InstCombineCalls.cpp revision f1ac465b67d5fc11a0d9cd09b98ceb4ffa75dd97
1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Support/CallSite.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19#include "llvm/Transforms/Utils/BuildLibCalls.h"
20#include "llvm/Transforms/Utils/Local.h"
21using namespace llvm;
22
23/// getPromotedType - Return the specified type promoted as it would be to pass
24/// though a va_arg area.
25static const Type *getPromotedType(const Type *Ty) {
26  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
27    if (ITy->getBitWidth() < 32)
28      return Type::getInt32Ty(Ty->getContext());
29  }
30  return Ty;
31}
32
33
34Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
35  unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), TD);
36  unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), TD);
37  unsigned MinAlign = std::min(DstAlign, SrcAlign);
38  unsigned CopyAlign = MI->getAlignment();
39
40  if (CopyAlign < MinAlign) {
41    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
42                                             MinAlign, false));
43    return MI;
44  }
45
46  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
47  // load/store.
48  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
49  if (MemOpLength == 0) return 0;
50
51  // Source and destination pointer types are always "i8*" for intrinsic.  See
52  // if the size is something we can handle with a single primitive load/store.
53  // A single load+store correctly handles overlapping memory in the memmove
54  // case.
55  unsigned Size = MemOpLength->getZExtValue();
56  if (Size == 0) return MI;  // Delete this mem transfer.
57
58  if (Size > 8 || (Size&(Size-1)))
59    return 0;  // If not 1/2/4/8 bytes, exit.
60
61  // Use an integer load+store unless we can find something better.
62  unsigned SrcAddrSp =
63    cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
64  unsigned DstAddrSp =
65    cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
66
67  const IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
68  Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
69  Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
70
71  // Memcpy forces the use of i8* for the source and destination.  That means
72  // that if you're using memcpy to move one double around, you'll get a cast
73  // from double* to i8*.  We'd much rather use a double load+store rather than
74  // an i64 load+store, here because this improves the odds that the source or
75  // dest address will be promotable.  See if we can find a better type than the
76  // integer datatype.
77  Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
78  if (StrippedDest != MI->getArgOperand(0)) {
79    const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
80                                    ->getElementType();
81    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
82      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
83      // down through these levels if so.
84      while (!SrcETy->isSingleValueType()) {
85        if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
86          if (STy->getNumElements() == 1)
87            SrcETy = STy->getElementType(0);
88          else
89            break;
90        } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
91          if (ATy->getNumElements() == 1)
92            SrcETy = ATy->getElementType();
93          else
94            break;
95        } else
96          break;
97      }
98
99      if (SrcETy->isSingleValueType()) {
100        NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
101        NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
102      }
103    }
104  }
105
106
107  // If the memcpy/memmove provides better alignment info than we can
108  // infer, use it.
109  SrcAlign = std::max(SrcAlign, CopyAlign);
110  DstAlign = std::max(DstAlign, CopyAlign);
111
112  Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
113  Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
114  LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
115  L->setAlignment(SrcAlign);
116  StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
117  S->setAlignment(DstAlign);
118
119  // Set the size of the copy to 0, it will be deleted on the next iteration.
120  MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
121  return MI;
122}
123
124Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
125  unsigned Alignment = getKnownAlignment(MI->getDest(), TD);
126  if (MI->getAlignment() < Alignment) {
127    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
128                                             Alignment, false));
129    return MI;
130  }
131
132  // Extract the length and alignment and fill if they are constant.
133  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
134  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
135  if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
136    return 0;
137  uint64_t Len = LenC->getZExtValue();
138  Alignment = MI->getAlignment();
139
140  // If the length is zero, this is a no-op
141  if (Len == 0) return MI; // memset(d,c,0,a) -> noop
142
143  // memset(s,c,n) -> store s, c (for n=1,2,4,8)
144  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
145    const Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
146
147    Value *Dest = MI->getDest();
148    unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
149    Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
150    Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
151
152    // Alignment 0 is identity for alignment 1 for memset, but not store.
153    if (Alignment == 0) Alignment = 1;
154
155    // Extract the fill value and store.
156    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
157    StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
158                                        MI->isVolatile());
159    S->setAlignment(Alignment);
160
161    // Set the size of the copy to 0, it will be deleted on the next iteration.
162    MI->setLength(Constant::getNullValue(LenC->getType()));
163    return MI;
164  }
165
166  return 0;
167}
168
169/// visitCallInst - CallInst simplification.  This mostly only handles folding
170/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
171/// the heavy lifting.
172///
173Instruction *InstCombiner::visitCallInst(CallInst &CI) {
174  if (isFreeCall(&CI))
175    return visitFree(CI);
176  if (isMalloc(&CI))
177    return visitMalloc(CI);
178
179  // If the caller function is nounwind, mark the call as nounwind, even if the
180  // callee isn't.
181  if (CI.getParent()->getParent()->doesNotThrow() &&
182      !CI.doesNotThrow()) {
183    CI.setDoesNotThrow();
184    return &CI;
185  }
186
187  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
188  if (!II) return visitCallSite(&CI);
189
190  // Intrinsics cannot occur in an invoke, so handle them here instead of in
191  // visitCallSite.
192  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
193    bool Changed = false;
194
195    // memmove/cpy/set of zero bytes is a noop.
196    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
197      if (NumBytes->isNullValue())
198        return EraseInstFromFunction(CI);
199
200      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
201        if (CI->getZExtValue() == 1) {
202          // Replace the instruction with just byte operations.  We would
203          // transform other cases to loads/stores, but we don't know if
204          // alignment is sufficient.
