a cast from a function to a different type.  Unless doing so
980  // would cause a type conversion of one of our arguments, change this call to
981  // be a direct call with arguments casted to the appropriate types.
982  //
983  const FunctionType *FT = Callee->getFunctionType();
984  const Type *OldRetTy = Caller->getType();
985  const Type *NewRetTy = FT->getReturnType();
986
987  if (NewRetTy->isStructTy())
988    return false; // TODO: Handle multiple return values.
989
990  // Check to see if we are changing the return type...
991  if (OldRetTy != NewRetTy) {
992    if (Callee->isDeclaration() &&
993        // Conversion is ok if changing from one pointer type to another or from
994        // a pointer to an integer of the same size.
995        !((OldRetTy->isPointerTy() || !TD ||
996           OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
997          (NewRetTy->isPointerTy() || !TD ||
998           NewRetTy == TD->getIntPtrType(Caller->getContext()))))
999      return false;   // Cannot transform this return value.
1000
1001    if (!Caller->use_empty() &&
1002        // void -> non-void is handled specially
1003        !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
1004      return false;   // Cannot transform this return value.
1005
1006    if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
1007      Attributes RAttrs = CallerPAL.getRetAttributes();
1008      if (RAttrs & Attribute::typeIncompatible(NewRetTy))
1009        return false;   // Attribute not compatible with transformed value.
1010    }
1011
1012    // If the callsite is an invoke instruction, and the return value is used by
1013    // a PHI node in a successor, we cannot change the return type of the call
1014    // because there is no place to put the cast instruction (without breaking
1015    // the critical edge).  Bail out in this case.
1016    if (!Caller->use_empty())
1017      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
1018        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
1019             UI != E; ++UI)
1020          if (PHINode *PN = dyn_cast<PHINode>(*UI))
1021            if (PN->getParent() == II->getNormalDest() ||
1022                PN->getParent() == II->getUnwindDest())
1023              return false;
1024  }
1025
1026  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
1027  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
1028
1029  CallSite::arg_iterator AI = CS.arg_begin();
1030  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
1031    const Type *ParamTy = FT->getParamType(i);
1032    const Type *ActTy = (*AI)->getType();
1033
1034    if (!CastInst::isCastable(ActTy, ParamTy))
1035      return false;   // Cannot transform this parameter value.
1036
1037    if (CallerPAL.getParamAttributes(i + 1)
1038        & Attribute::typeIncompatible(ParamTy))
1039      return false;   // Attribute not compatible with transformed value.
1040
1041    // Converting from one pointer type to another or between a pointer and an
1042    // integer of the same size is safe even if we do not have a body.
1043    bool isConvertible = ActTy == ParamTy ||
1044      (TD && ((ParamTy->isPointerTy() ||
1045      ParamTy == TD->getIntPtrType(Caller->getContext())) &&
1046              (ActTy->isPointerTy() ||
1047              ActTy == TD->getIntPtrType(Caller->getContext()))));
1048    if (Callee->isDeclaration() && !isConvertible) return false;
1049  }
1050
1051  if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
1052      Callee->isDeclaration())
1053    return false;   // Do not delete arguments unless we have a function body.
1054
1055  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
1056      !CallerPAL.isEmpty())
1057    // In this case we have more arguments than the new function type, but we
1058    // won't be dropping them.  Check that these extra arguments have attributes
1059    // that are compatible with being a vararg call argument.
1060    for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
1061      if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
1062        break;
1063      Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
1064      if (PAttrs & Attribute::VarArgsIncompatible)
1065        return false;
1066    }
1067
1068  // Okay, we decided that this is a safe thing to do: go ahead and start
1069  // inserting cast instructions as necessary...
1070  std::vector<Value*> Args;
1071  Args.reserve(NumActualArgs);
1072  SmallVector<AttributeWithIndex, 8> attrVec;
1073  attrVec.reserve(NumCommonArgs);
1074
1075  // Get any return attributes.
1076  Attributes RAttrs = CallerPAL.getRetAttributes();
1077
1078  // If the return value is not being used, the type may not be compatible
1079  // with the existing attributes.  Wipe out any problematic attributes.
1080  RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
1081
1082  // Add the new return attributes.
