InstCombineCalls.cpp revision cb348b9b45025393ec5b28eac8bb6773a9b603f6
1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Support/CallSite.h"
16#include "llvm/Target/TargetData.h"
17#include "llvm/Analysis/MemoryBuiltins.h"
18#include "llvm/Transforms/Utils/BuildLibCalls.h"
19#include "llvm/Transforms/Utils/Local.h"
20using namespace llvm;
21
22/// getPromotedType - Return the specified type promoted as it would be to pass
23/// though a va_arg area.
24static Type *getPromotedType(Type *Ty) {
25  if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
26    if (ITy->getBitWidth() < 32)
27      return Type::getInt32Ty(Ty->getContext());
28  }
29  return Ty;
30}
31
32
33Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
34  unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), TD);
35  unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), TD);
36  unsigned MinAlign = std::min(DstAlign, SrcAlign);
37  unsigned CopyAlign = MI->getAlignment();
38
39  if (CopyAlign < MinAlign) {
40    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
41                                             MinAlign, false));
42    return MI;
43  }
44
45  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
46  // load/store.
47  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
48  if (MemOpLength == 0) return 0;
49
50  // Source and destination pointer types are always "i8*" for intrinsic.  See
51  // if the size is something we can handle with a single primitive load/store.
52  // A single load+store correctly handles overlapping memory in the memmove
53  // case.
54  unsigned Size = MemOpLength->getZExtValue();
55  if (Size == 0) return MI;  // Delete this mem transfer.
56
57  if (Size > 8 || (Size&(Size-1)))
58    return 0;  // If not 1/2/4/8 bytes, exit.
59
60  // Use an integer load+store unless we can find something better.
61  unsigned SrcAddrSp =
62    cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
63  unsigned DstAddrSp =
64    cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
65
66  IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
67  Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
68  Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
69
70  // Memcpy forces the use of i8* for the source and destination.  That means
71  // that if you're using memcpy to move one double around, you'll get a cast
72  // from double* to i8*.  We'd much rather use a double load+store rather than
73  // an i64 load+store, here because this improves the odds that the source or
74  // dest address will be promotable.  See if we can find a better type than the
75  // integer datatype.
76  Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
77  if (StrippedDest != MI->getArgOperand(0)) {
78    Type *SrcETy = cast<PointerType>(StrippedDest->getType())
79                                    ->getElementType();
80    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
81      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
82      // down through these levels if so.
83      while (!SrcETy->isSingleValueType()) {
84        if (StructType *STy = dyn_cast<StructType>(SrcETy)) {
85          if (STy->getNumElements() == 1)
86            SrcETy = STy->getElementType(0);
87          else
88            break;
89        } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
90          if (ATy->getNumElements() == 1)
91            SrcETy = ATy->getElementType();
92          else
93            break;
94        } else
95          break;
96      }
97
98      if (SrcETy->isSingleValueType()) {
99        NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
100        NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
101      }
102    }
103  }
104
105
106  // If the memcpy/memmove provides better alignment info than we can
107  // infer, use it.
108  SrcAlign = std::max(SrcAlign, CopyAlign);
109  DstAlign = std::max(DstAlign, CopyAlign);
110
111  Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
112  Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
113  LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
114  L->setAlignment(SrcAlign);
115  StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
116  S->setAlignment(DstAlign);
117
118  // Set the size of the copy to 0, it will be deleted on the next iteration.
119  MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
120  return MI;
121}
122
123Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
124  unsigned Alignment = getKnownAlignment(MI->getDest(), TD);
125  if (MI->getAlignment() < Alignment) {
126    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
127                                             Alignment, false));
128    return MI;
129  }
130
131  // Extract the length and alignment and fill if they are constant.
132  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
133  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
134  if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
135    return 0;
136  uint64_t Len = LenC->getZExtValue();
137  Alignment = MI->getAlignment();
138
139  // If the length is zero, this is a no-op
140  if (Len == 0) return MI; // memset(d,c,0,a) -> noop
141
142  // memset(s,c,n) -> store s, c (for n=1,2,4,8)
143  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
144    Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
145
146    Value *Dest = MI->getDest();
147    unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
148    Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
149    Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
150
151    // Alignment 0 is identity for alignment 1 for memset, but not store.
152    if (Alignment == 0) Alignment = 1;
153
154    // Extract the fill value and store.
155    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
156    StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
157                                        MI->isVolatile());
158    S->setAlignment(Alignment);
159
160    // Set the size of the copy to 0, it will be deleted on the next iteration.
161    MI->setLength(Constant::getNullValue(LenC->getType()));
162    return MI;
163  }
164
165  return 0;
166}
167
168/// visitCallInst - CallInst simplification.  This mostly only handles folding
169/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
170/// the heavy lifting.
171///
172Instruction *InstCombiner::visitCallInst(CallInst &CI) {
173  if (isFreeCall(&CI))
174    return visitFree(CI);
175  if (extractMallocCall(&CI) || extractCallocCall(&CI))
176    return visitMalloc(CI);
177
178  // If the caller function is nounwind, mark the call as nounwind, even if the
179  // callee isn't.
180  if (CI.getParent()->getParent()->doesNotThrow() &&
181      !CI.doesNotThrow()) {
182    CI.setDoesNotThrow();
183    return &CI;
184  }
185
186  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
187  if (!II) return visitCallSite(&CI);
188
189  // Intrinsics cannot occur in an invoke, so handle them here instead of in
190  // visitCallSite.
191  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
192    bool Changed = false;
193
194    // memmove/cpy/set of zero bytes is a noop.
195    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
196      if (NumBytes->isNullValue())
197        return EraseInstFromFunction(CI);
198
199      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
200        if (CI->getZExtValue() == 1) {
201          // Replace the instruction with just byte operations.  We would
202          // transform other cases to loads/stores, but we don't know if
203          // alignment is sufficient.
204        }
205    }
206
207    // No other transformations apply to volatile transfers.
208    if (MI->isVolatile())
209      return 0;
210
211    // If we have a memmove and the source operation is a constant global,
212    // then the source and dest pointers can't alias, so we can change this
213    // into a call to memcpy.
214    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
215      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
216        if (GVSrc->isConstant()) {
217          Module *M = CI.getParent()->getParent()->getParent();
218          Intrinsic::ID MemCpyID = Intrinsic::memcpy;
219          Type *Tys[3] = { CI.getArgOperand(0)->getType(),
220                           CI.getArgOperand(1)->getType(),
221                           CI.getArgOperand(2)->getType() };
222          CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
223          Changed = true;
224        }
225    }
226
227    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
228      // memmove(x,x,size) -> noop.
