InstCombineCalls.cpp revision bcda85c74304ffada586a9c58ce9bcff93b69a86
1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Support/CallSite.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19#include "llvm/Transforms/Utils/BuildLibCalls.h"
20using namespace llvm;
21
22/// getPromotedType - Return the specified type promoted as it would be to pass
23/// though a va_arg area.
24static const Type *getPromotedType(const Type *Ty) {
25  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
26    if (ITy->getBitWidth() < 32)
27      return Type::getInt32Ty(Ty->getContext());
28  }
29  return Ty;
30}
31
32/// EnforceKnownAlignment - If the specified pointer points to an object that
33/// we control, modify the object's alignment to PrefAlign. This isn't
34/// often possible though. If alignment is important, a more reliable approach
35/// is to simply align all global variables and allocation instructions to
36/// their preferred alignment from the beginning.
37///
38static unsigned EnforceKnownAlignment(Value *V,
39                                      unsigned Align, unsigned PrefAlign) {
40
41  User *U = dyn_cast<User>(V);
42  if (!U) return Align;
43
44  switch (Operator::getOpcode(U)) {
45  default: break;
46  case Instruction::BitCast:
47    return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
48  case Instruction::GetElementPtr: {
49    // If all indexes are zero, it is just the alignment of the base pointer.
50    bool AllZeroOperands = true;
51    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
52      if (!isa<Constant>(*i) ||
53          !cast<Constant>(*i)->isNullValue()) {
54        AllZeroOperands = false;
55        break;
56      }
57
58    if (AllZeroOperands) {
59      // Treat this like a bitcast.
60      return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
61    }
62    return Align;
63  }
64  case Instruction::Alloca: {
65    AllocaInst *AI = cast<AllocaInst>(V);
66    // If there is a requested alignment and if this is an alloca, round up.
67    if (AI->getAlignment() >= PrefAlign)
68      return AI->getAlignment();
69    AI->setAlignment(PrefAlign);
70    return PrefAlign;
71  }
72  }
73
74  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
75    // If there is a large requested alignment and we can, bump up the alignment
76    // of the global.
77    if (GV->isDeclaration()) return Align;
78
79    if (GV->getAlignment() >= PrefAlign)
80      return GV->getAlignment();
81    // We can only increase the alignment of the global if it has no alignment
82    // specified or if it is not assigned a section.  If it is assigned a
83    // section, the global could be densely packed with other objects in the
84    // section, increasing the alignment could cause padding issues.
85    if (!GV->hasSection() || GV->getAlignment() == 0)
86      GV->setAlignment(PrefAlign);
87    return GV->getAlignment();
88  }
89
90  return Align;
91}
92
93/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
94/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
95/// and it is more than the alignment of the ultimate object, see if we can
96/// increase the alignment of the ultimate object, making this check succeed.
97unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
98                                                  unsigned PrefAlign) {
99  unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
100                      sizeof(PrefAlign) * CHAR_BIT;
101  APInt Mask = APInt::getAllOnesValue(BitWidth);
102  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
103  ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
104  unsigned TrailZ = KnownZero.countTrailingOnes();
105  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
106
107  if (PrefAlign > Align)
108    Align = EnforceKnownAlignment(V, Align, PrefAlign);
109
110    // We don't need to make any adjustment.
111  return Align;
112}
113
114Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
115  unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getArgOperand(0));
116  unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getArgOperand(1));
117  unsigned MinAlign = std::min(DstAlign, SrcAlign);
118  unsigned CopyAlign = MI->getAlignment();
119
120  if (CopyAlign < MinAlign) {
121    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
122                                             MinAlign, false));
123    return MI;
124  }
125
126  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
127  // load/store.
128  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
129  if (MemOpLength == 0) return 0;
130
131  // Source and destination pointer types are always "i8*" for intrinsic.  See
132  // if the size is something we can handle with a single primitive load/store.
133  // A single load+store correctly handles overlapping memory in the memmove
134  // case.
135  unsigned Size = MemOpLength->getZExtValue();
136  if (Size == 0) return MI;  // Delete this mem transfer.
137
138  if (Size > 8 || (Size&(Size-1)))
139    return 0;  // If not 1/2/4/8 bytes, exit.
140
141  // Use an integer load+store unless we can find something better.
142  unsigned SrcAddrSp =
143    cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
144  unsigned DstAddrSp =
145    cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
146
147  const IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
148  Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
149  Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
150
151  // Memcpy forces the use of i8* for the source and destination.  That means
152  // that if you're using memcpy to move one double around, you'll get a cast
153  // from double* to i8*.  We'd much rather use a double load+store rather than
154  // an i64 load+store, here because this improves the odds that the source or
155  // dest address will be promotable.  See if we can find a better type than the
156  // integer datatype.
157  Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
158  if (StrippedDest != MI->getArgOperand(0)) {
159    const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
160                                    ->getElementType();
161    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
162      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
163      // down through these levels if so.
164      while (!SrcETy->isSingleValueType()) {
165        if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
166          if (STy->getNumElements() == 1)
167            SrcETy = STy->getElementType(0);
168          else
169            break;
170        } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
171          if (ATy->getNumElements() == 1)
172            SrcETy = ATy->getElementType();
173          else
174            break;
175        } else
176          break;
177      }
178
179      if (SrcETy->isSingleValueType()) {
180        NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
181        NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
182      }
183    }
184  }
185
186
187  // If the memcpy/memmove provides better alignment info than we can
188  // infer, use it.
