InstCombineCalls.cpp revision fc8ccfedbba651e324d827de6693aad1491314c7
1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Support/CallSite.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19using namespace llvm;
20
21/// getPromotedType - Return the specified type promoted as it would be to pass
22/// though a va_arg area.
23static const Type *getPromotedType(const Type *Ty) {
24  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
25    if (ITy->getBitWidth() < 32)
26      return Type::getInt32Ty(Ty->getContext());
27  }
28  return Ty;
29}
30
31/// EnforceKnownAlignment - If the specified pointer points to an object that
32/// we control, modify the object's alignment to PrefAlign. This isn't
33/// often possible though. If alignment is important, a more reliable approach
34/// is to simply align all global variables and allocation instructions to
35/// their preferred alignment from the beginning.
36///
37static unsigned EnforceKnownAlignment(Value *V,
38                                      unsigned Align, unsigned PrefAlign) {
39
40  User *U = dyn_cast<User>(V);
41  if (!U) return Align;
42
43  switch (Operator::getOpcode(U)) {
44  default: break;
45  case Instruction::BitCast:
46    return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
47  case Instruction::GetElementPtr: {
48    // If all indexes are zero, it is just the alignment of the base pointer.
49    bool AllZeroOperands = true;
50    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
51      if (!isa<Constant>(*i) ||
52          !cast<Constant>(*i)->isNullValue()) {
53        AllZeroOperands = false;
54        break;
55      }
56
57    if (AllZeroOperands) {
58      // Treat this like a bitcast.
59      return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
60    }
61    break;
62  }
63  }
64
65  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
66    // If there is a large requested alignment and we can, bump up the alignment
67    // of the global.
68    if (!GV->isDeclaration()) {
69      if (GV->getAlignment() >= PrefAlign)
70        Align = GV->getAlignment();
71      else {
72        GV->setAlignment(PrefAlign);
73        Align = PrefAlign;
74      }
75    }
76  } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
77    // If there is a requested alignment and if this is an alloca, round up.
78    if (AI->getAlignment() >= PrefAlign)
79      Align = AI->getAlignment();
80    else {
81      AI->setAlignment(PrefAlign);
82      Align = PrefAlign;
83    }
84  }
85
86  return Align;
87}
88
89/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
90/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
91/// and it is more than the alignment of the ultimate object, see if we can
92/// increase the alignment of the ultimate object, making this check succeed.
93unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
94                                                  unsigned PrefAlign) {
95  unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
96                      sizeof(PrefAlign) * CHAR_BIT;
97  APInt Mask = APInt::getAllOnesValue(BitWidth);
98  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
99  ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
100  unsigned TrailZ = KnownZero.countTrailingOnes();
101  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
102
103  if (PrefAlign > Align)
104    Align = EnforceKnownAlignment(V, Align, PrefAlign);
105
106    // We don't need to make any adjustment.
107  return Align;
108}
109
110Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
111  unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
112  unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
113  unsigned MinAlign = std::min(DstAlign, SrcAlign);
114  unsigned CopyAlign = MI->getAlignment();
115
116  if (CopyAlign < MinAlign) {
117    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
118                                             MinAlign, false));
119    return MI;
120  }
121
122  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
123  // load/store.
124  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
125  if (MemOpLength == 0) return 0;
126
127  // Source and destination pointer types are always "i8*" for intrinsic.  See
128  // if the size is something we can handle with a single primitive load/store.
129  // A single load+store correctly handles overlapping memory in the memmove
130  // case.
131  unsigned Size = MemOpLength->getZExtValue();
132  if (Size == 0) return MI;  // Delete this mem transfer.
133
134  if (Size > 8 || (Size&(Size-1)))
135    return 0;  // If not 1/2/4/8 bytes, exit.
136
137  // Use an integer load+store unless we can find something better.
138  Type *NewPtrTy =
139            PointerType::getUnqual(IntegerType::get(MI->getContext(), Size<<3));
140
141  // Memcpy forces the use of i8* for the source and destination.  That means
142  // that if you're using memcpy to move one double around, you'll get a cast
143  // from double* to i8*.  We'd much rather use a double load+store rather than
144  // an i64 load+store, here because this improves the odds that the source or
145  // dest address will be promotable.  See if we can find a better type than the
146  // integer datatype.
147  Value *StrippedDest = MI->getOperand(1)->stripPointerCasts();
148  if (StrippedDest != MI->getOperand(1)) {
149    const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
150                                    ->getElementType();
151    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
152      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
153      // down through these levels if so.
