InstCombineCalls.cpp revision ae47be1ea023e4b1e6bbbdc4687333eea54c84c8
1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Support/CallSite.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19#include "llvm/Transforms/Utils/BuildLibCalls.h"
20#include "llvm/Transforms/Utils/Local.h"
21using namespace llvm;
22
23/// getPromotedType - Return the specified type promoted as it would be to pass
24/// though a va_arg area.
25static const Type *getPromotedType(const Type *Ty) {
26  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
27    if (ITy->getBitWidth() < 32)
28      return Type::getInt32Ty(Ty->getContext());
29  }
30  return Ty;
31}
32
33
34Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
35  unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), TD);
36  unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), TD);
37  unsigned MinAlign = std::min(DstAlign, SrcAlign);
38  unsigned CopyAlign = MI->getAlignment();
39
40  if (CopyAlign < MinAlign) {
41    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
42                                             MinAlign, false));
43    return MI;
44  }
45
46  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
47  // load/store.
48  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
49  if (MemOpLength == 0) return 0;
50
51  // Source and destination pointer types are always "i8*" for intrinsic.  See
52  // if the size is something we can handle with a single primitive load/store.
53  // A single load+store correctly handles overlapping memory in the memmove
54  // case.
55  unsigned Size = MemOpLength->getZExtValue();
56  if (Size == 0) return MI;  // Delete this mem transfer.
57
58  if (Size > 8 || (Size&(Size-1)))
59    return 0;  // If not 1/2/4/8 bytes, exit.
60
61  // Use an integer load+store unless we can find something better.
62  unsigned SrcAddrSp =
63    cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
64  unsigned DstAddrSp =
65    cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
66
67  const IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
68  Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
69  Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
70
71  // Memcpy forces the use of i8* for the source and destination.  That means
72  // that if you're using memcpy to move one double around, you'll get a cast
73  // from double* to i8*.  We'd much rather use a double load+store rather than
74  // an i64 load+store, here because this improves the odds that the source or
75  // dest address will be promotable.  See if we can find a better type than the
76  // integer datatype.
77  Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
78  if (StrippedDest != MI->getArgOperand(0)) {
79    const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
80                                    ->getElementType();
81    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
82      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
83      // down through these levels if so.
84      while (!SrcETy->isSingleValueType()) {
85        if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
86          if (STy->getNumElements() == 1)
87            SrcETy = STy->getElementType(0);
88          else
89            break;
90        } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
91          if (ATy->getNumElements() == 1)
92            SrcETy = ATy->getElementType();
93          else
94            break;
95        } else
96          break;
97      }
98
99      if (SrcETy->isSingleValueType()) {
100        NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
101        NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
102      }
103    }
104  }
105
106
107  // If the memcpy/memmove provides better alignment info than we can
108  // infer, use it.
109  SrcAlign = std::max(SrcAlign, CopyAlign);
110  DstAlign = std::max(DstAlign, CopyAlign);
111
112  Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
113  Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
114  Instruction *L = new LoadInst(Src, "tmp", MI->isVolatile(), SrcAlign);
115  InsertNewInstBefore(L, *MI);
116  InsertNewInstBefore(new StoreInst(L, Dest, MI->isVolatile(), DstAlign),
117                      *MI);
118
119  // Set the size of the copy to 0, it will be deleted on the next iteration.
120  MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
121  return MI;
122}
123
124Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
125  unsigned Alignment = getKnownAlignment(MI->getDest(), TD);
126  if (MI->getAlignment() < Alignment) {
127    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
128                                             Alignment, false));
129    return MI;
130  }
131
132  // Extract the length and alignment and fill if they are constant.
133  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
134  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
135  if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
136    return 0;
137  uint64_t Len = LenC->getZExtValue();
138  Alignment = MI->getAlignment();
139
140  // If the length is zero, this is a no-op
141  if (Len == 0) return MI; // memset(d,c,0,a) -> noop
142
143  // memset(s,c,n) -> store s, c (for n=1,2,4,8)
144  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
145    const Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
146
147    Value *Dest = MI->getDest();
148    unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
149    Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
150    Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
151
152    // Alignment 0 is identity for alignment 1 for memset, but not store.
153    if (Alignment == 0) Alignment = 1;
154
155    // Extract the fill value and store.
156    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
157    InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
158                                      Dest, false, Alignment), *MI);
159
160    // Set the size of the copy to 0, it will be deleted on the next iteration.
161    MI->setLength(Constant::getNullValue(LenC->getType()));
162    return MI;
163  }
164
165  return 0;
166}
167
168/// visitCallInst - CallInst simplification.  This mostly only handles folding
169/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
170/// the heavy lifting.
171///
172Instruction *InstCombiner::visitCallInst(CallInst &CI) {
173  if (isFreeCall(&CI))
174    return visitFree(CI);
175  if (isMalloc(&CI))
176    return visitMalloc(CI);
177
178  // If the caller function is nounwind, mark the call as nounwind, even if the
179  // callee isn't.
180  if (CI.getParent()->getParent()->doesNotThrow() &&
181      !CI.doesNotThrow()) {
182    CI.setDoesNotThrow();
183    return &CI;
184  }
185
186  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
187  if (!II) return visitCallSite(&CI);
188
189  // Intrinsics cannot occur in an invoke, so handle them here instead of in
190  // visitCallSite.