229      if (MTI->getSource() == MTI->getDest())
230        return EraseInstFromFunction(CI);
231    }
232
233    // If we can determine a pointer alignment that is bigger than currently
234    // set, update the alignment.
235    if (isa<MemTransferInst>(MI)) {
236      if (Instruction *I = SimplifyMemTransfer(MI))
237        return I;
238    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
239      if (Instruction *I = SimplifyMemSet(MSI))
240        return I;
241    }
242
243    if (Changed) return II;
244  }
245
246  switch (II->getIntrinsicID()) {
247  default: break;
248  case Intrinsic::objectsize: {
249    // We need target data for just about everything so depend on it.
250    if (!TD) return 0;
251
252    Type *ReturnTy = CI.getType();
253    uint64_t DontKnow = II->getArgOperand(1) == Builder->getTrue() ? 0 : -1ULL;
254
255    // Get to the real allocated thing and offset as fast as possible.
256    Value *Op1 = II->getArgOperand(0)->stripPointerCasts();
257
258    uint64_t Offset = 0;
259    uint64_t Size = -1ULL;
260
261    // Try to look through constant GEPs.
262    if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) {
263      if (!GEP->hasAllConstantIndices()) return 0;
264
265      // Get the current byte offset into the thing. Use the original
266      // operand in case we're looking through a bitcast.
267      SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
268      if (!GEP->getPointerOperandType()->isPointerTy())
269        return 0;
270      Offset = TD->getIndexedOffset(GEP->getPointerOperandType(), Ops);
271
272      Op1 = GEP->getPointerOperand()->stripPointerCasts();
273
274      // Make sure we're not a constant offset from an external
275      // global.
276      if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1))
277        if (!GV->hasDefinitiveInitializer()) return 0;
278    }
279
280    // If we've stripped down to a single global variable that we
281    // can know the size of then just return that.
282    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
283      if (GV->hasDefinitiveInitializer()) {
284        Constant *C = GV->getInitializer();
285        Size = TD->getTypeAllocSize(C->getType());
286      } else {
287        // Can't determine size of the GV.
288        Constant *RetVal = ConstantInt::get(ReturnTy, DontKnow);
289        return ReplaceInstUsesWith(CI, RetVal);
290      }
291    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
292      // Get alloca size.
293      if (AI->getAllocatedType()->isSized()) {
294        Size = TD->getTypeAllocSize(AI->getAllocatedType());
295        if (AI->isArrayAllocation()) {
296          const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
297          if (!C) return 0;
298          Size *= C->getZExtValue();
299        }
300      }
301    } else if (CallInst *MI = extractMallocCall(Op1)) {
302      // Get allocation size.
303      Value *Arg = MI->getArgOperand(0);
304      if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg))
305          Size = CI->getZExtValue();
306
307    } else if (CallInst *MI = extractCallocCall(Op1)) {
308      // Get allocation size.
309      Value *Arg1 = MI->getArgOperand(0);
310      Value *Arg2 = MI->getArgOperand(1);
311      if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Arg1))
312        if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Arg2)) {
313          bool overflow;
314          APInt SizeAP = CI1->getValue().umul_ov(CI2->getValue(), overflow);
315          if (!overflow)
316            Size = SizeAP.getZExtValue();
317          else
318            return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, DontKnow));
319        }
320    }
321
322    // Do not return "I don't know" here. Later optimization passes could
323    // make it possible to evaluate objectsize to a constant.
324    if (Size == -1ULL)
325      return 0;
326
327    if (Size < Offset) {
328      // Out of bound reference? Negative index normalized to large
329      // index? Just return "I don't know".
330      return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, DontKnow));
331    }
332    return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, Size-Offset));
333  }
334  case Intrinsic::bswap:
335    // bswap(bswap(x)) -> x
336    if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
337      if (Operand->getIntrinsicID() == Intrinsic::bswap)
338        return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
339
340    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
341    if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
342      if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
343        if (Operand->getIntrinsicID() == Intrinsic::bswap) {
344          unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
345                       TI->getType()->getPrimitiveSizeInBits();
346          Value *CV = ConstantInt::get(Operand->getType(), C);
347          Value *V = Builder->CreateLShr(Operand->getArgOperand(0), CV);
348          return new TruncInst(V, TI->getType());
349        }
350    }
351
352    break;
353  case Intrinsic::powi:
354    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
355      // powi(x, 0) -> 1.0
356      if (Power->isZero())
357        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
358      // powi(x, 1) -> x
359      if (Power->isOne())
360        return ReplaceInstUsesWith(CI, II->getArgOperand(0));
361      // powi(x, -1) -> 1/x
362      if (Power->isAllOnesValue())
363        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
364                                          II->getArgOperand(0));
365    }
366    break;
367  case Intrinsic::cttz: {
368    // If all bits below the first known one are known zero,
369    // this value is constant.
370    IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
371    // FIXME: Try to simplify vectors of integers.
372    if (!IT) break;
373    uint32_t BitWidth = IT->getBitWidth();
374    APInt KnownZero(BitWidth, 0);
375    APInt KnownOne(BitWidth, 0);
376    ComputeMaskedBits(II->getArgOperand(0), KnownZero, KnownOne);
377    unsigned TrailingZeros = KnownOne.countTrailingZeros();
378    APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
379    if ((Mask & KnownZero) == Mask)
380      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
381                                 APInt(BitWidth, TrailingZeros)));
382
383    }
384    break;
385  case Intrinsic::ctlz: {
386    // If all bits above the first known one are known zero,
387    // this value is constant.
388    IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
389    // FIXME: Try to simplify vectors of integers.
390    if (!IT) break;
391    uint32_t BitWidth = IT->getBitWidth();
392    APInt KnownZero(BitWidth, 0);
393    APInt KnownOne(BitWidth, 0);
394    ComputeMaskedBits(II->getArgOperand(0), KnownZero, KnownOne);
395    unsigned LeadingZeros = KnownOne.countLeadingZeros();
396    APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
397    if ((Mask & KnownZero) == Mask)
398      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
399                                 APInt(BitWidth, LeadingZeros)));
400
401    }
402    break;
403  case Intrinsic::uadd_with_overflow: {
404    Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
405    IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
406    uint32_t BitWidth = IT->getBitWidth();
407    APInt LHSKnownZero(BitWidth, 0);
408    APInt LHSKnownOne(BitWidth, 0);
409    ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
410    bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
411    bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
412
413    if (LHSKnownNegative || LHSKnownPositive) {
414      APInt RHSKnownZero(BitWidth, 0);
415      APInt RHSKnownOne(BitWidth, 0);
416      ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
417      bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
418      bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
419      if (LHSKnownNegative && RHSKnownNegative) {
420        // The sign bit is set in both cases: this MUST overflow.