154      while (!SrcETy->isSingleValueType()) {
155        if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
156          if (STy->getNumElements() == 1)
157            SrcETy = STy->getElementType(0);
158          else
159            break;
160        } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
161          if (ATy->getNumElements() == 1)
162            SrcETy = ATy->getElementType();
163          else
164            break;
165        } else
166          break;
167      }
168
169      if (SrcETy->isSingleValueType())
170        NewPtrTy = PointerType::getUnqual(SrcETy);
171    }
172  }
173
174
175  // If the memcpy/memmove provides better alignment info than we can
176  // infer, use it.
177  SrcAlign = std::max(SrcAlign, CopyAlign);
178  DstAlign = std::max(DstAlign, CopyAlign);
179
180  Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
181  Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
182  Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
183  InsertNewInstBefore(L, *MI);
184  InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
185
186  // Set the size of the copy to 0, it will be deleted on the next iteration.
187  MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
188  return MI;
189}
190
191Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
192  unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
193  if (MI->getAlignment() < Alignment) {
194    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
195                                             Alignment, false));
196    return MI;
197  }
198
199  // Extract the length and alignment and fill if they are constant.
200  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
201  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
202  if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
203    return 0;
204  uint64_t Len = LenC->getZExtValue();
205  Alignment = MI->getAlignment();
206
207  // If the length is zero, this is a no-op
208  if (Len == 0) return MI; // memset(d,c,0,a) -> noop
209
210  // memset(s,c,n) -> store s, c (for n=1,2,4,8)
211  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
212    const Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
213
214    Value *Dest = MI->getDest();
215    Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
216
217    // Alignment 0 is identity for alignment 1 for memset, but not store.
218    if (Alignment == 0) Alignment = 1;
219
220    // Extract the fill value and store.
221    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
222    InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
223                                      Dest, false, Alignment), *MI);
224
225    // Set the size of the copy to 0, it will be deleted on the next iteration.
226    MI->setLength(Constant::getNullValue(LenC->getType()));
227    return MI;
228  }
229
230  return 0;
231}
232
233/// visitCallInst - CallInst simplification.  This mostly only handles folding
234/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
235/// the heavy lifting.
236///
237Instruction *InstCombiner::visitCallInst(CallInst &CI) {
238  if (isFreeCall(&CI))
239    return visitFree(CI);
240
241  // If the caller function is nounwind, mark the call as nounwind, even if the
242  // callee isn't.
243  if (CI.getParent()->getParent()->doesNotThrow() &&
244      !CI.doesNotThrow()) {
245    CI.setDoesNotThrow();
246    return &CI;
247  }
248
249  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
250  if (!II) return visitCallSite(&CI);
251
252  // Intrinsics cannot occur in an invoke, so handle them here instead of in
253  // visitCallSite.
254  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
255    bool Changed = false;
256
257    // memmove/cpy/set of zero bytes is a noop.
258    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
259      if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
260
261      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
262        if (CI->getZExtValue() == 1) {
263          // Replace the instruction with just byte operations.  We would
264          // transform other cases to loads/stores, but we don't know if
265          // alignment is sufficient.
266        }
267    }
268
269    // If we have a memmove and the source operation is a constant global,
270    // then the source and dest pointers can't alias, so we can change this
271    // into a call to memcpy.
272    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
273      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
274        if (GVSrc->isConstant()) {
275          Module *M = CI.getParent()->getParent()->getParent();
276          Intrinsic::ID MemCpyID = Intrinsic::memcpy;
277          const Type *Tys[1];
278          Tys[0] = CI.getOperand(3)->getType();
279          CI.setOperand(0,
280                        Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
281          Changed = true;
282        }
283    }
284
285    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
286      // memmove(x,x,size) -> noop.
287      if (MTI->getSource() == MTI->getDest())
288        return EraseInstFromFunction(CI);
289    }
290
291    // If we can determine a pointer alignment that is bigger than currently
292    // set, update the alignment.
293    if (isa<MemTransferInst>(MI)) {
294      if (Instruction *I = SimplifyMemTransfer(MI))
295        return I;
296    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
297      if (Instruction *I = SimplifyMemSet(MSI))
298        return I;
299    }
300
301    if (Changed) return II;
302  }
303
304  switch (II->getIntrinsicID()) {
305  default: break;
306  case Intrinsic::objectsize: {
307    // We need target data for just about everything so depend on it.
308    if (!TD) break;
309
310    const Type *ReturnTy = CI.getType();
311    bool Min = (cast<ConstantInt>(II->getOperand(2))->getZExtValue() == 1);
312
313    // Get to the real allocated thing and offset as fast as possible.