1083  if (RAttrs)
1084    attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
1085
1086  AI = CS.arg_begin();
1087  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
1088    const Type *ParamTy = FT->getParamType(i);
1089    if ((*AI)->getType() == ParamTy) {
1090      Args.push_back(*AI);
1091    } else {
1092      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
1093          false, ParamTy, false);
1094      Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
1095    }
1096
1097    // Add any parameter attributes.
1098    if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1099      attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1100  }
1101
1102  // If the function takes more arguments than the call was taking, add them
1103  // now.
1104  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1105    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1106
1107  // If we are removing arguments to the function, emit an obnoxious warning.
1108  if (FT->getNumParams() < NumActualArgs) {
1109    if (!FT->isVarArg()) {
1110      errs() << "WARNING: While resolving call to function '"
1111             << Callee->getName() << "' arguments were dropped!\n";
1112    } else {
1113      // Add all of the arguments in their promoted form to the arg list.
1114      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1115        const Type *PTy = getPromotedType((*AI)->getType());
1116        if (PTy != (*AI)->getType()) {
1117          // Must promote to pass through va_arg area!
1118          Instruction::CastOps opcode =
1119            CastInst::getCastOpcode(*AI, false, PTy, false);
1120          Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
1121        } else {
1122          Args.push_back(*AI);
1123        }
1124
1125        // Add any parameter attributes.
1126        if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1127          attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1128      }
1129    }
1130  }
1131
1132  if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
1133    attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
1134
1135  if (NewRetTy->isVoidTy())
1136    Caller->setName("");   // Void type should not have a name.
1137
1138  const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
1139                                                     attrVec.end());
1140
1141  Instruction *NC;
1142  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1143    NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
1144                            Args.begin(), Args.end(),
1145                            Caller->getName(), Caller);
1146    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1147    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1148  } else {
1149    NC = CallInst::Create(Callee, Args.begin(), Args.end(),
1150                          Caller->getName(), Caller);
1151    CallInst *CI = cast<CallInst>(Caller);
1152    if (CI->isTailCall())
1153      cast<CallInst>(NC)->setTailCall();
1154    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1155    cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1156  }
1157
1158  // Insert a cast of the return type as necessary.
1159  Value *NV = NC;
1160  if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1161    if (!NV->getType()->isVoidTy()) {
1162      Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
1163                                                            OldRetTy, false);
1164      NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
1165
1166      // If this is an invoke instruction, we should insert it after the first
1167      // non-phi, instruction in the normal successor block.
1168      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1169        BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
1170        InsertNewInstBefore(NC, *I);
1171      } else {
1172        // Otherwise, it's a call, just insert cast right after the call instr
1173        InsertNewInstBefore(NC, *Caller);
1174      }
1175      Worklist.AddUsersToWorkList(*Caller);
1176    } else {
1177      NV = UndefValue::get(Caller->getType());
1178    }
1179  }
1180
1181
1182  if (!Caller->use_empty())
1183    Caller->replaceAllUsesWith(NV);
1184
1185  EraseInstFromFunction(*Caller);
1186  return true;
1187}
1188
1189// transformCallThroughTrampoline - Turn a call to a function created by the
1190// init_trampoline intrinsic into a direct call to the underlying function.
1191//
1192Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
1193  Value *Callee = CS.getCalledValue();
1194  const PointerType *PTy = cast<PointerType>(Callee->getType());
1195  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1196  const AttrListPtr &Attrs = CS.getAttributes();
1197
1198  // If the call already has the 'nest' attribute somewhere then give up -
1199  // otherwise 'nest' would occur twice after splicing in the chain.
1200  if (Attrs.hasAttrSomewhere(Attribute::Nest))
1201    return 0;
1202
1203  IntrinsicInst *Tramp =
1204    cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
1205
1206  Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
1207  const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1208  const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1209
1210  const AttrListPtr &NestAttrs = NestF->getAttributes();
1211  if (!NestAttrs.isEmpty()) {
1212    unsigned NestIdx = 1;
1213    const Type *NestTy = 0;
1214    Attributes NestAttr = Attribute::None;
1215
1216    // Look for a parameter marked with the 'nest' attribute.
1217    for (FunctionType::param_iterator I = NestFTy->param_begin(),
1218         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1219      if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1220        // Record the parameter type and any other attributes.