191  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
192    bool Changed = false;
193
194    // memmove/cpy/set of zero bytes is a noop.
195    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
196      if (NumBytes->isNullValue())
197        return EraseInstFromFunction(CI);
198
199      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
200        if (CI->getZExtValue() == 1) {
201          // Replace the instruction with just byte operations.  We would
202          // transform other cases to loads/stores, but we don't know if
203          // alignment is sufficient.
204        }
205    }
206
207    // No other transformations apply to volatile transfers.
208    if (MI->isVolatile())
209      return 0;
210
211    // If we have a memmove and the source operation is a constant global,
212    // then the source and dest pointers can't alias, so we can change this
213    // into a call to memcpy.
214    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
215      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
216        if (GVSrc->isConstant()) {
217          Module *M = CI.getParent()->getParent()->getParent();
218          Intrinsic::ID MemCpyID = Intrinsic::memcpy;
219          const Type *Tys[3] = { CI.getArgOperand(0)->getType(),
220                                 CI.getArgOperand(1)->getType(),
221                                 CI.getArgOperand(2)->getType() };
222          CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys, 3));
223          Changed = true;
224        }
225    }
226
227    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
228      // memmove(x,x,size) -> noop.
229      if (MTI->getSource() == MTI->getDest())
230        return EraseInstFromFunction(CI);
231    }
232
233    // If we can determine a pointer alignment that is bigger than currently
234    // set, update the alignment.
235    if (isa<MemTransferInst>(MI)) {
236      if (Instruction *I = SimplifyMemTransfer(MI))
237        return I;
238    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
239      if (Instruction *I = SimplifyMemSet(MSI))
240        return I;
241    }
242
243    if (Changed) return II;
244  }
245
246  switch (II->getIntrinsicID()) {
247  default: break;
248  case Intrinsic::objectsize: {
249    // We need target data for just about everything so depend on it.
250    if (!TD) break;
251
252    const Type *ReturnTy = CI.getType();
253    bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
254
255    // Get to the real allocated thing and offset as fast as possible.
256    Value *Op1 = II->getArgOperand(0)->stripPointerCasts();
257
258    // If we've stripped down to a single global variable that we
259    // can know the size of then just return that.
260    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
261      if (GV->hasDefinitiveInitializer()) {
262        Constant *C = GV->getInitializer();
263        uint64_t GlobalSize = TD->getTypeAllocSize(C->getType());
264        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, GlobalSize));
265      } else {
266        // Can't determine size of the GV.
267        Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
268        return ReplaceInstUsesWith(CI, RetVal);
269      }
270    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
271      // Get alloca size.
272      if (AI->getAllocatedType()->isSized()) {
273        uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
274        if (AI->isArrayAllocation()) {
275          const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
276          if (!C) break;
277          AllocaSize *= C->getZExtValue();
278        }
279        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, AllocaSize));
280      }
281    } else if (CallInst *MI = extractMallocCall(Op1)) {
282      const Type* MallocType = getMallocAllocatedType(MI);
283      // Get alloca size.
284      if (MallocType && MallocType->isSized()) {
285        if (Value *NElems = getMallocArraySize(MI, TD, true)) {
286          if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
287        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy,
288               (NElements->getZExtValue() * TD->getTypeAllocSize(MallocType))));
289        }
290      }
291    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op1)) {
292      // Only handle constant GEPs here.
293      if (CE->getOpcode() != Instruction::GetElementPtr) break;
294      GEPOperator *GEP = cast<GEPOperator>(CE);
295
296      // Make sure we're not a constant offset from an external
297      // global.
298      Value *Operand = GEP->getPointerOperand();
299      Operand = Operand->stripPointerCasts();
300      if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Operand))
301        if (!GV->hasDefinitiveInitializer()) break;
302
303      // Get what we're pointing to and its size.
304      const PointerType *BaseType =
305        cast<PointerType>(Operand->getType());
306      uint64_t Size = TD->getTypeAllocSize(BaseType->getElementType());
307
308      // Get the current byte offset into the thing. Use the original
309      // operand in case we're looking through a bitcast.
310      SmallVector<Value*, 8> Ops(CE->op_begin()+1, CE->op_end());
311      const PointerType *OffsetType =
312        cast<PointerType>(GEP->getPointerOperand()->getType());
313      uint64_t Offset = TD->getIndexedOffset(OffsetType, &Ops[0], Ops.size());
314
315      if (Size < Offset) {
316        // Out of bound reference? Negative index normalized to large
317        // index? Just return "I don't know".
318        Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
319        return ReplaceInstUsesWith(CI, RetVal);
320      }
321
322      Constant *RetVal = ConstantInt::get(ReturnTy, Size-Offset);
323      return ReplaceInstUsesWith(CI, RetVal);
324    }
325
326    // Do not return "I don't know" here. Later optimization passes could
327    // make it possible to evaluate objectsize to a constant.