189  SrcAlign = std::max(SrcAlign, CopyAlign);
190  DstAlign = std::max(DstAlign, CopyAlign);
191
192  Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewSrcPtrTy);
193  Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewDstPtrTy);
194  Instruction *L = new LoadInst(Src, "tmp", MI->isVolatile(), SrcAlign);
195  InsertNewInstBefore(L, *MI);
196  InsertNewInstBefore(new StoreInst(L, Dest, MI->isVolatile(), DstAlign),
197                      *MI);
198
199  // Set the size of the copy to 0, it will be deleted on the next iteration.
200  MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
201  return MI;
202}
203
204Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
205  unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
206  if (MI->getAlignment() < Alignment) {
207    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
208                                             Alignment, false));
209    return MI;
210  }
211
212  // Extract the length and alignment and fill if they are constant.
213  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
214  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
215  if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
216    return 0;
217  uint64_t Len = LenC->getZExtValue();
218  Alignment = MI->getAlignment();
219
220  // If the length is zero, this is a no-op
221  if (Len == 0) return MI; // memset(d,c,0,a) -> noop
222
223  // memset(s,c,n) -> store s, c (for n=1,2,4,8)
224  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
225    const Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
226
227    Value *Dest = MI->getDest();
228    Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
229
230    // Alignment 0 is identity for alignment 1 for memset, but not store.
231    if (Alignment == 0) Alignment = 1;
232
233    // Extract the fill value and store.
234    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
235    InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
236                                      Dest, false, Alignment), *MI);
237
238    // Set the size of the copy to 0, it will be deleted on the next iteration.
239    MI->setLength(Constant::getNullValue(LenC->getType()));
240    return MI;
241  }
242
243  return 0;
244}
245
246/// visitCallInst - CallInst simplification.  This mostly only handles folding
247/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
248/// the heavy lifting.
249///
250Instruction *InstCombiner::visitCallInst(CallInst &CI) {
251  if (isFreeCall(&CI))
252    return visitFree(CI);
253  if (isMalloc(&CI))
254    return visitMalloc(CI);
255
256  // If the caller function is nounwind, mark the call as nounwind, even if the
257  // callee isn't.
258  if (CI.getParent()->getParent()->doesNotThrow() &&
259      !CI.doesNotThrow()) {
260    CI.setDoesNotThrow();
261    return &CI;
262  }
263
264  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
265  if (!II) return visitCallSite(&CI);
266
267  // Intrinsics cannot occur in an invoke, so handle them here instead of in
268  // visitCallSite.
269  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
270    bool Changed = false;
271
272    // memmove/cpy/set of zero bytes is a noop.
273    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
274      if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
275
276      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
277        if (CI->getZExtValue() == 1) {
278          // Replace the instruction with just byte operations.  We would
279          // transform other cases to loads/stores, but we don't know if
280          // alignment is sufficient.
281        }
282    }
283
284    // If we have a memmove and the source operation is a constant global,
285    // then the source and dest pointers can't alias, so we can change this
286    // into a call to memcpy.
287    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
288      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
289        if (GVSrc->isConstant()) {
290          Module *M = CI.getParent()->getParent()->getParent();
291          Intrinsic::ID MemCpyID = Intrinsic::memcpy;
292          const Type *Tys[3] = { CI.getArgOperand(0)->getType(),
293                                 CI.getArgOperand(1)->getType(),
294                                 CI.getArgOperand(2)->getType() };
295          CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys, 3));
296          Changed = true;
297        }
298    }
299
300    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
301      // memmove(x,x,size) -> noop.
302      if (MTI->getSource() == MTI->getDest())
303        return EraseInstFromFunction(CI);
304    }
305
306    // If we can determine a pointer alignment that is bigger than currently
307    // set, update the alignment.
308    if (isa<MemTransferInst>(MI)) {
309      if (Instruction *I = SimplifyMemTransfer(MI))
310        return I;
311    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
312      if (Instruction *I = SimplifyMemSet(MSI))
313        return I;
314    }
315
316    if (Changed) return II;
317  }
318
319  switch (II->getIntrinsicID()) {
320  default: break;
321  case Intrinsic::objectsize: {
322    // We need target data for just about everything so depend on it.
323    if (!TD) break;
324
325    const Type *ReturnTy = CI.getType();
326    bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
327
328    // Get to the real allocated thing and offset as fast as possible.
329    Value *Op1 = II->getArgOperand(0)->stripPointerCasts();
330
331    // If we've stripped down to a single global variable that we
332    // can know the size of then just return that.
333    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
334      if (GV->hasDefinitiveInitializer()) {
335        Constant *C = GV->getInitializer();
336        uint64_t GlobalSize = TD->getTypeAllocSize(C->getType());
337        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, GlobalSize));
338      } else {
339        // Can't determine size of the GV.
340        Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
341        return ReplaceInstUsesWith(CI, RetVal);
342      }
343    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
344      // Get alloca size.
345      if (AI->getAllocatedType()->isSized()) {
346        uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
347        if (AI->isArrayAllocation()) {
348          const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
349          if (!C) break;
350          AllocaSize *= C->getZExtValue();
351        }
352        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, AllocaSize));
353      }
354    } else if (CallInst *MI = extractMallocCall(Op1)) {
355      const Type* MallocType = getMallocAllocatedType(MI);
356      // Get alloca size.
