InstCombineCalls.cpp revision ea4b6dfd8fc506d127e08770d21a81fe269177b2
1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Support/CallSite.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19using namespace llvm;
20
21/// getPromotedType - Return the specified type promoted as it would be to pass
22/// though a va_arg area.
23static const Type *getPromotedType(const Type *Ty) {
24  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
25    if (ITy->getBitWidth() < 32)
26      return Type::getInt32Ty(Ty->getContext());
27  }
28  return Ty;
29}
30
31/// EnforceKnownAlignment - If the specified pointer points to an object that
32/// we control, modify the object's alignment to PrefAlign. This isn't
33/// often possible though. If alignment is important, a more reliable approach
34/// is to simply align all global variables and allocation instructions to
35/// their preferred alignment from the beginning.
36///
37static unsigned EnforceKnownAlignment(Value *V,
38                                      unsigned Align, unsigned PrefAlign) {
39
40  User *U = dyn_cast<User>(V);
41  if (!U) return Align;
42
43  switch (Operator::getOpcode(U)) {
44  default: break;
45  case Instruction::BitCast:
46    return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
47  case Instruction::GetElementPtr: {
48    // If all indexes are zero, it is just the alignment of the base pointer.
49    bool AllZeroOperands = true;
50    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
51      if (!isa<Constant>(*i) ||
52          !cast<Constant>(*i)->isNullValue()) {
53        AllZeroOperands = false;
54        break;
55      }
56
57    if (AllZeroOperands) {
58      // Treat this like a bitcast.
59      return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
60    }
61    break;
62  }
63  }
64
65  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
66    // If there is a large requested alignment and we can, bump up the alignment
67    // of the global.
68    if (!GV->isDeclaration()) {
69      if (GV->getAlignment() >= PrefAlign)
70        Align = GV->getAlignment();
71      else {
72        GV->setAlignment(PrefAlign);
73        Align = PrefAlign;
74      }
75    }
76  } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
77    // If there is a requested alignment and if this is an alloca, round up.
78    if (AI->getAlignment() >= PrefAlign)
79      Align = AI->getAlignment();
80    else {
81      AI->setAlignment(PrefAlign);
82      Align = PrefAlign;
83    }
84  }
85
86  return Align;
87}
88
89/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
90/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
91/// and it is more than the alignment of the ultimate object, see if we can
92/// increase the alignment of the ultimate object, making this check succeed.
93unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
94                                                  unsigned PrefAlign) {
95  unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
96                      sizeof(PrefAlign) * CHAR_BIT;
97  APInt Mask = APInt::getAllOnesValue(BitWidth);
98  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
99  ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
100  unsigned TrailZ = KnownZero.countTrailingOnes();
101  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
102
103  if (PrefAlign > Align)
104    Align = EnforceKnownAlignment(V, Align, PrefAlign);
105
106    // We don't need to make any adjustment.
107  return Align;
108}
109
110Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
111  unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
112  unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
113  unsigned MinAlign = std::min(DstAlign, SrcAlign);
114  unsigned CopyAlign = MI->getAlignment();
115
116  if (CopyAlign < MinAlign) {
117    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
118                                             MinAlign, false));
119    return MI;
120  }
121
122  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
123  // load/store.
124  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
125  if (MemOpLength == 0) return 0;
126
127  // Source and destination pointer types are always "i8*" for intrinsic.  See
128  // if the size is something we can handle with a single primitive load/store.
129  // A single load+store correctly handles overlapping memory in the memmove
130  // case.
131  unsigned Size = MemOpLength->getZExtValue();
132  if (Size == 0) return MI;  // Delete this mem transfer.
133
134  if (Size > 8 || (Size&(Size-1)))
135    return 0;  // If not 1/2/4/8 bytes, exit.
136
137  // Use an integer load+store unless we can find something better.
138  Type *NewPtrTy =
139            PointerType::getUnqual(IntegerType::get(MI->getContext(), Size<<3));
140
141  // Memcpy forces the use of i8* for the source and destination.  That means
142  // that if you're using memcpy to move one double around, you'll get a cast
143  // from double* to i8*.  We'd much rather use a double load+store rather than
144  // an i64 load+store, here because this improves the odds that the source or
145  // dest address will be promotable.  See if we can find a better type than the
146  // integer datatype.
147  Value *StrippedDest = MI->getOperand(1)->stripPointerCasts();
148  if (StrippedDest != MI->getOperand(1)) {
149    const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
150                                    ->getElementType();
151    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
152      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
153      // down through these levels if so.
154      while (!SrcETy->isSingleValueType()) {
155        if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
156          if (STy->getNumElements() == 1)
157            SrcETy = STy->getElementType(0);
158          else
159            break;
160        } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
161          if (ATy->getNumElements() == 1)
162            SrcETy = ATy->getElementType();
163          else
164            break;
165        } else
166          break;
167      }
168
169      if (SrcETy->isSingleValueType())
170        NewPtrTy = PointerType::getUnqual(SrcETy);
171    }
172  }
173
174
175  // If the memcpy/memmove provides better alignment info than we can
176  // infer, use it.