421        // Create a simple add instruction, and insert it into the struct.
422        Value *Add = Builder->CreateAdd(LHS, RHS);
423        Add->takeName(&CI);
424        Constant *V[] = {
425          UndefValue::get(LHS->getType()),
426          ConstantInt::getTrue(II->getContext())
427        };
428        StructType *ST = cast<StructType>(II->getType());
429        Constant *Struct = ConstantStruct::get(ST, V);
430        return InsertValueInst::Create(Struct, Add, 0);
431      }
432
433      if (LHSKnownPositive && RHSKnownPositive) {
434        // The sign bit is clear in both cases: this CANNOT overflow.
435        // Create a simple add instruction, and insert it into the struct.
436        Value *Add = Builder->CreateNUWAdd(LHS, RHS);
437        Add->takeName(&CI);
438        Constant *V[] = {
439          UndefValue::get(LHS->getType()),
440          ConstantInt::getFalse(II->getContext())
441        };
442        StructType *ST = cast<StructType>(II->getType());
443        Constant *Struct = ConstantStruct::get(ST, V);
444        return InsertValueInst::Create(Struct, Add, 0);
445      }
446    }
447  }
448  // FALL THROUGH uadd into sadd
449  case Intrinsic::sadd_with_overflow:
450    // Canonicalize constants into the RHS.
451    if (isa<Constant>(II->getArgOperand(0)) &&
452        !isa<Constant>(II->getArgOperand(1))) {
453      Value *LHS = II->getArgOperand(0);
454      II->setArgOperand(0, II->getArgOperand(1));
455      II->setArgOperand(1, LHS);
456      return II;
457    }
458
459    // X + undef -> undef
460    if (isa<UndefValue>(II->getArgOperand(1)))
461      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
462
463    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
464      // X + 0 -> {X, false}
465      if (RHS->isZero()) {
466        Constant *V[] = {
467          UndefValue::get(II->getArgOperand(0)->getType()),
468          ConstantInt::getFalse(II->getContext())
469        };
470        Constant *Struct =
471          ConstantStruct::get(cast<StructType>(II->getType()), V);
472        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
473      }
474    }
475    break;
476  case Intrinsic::usub_with_overflow:
477  case Intrinsic::ssub_with_overflow:
478    // undef - X -> undef
479    // X - undef -> undef
480    if (isa<UndefValue>(II->getArgOperand(0)) ||
481        isa<UndefValue>(II->getArgOperand(1)))
482      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
483
484    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
485      // X - 0 -> {X, false}
486      if (RHS->isZero()) {
487        Constant *V[] = {
488          UndefValue::get(II->getArgOperand(0)->getType()),
489          ConstantInt::getFalse(II->getContext())
490        };
491        Constant *Struct =
492          ConstantStruct::get(cast<StructType>(II->getType()), V);
493        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
494      }
495    }
496    break;
497  case Intrinsic::umul_with_overflow: {
498    Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
499    unsigned BitWidth = cast<IntegerType>(LHS->getType())->getBitWidth();
500
501    APInt LHSKnownZero(BitWidth, 0);
502    APInt LHSKnownOne(BitWidth, 0);
503    ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
504    APInt RHSKnownZero(BitWidth, 0);
505    APInt RHSKnownOne(BitWidth, 0);
506    ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
507
508    // Get the largest possible values for each operand.
509    APInt LHSMax = ~LHSKnownZero;
510    APInt RHSMax = ~RHSKnownZero;
511
512    // If multiplying the maximum values does not overflow then we can turn
513    // this into a plain NUW mul.
514    bool Overflow;
515    LHSMax.umul_ov(RHSMax, Overflow);
516    if (!Overflow) {
517      Value *Mul = Builder->CreateNUWMul(LHS, RHS, "umul_with_overflow");
518      Constant *V[] = {
519        UndefValue::get(LHS->getType()),
520        Builder->getFalse()
521      };
522      Constant *Struct = ConstantStruct::get(cast<StructType>(II->getType()),V);
523      return InsertValueInst::Create(Struct, Mul, 0);
524    }
525  } // FALL THROUGH
526  case Intrinsic::smul_with_overflow:
527    // Canonicalize constants into the RHS.
528    if (isa<Constant>(II->getArgOperand(0)) &&
529        !isa<Constant>(II->getArgOperand(1))) {
530      Value *LHS = II->getArgOperand(0);
531      II->setArgOperand(0, II->getArgOperand(1));
532      II->setArgOperand(1, LHS);
533      return II;
534    }
535
536    // X * undef -> undef
537    if (isa<UndefValue>(II->getArgOperand(1)))
538      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
539
540    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
541      // X*0 -> {0, false}
542      if (RHSI->isZero())
543        return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
544
545      // X * 1 -> {X, false}
546      if (RHSI->equalsInt(1)) {
547        Constant *V[] = {
548          UndefValue::get(II->getArgOperand(0)->getType()),
549          ConstantInt::getFalse(II->getContext())
550        };
551        Constant *Struct =
552          ConstantStruct::get(cast<StructType>(II->getType()), V);
553        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
554      }
555    }
556    break;
557  case Intrinsic::ppc_altivec_lvx:
558  case Intrinsic::ppc_altivec_lvxl:
559    // Turn PPC lvx -> load if the pointer is known aligned.
560    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
561      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
562                                         PointerType::getUnqual(II->getType()));
563      return new LoadInst(Ptr);
564    }
565    break;
566  case Intrinsic::ppc_altivec_stvx:
567  case Intrinsic::ppc_altivec_stvxl:
568    // Turn stvx -> store if the pointer is known aligned.
569    if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) {
570      Type *OpPtrTy =
571        PointerType::getUnqual(II->getArgOperand(0)->getType());
572      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
573      return new StoreInst(II->getArgOperand(0), Ptr);
574    }
575    break;
576  case Intrinsic::x86_sse_storeu_ps:
577  case Intrinsic::x86_sse2_storeu_pd:
578  case Intrinsic::x86_sse2_storeu_dq:
579    // Turn X86 storeu -> store if the pointer is known aligned.