357      if (MallocType && MallocType->isSized()) {
358        if (Value *NElems = getMallocArraySize(MI, TD, true)) {
359          if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
360        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy,
361               (NElements->getZExtValue() * TD->getTypeAllocSize(MallocType))));
362        }
363      }
364    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op1)) {
365      // Only handle constant GEPs here.
366      if (CE->getOpcode() != Instruction::GetElementPtr) break;
367      GEPOperator *GEP = cast<GEPOperator>(CE);
368
369      // Make sure we're not a constant offset from an external
370      // global.
371      Value *Operand = GEP->getPointerOperand();
372      Operand = Operand->stripPointerCasts();
373      if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Operand))
374        if (!GV->hasDefinitiveInitializer()) break;
375
376      // Get what we're pointing to and its size.
377      const PointerType *BaseType =
378        cast<PointerType>(Operand->getType());
379      uint64_t Size = TD->getTypeAllocSize(BaseType->getElementType());
380
381      // Get the current byte offset into the thing. Use the original
382      // operand in case we're looking through a bitcast.
383      SmallVector<Value*, 8> Ops(CE->op_begin()+1, CE->op_end());
384      const PointerType *OffsetType =
385        cast<PointerType>(GEP->getPointerOperand()->getType());
386      uint64_t Offset = TD->getIndexedOffset(OffsetType, &Ops[0], Ops.size());
387
388      if (Size < Offset) {
389        // Out of bound reference? Negative index normalized to large
390        // index? Just return "I don't know".
391        Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
392        return ReplaceInstUsesWith(CI, RetVal);
393      }
394
395      Constant *RetVal = ConstantInt::get(ReturnTy, Size-Offset);
396      return ReplaceInstUsesWith(CI, RetVal);
397    }
398
399    // Do not return "I don't know" here. Later optimization passes could
400    // make it possible to evaluate objectsize to a constant.
401    break;
402  }
403  case Intrinsic::bswap:
404    // bswap(bswap(x)) -> x
405    if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
406      if (Operand->getIntrinsicID() == Intrinsic::bswap)
407        return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
408
409    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
410    if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
411      if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
412        if (Operand->getIntrinsicID() == Intrinsic::bswap) {
413          unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
414                       TI->getType()->getPrimitiveSizeInBits();
415          Value *CV = ConstantInt::get(Operand->getType(), C);
416          Value *V = Builder->CreateLShr(Operand->getArgOperand(0), CV);
417          return new TruncInst(V, TI->getType());
418        }
419    }
420
421    break;
422  case Intrinsic::powi:
423    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
424      // powi(x, 0) -> 1.0
425      if (Power->isZero())
426        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
427      // powi(x, 1) -> x
428      if (Power->isOne())
429        return ReplaceInstUsesWith(CI, II->getArgOperand(0));
430      // powi(x, -1) -> 1/x
431      if (Power->isAllOnesValue())
432        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
433                                          II->getArgOperand(0));
434    }
435    break;
436  case Intrinsic::cttz: {
437    // If all bits below the first known one are known zero,
438    // this value is constant.
439    const IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
440    uint32_t BitWidth = IT->getBitWidth();
441    APInt KnownZero(BitWidth, 0);
442    APInt KnownOne(BitWidth, 0);
443    ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth),
444                      KnownZero, KnownOne);
445    unsigned TrailingZeros = KnownOne.countTrailingZeros();
446    APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
447    if ((Mask & KnownZero) == Mask)
448      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
449                                 APInt(BitWidth, TrailingZeros)));
450
451    }
452    break;
453  case Intrinsic::ctlz: {
454    // If all bits above the first known one are known zero,
455    // this value is constant.
456    const IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
457    uint32_t BitWidth = IT->getBitWidth();
458    APInt KnownZero(BitWidth, 0);
459    APInt KnownOne(BitWidth, 0);
460    ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth),
461                      KnownZero, KnownOne);
462    unsigned LeadingZeros = KnownOne.countLeadingZeros();
463    APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
464    if ((Mask & KnownZero) == Mask)
465      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
466                                 APInt(BitWidth, LeadingZeros)));
467
468    }
469    break;
470  case Intrinsic::uadd_with_overflow: {
471    Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
472    const IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
473    uint32_t BitWidth = IT->getBitWidth();
474    APInt Mask = APInt::getSignBit(BitWidth);
475    APInt LHSKnownZero(BitWidth, 0);
476    APInt LHSKnownOne(BitWidth, 0);
477    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
478    bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
479    bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
480
481    if (LHSKnownNegative || LHSKnownPositive) {
482      APInt RHSKnownZero(BitWidth, 0);
483      APInt RHSKnownOne(BitWidth, 0);
484      ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
485      bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
486      bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
487      if (LHSKnownNegative && RHSKnownNegative) {
488        // The sign bit is set in both cases: this MUST overflow.
489        // Create a simple add instruction, and insert it into the struct.
490        Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
491        Worklist.Add(Add);
492        Constant *V[] = {
493          UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
494        };
495        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
496        return InsertValueInst::Create(Struct, Add, 0);
497      }
498
499      if (LHSKnownPositive && RHSKnownPositive) {
500        // The sign bit is clear in both cases: this CANNOT overflow.
501        // Create a simple add instruction, and insert it into the struct.