205        }
206    }
207
208    // No other transformations apply to volatile transfers.
209    if (MI->isVolatile())
210      return 0;
211
212    // If we have a memmove and the source operation is a constant global,
213    // then the source and dest pointers can't alias, so we can change this
214    // into a call to memcpy.
215    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
216      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
217        if (GVSrc->isConstant()) {
218          Module *M = CI.getParent()->getParent()->getParent();
219          Intrinsic::ID MemCpyID = Intrinsic::memcpy;
220          const Type *Tys[3] = { CI.getArgOperand(0)->getType(),
221                                 CI.getArgOperand(1)->getType(),
222                                 CI.getArgOperand(2)->getType() };
223          CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys, 3));
224          Changed = true;
225        }
226    }
227
228    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
229      // memmove(x,x,size) -> noop.
230      if (MTI->getSource() == MTI->getDest())
231        return EraseInstFromFunction(CI);
232    }
233
234    // If we can determine a pointer alignment that is bigger than currently
235    // set, update the alignment.
236    if (isa<MemTransferInst>(MI)) {
237      if (Instruction *I = SimplifyMemTransfer(MI))
238        return I;
239    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
240      if (Instruction *I = SimplifyMemSet(MSI))
241        return I;
242    }
243
244    if (Changed) return II;
245  }
246
247  switch (II->getIntrinsicID()) {
248  default: break;
249  case Intrinsic::objectsize: {
250    // We need target data for just about everything so depend on it.
251    if (!TD) break;
252
253    const Type *ReturnTy = CI.getType();
254    uint64_t DontKnow = II->getArgOperand(1) == Builder->getTrue() ? 0 : -1ULL;
255
256    // Get to the real allocated thing and offset as fast as possible.
257    Value *Op1 = II->getArgOperand(0)->stripPointerCasts();
258
259    uint64_t Offset = 0;
260    uint64_t Size = -1ULL;
261
262    // Try to look through constant GEPs.
263    if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) {
264      if (!GEP->hasAllConstantIndices()) break;
265
266      // Get the current byte offset into the thing. Use the original
267      // operand in case we're looking through a bitcast.
268      SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
269      Offset = TD->getIndexedOffset(GEP->getPointerOperandType(),
270                                    Ops.data(), Ops.size());
271
272      Op1 = GEP->getPointerOperand()->stripPointerCasts();
273
274      // Make sure we're not a constant offset from an external
275      // global.
276      if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1))
277        if (!GV->hasDefinitiveInitializer()) break;
278    }
279
280    // If we've stripped down to a single global variable that we
281    // can know the size of then just return that.
282    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
283      if (GV->hasDefinitiveInitializer()) {
284        Constant *C = GV->getInitializer();
285        Size = TD->getTypeAllocSize(C->getType());
286      } else {
287        // Can't determine size of the GV.
288        Constant *RetVal = ConstantInt::get(ReturnTy, DontKnow);
289        return ReplaceInstUsesWith(CI, RetVal);
290      }
291    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
292      // Get alloca size.
293      if (AI->getAllocatedType()->isSized()) {
294        Size = TD->getTypeAllocSize(AI->getAllocatedType());
295        if (AI->isArrayAllocation()) {
296          const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
297          if (!C) break;
298          Size *= C->getZExtValue();
299        }
300      }
301    } else if (CallInst *MI = extractMallocCall(Op1)) {
302      // Get allocation size.
303      const Type* MallocType = getMallocAllocatedType(MI);
304      if (MallocType && MallocType->isSized())
305        if (Value *NElems = getMallocArraySize(MI, TD, true))
306          if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
307            Size = NElements->getZExtValue() * TD->getTypeAllocSize(MallocType);
308    }
309
310    // Do not return "I don't know" here. Later optimization passes could
311    // make it possible to evaluate objectsize to a constant.
312    if (Size == -1ULL)
313      break;
314
315    if (Size < Offset) {
316      // Out of bound reference? Negative index normalized to large
317      // index? Just return "I don't know".
318      return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, DontKnow));
319    }
320    return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, Size-Offset));
321  }
322  case Intrinsic::bswap:
323    // bswap(bswap(x)) -> x
324    if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
325      if (Operand->getIntrinsicID() == Intrinsic::bswap)
326        return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
327
328    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
329    if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
330      if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
331        if (Operand->getIntrinsicID() == Intrinsic::bswap) {
332          unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
333                       TI->getType()->getPrimitiveSizeInBits();
334          Value *CV = ConstantInt::get(Operand->getType(), C);
335          Value *V = Builder->CreateLShr(Operand->getArgOperand(0), CV);
336          return new TruncInst(V, TI->getType());
337        }
338    }
339
340    break;
341  case Intrinsic::powi:
342    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
343      // powi(x, 0) -> 1.0
344      if (Power->isZero())
345        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
346      // powi(x, 1) -> x
347      if (Power->isOne())
348        return ReplaceInstUsesWith(CI, II->getArgOperand(0));
349      // powi(x, -1) -> 1/x
350      if (Power->isAllOnesValue())
351        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
352                                          II->getArgOperand(0));
353    }
354    break;
355  case Intrinsic::cttz: {
356    // If all bits below the first known one are known zero,
357    // this value is constant.
358    const IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
359    // FIXME: Try to simplify vectors of integers.
360    if (!IT) break;
361    uint32_t BitWidth = IT->getBitWidth();
362    APInt KnownZero(BitWidth, 0);
363    APInt KnownOne(BitWidth, 0);
364    ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth),
365                      KnownZero, KnownOne);
366    unsigned TrailingZeros = KnownOne.countTrailingZeros();
367    APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
368    if ((Mask & KnownZero) == Mask)
369      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
370                                 APInt(BitWidth, TrailingZeros)));
371
372    }
373    break;
374  case Intrinsic::ctlz: {
375    // If all bits above the first known one are known zero,
376    // this value is constant.