580    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
581      Type *OpPtrTy =
582        PointerType::getUnqual(II->getArgOperand(1)->getType());
583      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
584      return new StoreInst(II->getArgOperand(1), Ptr);
585    }
586    break;
587
588  case Intrinsic::x86_sse_cvtss2si:
589  case Intrinsic::x86_sse_cvtss2si64:
590  case Intrinsic::x86_sse_cvttss2si:
591  case Intrinsic::x86_sse_cvttss2si64:
592  case Intrinsic::x86_sse2_cvtsd2si:
593  case Intrinsic::x86_sse2_cvtsd2si64:
594  case Intrinsic::x86_sse2_cvttsd2si:
595  case Intrinsic::x86_sse2_cvttsd2si64: {
596    // These intrinsics only demand the 0th element of their input vectors. If
597    // we can simplify the input based on that, do so now.
598    unsigned VWidth =
599      cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
600    APInt DemandedElts(VWidth, 1);
601    APInt UndefElts(VWidth, 0);
602    if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
603                                              DemandedElts, UndefElts)) {
604      II->setArgOperand(0, V);
605      return II;
606    }
607    break;
608  }
609
610
611  case Intrinsic::x86_sse41_pmovsxbw:
612  case Intrinsic::x86_sse41_pmovsxwd:
613  case Intrinsic::x86_sse41_pmovsxdq:
614  case Intrinsic::x86_sse41_pmovzxbw:
615  case Intrinsic::x86_sse41_pmovzxwd:
616  case Intrinsic::x86_sse41_pmovzxdq: {
617    // pmov{s|z}x ignores the upper half of their input vectors.
618    unsigned VWidth =
619      cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
620    unsigned LowHalfElts = VWidth / 2;
621    APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
622    APInt UndefElts(VWidth, 0);
623    if (Value *TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0),
624                                                 InputDemandedElts,
625                                                 UndefElts)) {
626      II->setArgOperand(0, TmpV);
627      return II;
628    }
629    break;
630  }
631
632  case Intrinsic::ppc_altivec_vperm:
633    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
634    if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
635      assert(Mask->getType()->getVectorNumElements() == 16 &&
636             "Bad type for intrinsic!");
637
638      // Check that all of the elements are integer constants or undefs.
639      bool AllEltsOk = true;
640      for (unsigned i = 0; i != 16; ++i) {
641        Constant *Elt = Mask->getAggregateElement(i);
642        if (Elt == 0 ||
643            !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
644          AllEltsOk = false;
645          break;
646        }
647      }
648
649      if (AllEltsOk) {
650        // Cast the input vectors to byte vectors.
651        Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
652                                            Mask->getType());
653        Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
654                                            Mask->getType());
655        Value *Result = UndefValue::get(Op0->getType());
656
657        // Only extract each element once.
658        Value *ExtractedElts[32];
659        memset(ExtractedElts, 0, sizeof(ExtractedElts));
660
661        for (unsigned i = 0; i != 16; ++i) {
662          if (isa<UndefValue>(Mask->getAggregateElement(i)))
663            continue;
664          unsigned Idx =
665            cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
666          Idx &= 31;  // Match the hardware behavior.
667
668          if (ExtractedElts[Idx] == 0) {
669            ExtractedElts[Idx] =
670              Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
671                                            Builder->getInt32(Idx&15));
672          }
673
674          // Insert this value into the result vector.
675          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
676                                                Builder->getInt32(i));
677        }
678        return CastInst::Create(Instruction::BitCast, Result, CI.getType());
679      }
680    }
681    break;
682
683  case Intrinsic::arm_neon_vld1:
684  case Intrinsic::arm_neon_vld2:
685  case Intrinsic::arm_neon_vld3:
686  case Intrinsic::arm_neon_vld4:
687  case Intrinsic::arm_neon_vld2lane:
688  case Intrinsic::arm_neon_vld3lane:
689  case Intrinsic::arm_neon_vld4lane:
690  case Intrinsic::arm_neon_vst1:
691  case Intrinsic::arm_neon_vst2:
692  case Intrinsic::arm_neon_vst3:
693  case Intrinsic::arm_neon_vst4:
694  case Intrinsic::arm_neon_vst2lane:
695  case Intrinsic::arm_neon_vst3lane:
696  case Intrinsic::arm_neon_vst4lane: {
697    unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), TD);
698    unsigned AlignArg = II->getNumArgOperands() - 1;
699    ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
700    if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
701      II->setArgOperand(AlignArg,
702                        ConstantInt::get(Type::getInt32Ty(II->getContext()),
703                                         MemAlign, false));
704      return II;
705    }
706    break;
707  }
708
709  case Intrinsic::arm_neon_vmulls:
710  case Intrinsic::arm_neon_vmullu: {
711    Value *Arg0 = II->getArgOperand(0);
712    Value *Arg1 = II->getArgOperand(1);
713
714    // Handle mul by zero first:
715    if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
716      return ReplaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
717    }
718
719    // Check for constant LHS & RHS - in this case we just simplify.
720    bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu);
721    VectorType *NewVT = cast<VectorType>(II->getType());
722    unsigned NewWidth = NewVT->getElementType()->getIntegerBitWidth();
723    if (ConstantDataVector *CV0 = dyn_cast<ConstantDataVector>(Arg0)) {
724      if (ConstantDataVector *CV1 = dyn_cast<ConstantDataVector>(Arg1)) {
725        VectorType* VT = cast<VectorType>(CV0->getType());
726        SmallVector<Constant*, 4> NewElems;
727        for (unsigned i = 0; i < VT->getNumElements(); ++i) {
728          APInt CV0E =
729            (cast<ConstantInt>(CV0->getAggregateElement(i)))->getValue();
730          CV0E = Zext ? CV0E.zext(NewWidth) : CV0E.sext(NewWidth);
731          APInt CV1E =
732            (cast<ConstantInt>(CV1->getAggregateElement(i)))->getValue();
733          CV1E = Zext ? CV1E.zext(NewWidth) : CV1E.sext(NewWidth);
734          NewElems.push_back(
735            ConstantInt::get(NewVT->getElementType(), CV0E * CV1E));
736        }
737        return ReplaceInstUsesWith(CI, ConstantVector::get(NewElems));
738      }
739
740      // Couldn't simplify - cannonicalize constant to the RHS.