502        Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
503        Worklist.Add(Add);
504        Constant *V[] = {
505          UndefValue::get(LHS->getType()),
506          ConstantInt::getFalse(II->getContext())
507        };
508        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
509        return InsertValueInst::Create(Struct, Add, 0);
510      }
511    }
512  }
513  // FALL THROUGH uadd into sadd
514  case Intrinsic::sadd_with_overflow:
515    // Canonicalize constants into the RHS.
516    if (isa<Constant>(II->getOperand(1)) &&
517        !isa<Constant>(II->getOperand(2))) {
518      Value *LHS = II->getOperand(1);
519      II->setOperand(1, II->getOperand(2));
520      II->setOperand(2, LHS);
521      return II;
522    }
523
524    // X + undef -> undef
525    if (isa<UndefValue>(II->getOperand(2)))
526      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
527
528    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
529      // X + 0 -> {X, false}
530      if (RHS->isZero()) {
531        Constant *V[] = {
532          UndefValue::get(II->getCalledValue()->getType()),
533          ConstantInt::getFalse(II->getContext())
534        };
535        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
536        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
537      }
538    }
539    break;
540  case Intrinsic::usub_with_overflow:
541  case Intrinsic::ssub_with_overflow:
542    // undef - X -> undef
543    // X - undef -> undef
544    if (isa<UndefValue>(II->getOperand(1)) ||
545        isa<UndefValue>(II->getOperand(2)))
546      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
547
548    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
549      // X - 0 -> {X, false}
550      if (RHS->isZero()) {
551        Constant *V[] = {
552          UndefValue::get(II->getOperand(1)->getType()),
553          ConstantInt::getFalse(II->getContext())
554        };
555        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
556        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
557      }
558    }
559    break;
560  case Intrinsic::umul_with_overflow:
561  case Intrinsic::smul_with_overflow:
562    // Canonicalize constants into the RHS.
563    if (isa<Constant>(II->getOperand(1)) &&
564        !isa<Constant>(II->getOperand(2))) {
565      Value *LHS = II->getOperand(1);
566      II->setOperand(1, II->getOperand(2));
567      II->setOperand(2, LHS);
568      return II;
569    }
570
571    // X * undef -> undef
572    if (isa<UndefValue>(II->getOperand(2)))
573      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
574
575    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
576      // X*0 -> {0, false}
577      if (RHSI->isZero())
578        return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
579
580      // X * 1 -> {X, false}
581      if (RHSI->equalsInt(1)) {
582        Constant *V[] = {
583          UndefValue::get(II->getArgOperand(0)->getType()),
584          ConstantInt::getFalse(II->getContext())
585        };
586        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
587        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
588      }
589    }
590    break;
591  case Intrinsic::ppc_altivec_lvx:
592  case Intrinsic::ppc_altivec_lvxl:
593  case Intrinsic::x86_sse_loadu_ps:
594  case Intrinsic::x86_sse2_loadu_pd:
595  case Intrinsic::x86_sse2_loadu_dq:
596    // Turn PPC lvx     -> load if the pointer is known aligned.
597    // Turn X86 loadups -> load if the pointer is known aligned.
598    if (GetOrEnforceKnownAlignment(II->getArgOperand(0), 16) >= 16) {
599      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
600                                         PointerType::getUnqual(II->getType()));
601      return new LoadInst(Ptr);
602    }
603    break;
604  case Intrinsic::ppc_altivec_stvx:
605  case Intrinsic::ppc_altivec_stvxl:
606    // Turn stvx -> store if the pointer is known aligned.
607    if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
608      const Type *OpPtrTy =
609        PointerType::getUnqual(II->getOperand(1)->getType());
610      Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
611      return new StoreInst(II->getOperand(1), Ptr);
612    }
613    break;
614  case Intrinsic::x86_sse_storeu_ps:
615  case Intrinsic::x86_sse2_storeu_pd:
616  case Intrinsic::x86_sse2_storeu_dq:
617    // Turn X86 storeu -> store if the pointer is known aligned.
618    if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
619      const Type *OpPtrTy =
620        PointerType::getUnqual(II->getOperand(2)->getType());
621      Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
622      return new StoreInst(II->getOperand(2), Ptr);
623    }
624    break;
625
626  case Intrinsic::x86_sse_cvttss2si: {
627    // These intrinsics only demands the 0th element of its input vector.  If
628    // we can simplify the input based on that, do so now.
629    unsigned VWidth =
630      cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
631    APInt DemandedElts(VWidth, 1);
632    APInt UndefElts(VWidth, 0);
633    if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
634                                              UndefElts)) {
635      II->setOperand(1, V);
636      return II;
637    }
638    break;
639  }
640
641  case Intrinsic::ppc_altivec_vperm:
642    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
643    if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getArgOperand(2))) {
644      assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
645
646      // Check that all of the elements are integer constants or undefs.
647      bool AllEltsOk = true;
648      for (unsigned i = 0; i != 16; ++i) {
649        if (!isa<ConstantInt>(Mask->getOperand(i)) &&
650            !isa<UndefValue>(Mask->getOperand(i))) {
651          AllEltsOk = false;
652          break;
653        }
654      }
655
656      if (AllEltsOk) {
657        // Cast the input vectors to byte vectors.
658        Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0), Mask->getType());
659        Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1), Mask->getType());
660        Value *Result = UndefValue::get(Op0->getType());
661
662        // Only extract each element once.