377    const IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
378    // FIXME: Try to simplify vectors of integers.
379    if (!IT) break;
380    uint32_t BitWidth = IT->getBitWidth();
381    APInt KnownZero(BitWidth, 0);
382    APInt KnownOne(BitWidth, 0);
383    ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth),
384                      KnownZero, KnownOne);
385    unsigned LeadingZeros = KnownOne.countLeadingZeros();
386    APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
387    if ((Mask & KnownZero) == Mask)
388      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
389                                 APInt(BitWidth, LeadingZeros)));
390
391    }
392    break;
393  case Intrinsic::uadd_with_overflow: {
394    Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
395    const IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
396    uint32_t BitWidth = IT->getBitWidth();
397    APInt Mask = APInt::getSignBit(BitWidth);
398    APInt LHSKnownZero(BitWidth, 0);
399    APInt LHSKnownOne(BitWidth, 0);
400    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
401    bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
402    bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
403
404    if (LHSKnownNegative || LHSKnownPositive) {
405      APInt RHSKnownZero(BitWidth, 0);
406      APInt RHSKnownOne(BitWidth, 0);
407      ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
408      bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
409      bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
410      if (LHSKnownNegative && RHSKnownNegative) {
411        // The sign bit is set in both cases: this MUST overflow.
412        // Create a simple add instruction, and insert it into the struct.
413        Value *Add = Builder->CreateAdd(LHS, RHS);
414        Add->takeName(&CI);
415        Constant *V[] = {
416          UndefValue::get(LHS->getType()),
417          ConstantInt::getTrue(II->getContext())
418        };
419        const StructType *ST = cast<StructType>(II->getType());
420        Constant *Struct = ConstantStruct::get(ST, V);
421        return InsertValueInst::Create(Struct, Add, 0);
422      }
423
424      if (LHSKnownPositive && RHSKnownPositive) {
425        // The sign bit is clear in both cases: this CANNOT overflow.
426        // Create a simple add instruction, and insert it into the struct.
427        Value *Add = Builder->CreateNUWAdd(LHS, RHS);
428        Add->takeName(&CI);
429        Constant *V[] = {
430          UndefValue::get(LHS->getType()),
431          ConstantInt::getFalse(II->getContext())
432        };
433        const StructType *ST = cast<StructType>(II->getType());
434        Constant *Struct = ConstantStruct::get(ST, V);
435        return InsertValueInst::Create(Struct, Add, 0);
436      }
437    }
438  }
439  // FALL THROUGH uadd into sadd
440  case Intrinsic::sadd_with_overflow:
441    // Canonicalize constants into the RHS.
442    if (isa<Constant>(II->getArgOperand(0)) &&
443        !isa<Constant>(II->getArgOperand(1))) {
444      Value *LHS = II->getArgOperand(0);
445      II->setArgOperand(0, II->getArgOperand(1));
446      II->setArgOperand(1, LHS);
447      return II;
448    }
449
450    // X + undef -> undef
451    if (isa<UndefValue>(II->getArgOperand(1)))
452      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
453
454    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
455      // X + 0 -> {X, false}
456      if (RHS->isZero()) {
457        Constant *V[] = {
458          UndefValue::get(II->getArgOperand(0)->getType()),
459          ConstantInt::getFalse(II->getContext())
460        };
461        Constant *Struct =
462          ConstantStruct::get(cast<StructType>(II->getType()), V);
463        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
464      }
465    }
466    break;
467  case Intrinsic::usub_with_overflow:
468  case Intrinsic::ssub_with_overflow:
469    // undef - X -> undef
470    // X - undef -> undef
471    if (isa<UndefValue>(II->getArgOperand(0)) ||
472        isa<UndefValue>(II->getArgOperand(1)))
473      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
474
475    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
476      // X - 0 -> {X, false}
477      if (RHS->isZero()) {
478        Constant *V[] = {
479          UndefValue::get(II->getArgOperand(0)->getType()),
480          ConstantInt::getFalse(II->getContext())
481        };
482        Constant *Struct =
483          ConstantStruct::get(cast<StructType>(II->getType()), V);
484        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
485      }
486    }
487    break;
488  case Intrinsic::umul_with_overflow: {
489    Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
490    unsigned BitWidth = cast<IntegerType>(LHS->getType())->getBitWidth();
491    APInt Mask = APInt::getAllOnesValue(BitWidth);
492
493    APInt LHSKnownZero(BitWidth, 0);
494    APInt LHSKnownOne(BitWidth, 0);
495    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
496    APInt RHSKnownZero(BitWidth, 0);
497    APInt RHSKnownOne(BitWidth, 0);
498    ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
499
500    // Get the largest possible values for each operand.
501    APInt LHSMax = ~LHSKnownZero;
502    APInt RHSMax = ~RHSKnownZero;
503
504    // If multiplying the maximum values does not overflow then we can turn
505    // this into a plain NUW mul.
506    bool Overflow;
507    LHSMax.umul_ov(RHSMax, Overflow);
508    if (!Overflow) {
509      Value *Mul = Builder->CreateNUWMul(LHS, RHS, "umul_with_overflow");
510      Constant *V[] = {
511        UndefValue::get(LHS->getType()),
512        Builder->getFalse()
513      };
514      Constant *Struct = ConstantStruct::get(cast<StructType>(II->getType()),V);
515      return InsertValueInst::Create(Struct, Mul, 0);
516    }
517  } // FALL THROUGH
518  case Intrinsic::smul_with_overflow:
519    // Canonicalize constants into the RHS.