328    break;
329  }
330  case Intrinsic::bswap:
331    // bswap(bswap(x)) -> x
332    if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
333      if (Operand->getIntrinsicID() == Intrinsic::bswap)
334        return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
335
336    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
337    if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
338      if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
339        if (Operand->getIntrinsicID() == Intrinsic::bswap) {
340          unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
341                       TI->getType()->getPrimitiveSizeInBits();
342          Value *CV = ConstantInt::get(Operand->getType(), C);
343          Value *V = Builder->CreateLShr(Operand->getArgOperand(0), CV);
344          return new TruncInst(V, TI->getType());
345        }
346    }
347
348    break;
349  case Intrinsic::powi:
350    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
351      // powi(x, 0) -> 1.0
352      if (Power->isZero())
353        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
354      // powi(x, 1) -> x
355      if (Power->isOne())
356        return ReplaceInstUsesWith(CI, II->getArgOperand(0));
357      // powi(x, -1) -> 1/x
358      if (Power->isAllOnesValue())
359        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
360                                          II->getArgOperand(0));
361    }
362    break;
363  case Intrinsic::cttz: {
364    // If all bits below the first known one are known zero,
365    // this value is constant.
366    const IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
367    uint32_t BitWidth = IT->getBitWidth();
368    APInt KnownZero(BitWidth, 0);
369    APInt KnownOne(BitWidth, 0);
370    ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth),
371                      KnownZero, KnownOne);
372    unsigned TrailingZeros = KnownOne.countTrailingZeros();
373    APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
374    if ((Mask & KnownZero) == Mask)
375      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
376                                 APInt(BitWidth, TrailingZeros)));
377
378    }
379    break;
380  case Intrinsic::ctlz: {
381    // If all bits above the first known one are known zero,
382    // this value is constant.
383    const IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
384    uint32_t BitWidth = IT->getBitWidth();
385    APInt KnownZero(BitWidth, 0);
386    APInt KnownOne(BitWidth, 0);
387    ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth),
388                      KnownZero, KnownOne);
389    unsigned LeadingZeros = KnownOne.countLeadingZeros();
390    APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
391    if ((Mask & KnownZero) == Mask)
392      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
393                                 APInt(BitWidth, LeadingZeros)));
394
395    }
396    break;
397  case Intrinsic::uadd_with_overflow: {
398    Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
399    const IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
400    uint32_t BitWidth = IT->getBitWidth();
401    APInt Mask = APInt::getSignBit(BitWidth);
402    APInt LHSKnownZero(BitWidth, 0);
403    APInt LHSKnownOne(BitWidth, 0);
404    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
405    bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
406    bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
407
408    if (LHSKnownNegative || LHSKnownPositive) {
409      APInt RHSKnownZero(BitWidth, 0);
410      APInt RHSKnownOne(BitWidth, 0);
411      ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
412      bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
413      bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
414      if (LHSKnownNegative && RHSKnownNegative) {
415        // The sign bit is set in both cases: this MUST overflow.
416        // Create a simple add instruction, and insert it into the struct.
417        Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
418        Worklist.Add(Add);
419        Constant *V[] = {
420          UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
421        };
422        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
423        return InsertValueInst::Create(Struct, Add, 0);
424      }
425
426      if (LHSKnownPositive && RHSKnownPositive) {
427        // The sign bit is clear in both cases: this CANNOT overflow.
428        // Create a simple add instruction, and insert it into the struct.
429        Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
430        Worklist.Add(Add);
431        Constant *V[] = {
432          UndefValue::get(LHS->getType()),
433          ConstantInt::getFalse(II->getContext())
434        };
435        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
436        return InsertValueInst::Create(Struct, Add, 0);
437      }
438    }
439  }
440  // FALL THROUGH uadd into sadd
441  case Intrinsic::sadd_with_overflow:
442    // Canonicalize constants into the RHS.
443    if (isa<Constant>(II->getArgOperand(0)) &&
444        !isa<Constant>(II->getArgOperand(1))) {
445      Value *LHS = II->getArgOperand(0);
446      II->setArgOperand(0, II->getArgOperand(1));
447      II->setArgOperand(1, LHS);
448      return II;
449    }
450
451    // X + undef -> undef
452    if (isa<UndefValue>(II->getArgOperand(1)))
453      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
454
455    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
456      // X + 0 -> {X, false}
457      if (RHS->isZero()) {
458        Constant *V[] = {
459          UndefValue::get(II->getArgOperand(0)->getType()),
460          ConstantInt::getFalse(II->getContext())
461        };
462        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
463        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
464      }
465    }
466    break;
467  case Intrinsic::usub_with_overflow:
468  case Intrinsic::ssub_with_overflow:
469    // undef - X -> undef
470    // X - undef -> undef
471    if (isa<UndefValue>(II->getArgOperand(0)) ||
472        isa<UndefValue>(II->getArgOperand(1)))
473      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
474
475    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
476      // X - 0 -> {X, false}
477      if (RHS->isZero()) {
478        Constant *V[] = {
479          UndefValue::get(II->getArgOperand(0)->getType()),
480          ConstantInt::getFalse(II->getContext())
481        };
482        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
483        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
484      }
485    }
486    break;
487  case Intrinsic::umul_with_overflow:
488  case Intrinsic::smul_with_overflow:
489    // Canonicalize constants into the RHS.