177  SrcAlign = std::max(SrcAlign, CopyAlign);
178  DstAlign = std::max(DstAlign, CopyAlign);
179
180  Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
181  Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
182  Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
183  InsertNewInstBefore(L, *MI);
184  InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
185
186  // Set the size of the copy to 0, it will be deleted on the next iteration.
187  MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
188  return MI;
189}
190
191Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
192  unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
193  if (MI->getAlignment() < Alignment) {
194    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
195                                             Alignment, false));
196    return MI;
197  }
198
199  // Extract the length and alignment and fill if they are constant.
200  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
201  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
202  if (!LenC || !FillC || !FillC->getType()->isInteger(8))
203    return 0;
204  uint64_t Len = LenC->getZExtValue();
205  Alignment = MI->getAlignment();
206
207  // If the length is zero, this is a no-op
208  if (Len == 0) return MI; // memset(d,c,0,a) -> noop
209
210  // memset(s,c,n) -> store s, c (for n=1,2,4,8)
211  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
212    const Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
213
214    Value *Dest = MI->getDest();
215    Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
216
217    // Alignment 0 is identity for alignment 1 for memset, but not store.
218    if (Alignment == 0) Alignment = 1;
219
220    // Extract the fill value and store.
221    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
222    InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
223                                      Dest, false, Alignment), *MI);
224
225    // Set the size of the copy to 0, it will be deleted on the next iteration.
226    MI->setLength(Constant::getNullValue(LenC->getType()));
227    return MI;
228  }
229
230  return 0;
231}
232
233
234/// visitCallInst - CallInst simplification.  This mostly only handles folding
235/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
236/// the heavy lifting.
237///
238Instruction *InstCombiner::visitCallInst(CallInst &CI) {
239  if (isFreeCall(&CI))
240    return visitFree(CI);
241
242  // If the caller function is nounwind, mark the call as nounwind, even if the
243  // callee isn't.
244  if (CI.getParent()->getParent()->doesNotThrow() &&
245      !CI.doesNotThrow()) {
246    CI.setDoesNotThrow();
247    return &CI;
248  }
249
250  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
251  if (!II) return visitCallSite(&CI);
252
253  // Intrinsics cannot occur in an invoke, so handle them here instead of in
254  // visitCallSite.
255  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
256    bool Changed = false;
257
258    // memmove/cpy/set of zero bytes is a noop.
259    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
260      if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
261
262      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
263        if (CI->getZExtValue() == 1) {
264          // Replace the instruction with just byte operations.  We would
265          // transform other cases to loads/stores, but we don't know if
266          // alignment is sufficient.
267        }
268    }
269
270    // If we have a memmove and the source operation is a constant global,
271    // then the source and dest pointers can't alias, so we can change this
272    // into a call to memcpy.
273    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
274      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
275        if (GVSrc->isConstant()) {
276          Module *M = CI.getParent()->getParent()->getParent();
277          Intrinsic::ID MemCpyID = Intrinsic::memcpy;
278          const Type *Tys[1];
279          Tys[0] = CI.getOperand(3)->getType();
280          CI.setOperand(0,
281                        Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
282          Changed = true;
283        }
284    }
285
286    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
287      // memmove(x,x,size) -> noop.
288      if (MTI->getSource() == MTI->getDest())
289        return EraseInstFromFunction(CI);
290    }
291
292    // If we can determine a pointer alignment that is bigger than currently
293    // set, update the alignment.
294    if (isa<MemTransferInst>(MI)) {
295      if (Instruction *I = SimplifyMemTransfer(MI))
296        return I;
297    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
298      if (Instruction *I = SimplifyMemSet(MSI))
299        return I;
300    }
301
302    if (Changed) return II;
303  }
304
305  switch (II->getIntrinsicID()) {
306  default: break;
307  case Intrinsic::bswap:
308    // bswap(bswap(x)) -> x
309    if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
310      if (Operand->getIntrinsicID() == Intrinsic::bswap)
311        return ReplaceInstUsesWith(CI, Operand->getOperand(1));
312
313    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
314    if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) {
315      if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
316        if (Operand->getIntrinsicID() == Intrinsic::bswap) {
317          unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
318                       TI->getType()->getPrimitiveSizeInBits();
319          Value *CV = ConstantInt::get(Operand->getType(), C);
320          Value *V = Builder->CreateLShr(Operand->getOperand(1), CV);
321          return new TruncInst(V, TI->getType());
322        }
323    }
324
325    break;
326  case Intrinsic::powi:
327    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) {
328      // powi(x, 0) -> 1.0
329      if (Power->isZero())
330        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
331      // powi(x, 1) -> x
332      if (Power->isOne())
333        return ReplaceInstUsesWith(CI, II->getOperand(1));
334      // powi(x, -1) -> 1/x
335      if (Power->isAllOnesValue())
336        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
337                                          II->getOperand(1));
338    }
339    break;
340  case Intrinsic::cttz: {
341    // If all bits below the first known one are known zero,
342    // this value is constant.