520    if (isa<Constant>(II->getArgOperand(0)) &&
521        !isa<Constant>(II->getArgOperand(1))) {
522      Value *LHS = II->getArgOperand(0);
523      II->setArgOperand(0, II->getArgOperand(1));
524      II->setArgOperand(1, LHS);
525      return II;
526    }
527
528    // X * undef -> undef
529    if (isa<UndefValue>(II->getArgOperand(1)))
530      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
531
532    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
533      // X*0 -> {0, false}
534      if (RHSI->isZero())
535        return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
536
537      // X * 1 -> {X, false}
538      if (RHSI->equalsInt(1)) {
539        Constant *V[] = {
540          UndefValue::get(II->getArgOperand(0)->getType()),
541          ConstantInt::getFalse(II->getContext())
542        };
543        Constant *Struct =
544          ConstantStruct::get(cast<StructType>(II->getType()), V);
545        return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
546      }
547    }
548    break;
549  case Intrinsic::ppc_altivec_lvx:
550  case Intrinsic::ppc_altivec_lvxl:
551    // Turn PPC lvx -> load if the pointer is known aligned.
552    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
553      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
554                                         PointerType::getUnqual(II->getType()));
555      return new LoadInst(Ptr);
556    }
557    break;
558  case Intrinsic::ppc_altivec_stvx:
559  case Intrinsic::ppc_altivec_stvxl:
560    // Turn stvx -> store if the pointer is known aligned.
561    if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) {
562      const Type *OpPtrTy =
563        PointerType::getUnqual(II->getArgOperand(0)->getType());
564      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
565      return new StoreInst(II->getArgOperand(0), Ptr);
566    }
567    break;
568  case Intrinsic::x86_sse_storeu_ps:
569  case Intrinsic::x86_sse2_storeu_pd:
570  case Intrinsic::x86_sse2_storeu_dq:
571    // Turn X86 storeu -> store if the pointer is known aligned.
572    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
573      const Type *OpPtrTy =
574        PointerType::getUnqual(II->getArgOperand(1)->getType());
575      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
576      return new StoreInst(II->getArgOperand(1), Ptr);
577    }
578    break;
579
580  case Intrinsic::x86_sse_cvtss2si:
581  case Intrinsic::x86_sse_cvtss2si64:
582  case Intrinsic::x86_sse_cvttss2si:
583  case Intrinsic::x86_sse_cvttss2si64:
584  case Intrinsic::x86_sse2_cvtsd2si:
585  case Intrinsic::x86_sse2_cvtsd2si64:
586  case Intrinsic::x86_sse2_cvttsd2si:
587  case Intrinsic::x86_sse2_cvttsd2si64: {
588    // These intrinsics only demand the 0th element of their input vectors. If
589    // we can simplify the input based on that, do so now.
590    unsigned VWidth =
591      cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
592    APInt DemandedElts(VWidth, 1);
593    APInt UndefElts(VWidth, 0);
594    if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
595                                              DemandedElts, UndefElts)) {
596      II->setArgOperand(0, V);
597      return II;
598    }
599    break;
600  }
601
602
603  case Intrinsic::x86_sse41_pmovsxbw:
604  case Intrinsic::x86_sse41_pmovsxwd:
605  case Intrinsic::x86_sse41_pmovsxdq:
606  case Intrinsic::x86_sse41_pmovzxbw:
607  case Intrinsic::x86_sse41_pmovzxwd:
608  case Intrinsic::x86_sse41_pmovzxdq: {
609    // pmov{s|z}x ignores the upper half of their input vectors.
610    unsigned VWidth =
611      cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
612    unsigned LowHalfElts = VWidth / 2;
613    APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
614    APInt UndefElts(VWidth, 0);
615    if (Value *TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0),
616                                                 InputDemandedElts,
617                                                 UndefElts)) {
618      II->setArgOperand(0, TmpV);
619      return II;
620    }
621    break;
622  }
623
624  case Intrinsic::ppc_altivec_vperm:
625    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
626    if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getArgOperand(2))) {
627      assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
628
629      // Check that all of the elements are integer constants or undefs.
630      bool AllEltsOk = true;
631      for (unsigned i = 0; i != 16; ++i) {
632        if (!isa<ConstantInt>(Mask->getOperand(i)) &&
633            !isa<UndefValue>(Mask->getOperand(i))) {
634          AllEltsOk = false;
635          break;
636        }
637      }
638
639      if (AllEltsOk) {
640        // Cast the input vectors to byte vectors.
641        Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
642                                            Mask->getType());
643        Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
644                                            Mask->getType());
645        Value *Result = UndefValue::get(Op0->getType());
646
647        // Only extract each element once.
648        Value *ExtractedElts[32];
649        memset(ExtractedElts, 0, sizeof(ExtractedElts));
650
651        for (unsigned i = 0; i != 16; ++i) {
652          if (isa<UndefValue>(Mask->getOperand(i)))
653            continue;
654          unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
655          Idx &= 31;  // Match the hardware behavior.
656
657          if (ExtractedElts[Idx] == 0) {
658            ExtractedElts[Idx] =
659              Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
660                  ConstantInt::get(Type::getInt32Ty(II->getContext()),
661                                   Idx&15, false), "tmp");
662          }
663
664          // Insert this value into the result vector.