490    if (isa<Constant>(II->getArgOperand(0)) &&
491        !isa<Constant>(II->getArgOperand(1))) {
492      Value *LHS = II->getArgOperand(0);
493      II->setArgOperand(0, II->getArgOperand(1));
494      II->setArgOperand(1, LHS);
495      return II;
496    }
497
498    // X * undef -> undef
499    if (isa<UndefValue>(II->getArgOperand(1)))
500      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
501
502    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
503      // X*0 -> {0, false}
504      if (RHSI->isZero())
505        return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
506
507      // X * 1 -> {X, false}
508      if (RHSI->equalsInt(1)) {
509        Constant *V[] = {
510          UndefValue::get(II->getArgOperand(0)->getType()),
511          ConstantInt::getFalse(II->getContext())
512        };
513        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
514        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
515      }
516    }
517    break;
518  case Intrinsic::ppc_altivec_lvx:
519  case Intrinsic::ppc_altivec_lvxl:
520  case Intrinsic::x86_sse_loadu_ps:
521  case Intrinsic::x86_sse2_loadu_pd:
522  case Intrinsic::x86_sse2_loadu_dq:
523    // Turn PPC lvx     -> load if the pointer is known aligned.
524    // Turn X86 loadups -> load if the pointer is known aligned.
525    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
526      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
527                                         PointerType::getUnqual(II->getType()));
528      return new LoadInst(Ptr);
529    }
530    break;
531  case Intrinsic::ppc_altivec_stvx:
532  case Intrinsic::ppc_altivec_stvxl:
533    // Turn stvx -> store if the pointer is known aligned.
534    if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) {
535      const Type *OpPtrTy =
536        PointerType::getUnqual(II->getArgOperand(0)->getType());
537      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
538      return new StoreInst(II->getArgOperand(0), Ptr);
539    }
540    break;
541  case Intrinsic::x86_sse_storeu_ps:
542  case Intrinsic::x86_sse2_storeu_pd:
543  case Intrinsic::x86_sse2_storeu_dq:
544    // Turn X86 storeu -> store if the pointer is known aligned.
545    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
546      const Type *OpPtrTy =
547        PointerType::getUnqual(II->getArgOperand(1)->getType());
548      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
549      return new StoreInst(II->getArgOperand(1), Ptr);
550    }
551    break;
552
553  case Intrinsic::x86_sse_cvttss2si: {
554    // These intrinsics only demands the 0th element of its input vector.  If
555    // we can simplify the input based on that, do so now.
556    unsigned VWidth =
557      cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
558    APInt DemandedElts(VWidth, 1);
559    APInt UndefElts(VWidth, 0);
560    if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
561                                              DemandedElts, UndefElts)) {
562      II->setArgOperand(0, V);
563      return II;
564    }
565    break;
566  }
567
568  case Intrinsic::ppc_altivec_vperm:
569    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
570    if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getArgOperand(2))) {
571      assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
572
573      // Check that all of the elements are integer constants or undefs.
574      bool AllEltsOk = true;
575      for (unsigned i = 0; i != 16; ++i) {
576        if (!isa<ConstantInt>(Mask->getOperand(i)) &&
577            !isa<UndefValue>(Mask->getOperand(i))) {
578          AllEltsOk = false;
579          break;
580        }
581      }
582
583      if (AllEltsOk) {
584        // Cast the input vectors to byte vectors.
585        Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
586                                            Mask->getType());
587        Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
588                                            Mask->getType());
589        Value *Result = UndefValue::get(Op0->getType());
590
591        // Only extract each element once.
592        Value *ExtractedElts[32];
593        memset(ExtractedElts, 0, sizeof(ExtractedElts));
594
595        for (unsigned i = 0; i != 16; ++i) {
596          if (isa<UndefValue>(Mask->getOperand(i)))
597            continue;
598          unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
599          Idx &= 31;  // Match the hardware behavior.
600
601          if (ExtractedElts[Idx] == 0) {
602            ExtractedElts[Idx] =
603              Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
604                  ConstantInt::get(Type::getInt32Ty(II->getContext()),
605                                   Idx&15, false), "tmp");
606          }
607
608          // Insert this value into the result vector.
609          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
610                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
611                                          i, false), "tmp");
612        }
613        return CastInst::Create(Instruction::BitCast, Result, CI.getType());
614      }
615    }
616    break;
617
618  case Intrinsic::arm_neon_vld1:
619  case Intrinsic::arm_neon_vld2:
620  case Intrinsic::arm_neon_vld3:
621  case Intrinsic::arm_neon_vld4:
622  case Intrinsic::arm_neon_vld2lane:
623  case Intrinsic::arm_neon_vld3lane:
624  case Intrinsic::arm_neon_vld4lane:
625  case Intrinsic::arm_neon_vst1:
626  case Intrinsic::arm_neon_vst2:
627  case Intrinsic::arm_neon_vst3:
628  case Intrinsic::arm_neon_vst4:
629  case Intrinsic::arm_neon_vst2lane:
630  case Intrinsic::arm_neon_vst3lane:
631  case Intrinsic::arm_neon_vst4lane: {
632    unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), TD);
633    unsigned AlignArg = II->getNumArgOperands() - 1;
634    ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
635    if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
636      II->setArgOperand(AlignArg,
637                        ConstantInt::get(Type::getInt32Ty(II->getContext()),
638                                         MemAlign, false));
639      return II;
640    }
641    break;
642  }
643
644  case Intrinsic::stackrestore: {
645    // If the save is right next to the restore, remove the restore.  This can
646    // happen when variable allocas are DCE'd.