343    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
344    uint32_t BitWidth = IT->getBitWidth();
345    APInt KnownZero(BitWidth, 0);
346    APInt KnownOne(BitWidth, 0);
347    ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
348                      KnownZero, KnownOne);
349    unsigned TrailingZeros = KnownOne.countTrailingZeros();
350    APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
351    if ((Mask & KnownZero) == Mask)
352      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
353                                 APInt(BitWidth, TrailingZeros)));
354
355    }
356    break;
357  case Intrinsic::ctlz: {
358    // If all bits above the first known one are known zero,
359    // this value is constant.
360    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
361    uint32_t BitWidth = IT->getBitWidth();
362    APInt KnownZero(BitWidth, 0);
363    APInt KnownOne(BitWidth, 0);
364    ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
365                      KnownZero, KnownOne);
366    unsigned LeadingZeros = KnownOne.countLeadingZeros();
367    APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
368    if ((Mask & KnownZero) == Mask)
369      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
370                                 APInt(BitWidth, LeadingZeros)));
371
372    }
373    break;
374  case Intrinsic::uadd_with_overflow: {
375    Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
376    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
377    uint32_t BitWidth = IT->getBitWidth();
378    APInt Mask = APInt::getSignBit(BitWidth);
379    APInt LHSKnownZero(BitWidth, 0);
380    APInt LHSKnownOne(BitWidth, 0);
381    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
382    bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
383    bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
384
385    if (LHSKnownNegative || LHSKnownPositive) {
386      APInt RHSKnownZero(BitWidth, 0);
387      APInt RHSKnownOne(BitWidth, 0);
388      ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
389      bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
390      bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
391      if (LHSKnownNegative && RHSKnownNegative) {
392        // The sign bit is set in both cases: this MUST overflow.
393        // Create a simple add instruction, and insert it into the struct.
394        Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
395        Worklist.Add(Add);
396        Constant *V[] = {
397          UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
398        };
399        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
400        return InsertValueInst::Create(Struct, Add, 0);
401      }
402
403      if (LHSKnownPositive && RHSKnownPositive) {
404        // The sign bit is clear in both cases: this CANNOT overflow.
405        // Create a simple add instruction, and insert it into the struct.
406        Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
407        Worklist.Add(Add);
408        Constant *V[] = {
409          UndefValue::get(LHS->getType()),
410          ConstantInt::getFalse(II->getContext())
411        };
412        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
413        return InsertValueInst::Create(Struct, Add, 0);
414      }
415    }
416  }
417  // FALL THROUGH uadd into sadd
418  case Intrinsic::sadd_with_overflow:
419    // Canonicalize constants into the RHS.
420    if (isa<Constant>(II->getOperand(1)) &&
421        !isa<Constant>(II->getOperand(2))) {
422      Value *LHS = II->getOperand(1);
423      II->setOperand(1, II->getOperand(2));
424      II->setOperand(2, LHS);
425      return II;
426    }
427
428    // X + undef -> undef
429    if (isa<UndefValue>(II->getOperand(2)))
430      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
431
432    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
433      // X + 0 -> {X, false}
434      if (RHS->isZero()) {
435        Constant *V[] = {
436          UndefValue::get(II->getOperand(0)->getType()),
437          ConstantInt::getFalse(II->getContext())
438        };
439        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
440        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
441      }
442    }
443    break;
444  case Intrinsic::usub_with_overflow:
445  case Intrinsic::ssub_with_overflow:
446    // undef - X -> undef
447    // X - undef -> undef
448    if (isa<UndefValue>(II->getOperand(1)) ||
449        isa<UndefValue>(II->getOperand(2)))
450      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
451
452    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
453      // X - 0 -> {X, false}
454      if (RHS->isZero()) {
455        Constant *V[] = {
456          UndefValue::get(II->getOperand(1)->getType()),
457          ConstantInt::getFalse(II->getContext())
458        };
459        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
460        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
461      }
462    }
463    break;
464  case Intrinsic::umul_with_overflow:
465  case Intrinsic::smul_with_overflow:
466    // Canonicalize constants into the RHS.
467    if (isa<Constant>(II->getOperand(1)) &&
468        !isa<Constant>(II->getOperand(2))) {
469      Value *LHS = II->getOperand(1);
470      II->setOperand(1, II->getOperand(2));
471      II->setOperand(2, LHS);
472      return II;
473    }
474
475    // X * undef -> undef
476    if (isa<UndefValue>(II->getOperand(2)))
477      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
478
479    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
480      // X*0 -> {0, false}
481      if (RHSI->isZero())
482        return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
483
484      // X * 1 -> {X, false}
485      if (RHSI->equalsInt(1)) {
486        Constant *V[] = {
487          UndefValue::get(II->getOperand(1)->getType()),
488          ConstantInt::getFalse(II->getContext())
489        };
490        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
491        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
492      }
493    }
494    break;
495  case Intrinsic::ppc_altivec_lvx:
496  case Intrinsic::ppc_altivec_lvxl:
497  case Intrinsic::x86_sse_loadu_ps:
498  case Intrinsic::x86_sse2_loadu_pd:
499  case Intrinsic::x86_sse2_loadu_dq:
500    // Turn PPC lvx     -> load if the pointer is known aligned.