665          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
666                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
667                                          i, false), "tmp");
668        }
669        return CastInst::Create(Instruction::BitCast, Result, CI.getType());
670      }
671    }
672    break;
673
674  case Intrinsic::arm_neon_vld1:
675  case Intrinsic::arm_neon_vld2:
676  case Intrinsic::arm_neon_vld3:
677  case Intrinsic::arm_neon_vld4:
678  case Intrinsic::arm_neon_vld2lane:
679  case Intrinsic::arm_neon_vld3lane:
680  case Intrinsic::arm_neon_vld4lane:
681  case Intrinsic::arm_neon_vst1:
682  case Intrinsic::arm_neon_vst2:
683  case Intrinsic::arm_neon_vst3:
684  case Intrinsic::arm_neon_vst4:
685  case Intrinsic::arm_neon_vst2lane:
686  case Intrinsic::arm_neon_vst3lane:
687  case Intrinsic::arm_neon_vst4lane: {
688    unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), TD);
689    unsigned AlignArg = II->getNumArgOperands() - 1;
690    ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
691    if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
692      II->setArgOperand(AlignArg,
693                        ConstantInt::get(Type::getInt32Ty(II->getContext()),
694                                         MemAlign, false));
695      return II;
696    }
697    break;
698  }
699
700  case Intrinsic::stackrestore: {
701    // If the save is right next to the restore, remove the restore.  This can
702    // happen when variable allocas are DCE'd.
703    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
704      if (SS->getIntrinsicID() == Intrinsic::stacksave) {
705        BasicBlock::iterator BI = SS;
706        if (&*++BI == II)
707          return EraseInstFromFunction(CI);
708      }
709    }
710
711    // Scan down this block to see if there is another stack restore in the
712    // same block without an intervening call/alloca.
713    BasicBlock::iterator BI = II;
714    TerminatorInst *TI = II->getParent()->getTerminator();
715    bool CannotRemove = false;
716    for (++BI; &*BI != TI; ++BI) {
717      if (isa<AllocaInst>(BI) || isMalloc(BI)) {
718        CannotRemove = true;
719        break;
720      }
721      if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
722        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
723          // If there is a stackrestore below this one, remove this one.
724          if (II->getIntrinsicID() == Intrinsic::stackrestore)
725            return EraseInstFromFunction(CI);
726          // Otherwise, ignore the intrinsic.
727        } else {
728          // If we found a non-intrinsic call, we can't remove the stack
729          // restore.
730          CannotRemove = true;
731          break;
732        }
733      }
734    }
735
736    // If the stack restore is in a return/unwind block and if there are no
737    // allocas or calls between the restore and the return, nuke the restore.
738    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
739      return EraseInstFromFunction(CI);
740    break;
741  }
742  }
743
744  return visitCallSite(II);
745}
746
747// InvokeInst simplification
748//
749Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
750  return visitCallSite(&II);
751}
752
753/// isSafeToEliminateVarargsCast - If this cast does not affect the value
754/// passed through the varargs area, we can eliminate the use of the cast.
755static bool isSafeToEliminateVarargsCast(const CallSite CS,
756                                         const CastInst * const CI,
757                                         const TargetData * const TD,
758                                         const int ix) {
759  if (!CI->isLosslessCast())
760    return false;
761
762  // The size of ByVal arguments is derived from the type, so we
763  // can't change to a type with a different size.  If the size were
764  // passed explicitly we could avoid this check.
765  if (!CS.paramHasAttr(ix, Attribute::ByVal))
766    return true;
767
768  const Type* SrcTy =
769            cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
770  const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
771  if (!SrcTy->isSized() || !DstTy->isSized())
772    return false;
773  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
774    return false;
775  return true;
776}
777
778namespace {
779class InstCombineFortifiedLibCalls : public SimplifyFortifiedLibCalls {
780  InstCombiner *IC;
781protected:
782  void replaceCall(Value *With) {
783    NewInstruction = IC->ReplaceInstUsesWith(*CI, With);
784  }
785  bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
786    if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
787      return true;
788    if (ConstantInt *SizeCI =
789                           dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
790      if (SizeCI->isAllOnesValue())
791        return true;
792      if (isString) {
793        uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
794        // If the length is 0 we don't know how long it is and so we can't
795        // remove the check.
796        if (Len == 0) return false;
797        return SizeCI->getZExtValue() >= Len;
798      }
799      if (ConstantInt *Arg = dyn_cast<ConstantInt>(
800                                                  CI->getArgOperand(SizeArgOp)))
801        return SizeCI->getZExtValue() >= Arg->getZExtValue();
802    }
803    return false;
804  }
805public:
806  InstCombineFortifiedLibCalls(InstCombiner *IC) : IC(IC), NewInstruction(0) { }
807  Instruction *NewInstruction;
808};
809} // end anonymous namespace
810
811// Try to fold some different type of calls here.
812// Currently we're only working with the checking functions, memcpy_chk,
813// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
814// strcat_chk and strncat_chk.
815Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
816  if (CI->getCalledFunction() == 0) return 0;
817
818  InstCombineFortifiedLibCalls Simplifier(this);
819  Simplifier.fold(CI, TD);
820  return Simplifier.NewInstruction;
821}
822
823// visitCallSite - Improvements for call and invoke instructions.
824//
825Instruction *InstCombiner::visitCallSite(CallSite CS) {
826  bool Changed = false;
827
828  // If the callee is a pointer to a function, attempt to move any casts to the
829  // arguments of the call/invoke.
830  Value *Callee = CS.getCalledValue();
831  if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
832    return 0;
833
834  if (Function *CalleeF = dyn_cast<Function>(Callee))
835    // If the call and callee calling conventions don't match, this call must
836    // be unreachable, as the call is undefined.