741      std::swap(Arg0, Arg1);
742    }
743
744    // Handle mul by one:
745    if (ConstantDataVector *CV1 = dyn_cast<ConstantDataVector>(Arg1)) {
746      if (ConstantInt *Splat =
747            dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) {
748        if (Splat->isOne()) {
749          if (Zext)
750            return CastInst::CreateZExtOrBitCast(Arg0, II->getType());
751          // else
752          return CastInst::CreateSExtOrBitCast(Arg0, II->getType());
753        }
754      }
755    }
756
757    break;
758  }
759
760  case Intrinsic::stackrestore: {
761    // If the save is right next to the restore, remove the restore.  This can
762    // happen when variable allocas are DCE'd.
763    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
764      if (SS->getIntrinsicID() == Intrinsic::stacksave) {
765        BasicBlock::iterator BI = SS;
766        if (&*++BI == II)
767          return EraseInstFromFunction(CI);
768      }
769    }
770
771    // Scan down this block to see if there is another stack restore in the
772    // same block without an intervening call/alloca.
773    BasicBlock::iterator BI = II;
774    TerminatorInst *TI = II->getParent()->getTerminator();
775    bool CannotRemove = false;
776    for (++BI; &*BI != TI; ++BI) {
777      if (isa<AllocaInst>(BI) || isMalloc(BI)) {
778        CannotRemove = true;
779        break;
780      }
781      if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
782        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
783          // If there is a stackrestore below this one, remove this one.
784          if (II->getIntrinsicID() == Intrinsic::stackrestore)
785            return EraseInstFromFunction(CI);
786          // Otherwise, ignore the intrinsic.
787        } else {
788          // If we found a non-intrinsic call, we can't remove the stack
789          // restore.
790          CannotRemove = true;
791          break;
792        }
793      }
794    }
795
796    // If the stack restore is in a return, resume, or unwind block and if there
797    // are no allocas or calls between the restore and the return, nuke the
798    // restore.
799    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
800      return EraseInstFromFunction(CI);
801    break;
802  }
803  }
804
805  return visitCallSite(II);
806}
807
808// InvokeInst simplification
809//
810Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
811  return visitCallSite(&II);
812}
813
814/// isSafeToEliminateVarargsCast - If this cast does not affect the value
815/// passed through the varargs area, we can eliminate the use of the cast.
816static bool isSafeToEliminateVarargsCast(const CallSite CS,
817                                         const CastInst * const CI,
818                                         const TargetData * const TD,
819                                         const int ix) {
820  if (!CI->isLosslessCast())
821    return false;
822
823  // The size of ByVal arguments is derived from the type, so we
824  // can't change to a type with a different size.  If the size were
825  // passed explicitly we could avoid this check.
826  if (!CS.isByValArgument(ix))
827    return true;
828
829  Type* SrcTy =
830            cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
831  Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
832  if (!SrcTy->isSized() || !DstTy->isSized())
833    return false;
834  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
835    return false;
836  return true;
837}
838
839namespace {
840class InstCombineFortifiedLibCalls : public SimplifyFortifiedLibCalls {
841  InstCombiner *IC;
842protected:
843  void replaceCall(Value *With) {
844    NewInstruction = IC->ReplaceInstUsesWith(*CI, With);
845  }
846  bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
847    if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
848      return true;
849    if (ConstantInt *SizeCI =
850                           dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
851      if (SizeCI->isAllOnesValue())
852        return true;
853      if (isString) {
854        uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
855        // If the length is 0 we don't know how long it is and so we can't
856        // remove the check.
857        if (Len == 0) return false;
858        return SizeCI->getZExtValue() >= Len;
859      }
860      if (ConstantInt *Arg = dyn_cast<ConstantInt>(
861                                                  CI->getArgOperand(SizeArgOp)))
862        return SizeCI->getZExtValue() >= Arg->getZExtValue();
863    }
864    return false;
865  }
866public:
867  InstCombineFortifiedLibCalls(InstCombiner *IC) : IC(IC), NewInstruction(0) { }
868  Instruction *NewInstruction;
869};
870} // end anonymous namespace
871
872// Try to fold some different type of calls here.
873// Currently we're only working with the checking functions, memcpy_chk,
874// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
875// strcat_chk and strncat_chk.
876Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
877  if (CI->getCalledFunction() == 0) return 0;
878
879  InstCombineFortifiedLibCalls Simplifier(this);
880  Simplifier.fold(CI, TD);
881  return Simplifier.NewInstruction;
882}
883
884static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) {
885  // Strip off at most one level of pointer casts, looking for an alloca.  This
886  // is good enough in practice and simpler than handling any number of casts.
887  Value *Underlying = TrampMem->stripPointerCasts();
888  if (Underlying != TrampMem &&
889      (!Underlying->hasOneUse() || *Underlying->use_begin() != TrampMem))
890    return 0;
891  if (!isa<AllocaInst>(Underlying))
892    return 0;
893
894  IntrinsicInst *InitTrampoline = 0;
895  for (Value::use_iterator I = TrampMem->use_begin(), E = TrampMem->use_end();
896       I != E; I++) {
897    IntrinsicInst *II = dyn_cast<IntrinsicInst>(*I);
898    if (!II)
899      return 0;
900    if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
901      if (InitTrampoline)
902        // More than one init_trampoline writes to this value.  Give up.
903        return 0;
904      InitTrampoline = II;
905      continue;
906    }
907    if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
908      // Allow any number of calls to adjust.trampoline.
909      continue;
910    return 0;
911  }
912
913  // No call to init.trampoline found.
914  if (!InitTrampoline)
915    return 0;
916
917  // Check that the alloca is being used in the expected way.
918  if (InitTrampoline->getOperand(0) != TrampMem)
919    return 0;
920
921  return InitTrampoline;
922}
923
924static IntrinsicInst *FindInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
925                                               Value *TrampMem) {
926  // Visit all the previous instructions in the basic block, and try to find a
927  // init.trampoline which has a direct path to the adjust.trampoline.