663        Value *ExtractedElts[32];
664        memset(ExtractedElts, 0, sizeof(ExtractedElts));
665
666        for (unsigned i = 0; i != 16; ++i) {
667          if (isa<UndefValue>(Mask->getOperand(i)))
668            continue;
669          unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
670          Idx &= 31;  // Match the hardware behavior.
671
672          if (ExtractedElts[Idx] == 0) {
673            ExtractedElts[Idx] =
674              Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
675                  ConstantInt::get(Type::getInt32Ty(II->getContext()),
676                                   Idx&15, false), "tmp");
677          }
678
679          // Insert this value into the result vector.
680          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
681                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
682                                          i, false), "tmp");
683        }
684        return CastInst::Create(Instruction::BitCast, Result, CI.getType());
685      }
686    }
687    break;
688
689  case Intrinsic::stackrestore: {
690    // If the save is right next to the restore, remove the restore.  This can
691    // happen when variable allocas are DCE'd.
692    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
693      if (SS->getIntrinsicID() == Intrinsic::stacksave) {
694        BasicBlock::iterator BI = SS;
695        if (&*++BI == II)
696          return EraseInstFromFunction(CI);
697      }
698    }
699
700    // Scan down this block to see if there is another stack restore in the
701    // same block without an intervening call/alloca.
702    BasicBlock::iterator BI = II;
703    TerminatorInst *TI = II->getParent()->getTerminator();
704    bool CannotRemove = false;
705    for (++BI; &*BI != TI; ++BI) {
706      if (isa<AllocaInst>(BI) || isMalloc(BI)) {
707        CannotRemove = true;
708        break;
709      }
710      if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
711        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
712          // If there is a stackrestore below this one, remove this one.
713          if (II->getIntrinsicID() == Intrinsic::stackrestore)
714            return EraseInstFromFunction(CI);
715          // Otherwise, ignore the intrinsic.
716        } else {
717          // If we found a non-intrinsic call, we can't remove the stack
718          // restore.
719          CannotRemove = true;
720          break;
721        }
722      }
723    }
724
725    // If the stack restore is in a return/unwind block and if there are no
726    // allocas or calls between the restore and the return, nuke the restore.
727    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
728      return EraseInstFromFunction(CI);
729    break;
730  }
731  }
732
733  return visitCallSite(II);
734}
735
736// InvokeInst simplification
737//
738Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
739  return visitCallSite(&II);
740}
741
742/// isSafeToEliminateVarargsCast - If this cast does not affect the value
743/// passed through the varargs area, we can eliminate the use of the cast.
744static bool isSafeToEliminateVarargsCast(const CallSite CS,
745                                         const CastInst * const CI,
746                                         const TargetData * const TD,
747                                         const int ix) {
748  if (!CI->isLosslessCast())
749    return false;
750
751  // The size of ByVal arguments is derived from the type, so we
752  // can't change to a type with a different size.  If the size were
753  // passed explicitly we could avoid this check.
754  if (!CS.paramHasAttr(ix, Attribute::ByVal))
755    return true;
756
757  const Type* SrcTy =
758            cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
759  const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
760  if (!SrcTy->isSized() || !DstTy->isSized())
761    return false;
762  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
763    return false;
764  return true;
765}
766
767namespace {
768class InstCombineFortifiedLibCalls : public SimplifyFortifiedLibCalls {
769  InstCombiner *IC;
770protected:
771  void replaceCall(Value *With) {
772    NewInstruction = IC->ReplaceInstUsesWith(*CI, With);
773  }
774  bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
775    if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(SizeCIOp))) {
776      if (SizeCI->isAllOnesValue())
777        return true;
778      if (isString)
779        return SizeCI->getZExtValue() >=
780               GetStringLength(CI->getOperand(SizeArgOp));
781      if (ConstantInt *Arg = dyn_cast<ConstantInt>(CI->getOperand(SizeArgOp)))
782        return SizeCI->getZExtValue() >= Arg->getZExtValue();
783    }
784    return false;
785  }
786public:
787  InstCombineFortifiedLibCalls(InstCombiner *IC) : IC(IC), NewInstruction(0) { }
788  Instruction *NewInstruction;
789};
790} // end anonymous namespace
791
792// Try to fold some different type of calls here.
793// Currently we're only working with the checking functions, memcpy_chk,
794// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
795// strcat_chk and strncat_chk.
796Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
797  if (CI->getCalledFunction() == 0) return 0;
798
799  InstCombineFortifiedLibCalls Simplifier(this);
800  Simplifier.fold(CI, TD);
801  return Simplifier.NewInstruction;
802}
803
804// visitCallSite - Improvements for call and invoke instructions.
805//
806Instruction *InstCombiner::visitCallSite(CallSite CS) {
807  bool Changed = false;
808
809  // If the callee is a constexpr cast of a function, attempt to move the cast
810  // to the arguments of the call/invoke.
811  if (transformConstExprCastCall(CS)) return 0;
812
813  Value *Callee = CS.getCalledValue();
814
815  if (Function *CalleeF = dyn_cast<Function>(Callee))
816    // If the call and callee calling conventions don't match, this call must
817    // be unreachable, as the call is undefined.
818    if (CalleeF->getCallingConv() != CS.getCallingConv() &&
819        // Only do this for calls to a function with a body.  A prototype may
820        // not actually end up matching the implementation's calling conv for a
821        // variety of reasons (e.g. it may be written in assembly).