501    // Turn X86 loadups -> load if the pointer is known aligned.
502    if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
503      Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
504                                         PointerType::getUnqual(II->getType()));
505      return new LoadInst(Ptr);
506    }
507    break;
508  case Intrinsic::ppc_altivec_stvx:
509  case Intrinsic::ppc_altivec_stvxl:
510    // Turn stvx -> store if the pointer is known aligned.
511    if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
512      const Type *OpPtrTy =
513        PointerType::getUnqual(II->getOperand(1)->getType());
514      Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
515      return new StoreInst(II->getOperand(1), Ptr);
516    }
517    break;
518  case Intrinsic::x86_sse_storeu_ps:
519  case Intrinsic::x86_sse2_storeu_pd:
520  case Intrinsic::x86_sse2_storeu_dq:
521    // Turn X86 storeu -> store if the pointer is known aligned.
522    if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
523      const Type *OpPtrTy =
524        PointerType::getUnqual(II->getOperand(2)->getType());
525      Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
526      return new StoreInst(II->getOperand(2), Ptr);
527    }
528    break;
529
530  case Intrinsic::x86_sse_cvttss2si: {
531    // These intrinsics only demands the 0th element of its input vector.  If
532    // we can simplify the input based on that, do so now.
533    unsigned VWidth =
534      cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
535    APInt DemandedElts(VWidth, 1);
536    APInt UndefElts(VWidth, 0);
537    if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
538                                              UndefElts)) {
539      II->setOperand(1, V);
540      return II;
541    }
542    break;
543  }
544
545  case Intrinsic::ppc_altivec_vperm:
546    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
547    if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
548      assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
549
550      // Check that all of the elements are integer constants or undefs.
551      bool AllEltsOk = true;
552      for (unsigned i = 0; i != 16; ++i) {
553        if (!isa<ConstantInt>(Mask->getOperand(i)) &&
554            !isa<UndefValue>(Mask->getOperand(i))) {
555          AllEltsOk = false;
556          break;
557        }
558      }
559
560      if (AllEltsOk) {
561        // Cast the input vectors to byte vectors.
562        Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
563        Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
564        Value *Result = UndefValue::get(Op0->getType());
565
566        // Only extract each element once.
567        Value *ExtractedElts[32];
568        memset(ExtractedElts, 0, sizeof(ExtractedElts));
569
570        for (unsigned i = 0; i != 16; ++i) {
571          if (isa<UndefValue>(Mask->getOperand(i)))
572            continue;
573          unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
574          Idx &= 31;  // Match the hardware behavior.
575
576          if (ExtractedElts[Idx] == 0) {
577            ExtractedElts[Idx] =
578              Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
579                  ConstantInt::get(Type::getInt32Ty(II->getContext()),
580                                   Idx&15, false), "tmp");
581          }
582
583          // Insert this value into the result vector.
584          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
585                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
586                                          i, false), "tmp");
587        }
588        return CastInst::Create(Instruction::BitCast, Result, CI.getType());
589      }
590    }
591    break;
592
593  case Intrinsic::stackrestore: {
594    // If the save is right next to the restore, remove the restore.  This can
595    // happen when variable allocas are DCE'd.
596    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
597      if (SS->getIntrinsicID() == Intrinsic::stacksave) {
598        BasicBlock::iterator BI = SS;
599        if (&*++BI == II)
600          return EraseInstFromFunction(CI);
601      }
602    }
603
604    // Scan down this block to see if there is another stack restore in the
605    // same block without an intervening call/alloca.
606    BasicBlock::iterator BI = II;
607    TerminatorInst *TI = II->getParent()->getTerminator();
608    bool CannotRemove = false;
609    for (++BI; &*BI != TI; ++BI) {
610      if (isa<AllocaInst>(BI) || isMalloc(BI)) {
611        CannotRemove = true;
612        break;
613      }
614      if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
615        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
616          // If there is a stackrestore below this one, remove this one.
617          if (II->getIntrinsicID() == Intrinsic::stackrestore)
618            return EraseInstFromFunction(CI);
619          // Otherwise, ignore the intrinsic.
620        } else {
621          // If we found a non-intrinsic call, we can't remove the stack
622          // restore.
623          CannotRemove = true;
624          break;
625        }
626      }
627    }
628
629    // If the stack restore is in a return/unwind block and if there are no
630    // allocas or calls between the restore and the return, nuke the restore.