928  for (BasicBlock::iterator I = AdjustTramp,
929       E = AdjustTramp->getParent()->begin(); I != E; ) {
930    Instruction *Inst = --I;
931    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
932      if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
933          II->getOperand(0) == TrampMem)
934        return II;
935    if (Inst->mayWriteToMemory())
936      return 0;
937  }
938  return 0;
939}
940
941// Given a call to llvm.adjust.trampoline, find and return the corresponding
942// call to llvm.init.trampoline if the call to the trampoline can be optimized
943// to a direct call to a function.  Otherwise return NULL.
944//
945static IntrinsicInst *FindInitTrampoline(Value *Callee) {
946  Callee = Callee->stripPointerCasts();
947  IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
948  if (!AdjustTramp ||
949      AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
950    return 0;
951
952  Value *TrampMem = AdjustTramp->getOperand(0);
953
954  if (IntrinsicInst *IT = FindInitTrampolineFromAlloca(TrampMem))
955    return IT;
956  if (IntrinsicInst *IT = FindInitTrampolineFromBB(AdjustTramp, TrampMem))
957    return IT;
958  return 0;
959}
960
961// visitCallSite - Improvements for call and invoke instructions.
962//
963Instruction *InstCombiner::visitCallSite(CallSite CS) {
964  bool Changed = false;
965
966  // If the callee is a pointer to a function, attempt to move any casts to the
967  // arguments of the call/invoke.
968  Value *Callee = CS.getCalledValue();
969  if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
970    return 0;
971
972  if (Function *CalleeF = dyn_cast<Function>(Callee))
973    // If the call and callee calling conventions don't match, this call must
974    // be unreachable, as the call is undefined.
975    if (CalleeF->getCallingConv() != CS.getCallingConv() &&
976        // Only do this for calls to a function with a body.  A prototype may
977        // not actually end up matching the implementation's calling conv for a
978        // variety of reasons (e.g. it may be written in assembly).
979        !CalleeF->isDeclaration()) {
980      Instruction *OldCall = CS.getInstruction();
981      new StoreInst(ConstantInt::getTrue(Callee->getContext()),
982                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
983                                  OldCall);
984      // If OldCall dues not return void then replaceAllUsesWith undef.
985      // This allows ValueHandlers and custom metadata to adjust itself.
986      if (!OldCall->getType()->isVoidTy())
987        ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
988      if (isa<CallInst>(OldCall))
989        return EraseInstFromFunction(*OldCall);
990
991      // We cannot remove an invoke, because it would change the CFG, just
992      // change the callee to a null pointer.
993      cast<InvokeInst>(OldCall)->setCalledFunction(
994                                    Constant::getNullValue(CalleeF->getType()));
995      return 0;
996    }
997
998  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
999    // This instruction is not reachable, just remove it.  We insert a store to
1000    // undef so that we know that this code is not reachable, despite the fact
1001    // that we can't modify the CFG here.
1002    new StoreInst(ConstantInt::getTrue(Callee->getContext()),
1003               UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
1004                  CS.getInstruction());
1005
1006    // If CS does not return void then replaceAllUsesWith undef.
1007    // This allows ValueHandlers and custom metadata to adjust itself.
1008    if (!CS.getInstruction()->getType()->isVoidTy())
1009      ReplaceInstUsesWith(*CS.getInstruction(),
1010                          UndefValue::get(CS.getInstruction()->getType()));
1011
1012    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1013      // Don't break the CFG, insert a dummy cond branch.
1014      BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
1015                         ConstantInt::getTrue(Callee->getContext()), II);
1016    }
1017    return EraseInstFromFunction(*CS.getInstruction());
1018  }
1019
1020  if (IntrinsicInst *II = FindInitTrampoline(Callee))
1021    return transformCallThroughTrampoline(CS, II);
1022
1023  PointerType *PTy = cast<PointerType>(Callee->getType());
1024  FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1025  if (FTy->isVarArg()) {
1026    int ix = FTy->getNumParams();
1027    // See if we can optimize any arguments passed through the varargs area of
1028    // the call.
1029    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
1030           E = CS.arg_end(); I != E; ++I, ++ix) {
1031      CastInst *CI = dyn_cast<CastInst>(*I);
1032      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
1033        *I = CI->getOperand(0);
1034        Changed = true;
1035      }
1036    }
1037  }
1038
1039  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
1040    // Inline asm calls cannot throw - mark them 'nounwind'.
1041    CS.setDoesNotThrow();
1042    Changed = true;
1043  }
1044
1045  // Try to optimize the call if possible, we require TargetData for most of
1046  // this.  None of these calls are seen as possibly dead so go ahead and
1047  // delete the instruction now.
1048  if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
1049    Instruction *I = tryOptimizeCall(CI, TD);
1050    // If we changed something return the result, etc. Otherwise let
1051    // the fallthrough check.
1052    if (I) return EraseInstFromFunction(*I);
1053  }
1054
1055  return Changed ? CS.getInstruction() : 0;
1056}
1057
1058// transformConstExprCastCall - If the callee is a constexpr cast of a function,
1059// attempt to move the cast to the arguments of the call/invoke.
1060//
1061bool InstCombiner::transformConstExprCastCall(CallSite CS) {
1062  Function *Callee =
1063    dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
1064  if (Callee == 0)
1065    return false;
1066  Instruction *Caller = CS.getInstruction();
1067  const AttrListPtr &CallerPAL = CS.getAttributes();
1068
1069  // Okay, this is a cast from a function to a different type.  Unless doing so
1070  // would cause a type conversion of one of our arguments, change this call to
1071  // be a direct call with arguments casted to the appropriate types.
1072  //
1073  FunctionType *FT = Callee->getFunctionType();
1074  Type *OldRetTy = Caller->getType();
1075  Type *NewRetTy = FT->getReturnType();
1076
1077  if (NewRetTy->isStructTy())
1078    return false; // TODO: Handle multiple return values.
1079
1080  // Check to see if we are changing the return type...
1081  if (OldRetTy != NewRetTy) {
1082    if (Callee->isDeclaration() &&
1083        // Conversion is ok if changing from one pointer type to another or from
1084        // a pointer to an integer of the same size.
1085        !((OldRetTy->isPointerTy() || !TD ||
1086           OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
1087          (NewRetTy->isPointerTy() || !TD ||
1088           NewRetTy == TD->getIntPtrType(Caller->getContext()))))
1089      return false;   // Cannot transform this return value.
1090
1091    if (!Caller->use_empty() &&
1092        // void -> non-void is handled specially
1093        !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
1094      return false;   // Cannot transform this return value.