647    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
648      if (SS->getIntrinsicID() == Intrinsic::stacksave) {
649        BasicBlock::iterator BI = SS;
650        if (&*++BI == II)
651          return EraseInstFromFunction(CI);
652      }
653    }
654
655    // Scan down this block to see if there is another stack restore in the
656    // same block without an intervening call/alloca.
657    BasicBlock::iterator BI = II;
658    TerminatorInst *TI = II->getParent()->getTerminator();
659    bool CannotRemove = false;
660    for (++BI; &*BI != TI; ++BI) {
661      if (isa<AllocaInst>(BI) || isMalloc(BI)) {
662        CannotRemove = true;
663        break;
664      }
665      if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
666        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
667          // If there is a stackrestore below this one, remove this one.
668          if (II->getIntrinsicID() == Intrinsic::stackrestore)
669            return EraseInstFromFunction(CI);
670          // Otherwise, ignore the intrinsic.
671        } else {
672          // If we found a non-intrinsic call, we can't remove the stack
673          // restore.
674          CannotRemove = true;
675          break;
676        }
677      }
678    }
679
680    // If the stack restore is in a return/unwind block and if there are no
681    // allocas or calls between the restore and the return, nuke the restore.
682    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
683      return EraseInstFromFunction(CI);
684    break;
685  }
686  }
687
688  return visitCallSite(II);
689}
690
691// InvokeInst simplification
692//
693Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
694  return visitCallSite(&II);
695}
696
697/// isSafeToEliminateVarargsCast - If this cast does not affect the value
698/// passed through the varargs area, we can eliminate the use of the cast.
699static bool isSafeToEliminateVarargsCast(const CallSite CS,
700                                         const CastInst * const CI,
701                                         const TargetData * const TD,
702                                         const int ix) {
703  if (!CI->isLosslessCast())
704    return false;
705
706  // The size of ByVal arguments is derived from the type, so we
707  // can't change to a type with a different size.  If the size were
708  // passed explicitly we could avoid this check.
709  if (!CS.paramHasAttr(ix, Attribute::ByVal))
710    return true;
711
712  const Type* SrcTy =
713            cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
714  const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
715  if (!SrcTy->isSized() || !DstTy->isSized())
716    return false;
717  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
718    return false;
719  return true;
720}
721
722namespace {
723class InstCombineFortifiedLibCalls : public SimplifyFortifiedLibCalls {
724  InstCombiner *IC;
725protected:
726  void replaceCall(Value *With) {
727    NewInstruction = IC->ReplaceInstUsesWith(*CI, With);
728  }
729  bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
730    if (ConstantInt *SizeCI =
731                           dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
732      if (SizeCI->isAllOnesValue())
733        return true;
734      if (isString)
735        return SizeCI->getZExtValue() >=
736               GetStringLength(CI->getArgOperand(SizeArgOp));
737      if (ConstantInt *Arg = dyn_cast<ConstantInt>(
738                                                  CI->getArgOperand(SizeArgOp)))
739        return SizeCI->getZExtValue() >= Arg->getZExtValue();
740    }
741    return false;
742  }
743public:
744  InstCombineFortifiedLibCalls(InstCombiner *IC) : IC(IC), NewInstruction(0) { }
745  Instruction *NewInstruction;
746};
747} // end anonymous namespace
748
749// Try to fold some different type of calls here.
750// Currently we're only working with the checking functions, memcpy_chk,
751// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
752// strcat_chk and strncat_chk.
753Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
754  if (CI->getCalledFunction() == 0) return 0;
755
756  InstCombineFortifiedLibCalls Simplifier(this);
757  Simplifier.fold(CI, TD);
758  return Simplifier.NewInstruction;
759}
760
761// visitCallSite - Improvements for call and invoke instructions.
762//
763Instruction *InstCombiner::visitCallSite(CallSite CS) {
764  bool Changed = false;
765
766  // If the callee is a pointer to a function, attempt to move any casts to the
767  // arguments of the call/invoke.
768  Value *Callee = CS.getCalledValue();
769  if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
770    return 0;
771
772  if (Function *CalleeF = dyn_cast<Function>(Callee))
773    // If the call and callee calling conventions don't match, this call must
774    // be unreachable, as the call is undefined.
775    if (CalleeF->getCallingConv() != CS.getCallingConv() &&
776        // Only do this for calls to a function with a body.  A prototype may
777        // not actually end up matching the implementation's calling conv for a
778        // variety of reasons (e.g. it may be written in assembly).
779        !CalleeF->isDeclaration()) {
780      Instruction *OldCall = CS.getInstruction();
781      new StoreInst(ConstantInt::getTrue(Callee->getContext()),
782                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
783                                  OldCall);
784      // If OldCall dues not return void then replaceAllUsesWith undef.
785      // This allows ValueHandlers and custom metadata to adjust itself.
786      if (!OldCall->getType()->isVoidTy())
787        OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
788      if (isa<CallInst>(OldCall))
789        return EraseInstFromFunction(*OldCall);
790
791      // We cannot remove an invoke, because it would change the CFG, just
792      // change the callee to a null pointer.