822        !CalleeF->isDeclaration()) {
823      Instruction *OldCall = CS.getInstruction();
824      new StoreInst(ConstantInt::getTrue(Callee->getContext()),
825                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
826                                  OldCall);
827      // If OldCall dues not return void then replaceAllUsesWith undef.
828      // This allows ValueHandlers and custom metadata to adjust itself.
829      if (!OldCall->getType()->isVoidTy())
830        OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
831      if (isa<CallInst>(OldCall))
832        return EraseInstFromFunction(*OldCall);
833
834      // We cannot remove an invoke, because it would change the CFG, just
835      // change the callee to a null pointer.
836      cast<InvokeInst>(OldCall)->setCalledFunction(
837                                    Constant::getNullValue(CalleeF->getType()));
838      return 0;
839    }
840
841  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
842    // This instruction is not reachable, just remove it.  We insert a store to
843    // undef so that we know that this code is not reachable, despite the fact
844    // that we can't modify the CFG here.
845    new StoreInst(ConstantInt::getTrue(Callee->getContext()),
846               UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
847                  CS.getInstruction());
848
849    // If CS does not return void then replaceAllUsesWith undef.
850    // This allows ValueHandlers and custom metadata to adjust itself.
851    if (!CS.getInstruction()->getType()->isVoidTy())
852      CS.getInstruction()->
853        replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
854
855    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
856      // Don't break the CFG, insert a dummy cond branch.
857      BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
858                         ConstantInt::getTrue(Callee->getContext()), II);
859    }
860    return EraseInstFromFunction(*CS.getInstruction());
861  }
862
863  if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
864    if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
865      if (In->getIntrinsicID() == Intrinsic::init_trampoline)
866        return transformCallThroughTrampoline(CS);
867
868  const PointerType *PTy = cast<PointerType>(Callee->getType());
869  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
870  if (FTy->isVarArg()) {
871    int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
872    // See if we can optimize any arguments passed through the varargs area of
873    // the call.
874    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
875           E = CS.arg_end(); I != E; ++I, ++ix) {
876      CastInst *CI = dyn_cast<CastInst>(*I);
877      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
878        *I = CI->getOperand(0);
879        Changed = true;
880      }
881    }
882  }
883
884  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
885    // Inline asm calls cannot throw - mark them 'nounwind'.
886    CS.setDoesNotThrow();
887    Changed = true;
888  }
889
890  // Try to optimize the call if possible, we require TargetData for most of
891  // this.  None of these calls are seen as possibly dead so go ahead and
892  // delete the instruction now.
893  if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
894    Instruction *I = tryOptimizeCall(CI, TD);
895    // If we changed something return the result, etc. Otherwise let
896    // the fallthrough check.
897    if (I) return EraseInstFromFunction(*I);
898  }
899
900  return Changed ? CS.getInstruction() : 0;
901}
902
903// transformConstExprCastCall - If the callee is a constexpr cast of a function,
904// attempt to move the cast to the arguments of the call/invoke.
905//
906bool InstCombiner::transformConstExprCastCall(CallSite CS) {
907  if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
908  ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
909  if (CE->getOpcode() != Instruction::BitCast ||
910      !isa<Function>(CE->getOperand(0)))
911    return false;
912  Function *Callee = cast<Function>(CE->getOperand(0));
913  Instruction *Caller = CS.getInstruction();
914  const AttrListPtr &CallerPAL = CS.getAttributes();
915
916  // Okay, this is a cast from a function to a different type.  Unless doing so
917  // would cause a type conversion of one of our arguments, change this call to
918  // be a direct call with arguments casted to the appropriate types.
919  //
920  const FunctionType *FT = Callee->getFunctionType();
921  const Type *OldRetTy = Caller->getType();
922  const Type *NewRetTy = FT->getReturnType();
923
924  if (NewRetTy->isStructTy())
925    return false; // TODO: Handle multiple return values.
926
927  // Check to see if we are changing the return type...
928  if (OldRetTy != NewRetTy) {
929    if (Callee->isDeclaration() &&
930        // Conversion is ok if changing from one pointer type to another or from
931        // a pointer to an integer of the same size.
932        !((OldRetTy->isPointerTy() || !TD ||
933           OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
934          (NewRetTy->isPointerTy() || !TD ||
935           NewRetTy == TD->getIntPtrType(Caller->getContext()))))
936      return false;   // Cannot transform this return value.
937
938    if (!Caller->use_empty() &&
939        // void -> non-void is handled specially
940        !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
941      return false;   // Cannot transform this return value.
942
943    if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
944      Attributes RAttrs = CallerPAL.getRetAttributes();
945      if (RAttrs & Attribute::typeIncompatible(NewRetTy))
946        return false;   // Attribute not compatible with transformed value.
947    }
948
949    // If the callsite is an invoke instruction, and the return value is used by
950    // a PHI node in a successor, we cannot change the return type of the call
951    // because there is no place to put the cast instruction (without breaking
952    // the critical edge).  Bail out in this case.