631    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
632      return EraseInstFromFunction(CI);
633    break;
634  }
635  case Intrinsic::objectsize: {
636    const Type *ReturnTy = CI.getType();
637    Value *Op1 = II->getOperand(1);
638
639    // If we've got a GEP we're going to do some calculations
640    size_t GEPindex = 0;
641
642    // Strip any casts we see and continue processing.
643    Op1 = Op1->stripPointerCasts();
644
645    // Make sure we can reliably know the size.
646    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1))
647      if (!GV->hasDefinitiveInitializer()) break;
648
649    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op1)) {
650      // If this isn't a GEP give up.
651      if (CE->getOpcode() != Instruction::GetElementPtr) break;
652
653      // If this isn't guaranteed to be inbounds, give up.
654      bool OOB = false;
655      GEPOperator *GEPO = cast<GEPOperator>(Op1);
656      if (!GEPO->isInBounds()) OOB = true;
657
658      for (int i = GEPO->getNumIndices() - 1; i > 0; i--) {
659        if (Constant *C = dyn_cast<Constant>(GEPO->getOperand(i)))
660          if (C->isNullValue())
661            continue;
662
663          OOB = true;
664      }
665
666      // If we're guaranteed to be out of bounds just return that there's
667      // no room left.
668      if (OOB) return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, 0));
669
670      // Tell the later calculation that we have an offset and what
671      // it is.
672      Op1 = CE->getOperand(0);
673      ConstantInt *Const =
674               cast<ConstantInt>(CE->getOperand(CE->getNumOperands() - 1));
675      GEPindex = Const->getZExtValue();
676    }
677
678    // This may be a pointer to an array.  If we have an index from earlier
679    // use that too.
680    if (const PointerType *PT = dyn_cast<PointerType>(Op1->getType())) {
681      if (const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType())) {
682
683        // Deal with multi-dimensional arrays
684        const ArrayType *SAT = AT;
685        while ((AT = dyn_cast<ArrayType>(AT->getElementType())))
686          SAT = AT;
687
688        // We return the remaining bytes, so grab the size of an element
689        // in bytes and the number of elements.
690        if (!SAT->isSized() || !TD) break;
691
692        size_t sizeofElem = TD->getTypeAllocSize(SAT->getElementType());
693        size_t numElems = SAT->getNumElements();
694        size_t remSize = (numElems - GEPindex) * sizeofElem;
695        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, remSize));
696      }
697    }
698
699    // TODO: Add more types here.
700    // TODO: Check for type isSized() here as well.
701  }
702  }
703
704  return visitCallSite(II);
705}
706
707// InvokeInst simplification
708//
709Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
710  return visitCallSite(&II);
711}
712
713/// isSafeToEliminateVarargsCast - If this cast does not affect the value
714/// passed through the varargs area, we can eliminate the use of the cast.
715static bool isSafeToEliminateVarargsCast(const CallSite CS,
716                                         const CastInst * const CI,
717                                         const TargetData * const TD,
718                                         const int ix) {
719  if (!CI->isLosslessCast())
720    return false;
721
722  // The size of ByVal arguments is derived from the type, so we
723  // can't change to a type with a different size.  If the size were
724  // passed explicitly we could avoid this check.
725  if (!CS.paramHasAttr(ix, Attribute::ByVal))
726    return true;
727
728  const Type* SrcTy =
729            cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
730  const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
731  if (!SrcTy->isSized() || !DstTy->isSized())
732    return false;
733  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
734    return false;
735  return true;
736}
737
738// visitCallSite - Improvements for call and invoke instructions.
739//
740Instruction *InstCombiner::visitCallSite(CallSite CS) {
741  bool Changed = false;
742
743  // If the callee is a constexpr cast of a function, attempt to move the cast
744  // to the arguments of the call/invoke.
745  if (transformConstExprCastCall(CS)) return 0;
746
747  Value *Callee = CS.getCalledValue();
748
749  if (Function *CalleeF = dyn_cast<Function>(Callee))
750    // If the call and callee calling conventions don't match, this call must
751    // be unreachable, as the call is undefined.
752    if (CalleeF->getCallingConv() != CS.getCallingConv() &&
753        // Only do this for calls to a function with a body.  A prototype may
754        // not actually end up matching the implementation's calling conv for a
755        // variety of reasons (e.g. it may be written in assembly).
756        !CalleeF->isDeclaration()) {
757      Instruction *OldCall = CS.getInstruction();
758      new StoreInst(ConstantInt::getTrue(Callee->getContext()),
759                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
760                                  OldCall);
761      // If OldCall dues not return void then replaceAllUsesWith undef.
762      // This allows ValueHandlers and custom metadata to adjust itself.
763      if (!OldCall->getType()->isVoidTy())
764        OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
765      if (isa<CallInst>(OldCall))
766        return EraseInstFromFunction(*OldCall);
767
768      // We cannot remove an invoke, because it would change the CFG, just
769      // change the callee to a null pointer.