793      cast<InvokeInst>(OldCall)->setCalledFunction(
794                                    Constant::getNullValue(CalleeF->getType()));
795      return 0;
796    }
797
798  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
799    // This instruction is not reachable, just remove it.  We insert a store to
800    // undef so that we know that this code is not reachable, despite the fact
801    // that we can't modify the CFG here.
802    new StoreInst(ConstantInt::getTrue(Callee->getContext()),
803               UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
804                  CS.getInstruction());
805
806    // If CS does not return void then replaceAllUsesWith undef.
807    // This allows ValueHandlers and custom metadata to adjust itself.
808    if (!CS.getInstruction()->getType()->isVoidTy())
809      CS.getInstruction()->
810        replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
811
812    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
813      // Don't break the CFG, insert a dummy cond branch.
814      BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
815                         ConstantInt::getTrue(Callee->getContext()), II);
816    }
817    return EraseInstFromFunction(*CS.getInstruction());
818  }
819
820  if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
821    if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
822      if (In->getIntrinsicID() == Intrinsic::init_trampoline)
823        return transformCallThroughTrampoline(CS);
824
825  const PointerType *PTy = cast<PointerType>(Callee->getType());
826  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
827  if (FTy->isVarArg()) {
828    int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
829    // See if we can optimize any arguments passed through the varargs area of
830    // the call.
831    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
832           E = CS.arg_end(); I != E; ++I, ++ix) {
833      CastInst *CI = dyn_cast<CastInst>(*I);
834      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
835        *I = CI->getOperand(0);
836        Changed = true;
837      }
838    }
839  }
840
841  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
842    // Inline asm calls cannot throw - mark them 'nounwind'.
843    CS.setDoesNotThrow();
844    Changed = true;
845  }
846
847  // Try to optimize the call if possible, we require TargetData for most of
848  // this.  None of these calls are seen as possibly dead so go ahead and
849  // delete the instruction now.
850  if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
851    Instruction *I = tryOptimizeCall(CI, TD);
852    // If we changed something return the result, etc. Otherwise let
853    // the fallthrough check.
854    if (I) return EraseInstFromFunction(*I);
855  }
856
857  return Changed ? CS.getInstruction() : 0;
858}
859
860// transformConstExprCastCall - If the callee is a constexpr cast of a function,
861// attempt to move the cast to the arguments of the call/invoke.
862//
863bool InstCombiner::transformConstExprCastCall(CallSite CS) {
864  Function *Callee =
865    dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
866  if (Callee == 0)
867    return false;
868  Instruction *Caller = CS.getInstruction();
869  const AttrListPtr &CallerPAL = CS.getAttributes();
870
871  // Okay, this is a cast from a function to a different type.  Unless doing so
872  // would cause a type conversion of one of our arguments, change this call to
873  // be a direct call with arguments casted to the appropriate types.
874  //
875  const FunctionType *FT = Callee->getFunctionType();
876  const Type *OldRetTy = Caller->getType();
877  const Type *NewRetTy = FT->getReturnType();
878
879  if (NewRetTy->isStructTy())
880    return false; // TODO: Handle multiple return values.
881
882  // Check to see if we are changing the return type...
883  if (OldRetTy != NewRetTy) {
884    if (Callee->isDeclaration() &&
885        // Conversion is ok if changing from one pointer type to another or from
886        // a pointer to an integer of the same size.
887        !((OldRetTy->isPointerTy() || !TD ||
888           OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
889          (NewRetTy->isPointerTy() || !TD ||
890           NewRetTy == TD->getIntPtrType(Caller->getContext()))))
891      return false;   // Cannot transform this return value.
892
893    if (!Caller->use_empty() &&
894        // void -> non-void is handled specially
895        !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
896      return false;   // Cannot transform this return value.
897
898    if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
899      Attributes RAttrs = CallerPAL.getRetAttributes();
900      if (RAttrs & Attribute::typeIncompatible(NewRetTy))
901        return false;   // Attribute not compatible with transformed value.
902    }
903
904    // If the callsite is an invoke instruction, and the return value is used by
905    // a PHI node in a successor, we cannot change the return type of the call
906    // because there is no place to put the cast instruction (without breaking
907    // the critical edge).  Bail out in this case.
908    if (!Caller->use_empty())
909      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
910        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
911             UI != E; ++UI)
912          if (PHINode *PN = dyn_cast<PHINode>(*UI))
913            if (PN->getParent() == II->getNormalDest() ||
914                PN->getParent() == II->getUnwindDest())
915              return false;
916  }
917
918  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
919  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
920
921  CallSite::arg_iterator AI = CS.arg_begin();
922  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
923    const Type *ParamTy = FT->getParamType(i);
924    const Type *ActTy = (*AI)->getType();
925
926    if (!CastInst::isCastable(ActTy, ParamTy))
927      return false;   // Cannot transform this parameter value.
928
929    unsigned Attrs = CallerPAL.getParamAttributes(i + 1);
930    if (Attrs & Attribute::typeIncompatible(ParamTy))
931      return false;   // Attribute not compatible with transformed value.
932
933    // If the parameter is passed as a byval argument, then we have to have a
934    // sized type and the sized type has to have the same size as the old type.