837    if (CalleeF->getCallingConv() != CS.getCallingConv() &&
838        // Only do this for calls to a function with a body.  A prototype may
839        // not actually end up matching the implementation's calling conv for a
840        // variety of reasons (e.g. it may be written in assembly).
841        !CalleeF->isDeclaration()) {
842      Instruction *OldCall = CS.getInstruction();
843      new StoreInst(ConstantInt::getTrue(Callee->getContext()),
844                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
845                                  OldCall);
846      // If OldCall dues not return void then replaceAllUsesWith undef.
847      // This allows ValueHandlers and custom metadata to adjust itself.
848      if (!OldCall->getType()->isVoidTy())
849        ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
850      if (isa<CallInst>(OldCall))
851        return EraseInstFromFunction(*OldCall);
852
853      // We cannot remove an invoke, because it would change the CFG, just
854      // change the callee to a null pointer.
855      cast<InvokeInst>(OldCall)->setCalledFunction(
856                                    Constant::getNullValue(CalleeF->getType()));
857      return 0;
858    }
859
860  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
861    // This instruction is not reachable, just remove it.  We insert a store to
862    // undef so that we know that this code is not reachable, despite the fact
863    // that we can't modify the CFG here.
864    new StoreInst(ConstantInt::getTrue(Callee->getContext()),
865               UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
866                  CS.getInstruction());
867
868    // If CS does not return void then replaceAllUsesWith undef.
869    // This allows ValueHandlers and custom metadata to adjust itself.
870    if (!CS.getInstruction()->getType()->isVoidTy())
871      ReplaceInstUsesWith(*CS.getInstruction(),
872                          UndefValue::get(CS.getInstruction()->getType()));
873
874    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
875      // Don't break the CFG, insert a dummy cond branch.
876      BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
877                         ConstantInt::getTrue(Callee->getContext()), II);
878    }
879    return EraseInstFromFunction(*CS.getInstruction());
880  }
881
882  if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
883    if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
884      if (In->getIntrinsicID() == Intrinsic::init_trampoline)
885        return transformCallThroughTrampoline(CS);
886
887  const PointerType *PTy = cast<PointerType>(Callee->getType());
888  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
889  if (FTy->isVarArg()) {
890    int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
891    // See if we can optimize any arguments passed through the varargs area of
892    // the call.
893    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
894           E = CS.arg_end(); I != E; ++I, ++ix) {
895      CastInst *CI = dyn_cast<CastInst>(*I);
896      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
897        *I = CI->getOperand(0);
898        Changed = true;
899      }
900    }
901  }
902
903  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
904    // Inline asm calls cannot throw - mark them 'nounwind'.
905    CS.setDoesNotThrow();
906    Changed = true;
907  }
908
909  // Try to optimize the call if possible, we require TargetData for most of
910  // this.  None of these calls are seen as possibly dead so go ahead and
911  // delete the instruction now.
912  if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
913    Instruction *I = tryOptimizeCall(CI, TD);
914    // If we changed something return the result, etc. Otherwise let
915    // the fallthrough check.
916    if (I) return EraseInstFromFunction(*I);
917  }
918
919  return Changed ? CS.getInstruction() : 0;
920}
921
922// transformConstExprCastCall - If the callee is a constexpr cast of a function,
923// attempt to move the cast to the arguments of the call/invoke.
924//
925bool InstCombiner::transformConstExprCastCall(CallSite CS) {
926  Function *Callee =
927    dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
928  if (Callee == 0)
929    return false;
930  Instruction *Caller = CS.getInstruction();
931  const AttrListPtr &CallerPAL = CS.getAttributes();
932
933  // Okay, this is a cast from a function to a different type.  Unless doing so
934  // would cause a type conversion of one of our arguments, change this call to
935  // be a direct call with arguments casted to the appropriate types.
936  //
937  const FunctionType *FT = Callee->getFunctionType();
938  const Type *OldRetTy = Caller->getType();
939  const Type *NewRetTy = FT->getReturnType();
940
941  if (NewRetTy->isStructTy())
942    return false; // TODO: Handle multiple return values.
943
944  // Check to see if we are changing the return type...
945  if (OldRetTy != NewRetTy) {
946    if (Callee->isDeclaration() &&
947        // Conversion is ok if changing from one pointer type to another or from
948        // a pointer to an integer of the same size.
949        !((OldRetTy->isPointerTy() || !TD ||
950           OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
951          (NewRetTy->isPointerTy() || !TD ||
952           NewRetTy == TD->getIntPtrType(Caller->getContext()))))
953      return false;   // Cannot transform this return value.
954
955    if (!Caller->use_empty() &&
956        // void -> non-void is handled specially
957        !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
958      return false;   // Cannot transform this return value.
959
960    if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
961      Attributes RAttrs = CallerPAL.getRetAttributes();
962      if (RAttrs & Attribute::typeIncompatible(NewRetTy))
963        return false;   // Attribute not compatible with transformed value.
964    }
965
966    // If the callsite is an invoke instruction, and the return value is used by
967    // a PHI node in a successor, we cannot change the return type of the call
968    // because there is no place to put the cast instruction (without breaking
969    // the critical edge).  Bail out in this case.
970    if (!Caller->use_empty())
971      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
972        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
973             UI != E; ++UI)
974          if (PHINode *PN = dyn_cast<PHINode>(*UI))
975            if (PN->getParent() == II->getNormalDest() ||
976                PN->getParent() == II->getUnwindDest())
977              return false;
978  }
979
980  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
981  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
982
983  CallSite::arg_iterator AI = CS.arg_begin();
984  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
985    const Type *ParamTy = FT->getParamType(i);
986    const Type *ActTy = (*AI)->getType();
987
988    if (!CastInst::isCastable(ActTy, ParamTy))
989      return false;   // Cannot transform this parameter value.