1221        NestTy = *I;
1222        NestAttr = NestAttrs.getParamAttributes(NestIdx);
1223        break;
1224      }
1225
1226    if (NestTy) {
1227      Instruction *Caller = CS.getInstruction();
1228      std::vector<Value*> NewArgs;
1229      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1230
1231      SmallVector<AttributeWithIndex, 8> NewAttrs;
1232      NewAttrs.reserve(Attrs.getNumSlots() + 1);
1233
1234      // Insert the nest argument into the call argument list, which may
1235      // mean appending it.  Likewise for attributes.
1236
1237      // Add any result attributes.
1238      if (Attributes Attr = Attrs.getRetAttributes())
1239        NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1240
1241      {
1242        unsigned Idx = 1;
1243        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1244        do {
1245          if (Idx == NestIdx) {
1246            // Add the chain argument and attributes.
1247            Value *NestVal = Tramp->getOperand(3);
1248            if (NestVal->getType() != NestTy)
1249              NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
1250            NewArgs.push_back(NestVal);
1251            NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1252          }
1253
1254          if (I == E)
1255            break;
1256
1257          // Add the original argument and attributes.
1258          NewArgs.push_back(*I);
1259          if (Attributes Attr = Attrs.getParamAttributes(Idx))
1260            NewAttrs.push_back
1261              (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1262
1263          ++Idx, ++I;
1264        } while (1);
1265      }
1266
1267      // Add any function attributes.
1268      if (Attributes Attr = Attrs.getFnAttributes())
1269        NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1270
1271      // The trampoline may have been bitcast to a bogus type (FTy).
1272      // Handle this by synthesizing a new function type, equal to FTy
1273      // with the chain parameter inserted.
1274
1275      std::vector<const Type*> NewTypes;
1276      NewTypes.reserve(FTy->getNumParams()+1);
1277
1278      // Insert the chain's type into the list of parameter types, which may
1279      // mean appending it.
1280      {
1281        unsigned Idx = 1;
1282        FunctionType::param_iterator I = FTy->param_begin(),
1283          E = FTy->param_end();
1284
1285        do {
1286          if (Idx == NestIdx)
1287            // Add the chain's type.
1288            NewTypes.push_back(NestTy);
1289
1290          if (I == E)
1291            break;
1292
1293          // Add the original type.
1294          NewTypes.push_back(*I);
1295
1296          ++Idx, ++I;
1297        } while (1);
1298      }
1299
1300      // Replace the trampoline call with a direct call.  Let the generic
1301      // code sort out any function type mismatches.
1302      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1303                                                FTy->isVarArg());
1304      Constant *NewCallee =
1305        NestF->getType() == PointerType::getUnqual(NewFTy) ?
1306        NestF : ConstantExpr::getBitCast(NestF,
1307                                         PointerType::getUnqual(NewFTy));
1308      const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
1309                                                   NewAttrs.end());
1310
1311      Instruction *NewCaller;
1312      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1313        NewCaller = InvokeInst::Create(NewCallee,
1314                                       II->getNormalDest(), II->getUnwindDest(),
1315                                       NewArgs.begin(), NewArgs.end(),
1316                                       Caller->getName(), Caller);
1317        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1318        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1319      } else {
1320        NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
1321                                     Caller->getName(), Caller);
1322        if (cast<CallInst>(Caller)->isTailCall())
1323          cast<CallInst>(NewCaller)->setTailCall();
1324        cast<CallInst>(NewCaller)->
1325          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1326        cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1327      }
1328      if (!Caller->getType()->isVoidTy())
1329        Caller->replaceAllUsesWith(NewCaller);
1330      Caller->eraseFromParent();
1331      Worklist.Remove(Caller);
1332      return 0;
1333    }
1334  }
1335
1336  // Replace the trampoline call with a direct call.  Since there is no 'nest'
1337  // parameter, there is no need to adjust the argument list.  Let the generic
1338  // code sort out any function type mismatches.
1339  Constant *NewCallee =
1340    NestF->getType() == PTy ? NestF :
1341                              ConstantExpr::getBitCast(NestF, PTy);
1342  CS.setCalledFunction(NewCallee);
1343  return CS.getInstruction();
1344}
1345
1346