935    if (ParamTy != ActTy && (Attrs & Attribute::ByVal)) {
936      const PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
937      if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
938        return false;
939
940      const Type *CurElTy = cast<PointerType>(ActTy)->getElementType();
941      if (TD->getTypeAllocSize(CurElTy) !=
942          TD->getTypeAllocSize(ParamPTy->getElementType()))
943        return false;
944    }
945
946    // Converting from one pointer type to another or between a pointer and an
947    // integer of the same size is safe even if we do not have a body.
948    bool isConvertible = ActTy == ParamTy ||
949      (TD && ((ParamTy->isPointerTy() ||
950      ParamTy == TD->getIntPtrType(Caller->getContext())) &&
951              (ActTy->isPointerTy() ||
952              ActTy == TD->getIntPtrType(Caller->getContext()))));
953    if (Callee->isDeclaration() && !isConvertible) return false;
954  }
955
956  if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
957      Callee->isDeclaration())
958    return false;   // Do not delete arguments unless we have a function body.
959
960  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
961      !CallerPAL.isEmpty())
962    // In this case we have more arguments than the new function type, but we
963    // won't be dropping them.  Check that these extra arguments have attributes
964    // that are compatible with being a vararg call argument.
965    for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
966      if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
967        break;
968      Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
969      if (PAttrs & Attribute::VarArgsIncompatible)
970        return false;
971    }
972
973  // Okay, we decided that this is a safe thing to do: go ahead and start
974  // inserting cast instructions as necessary...
975  std::vector<Value*> Args;
976  Args.reserve(NumActualArgs);
977  SmallVector<AttributeWithIndex, 8> attrVec;
978  attrVec.reserve(NumCommonArgs);
979
980  // Get any return attributes.
981  Attributes RAttrs = CallerPAL.getRetAttributes();
982
983  // If the return value is not being used, the type may not be compatible
984  // with the existing attributes.  Wipe out any problematic attributes.
985  RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
986
987  // Add the new return attributes.
988  if (RAttrs)
989    attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
990
991  AI = CS.arg_begin();
992  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
993    const Type *ParamTy = FT->getParamType(i);
994    if ((*AI)->getType() == ParamTy) {
995      Args.push_back(*AI);
996    } else {
997      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
998          false, ParamTy, false);
999      Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
1000    }
1001
1002    // Add any parameter attributes.
1003    if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1004      attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1005  }
1006
1007  // If the function takes more arguments than the call was taking, add them
1008  // now.
1009  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1010    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1011
1012  // If we are removing arguments to the function, emit an obnoxious warning.
1013  if (FT->getNumParams() < NumActualArgs) {
1014    if (!FT->isVarArg()) {
1015      errs() << "WARNING: While resolving call to function '"
1016             << Callee->getName() << "' arguments were dropped!\n";
1017    } else {
1018      // Add all of the arguments in their promoted form to the arg list.
1019      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1020        const Type *PTy = getPromotedType((*AI)->getType());
1021        if (PTy != (*AI)->getType()) {
1022          // Must promote to pass through va_arg area!
1023          Instruction::CastOps opcode =
1024            CastInst::getCastOpcode(*AI, false, PTy, false);
1025          Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
1026        } else {
1027          Args.push_back(*AI);
1028        }
1029
1030        // Add any parameter attributes.
1031        if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1032          attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1033      }
1034    }
1035  }
1036
1037  if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
1038    attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
1039
1040  if (NewRetTy->isVoidTy())
1041    Caller->setName("");   // Void type should not have a name.
1042
1043  const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
1044                                                     attrVec.end());
1045
1046  Instruction *NC;
1047  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1048    NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
1049                            Args.begin(), Args.end(),
1050                            Caller->getName(), Caller);
1051    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1052    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1053  } else {
1054    NC = CallInst::Create(Callee, Args.begin(), Args.end(),
1055                          Caller->getName(), Caller);
1056    CallInst *CI = cast<CallInst>(Caller);
1057    if (CI->isTailCall())
1058      cast<CallInst>(NC)->setTailCall();
1059    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1060    cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1061  }
1062
1063  // Insert a cast of the return type as necessary.
1064  Value *NV = NC;
1065  if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1066    if (!NV->getType()->isVoidTy()) {
1067      Instruction::CastOps opcode =
1068        CastInst::getCastOpcode(NC, false, OldRetTy, false);
1069      NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
1070
1071      // If this is an invoke instruction, we should insert it after the first
1072      // non-phi, instruction in the normal successor block.
1073      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1074        BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
1075        InsertNewInstBefore(NC, *I);
1076      } else {
1077        // Otherwise, it's a call, just insert cast right after the call.
1078        InsertNewInstBefore(NC, *Caller);
1079      }
1080      Worklist.AddUsersToWorkList(*Caller);
1081    } else {
1082      NV = UndefValue::get(Caller->getType());
1083    }
1084  }
1085
1086  if (!Caller->use_empty())
1087    Caller->replaceAllUsesWith(NV);
1088
1089  EraseInstFromFunction(*Caller);
1090  return true;
1091}
1092
1093// transformCallThroughTrampoline - Turn a call to a function created by the
1094// init_trampoline intrinsic into a direct call to the underlying function.