1095
1096    if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
1097      Attributes RAttrs = CallerPAL.getRetAttributes();
1098      if (RAttrs & Attribute::typeIncompatible(NewRetTy))
1099        return false;   // Attribute not compatible with transformed value.
1100    }
1101
1102    // If the callsite is an invoke instruction, and the return value is used by
1103    // a PHI node in a successor, we cannot change the return type of the call
1104    // because there is no place to put the cast instruction (without breaking
1105    // the critical edge).  Bail out in this case.
1106    if (!Caller->use_empty())
1107      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
1108        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
1109             UI != E; ++UI)
1110          if (PHINode *PN = dyn_cast<PHINode>(*UI))
1111            if (PN->getParent() == II->getNormalDest() ||
1112                PN->getParent() == II->getUnwindDest())
1113              return false;
1114  }
1115
1116  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
1117  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
1118
1119  CallSite::arg_iterator AI = CS.arg_begin();
1120  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
1121    Type *ParamTy = FT->getParamType(i);
1122    Type *ActTy = (*AI)->getType();
1123
1124    if (!CastInst::isCastable(ActTy, ParamTy))
1125      return false;   // Cannot transform this parameter value.
1126
1127    Attributes Attrs = CallerPAL.getParamAttributes(i + 1);
1128    if (Attrs & Attribute::typeIncompatible(ParamTy))
1129      return false;   // Attribute not compatible with transformed value.
1130
1131    // If the parameter is passed as a byval argument, then we have to have a
1132    // sized type and the sized type has to have the same size as the old type.
1133    if (ParamTy != ActTy && (Attrs & Attribute::ByVal)) {
1134      PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
1135      if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
1136        return false;
1137
1138      Type *CurElTy = cast<PointerType>(ActTy)->getElementType();
1139      if (TD->getTypeAllocSize(CurElTy) !=
1140          TD->getTypeAllocSize(ParamPTy->getElementType()))
1141        return false;
1142    }
1143
1144    // Converting from one pointer type to another or between a pointer and an
1145    // integer of the same size is safe even if we do not have a body.
1146    bool isConvertible = ActTy == ParamTy ||
1147      (TD && ((ParamTy->isPointerTy() ||
1148      ParamTy == TD->getIntPtrType(Caller->getContext())) &&
1149              (ActTy->isPointerTy() ||
1150              ActTy == TD->getIntPtrType(Caller->getContext()))));
1151    if (Callee->isDeclaration() && !isConvertible) return false;
1152  }
1153
1154  if (Callee->isDeclaration()) {
1155    // Do not delete arguments unless we have a function body.
1156    if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
1157      return false;
1158
1159    // If the callee is just a declaration, don't change the varargsness of the
1160    // call.  We don't want to introduce a varargs call where one doesn't
1161    // already exist.
1162    PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
1163    if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
1164      return false;
1165
1166    // If both the callee and the cast type are varargs, we still have to make
1167    // sure the number of fixed parameters are the same or we have the same
1168    // ABI issues as if we introduce a varargs call.
1169    if (FT->isVarArg() &&
1170        cast<FunctionType>(APTy->getElementType())->isVarArg() &&
1171        FT->getNumParams() !=
1172        cast<FunctionType>(APTy->getElementType())->getNumParams())
1173      return false;
1174  }
1175
1176  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
1177      !CallerPAL.isEmpty())
1178    // In this case we have more arguments than the new function type, but we
1179    // won't be dropping them.  Check that these extra arguments have attributes
1180    // that are compatible with being a vararg call argument.
1181    for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
1182      if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
1183        break;
1184      Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
1185      if (PAttrs & Attribute::VarArgsIncompatible)
1186        return false;
1187    }
1188
1189
1190  // Okay, we decided that this is a safe thing to do: go ahead and start
1191  // inserting cast instructions as necessary.
1192  std::vector<Value*> Args;
1193  Args.reserve(NumActualArgs);
1194  SmallVector<AttributeWithIndex, 8> attrVec;
1195  attrVec.reserve(NumCommonArgs);
1196
1197  // Get any return attributes.
1198  Attributes RAttrs = CallerPAL.getRetAttributes();
1199
1200  // If the return value is not being used, the type may not be compatible
1201  // with the existing attributes.  Wipe out any problematic attributes.
1202  RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
1203
1204  // Add the new return attributes.
1205  if (RAttrs)
1206    attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
1207
1208  AI = CS.arg_begin();
1209  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
1210    Type *ParamTy = FT->getParamType(i);
1211    if ((*AI)->getType() == ParamTy) {
1212      Args.push_back(*AI);
1213    } else {
1214      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
1215          false, ParamTy, false);
1216      Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy));
1217    }
1218
1219    // Add any parameter attributes.
1220    if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1221      attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1222  }
1223
1224  // If the function takes more arguments than the call was taking, add them
1225  // now.
1226  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1227    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1228
1229  // If we are removing arguments to the function, emit an obnoxious warning.
1230  if (FT->getNumParams() < NumActualArgs) {
1231    if (!FT->isVarArg()) {
1232      errs() << "WARNING: While resolving call to function '"
1233             << Callee->getName() << "' arguments were dropped!\n";
1234    } else {
1235      // Add all of the arguments in their promoted form to the arg list.
1236      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1237        Type *PTy = getPromotedType((*AI)->getType());
1238        if (PTy != (*AI)->getType()) {
1239          // Must promote to pass through va_arg area!
1240          Instruction::CastOps opcode =
1241            CastInst::getCastOpcode(*AI, false, PTy, false);
1242          Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
1243        } else {
1244          Args.push_back(*AI);
1245        }
1246
1247        // Add any parameter attributes.
1248        if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1249          attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1250      }
1251    }
1252  }
1253
1254  if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
1255    attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
1256
1257  if (NewRetTy->isVoidTy())
1258    Caller->setName("");   // Void type should not have a name.
1259
1260  const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
1261                                                     attrVec.end());
1262
1263  Instruction *NC;
1264  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1265    NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
1266                               II->getUnwindDest(), Args);
1267    NC->takeName(II);
1268    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1269    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1270  } else {
1271    CallInst *CI = cast<CallInst>(Caller);
1272    NC = Builder->CreateCall(Callee, Args);
1273    NC->takeName(CI);
1274    if (CI->isTailCall())
1275      cast<CallInst>(NC)->setTailCall();
1276    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1277    cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1278  }
1279
1280  // Insert a cast of the return type as necessary.