770      cast<InvokeInst>(OldCall)->setOperand(0,
771                                    Constant::getNullValue(CalleeF->getType()));
772      return 0;
773    }
774
775  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
776    // This instruction is not reachable, just remove it.  We insert a store to
777    // undef so that we know that this code is not reachable, despite the fact
778    // that we can't modify the CFG here.
779    new StoreInst(ConstantInt::getTrue(Callee->getContext()),
780               UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
781                  CS.getInstruction());
782
783    // If CS dues not return void then replaceAllUsesWith undef.
784    // This allows ValueHandlers and custom metadata to adjust itself.
785    if (!CS.getInstruction()->getType()->isVoidTy())
786      CS.getInstruction()->
787        replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
788
789    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
790      // Don't break the CFG, insert a dummy cond branch.
791      BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
792                         ConstantInt::getTrue(Callee->getContext()), II);
793    }
794    return EraseInstFromFunction(*CS.getInstruction());
795  }
796
797  if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
798    if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
799      if (In->getIntrinsicID() == Intrinsic::init_trampoline)
800        return transformCallThroughTrampoline(CS);
801
802  const PointerType *PTy = cast<PointerType>(Callee->getType());
803  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
804  if (FTy->isVarArg()) {
805    int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
806    // See if we can optimize any arguments passed through the varargs area of
807    // the call.
808    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
809           E = CS.arg_end(); I != E; ++I, ++ix) {
810      CastInst *CI = dyn_cast<CastInst>(*I);
811      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
812        *I = CI->getOperand(0);
813        Changed = true;
814      }
815    }
816  }
817
818  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
819    // Inline asm calls cannot throw - mark them 'nounwind'.
820    CS.setDoesNotThrow();
821    Changed = true;
822  }
823
824  return Changed ? CS.getInstruction() : 0;
825}
826
827// transformConstExprCastCall - If the callee is a constexpr cast of a function,
828// attempt to move the cast to the arguments of the call/invoke.
829//
830bool InstCombiner::transformConstExprCastCall(CallSite CS) {
831  if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
832  ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
833  if (CE->getOpcode() != Instruction::BitCast ||
834      !isa<Function>(CE->getOperand(0)))
835    return false;
836  Function *Callee = cast<Function>(CE->getOperand(0));
837  Instruction *Caller = CS.getInstruction();
838  const AttrListPtr &CallerPAL = CS.getAttributes();
839
840  // Okay, this is a cast from a function to a different type.  Unless doing so
841  // would cause a type conversion of one of our arguments, change this call to
842  // be a direct call with arguments casted to the appropriate types.
843  //
844  const FunctionType *FT = Callee->getFunctionType();
845  const Type *OldRetTy = Caller->getType();
846  const Type *NewRetTy = FT->getReturnType();
847
848  if (isa<StructType>(NewRetTy))
849    return false; // TODO: Handle multiple return values.
850
851  // Check to see if we are changing the return type...
852  if (OldRetTy != NewRetTy) {
853    if (Callee->isDeclaration() &&
854        // Conversion is ok if changing from one pointer type to another or from
855        // a pointer to an integer of the same size.
856        !((isa<PointerType>(OldRetTy) || !TD ||
857           OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
858          (isa<PointerType>(NewRetTy) || !TD ||
859           NewRetTy == TD->getIntPtrType(Caller->getContext()))))
860      return false;   // Cannot transform this return value.
861
862    if (!Caller->use_empty() &&
863        // void -> non-void is handled specially
864        !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
865      return false;   // Cannot transform this return value.
866
867    if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
868      Attributes RAttrs = CallerPAL.getRetAttributes();
869      if (RAttrs & Attribute::typeIncompatible(NewRetTy))
870        return false;   // Attribute not compatible with transformed value.
871    }
872
873    // If the callsite is an invoke instruction, and the return value is used by
874    // a PHI node in a successor, we cannot change the return type of the call
875    // because there is no place to put the cast instruction (without breaking
876    // the critical edge).  Bail out in this case.
877    if (!Caller->use_empty())
878      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
879        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
880             UI != E; ++UI)
881          if (PHINode *PN = dyn_cast<PHINode>(*UI))
882            if (PN->getParent() == II->getNormalDest() ||
883                PN->getParent() == II->getUnwindDest())
884              return false;
885  }
886
887  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
888  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
889
890  CallSite::arg_iterator AI = CS.arg_begin();
891  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
892    const Type *ParamTy = FT->getParamType(i);
893    const Type *ActTy = (*AI)->getType();
894
895    if (!CastInst::isCastable(ActTy, ParamTy))
896      return false;   // Cannot transform this parameter value.
897
898    if (CallerPAL.getParamAttributes(i + 1)
899        & Attribute::typeIncompatible(ParamTy))
900      return false;   // Attribute not compatible with transformed value.
901
902    // Converting from one pointer type to another or between a pointer and an
903    // integer of the same size is safe even if we do not have a body.