953    if (!Caller->use_empty())
954      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
955        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
956             UI != E; ++UI)
957          if (PHINode *PN = dyn_cast<PHINode>(*UI))
958            if (PN->getParent() == II->getNormalDest() ||
959                PN->getParent() == II->getUnwindDest())
960              return false;
961  }
962
963  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
964  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
965
966  CallSite::arg_iterator AI = CS.arg_begin();
967  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
968    const Type *ParamTy = FT->getParamType(i);
969    const Type *ActTy = (*AI)->getType();
970
971    if (!CastInst::isCastable(ActTy, ParamTy))
972      return false;   // Cannot transform this parameter value.
973
974    if (CallerPAL.getParamAttributes(i + 1)
975        & Attribute::typeIncompatible(ParamTy))
976      return false;   // Attribute not compatible with transformed value.
977
978    // Converting from one pointer type to another or between a pointer and an
979    // integer of the same size is safe even if we do not have a body.
980    bool isConvertible = ActTy == ParamTy ||
981      (TD && ((ParamTy->isPointerTy() ||
982      ParamTy == TD->getIntPtrType(Caller->getContext())) &&
983              (ActTy->isPointerTy() ||
984              ActTy == TD->getIntPtrType(Caller->getContext()))));
985    if (Callee->isDeclaration() && !isConvertible) return false;
986  }
987
988  if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
989      Callee->isDeclaration())
990    return false;   // Do not delete arguments unless we have a function body.
991
992  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
993      !CallerPAL.isEmpty())
994    // In this case we have more arguments than the new function type, but we
995    // won't be dropping them.  Check that these extra arguments have attributes
996    // that are compatible with being a vararg call argument.
997    for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
998      if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
999        break;
1000      Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
1001      if (PAttrs & Attribute::VarArgsIncompatible)
1002        return false;
1003    }
1004
1005  // Okay, we decided that this is a safe thing to do: go ahead and start
1006  // inserting cast instructions as necessary...
1007  std::vector<Value*> Args;
1008  Args.reserve(NumActualArgs);
1009  SmallVector<AttributeWithIndex, 8> attrVec;
1010  attrVec.reserve(NumCommonArgs);
1011
1012  // Get any return attributes.
1013  Attributes RAttrs = CallerPAL.getRetAttributes();
1014
1015  // If the return value is not being used, the type may not be compatible
1016  // with the existing attributes.  Wipe out any problematic attributes.
1017  RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
1018
1019  // Add the new return attributes.
1020  if (RAttrs)
1021    attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
1022
1023  AI = CS.arg_begin();
1024  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
1025    const Type *ParamTy = FT->getParamType(i);
1026    if ((*AI)->getType() == ParamTy) {
1027      Args.push_back(*AI);
1028    } else {
1029      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
1030          false, ParamTy, false);
1031      Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
1032    }
1033
1034    // Add any parameter attributes.
1035    if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1036      attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1037  }
1038
1039  // If the function takes more arguments than the call was taking, add them
1040  // now.
1041  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1042    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1043
1044  // If we are removing arguments to the function, emit an obnoxious warning.
1045  if (FT->getNumParams() < NumActualArgs) {
1046    if (!FT->isVarArg()) {
1047      errs() << "WARNING: While resolving call to function '"
1048             << Callee->getName() << "' arguments were dropped!\n";
1049    } else {
1050      // Add all of the arguments in their promoted form to the arg list.
1051      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1052        const Type *PTy = getPromotedType((*AI)->getType());
1053        if (PTy != (*AI)->getType()) {
1054          // Must promote to pass through va_arg area!
1055          Instruction::CastOps opcode =
1056            CastInst::getCastOpcode(*AI, false, PTy, false);
1057          Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
1058        } else {
1059          Args.push_back(*AI);
1060        }
1061
1062        // Add any parameter attributes.
1063        if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1064          attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1065      }
1066    }
1067  }
1068
1069  if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
1070    attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
1071
1072  if (NewRetTy->isVoidTy())
1073    Caller->setName("");   // Void type should not have a name.
1074
1075  const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
1076                                                     attrVec.end());
1077
1078  Instruction *NC;
1079  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1080    NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
1081                            Args.begin(), Args.end(),
1082                            Caller->getName(), Caller);
1083    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1084    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1085  } else {
1086    NC = CallInst::Create(Callee, Args.begin(), Args.end(),
1087                          Caller->getName(), Caller);
1088    CallInst *CI = cast<CallInst>(Caller);
1089    if (CI->isTailCall())
1090      cast<CallInst>(NC)->setTailCall();
1091    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1092    cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1093  }
1094
1095  // Insert a cast of the return type as necessary.
1096  Value *NV = NC;
1097  if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1098    if (!NV->getType()->isVoidTy()) {
1099      Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
1100                                                            OldRetTy, false);
1101      NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
1102
1103      // If this is an invoke instruction, we should insert it after the first
1104      // non-phi, instruction in the normal successor block.
1105      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1106        BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
1107        InsertNewInstBefore(NC, *I);
1108      } else {
1109        // Otherwise, it's a call, just insert cast right after the call instr
1110        InsertNewInstBefore(NC, *Caller);
1111      }
1112      Worklist.AddUsersToWorkList(*Caller);
1113    } else {
1114      NV = UndefValue::get(Caller->getType());
1115    }
1116  }
1117
1118
1119  if (!Caller->use_empty())
1120    Caller->replaceAllUsesWith(NV);
1121
1122  EraseInstFromFunction(*Caller);
1123  return true;
1124}
1125
1126// transformCallThroughTrampoline - Turn a call to a function created by the
1127// init_trampoline intrinsic into a direct call to the underlying function.