990
991    unsigned Attrs = CallerPAL.getParamAttributes(i + 1);
992    if (Attrs & Attribute::typeIncompatible(ParamTy))
993      return false;   // Attribute not compatible with transformed value.
994
995    // If the parameter is passed as a byval argument, then we have to have a
996    // sized type and the sized type has to have the same size as the old type.
997    if (ParamTy != ActTy && (Attrs & Attribute::ByVal)) {
998      const PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
999      if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
1000        return false;
1001
1002      const Type *CurElTy = cast<PointerType>(ActTy)->getElementType();
1003      if (TD->getTypeAllocSize(CurElTy) !=
1004          TD->getTypeAllocSize(ParamPTy->getElementType()))
1005        return false;
1006    }
1007
1008    // Converting from one pointer type to another or between a pointer and an
1009    // integer of the same size is safe even if we do not have a body.
1010    bool isConvertible = ActTy == ParamTy ||
1011      (TD && ((ParamTy->isPointerTy() ||
1012      ParamTy == TD->getIntPtrType(Caller->getContext())) &&
1013              (ActTy->isPointerTy() ||
1014              ActTy == TD->getIntPtrType(Caller->getContext()))));
1015    if (Callee->isDeclaration() && !isConvertible) return false;
1016  }
1017
1018  if (Callee->isDeclaration()) {
1019    // Do not delete arguments unless we have a function body.
1020    if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
1021      return false;
1022
1023    // If the callee is just a declaration, don't change the varargsness of the
1024    // call.  We don't want to introduce a varargs call where one doesn't
1025    // already exist.
1026    const PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
1027    if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
1028      return false;
1029  }
1030
1031  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
1032      !CallerPAL.isEmpty())
1033    // In this case we have more arguments than the new function type, but we
1034    // won't be dropping them.  Check that these extra arguments have attributes
1035    // that are compatible with being a vararg call argument.
1036    for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
1037      if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
1038        break;
1039      Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
1040      if (PAttrs & Attribute::VarArgsIncompatible)
1041        return false;
1042    }
1043
1044
1045  // Okay, we decided that this is a safe thing to do: go ahead and start
1046  // inserting cast instructions as necessary.
1047  std::vector<Value*> Args;
1048  Args.reserve(NumActualArgs);
1049  SmallVector<AttributeWithIndex, 8> attrVec;
1050  attrVec.reserve(NumCommonArgs);
1051
1052  // Get any return attributes.
1053  Attributes RAttrs = CallerPAL.getRetAttributes();
1054
1055  // If the return value is not being used, the type may not be compatible
1056  // with the existing attributes.  Wipe out any problematic attributes.
1057  RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
1058
1059  // Add the new return attributes.
1060  if (RAttrs)
1061    attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
1062
1063  AI = CS.arg_begin();
1064  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
1065    const Type *ParamTy = FT->getParamType(i);
1066    if ((*AI)->getType() == ParamTy) {
1067      Args.push_back(*AI);
1068    } else {
1069      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
1070          false, ParamTy, false);
1071      Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
1072    }
1073
1074    // Add any parameter attributes.
1075    if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1076      attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1077  }
1078
1079  // If the function takes more arguments than the call was taking, add them
1080  // now.
1081  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1082    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1083
1084  // If we are removing arguments to the function, emit an obnoxious warning.
1085  if (FT->getNumParams() < NumActualArgs) {
1086    if (!FT->isVarArg()) {
1087      errs() << "WARNING: While resolving call to function '"
1088             << Callee->getName() << "' arguments were dropped!\n";
1089    } else {
1090      // Add all of the arguments in their promoted form to the arg list.
1091      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1092        const Type *PTy = getPromotedType((*AI)->getType());
1093        if (PTy != (*AI)->getType()) {
1094          // Must promote to pass through va_arg area!
1095          Instruction::CastOps opcode =
1096            CastInst::getCastOpcode(*AI, false, PTy, false);
1097          Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
1098        } else {
1099          Args.push_back(*AI);
1100        }
1101
1102        // Add any parameter attributes.
1103        if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1104          attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1105      }
1106    }
1107  }
1108
1109  if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
1110    attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
1111
1112  if (NewRetTy->isVoidTy())
1113    Caller->setName("");   // Void type should not have a name.
1114
1115  const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
1116                                                     attrVec.end());
1117
1118  Instruction *NC;
1119  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1120    NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
1121                               II->getUnwindDest(), Args.begin(), Args.end());
1122    NC->takeName(II);
1123    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1124    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1125  } else {
1126    CallInst *CI = cast<CallInst>(Caller);
1127    NC = Builder->CreateCall(Callee, Args.begin(), Args.end());
1128    NC->takeName(CI);
1129    if (CI->isTailCall())
1130      cast<CallInst>(NC)->setTailCall();
1131    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1132    cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1133  }
1134
1135  // Insert a cast of the return type as necessary.
1136  Value *NV = NC;
1137  if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1138    if (!NV->getType()->isVoidTy()) {
1139      Instruction::CastOps opcode =
1140        CastInst::getCastOpcode(NC, false, OldRetTy, false);
1141      NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
1142      NC->setDebugLoc(Caller->getDebugLoc());
1143
1144      // If this is an invoke instruction, we should insert it after the first
1145      // non-phi, instruction in the normal successor block.
1146      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1147        BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
1148        InsertNewInstBefore(NC, *I);
1149      } else {
1150        // Otherwise, it's a call, just insert cast right after the call.