904    bool isConvertible = ActTy == ParamTy ||
905      (TD && ((isa<PointerType>(ParamTy) ||
906      ParamTy == TD->getIntPtrType(Caller->getContext())) &&
907              (isa<PointerType>(ActTy) ||
908              ActTy == TD->getIntPtrType(Caller->getContext()))));
909    if (Callee->isDeclaration() && !isConvertible) return false;
910  }
911
912  if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
913      Callee->isDeclaration())
914    return false;   // Do not delete arguments unless we have a function body.
915
916  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
917      !CallerPAL.isEmpty())
918    // In this case we have more arguments than the new function type, but we
919    // won't be dropping them.  Check that these extra arguments have attributes
920    // that are compatible with being a vararg call argument.
921    for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
922      if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
923        break;
924      Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
925      if (PAttrs & Attribute::VarArgsIncompatible)
926        return false;
927    }
928
929  // Okay, we decided that this is a safe thing to do: go ahead and start
930  // inserting cast instructions as necessary...
931  std::vector<Value*> Args;
932  Args.reserve(NumActualArgs);
933  SmallVector<AttributeWithIndex, 8> attrVec;
934  attrVec.reserve(NumCommonArgs);
935
936  // Get any return attributes.
937  Attributes RAttrs = CallerPAL.getRetAttributes();
938
939  // If the return value is not being used, the type may not be compatible
940  // with the existing attributes.  Wipe out any problematic attributes.
941  RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
942
943  // Add the new return attributes.
944  if (RAttrs)
945    attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
946
947  AI = CS.arg_begin();
948  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
949    const Type *ParamTy = FT->getParamType(i);
950    if ((*AI)->getType() == ParamTy) {
951      Args.push_back(*AI);
952    } else {
953      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
954          false, ParamTy, false);
955      Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
956    }
957
958    // Add any parameter attributes.
959    if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
960      attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
961  }
962
963  // If the function takes more arguments than the call was taking, add them
964  // now.
965  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
966    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
967
968  // If we are removing arguments to the function, emit an obnoxious warning.
969  if (FT->getNumParams() < NumActualArgs) {
970    if (!FT->isVarArg()) {
971      errs() << "WARNING: While resolving call to function '"
972             << Callee->getName() << "' arguments were dropped!\n";
973    } else {
974      // Add all of the arguments in their promoted form to the arg list.
975      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
976        const Type *PTy = getPromotedType((*AI)->getType());
977        if (PTy != (*AI)->getType()) {
978          // Must promote to pass through va_arg area!
979          Instruction::CastOps opcode =
980            CastInst::getCastOpcode(*AI, false, PTy, false);
981          Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
982        } else {
983          Args.push_back(*AI);
984        }
985
986        // Add any parameter attributes.
987        if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
988          attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
989      }
990    }
991  }
992
993  if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
994    attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
995
996  if (NewRetTy->isVoidTy())
997    Caller->setName("");   // Void type should not have a name.
998
999  const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
1000                                                     attrVec.end());
1001
1002  Instruction *NC;
1003  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1004    NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
1005                            Args.begin(), Args.end(),
1006                            Caller->getName(), Caller);
1007    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1008    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1009  } else {
1010    NC = CallInst::Create(Callee, Args.begin(), Args.end(),
1011                          Caller->getName(), Caller);
1012    CallInst *CI = cast<CallInst>(Caller);
1013    if (CI->isTailCall())
1014      cast<CallInst>(NC)->setTailCall();
1015    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1016    cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1017  }
1018
1019  // Insert a cast of the return type as necessary.
1020  Value *NV = NC;
1021  if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1022    if (!NV->getType()->isVoidTy()) {
1023      Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
1024                                                            OldRetTy, false);
1025      NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
1026
1027      // If this is an invoke instruction, we should insert it after the first
1028      // non-phi, instruction in the normal successor block.
1029      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1030        BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
1031        InsertNewInstBefore(NC, *I);
1032      } else {
1033        // Otherwise, it's a call, just insert cast right after the call instr
1034        InsertNewInstBefore(NC, *Caller);
1035      }
1036      Worklist.AddUsersToWorkList(*Caller);
1037    } else {
1038      NV = UndefValue::get(Caller->getType());
1039    }
1040  }
1041
1042
1043  if (!Caller->use_empty())
1044    Caller->replaceAllUsesWith(NV);
1045
1046  EraseInstFromFunction(*Caller);
1047  return true;
1048}
1049
1050// transformCallThroughTrampoline - Turn a call to a function created by the
1051// init_trampoline intrinsic into a direct call to the underlying function.
1052//
1053Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
1054  Value *Callee = CS.getCalledValue();
1055  const PointerType *PTy = cast<PointerType>(Callee->getType());
1056  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1057  const AttrListPtr &Attrs = CS.getAttributes();
1058
1059  // If the call already has the 'nest' attribute somewhere then give up -
1060  // otherwise 'nest' would occur twice after splicing in the chain.