1095//
1096Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
1097  Value *Callee = CS.getCalledValue();
1098  const PointerType *PTy = cast<PointerType>(Callee->getType());
1099  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1100  const AttrListPtr &Attrs = CS.getAttributes();
1101
1102  // If the call already has the 'nest' attribute somewhere then give up -
1103  // otherwise 'nest' would occur twice after splicing in the chain.
1104  if (Attrs.hasAttrSomewhere(Attribute::Nest))
1105    return 0;
1106
1107  IntrinsicInst *Tramp =
1108    cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
1109
1110  Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
1111  const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1112  const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1113
1114  const AttrListPtr &NestAttrs = NestF->getAttributes();
1115  if (!NestAttrs.isEmpty()) {
1116    unsigned NestIdx = 1;
1117    const Type *NestTy = 0;
1118    Attributes NestAttr = Attribute::None;
1119
1120    // Look for a parameter marked with the 'nest' attribute.
1121    for (FunctionType::param_iterator I = NestFTy->param_begin(),
1122         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1123      if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1124        // Record the parameter type and any other attributes.
1125        NestTy = *I;
1126        NestAttr = NestAttrs.getParamAttributes(NestIdx);
1127        break;
1128      }
1129
1130    if (NestTy) {
1131      Instruction *Caller = CS.getInstruction();
1132      std::vector<Value*> NewArgs;
1133      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1134
1135      SmallVector<AttributeWithIndex, 8> NewAttrs;
1136      NewAttrs.reserve(Attrs.getNumSlots() + 1);
1137
1138      // Insert the nest argument into the call argument list, which may
1139      // mean appending it.  Likewise for attributes.
1140
1141      // Add any result attributes.
1142      if (Attributes Attr = Attrs.getRetAttributes())
1143        NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1144
1145      {
1146        unsigned Idx = 1;
1147        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1148        do {
1149          if (Idx == NestIdx) {
1150            // Add the chain argument and attributes.
1151            Value *NestVal = Tramp->getArgOperand(2);
1152            if (NestVal->getType() != NestTy)
1153              NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
1154            NewArgs.push_back(NestVal);
1155            NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1156          }
1157
1158          if (I == E)
1159            break;
1160
1161          // Add the original argument and attributes.
1162          NewArgs.push_back(*I);
1163          if (Attributes Attr = Attrs.getParamAttributes(Idx))
1164            NewAttrs.push_back
1165              (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1166
1167          ++Idx, ++I;
1168        } while (1);
1169      }
1170
1171      // Add any function attributes.
1172      if (Attributes Attr = Attrs.getFnAttributes())
1173        NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1174
1175      // The trampoline may have been bitcast to a bogus type (FTy).
1176      // Handle this by synthesizing a new function type, equal to FTy
1177      // with the chain parameter inserted.
1178
1179      std::vector<const Type*> NewTypes;
1180      NewTypes.reserve(FTy->getNumParams()+1);
1181
1182      // Insert the chain's type into the list of parameter types, which may
1183      // mean appending it.
1184      {
1185        unsigned Idx = 1;
1186        FunctionType::param_iterator I = FTy->param_begin(),
1187          E = FTy->param_end();
1188
1189        do {
1190          if (Idx == NestIdx)
1191            // Add the chain's type.
1192            NewTypes.push_back(NestTy);
1193
1194          if (I == E)
1195            break;
1196
1197          // Add the original type.
1198          NewTypes.push_back(*I);
1199
1200          ++Idx, ++I;
1201        } while (1);
1202      }
1203
1204      // Replace the trampoline call with a direct call.  Let the generic
1205      // code sort out any function type mismatches.
1206      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1207                                                FTy->isVarArg());
1208      Constant *NewCallee =
1209        NestF->getType() == PointerType::getUnqual(NewFTy) ?
1210        NestF : ConstantExpr::getBitCast(NestF,
1211                                         PointerType::getUnqual(NewFTy));
1212      const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
1213                                                   NewAttrs.end());
1214
1215      Instruction *NewCaller;
1216      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1217        NewCaller = InvokeInst::Create(NewCallee,
1218                                       II->getNormalDest(), II->getUnwindDest(),
1219                                       NewArgs.begin(), NewArgs.end(),
1220                                       Caller->getName(), Caller);
1221        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1222        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1223      } else {
1224        NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
1225                                     Caller->getName(), Caller);
1226        if (cast<CallInst>(Caller)->isTailCall())
1227          cast<CallInst>(NewCaller)->setTailCall();
1228        cast<CallInst>(NewCaller)->
1229          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1230        cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1231      }
1232      if (!Caller->getType()->isVoidTy())
1233        Caller->replaceAllUsesWith(NewCaller);
1234      Caller->eraseFromParent();
1235      Worklist.Remove(Caller);
1236      return 0;
1237    }
1238  }
1239
1240  // Replace the trampoline call with a direct call.  Since there is no 'nest'
1241  // parameter, there is no need to adjust the argument list.  Let the generic
1242  // code sort out any function type mismatches.
1243  Constant *NewCallee =
1244    NestF->getType() == PTy ? NestF :
1245                              ConstantExpr::getBitCast(NestF, PTy);
1246  CS.setCalledFunction(NewCallee);
1247  return CS.getInstruction();
1248}
1249
1250