1281  Value *NV = NC;
1282  if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1283    if (!NV->getType()->isVoidTy()) {
1284      Instruction::CastOps opcode =
1285        CastInst::getCastOpcode(NC, false, OldRetTy, false);
1286      NV = NC = CastInst::Create(opcode, NC, OldRetTy);
1287      NC->setDebugLoc(Caller->getDebugLoc());
1288
1289      // If this is an invoke instruction, we should insert it after the first
1290      // non-phi, instruction in the normal successor block.
1291      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1292        BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
1293        InsertNewInstBefore(NC, *I);
1294      } else {
1295        // Otherwise, it's a call, just insert cast right after the call.
1296        InsertNewInstBefore(NC, *Caller);
1297      }
1298      Worklist.AddUsersToWorkList(*Caller);
1299    } else {
1300      NV = UndefValue::get(Caller->getType());
1301    }
1302  }
1303
1304  if (!Caller->use_empty())
1305    ReplaceInstUsesWith(*Caller, NV);
1306
1307  EraseInstFromFunction(*Caller);
1308  return true;
1309}
1310
1311// transformCallThroughTrampoline - Turn a call to a function created by
1312// init_trampoline / adjust_trampoline intrinsic pair into a direct call to the
1313// underlying function.
1314//
1315Instruction *
1316InstCombiner::transformCallThroughTrampoline(CallSite CS,
1317                                             IntrinsicInst *Tramp) {
1318  Value *Callee = CS.getCalledValue();
1319  PointerType *PTy = cast<PointerType>(Callee->getType());
1320  FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1321  const AttrListPtr &Attrs = CS.getAttributes();
1322
1323  // If the call already has the 'nest' attribute somewhere then give up -
1324  // otherwise 'nest' would occur twice after splicing in the chain.
1325  if (Attrs.hasAttrSomewhere(Attribute::Nest))
1326    return 0;
1327
1328  assert(Tramp &&
1329         "transformCallThroughTrampoline called with incorrect CallSite.");
1330
1331  Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
1332  PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1333  FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1334
1335  const AttrListPtr &NestAttrs = NestF->getAttributes();
1336  if (!NestAttrs.isEmpty()) {
1337    unsigned NestIdx = 1;
1338    Type *NestTy = 0;
1339    Attributes NestAttr = Attribute::None;
1340
1341    // Look for a parameter marked with the 'nest' attribute.
1342    for (FunctionType::param_iterator I = NestFTy->param_begin(),
1343         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1344      if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1345        // Record the parameter type and any other attributes.
1346        NestTy = *I;
1347        NestAttr = NestAttrs.getParamAttributes(NestIdx);
1348        break;
1349      }
1350
1351    if (NestTy) {
1352      Instruction *Caller = CS.getInstruction();
1353      std::vector<Value*> NewArgs;
1354      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1355
1356      SmallVector<AttributeWithIndex, 8> NewAttrs;
1357      NewAttrs.reserve(Attrs.getNumSlots() + 1);
1358
1359      // Insert the nest argument into the call argument list, which may
1360      // mean appending it.  Likewise for attributes.
1361
1362      // Add any result attributes.
1363      if (Attributes Attr = Attrs.getRetAttributes())
1364        NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1365
1366      {
1367        unsigned Idx = 1;
1368        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1369        do {
1370          if (Idx == NestIdx) {
1371            // Add the chain argument and attributes.
1372            Value *NestVal = Tramp->getArgOperand(2);
1373            if (NestVal->getType() != NestTy)
1374              NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
1375            NewArgs.push_back(NestVal);
1376            NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1377          }
1378
1379          if (I == E)
1380            break;
1381
1382          // Add the original argument and attributes.
1383          NewArgs.push_back(*I);
1384          if (Attributes Attr = Attrs.getParamAttributes(Idx))
1385            NewAttrs.push_back
1386              (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1387
1388          ++Idx, ++I;
1389        } while (1);
1390      }
1391
1392      // Add any function attributes.
1393      if (Attributes Attr = Attrs.getFnAttributes())
1394        NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1395
1396      // The trampoline may have been bitcast to a bogus type (FTy).
1397      // Handle this by synthesizing a new function type, equal to FTy
1398      // with the chain parameter inserted.
1399
1400      std::vector<Type*> NewTypes;
1401      NewTypes.reserve(FTy->getNumParams()+1);
1402
1403      // Insert the chain's type into the list of parameter types, which may
1404      // mean appending it.
1405      {
1406        unsigned Idx = 1;
1407        FunctionType::param_iterator I = FTy->param_begin(),
1408          E = FTy->param_end();
1409
1410        do {
1411          if (Idx == NestIdx)
1412            // Add the chain's type.
1413            NewTypes.push_back(NestTy);
1414
1415          if (I == E)
1416            break;
1417
1418          // Add the original type.
1419          NewTypes.push_back(*I);
1420
1421          ++Idx, ++I;
1422        } while (1);
1423      }
1424
1425      // Replace the trampoline call with a direct call.  Let the generic
1426      // code sort out any function type mismatches.
1427      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1428                                                FTy->isVarArg());
1429      Constant *NewCallee =
1430        NestF->getType() == PointerType::getUnqual(NewFTy) ?
1431        NestF : ConstantExpr::getBitCast(NestF,
1432                                         PointerType::getUnqual(NewFTy));
1433      const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
1434                                                   NewAttrs.end());
1435
1436      Instruction *NewCaller;
1437      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1438        NewCaller = InvokeInst::Create(NewCallee,
1439                                       II->getNormalDest(), II->getUnwindDest(),
1440                                       NewArgs);
1441        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1442        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1443      } else {
1444        NewCaller = CallInst::Create(NewCallee, NewArgs);
1445        if (cast<CallInst>(Caller)->isTailCall())
1446          cast<CallInst>(NewCaller)->setTailCall();
1447        cast<CallInst>(NewCaller)->
1448          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1449        cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1450      }
1451
1452      return NewCaller;
1453    }
1454  }
1455
1456  // Replace the trampoline call with a direct call.  Since there is no 'nest'
1457  // parameter, there is no need to adjust the argument list.  Let the generic
1458  // code sort out any function type mismatches.
1459  Constant *NewCallee =
1460    NestF->getType() == PTy ? NestF :
1461                              ConstantExpr::getBitCast(NestF, PTy);
1462  CS.setCalledFunction(NewCallee);
1463  return CS.getInstruction();
1464}
1465