1061  if (Attrs.hasAttrSomewhere(Attribute::Nest))
1062    return 0;
1063
1064  IntrinsicInst *Tramp =
1065    cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
1066
1067  Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
1068  const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1069  const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1070
1071  const AttrListPtr &NestAttrs = NestF->getAttributes();
1072  if (!NestAttrs.isEmpty()) {
1073    unsigned NestIdx = 1;
1074    const Type *NestTy = 0;
1075    Attributes NestAttr = Attribute::None;
1076
1077    // Look for a parameter marked with the 'nest' attribute.
1078    for (FunctionType::param_iterator I = NestFTy->param_begin(),
1079         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1080      if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1081        // Record the parameter type and any other attributes.
1082        NestTy = *I;
1083        NestAttr = NestAttrs.getParamAttributes(NestIdx);
1084        break;
1085      }
1086
1087    if (NestTy) {
1088      Instruction *Caller = CS.getInstruction();
1089      std::vector<Value*> NewArgs;
1090      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1091
1092      SmallVector<AttributeWithIndex, 8> NewAttrs;
1093      NewAttrs.reserve(Attrs.getNumSlots() + 1);
1094
1095      // Insert the nest argument into the call argument list, which may
1096      // mean appending it.  Likewise for attributes.
1097
1098      // Add any result attributes.
1099      if (Attributes Attr = Attrs.getRetAttributes())
1100        NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1101
1102      {
1103        unsigned Idx = 1;
1104        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1105        do {
1106          if (Idx == NestIdx) {
1107            // Add the chain argument and attributes.
1108            Value *NestVal = Tramp->getOperand(3);
1109            if (NestVal->getType() != NestTy)
1110              NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
1111            NewArgs.push_back(NestVal);
1112            NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1113          }
1114
1115          if (I == E)
1116            break;
1117
1118          // Add the original argument and attributes.
1119          NewArgs.push_back(*I);
1120          if (Attributes Attr = Attrs.getParamAttributes(Idx))
1121            NewAttrs.push_back
1122              (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1123
1124          ++Idx, ++I;
1125        } while (1);
1126      }
1127
1128      // Add any function attributes.
1129      if (Attributes Attr = Attrs.getFnAttributes())
1130        NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1131
1132      // The trampoline may have been bitcast to a bogus type (FTy).
1133      // Handle this by synthesizing a new function type, equal to FTy
1134      // with the chain parameter inserted.
1135
1136      std::vector<const Type*> NewTypes;
1137      NewTypes.reserve(FTy->getNumParams()+1);
1138
1139      // Insert the chain's type into the list of parameter types, which may
1140      // mean appending it.
1141      {
1142        unsigned Idx = 1;
1143        FunctionType::param_iterator I = FTy->param_begin(),
1144          E = FTy->param_end();
1145
1146        do {
1147          if (Idx == NestIdx)
1148            // Add the chain's type.
1149            NewTypes.push_back(NestTy);
1150
1151          if (I == E)
1152            break;
1153
1154          // Add the original type.
1155          NewTypes.push_back(*I);
1156
1157          ++Idx, ++I;
1158        } while (1);
1159      }
1160
1161      // Replace the trampoline call with a direct call.  Let the generic
1162      // code sort out any function type mismatches.
1163      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1164                                                FTy->isVarArg());
1165      Constant *NewCallee =
1166        NestF->getType() == PointerType::getUnqual(NewFTy) ?
1167        NestF : ConstantExpr::getBitCast(NestF,
1168                                         PointerType::getUnqual(NewFTy));
1169      const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
1170                                                   NewAttrs.end());
1171
1172      Instruction *NewCaller;
1173      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1174        NewCaller = InvokeInst::Create(NewCallee,
1175                                       II->getNormalDest(), II->getUnwindDest(),
1176                                       NewArgs.begin(), NewArgs.end(),
1177                                       Caller->getName(), Caller);
1178        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1179        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1180      } else {
1181        NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
1182                                     Caller->getName(), Caller);
1183        if (cast<CallInst>(Caller)->isTailCall())
1184          cast<CallInst>(NewCaller)->setTailCall();
1185        cast<CallInst>(NewCaller)->
1186          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1187        cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1188      }
1189      if (!Caller->getType()->isVoidTy())
1190        Caller->replaceAllUsesWith(NewCaller);
1191      Caller->eraseFromParent();
1192      Worklist.Remove(Caller);
1193      return 0;
1194    }
1195  }
1196
1197  // Replace the trampoline call with a direct call.  Since there is no 'nest'
1198  // parameter, there is no need to adjust the argument list.  Let the generic
1199  // code sort out any function type mismatches.
1200  Constant *NewCallee =
1201    NestF->getType() == PTy ? NestF :
1202                              ConstantExpr::getBitCast(NestF, PTy);
1203  CS.setCalledFunction(NewCallee);
1204  return CS.getInstruction();
1205}
1206
1207