1128//
1129Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
1130  Value *Callee = CS.getCalledValue();
1131  const PointerType *PTy = cast<PointerType>(Callee->getType());
1132  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1133  const AttrListPtr &Attrs = CS.getAttributes();
1134
1135  // If the call already has the 'nest' attribute somewhere then give up -
1136  // otherwise 'nest' would occur twice after splicing in the chain.
1137  if (Attrs.hasAttrSomewhere(Attribute::Nest))
1138    return 0;
1139
1140  IntrinsicInst *Tramp =
1141    cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
1142
1143  Function *NestF = cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
1144  const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1145  const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1146
1147  const AttrListPtr &NestAttrs = NestF->getAttributes();
1148  if (!NestAttrs.isEmpty()) {
1149    unsigned NestIdx = 1;
1150    const Type *NestTy = 0;
1151    Attributes NestAttr = Attribute::None;
1152
1153    // Look for a parameter marked with the 'nest' attribute.
1154    for (FunctionType::param_iterator I = NestFTy->param_begin(),
1155         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1156      if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1157        // Record the parameter type and any other attributes.
1158        NestTy = *I;
1159        NestAttr = NestAttrs.getParamAttributes(NestIdx);
1160        break;
1161      }
1162
1163    if (NestTy) {
1164      Instruction *Caller = CS.getInstruction();
1165      std::vector<Value*> NewArgs;
1166      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1167
1168      SmallVector<AttributeWithIndex, 8> NewAttrs;
1169      NewAttrs.reserve(Attrs.getNumSlots() + 1);
1170
1171      // Insert the nest argument into the call argument list, which may
1172      // mean appending it.  Likewise for attributes.
1173
1174      // Add any result attributes.
1175      if (Attributes Attr = Attrs.getRetAttributes())
1176        NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1177
1178      {
1179        unsigned Idx = 1;
1180        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1181        do {
1182          if (Idx == NestIdx) {
1183            // Add the chain argument and attributes.
1184            Value *NestVal = Tramp->getArgOperand(2);
1185            if (NestVal->getType() != NestTy)
1186              NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
1187            NewArgs.push_back(NestVal);
1188            NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1189          }
1190
1191          if (I == E)
1192            break;
1193
1194          // Add the original argument and attributes.
1195          NewArgs.push_back(*I);
1196          if (Attributes Attr = Attrs.getParamAttributes(Idx))
1197            NewAttrs.push_back
1198              (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1199
1200          ++Idx, ++I;
1201        } while (1);
1202      }
1203
1204      // Add any function attributes.
1205      if (Attributes Attr = Attrs.getFnAttributes())
1206        NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1207
1208      // The trampoline may have been bitcast to a bogus type (FTy).
1209      // Handle this by synthesizing a new function type, equal to FTy
1210      // with the chain parameter inserted.
1211
1212      std::vector<const Type*> NewTypes;
1213      NewTypes.reserve(FTy->getNumParams()+1);
1214
1215      // Insert the chain's type into the list of parameter types, which may
1216      // mean appending it.
1217      {
1218        unsigned Idx = 1;
1219        FunctionType::param_iterator I = FTy->param_begin(),
1220          E = FTy->param_end();
1221
1222        do {
1223          if (Idx == NestIdx)
1224            // Add the chain's type.
1225            NewTypes.push_back(NestTy);
1226
1227          if (I == E)
1228            break;
1229
1230          // Add the original type.
1231          NewTypes.push_back(*I);
1232
1233          ++Idx, ++I;
1234        } while (1);
1235      }
1236
1237      // Replace the trampoline call with a direct call.  Let the generic
1238      // code sort out any function type mismatches.
1239      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1240                                                FTy->isVarArg());
1241      Constant *NewCallee =
1242        NestF->getType() == PointerType::getUnqual(NewFTy) ?
1243        NestF : ConstantExpr::getBitCast(NestF,
1244                                         PointerType::getUnqual(NewFTy));
1245      const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
1246                                                   NewAttrs.end());
1247
1248      Instruction *NewCaller;
1249      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1250        NewCaller = InvokeInst::Create(NewCallee,
1251                                       II->getNormalDest(), II->getUnwindDest(),
1252                                       NewArgs.begin(), NewArgs.end(),
1253                                       Caller->getName(), Caller);
1254        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1255        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1256      } else {
1257        NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
1258                                     Caller->getName(), Caller);
1259        if (cast<CallInst>(Caller)->isTailCall())
1260          cast<CallInst>(NewCaller)->setTailCall();
1261        cast<CallInst>(NewCaller)->
1262          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1263        cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1264      }
1265      if (!Caller->getType()->isVoidTy())
1266        Caller->replaceAllUsesWith(NewCaller);
1267      Caller->eraseFromParent();
1268      Worklist.Remove(Caller);
1269      return 0;
1270    }
1271  }
1272
1273  // Replace the trampoline call with a direct call.  Since there is no 'nest'
1274  // parameter, there is no need to adjust the argument list.  Let the generic
1275  // code sort out any function type mismatches.
1276  Constant *NewCallee =
1277    NestF->getType() == PTy ? NestF :
1278                              ConstantExpr::getBitCast(NestF, PTy);
1279  CS.setCalledFunction(NewCallee);
1280  return CS.getInstruction();
1281}
1282
1283