1151        InsertNewInstBefore(NC, *Caller);
1152      }
1153      Worklist.AddUsersToWorkList(*Caller);
1154    } else {
1155      NV = UndefValue::get(Caller->getType());
1156    }
1157  }
1158
1159  if (!Caller->use_empty())
1160    ReplaceInstUsesWith(*Caller, NV);
1161
1162  EraseInstFromFunction(*Caller);
1163  return true;
1164}
1165
1166// transformCallThroughTrampoline - Turn a call to a function created by the
1167// init_trampoline intrinsic into a direct call to the underlying function.
1168//
1169Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
1170  Value *Callee = CS.getCalledValue();
1171  const PointerType *PTy = cast<PointerType>(Callee->getType());
1172  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1173  const AttrListPtr &Attrs = CS.getAttributes();
1174
1175  // If the call already has the 'nest' attribute somewhere then give up -
1176  // otherwise 'nest' would occur twice after splicing in the chain.
1177  if (Attrs.hasAttrSomewhere(Attribute::Nest))
1178    return 0;
1179
1180  IntrinsicInst *Tramp =
1181    cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
1182
1183  Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
1184  const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1185  const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1186
1187  const AttrListPtr &NestAttrs = NestF->getAttributes();
1188  if (!NestAttrs.isEmpty()) {
1189    unsigned NestIdx = 1;
1190    const Type *NestTy = 0;
1191    Attributes NestAttr = Attribute::None;
1192
1193    // Look for a parameter marked with the 'nest' attribute.
1194    for (FunctionType::param_iterator I = NestFTy->param_begin(),
1195         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1196      if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1197        // Record the parameter type and any other attributes.
1198        NestTy = *I;
1199        NestAttr = NestAttrs.getParamAttributes(NestIdx);
1200        break;
1201      }
1202
1203    if (NestTy) {
1204      Instruction *Caller = CS.getInstruction();
1205      std::vector<Value*> NewArgs;
1206      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1207
1208      SmallVector<AttributeWithIndex, 8> NewAttrs;
1209      NewAttrs.reserve(Attrs.getNumSlots() + 1);
1210
1211      // Insert the nest argument into the call argument list, which may
1212      // mean appending it.  Likewise for attributes.
1213
1214      // Add any result attributes.
1215      if (Attributes Attr = Attrs.getRetAttributes())
1216        NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1217
1218      {
1219        unsigned Idx = 1;
1220        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1221        do {
1222          if (Idx == NestIdx) {
1223            // Add the chain argument and attributes.
1224            Value *NestVal = Tramp->getArgOperand(2);
1225            if (NestVal->getType() != NestTy)
1226              NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
1227            NewArgs.push_back(NestVal);
1228            NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1229          }
1230
1231          if (I == E)
1232            break;
1233
1234          // Add the original argument and attributes.
1235          NewArgs.push_back(*I);
1236          if (Attributes Attr = Attrs.getParamAttributes(Idx))
1237            NewAttrs.push_back
1238              (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1239
1240          ++Idx, ++I;
1241        } while (1);
1242      }
1243
1244      // Add any function attributes.
1245      if (Attributes Attr = Attrs.getFnAttributes())
1246        NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1247
1248      // The trampoline may have been bitcast to a bogus type (FTy).
1249      // Handle this by synthesizing a new function type, equal to FTy
1250      // with the chain parameter inserted.
1251
1252      std::vector<const Type*> NewTypes;
1253      NewTypes.reserve(FTy->getNumParams()+1);
1254
1255      // Insert the chain's type into the list of parameter types, which may
1256      // mean appending it.
1257      {
1258        unsigned Idx = 1;
1259        FunctionType::param_iterator I = FTy->param_begin(),
1260          E = FTy->param_end();
1261
1262        do {
1263          if (Idx == NestIdx)
1264            // Add the chain's type.
1265            NewTypes.push_back(NestTy);
1266
1267          if (I == E)
1268            break;
1269
1270          // Add the original type.
1271          NewTypes.push_back(*I);
1272
1273          ++Idx, ++I;
1274        } while (1);
1275      }
1276
1277      // Replace the trampoline call with a direct call.  Let the generic
1278      // code sort out any function type mismatches.
1279      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1280                                                FTy->isVarArg());
1281      Constant *NewCallee =
1282        NestF->getType() == PointerType::getUnqual(NewFTy) ?
1283        NestF : ConstantExpr::getBitCast(NestF,
1284                                         PointerType::getUnqual(NewFTy));
1285      const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
1286                                                   NewAttrs.end());
1287
1288      Instruction *NewCaller;
1289      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1290        NewCaller = InvokeInst::Create(NewCallee,
1291                                       II->getNormalDest(), II->getUnwindDest(),
1292                                       NewArgs.begin(), NewArgs.end());
1293        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1294        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1295      } else {
1296        NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end());
1297        if (cast<CallInst>(Caller)->isTailCall())
1298          cast<CallInst>(NewCaller)->setTailCall();
1299        cast<CallInst>(NewCaller)->
1300          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1301        cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1302      }
1303
1304      return NewCaller;
1305    }
1306  }
1307
1308  // Replace the trampoline call with a direct call.  Since there is no 'nest'
1309  // parameter, there is no need to adjust the argument list.  Let the generic
1310  // code sort out any function type mismatches.
1311  Constant *NewCallee =
1312    NestF->getType() == PTy ? NestF :
1313                              ConstantExpr::getBitCast(NestF, PTy);
1314  CS.setCalledFunction(NewCallee);
1315  return CS.getInstruction();
1316}
1317
1318