314    Value *Op1 = II->getOperand(1)->stripPointerCasts();
315
316    // If we've stripped down to a single global variable that we
317    // can know the size of then just return that.
318    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
319      if (GV->hasDefinitiveInitializer()) {
320        Constant *C = GV->getInitializer();
321        uint64_t GlobalSize = TD->getTypeAllocSize(C->getType());
322        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, GlobalSize));
323      } else {
324        // Can't determine size of the GV.
325        Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
326        return ReplaceInstUsesWith(CI, RetVal);
327      }
328    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
329      // Get alloca size.
330      if (AI->getAllocatedType()->isSized()) {
331        uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
332        if (AI->isArrayAllocation()) {
333          const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
334          if (!C) break;
335          AllocaSize *= C->getZExtValue();
336        }
337        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, AllocaSize));
338      }
339    } else if (CallInst *MI = extractMallocCall(Op1)) {
340      const Type* MallocType = getMallocAllocatedType(MI);
341      // Get alloca size.
342      if (MallocType->isSized()) {
343        if (Value *NElems = getMallocArraySize(MI, TD, true)) {
344          if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
345        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy,
346               (NElements->getZExtValue() * TD->getTypeAllocSize(MallocType))));
347        }
348      }
349    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op1)) {
350      // Only handle constant GEPs here.
351      if (CE->getOpcode() != Instruction::GetElementPtr) break;
352      GEPOperator *GEP = cast<GEPOperator>(CE);
353
354      // Make sure we're not a constant offset from an external
355      // global.
356      Value *Operand = GEP->getPointerOperand();
357      Operand = Operand->stripPointerCasts();
358      if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Operand))
359        if (!GV->hasDefinitiveInitializer()) break;
360
361      // Get what we're pointing to and its size.
362      const PointerType *BaseType =
363        cast<PointerType>(Operand->getType());
364      uint64_t Size = TD->getTypeAllocSize(BaseType->getElementType());
365
366      // Get the current byte offset into the thing. Use the original
367      // operand in case we're looking through a bitcast.
368      SmallVector<Value*, 8> Ops(CE->op_begin()+1, CE->op_end());
369      const PointerType *OffsetType =
370        cast<PointerType>(GEP->getPointerOperand()->getType());
371      uint64_t Offset = TD->getIndexedOffset(OffsetType, &Ops[0], Ops.size());
372
373      if (Size < Offset) {
374        // Out of bound reference? Negative index normalized to large
375        // index? Just return "I don't know".
376        Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
377        return ReplaceInstUsesWith(CI, RetVal);
378      }
379
380      Constant *RetVal = ConstantInt::get(ReturnTy, Size-Offset);
381      return ReplaceInstUsesWith(CI, RetVal);
382
383    }
384
385    // Do not return "I don't know" here. Later optimization passes could
386    // make it possible to evaluate objectsize to a constant.
387    break;
388  }
389  case Intrinsic::bswap:
390    // bswap(bswap(x)) -> x
391    if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
392      if (Operand->getIntrinsicID() == Intrinsic::bswap)
393        return ReplaceInstUsesWith(CI, Operand->getOperand(1));
394
395    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
396    if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) {
397      if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
398        if (Operand->getIntrinsicID() == Intrinsic::bswap) {
399          unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
400                       TI->getType()->getPrimitiveSizeInBits();
401          Value *CV = ConstantInt::get(Operand->getType(), C);
402          Value *V = Builder->CreateLShr(Operand->getOperand(1), CV);
403          return new TruncInst(V, TI->getType());
404        }
405    }
406
407    break;
408  case Intrinsic::powi:
409    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) {
410      // powi(x, 0) -> 1.0
411      if (Power->isZero())
412        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
413      // powi(x, 1) -> x
414      if (Power->isOne())
415        return ReplaceInstUsesWith(CI, II->getOperand(1));
416      // powi(x, -1) -> 1/x
417      if (Power->isAllOnesValue())
418        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
419                                          II->getOperand(1));
420    }
421    break;
422  case Intrinsic::cttz: {
423    // If all bits below the first known one are known zero,
424    // this value is constant.
425    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
426    uint32_t BitWidth = IT->getBitWidth();
427    APInt KnownZero(BitWidth, 0);
428    APInt KnownOne(BitWidth, 0);
429    ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
430                      KnownZero, KnownOne);
431    unsigned TrailingZeros = KnownOne.countTrailingZeros();
432    APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
433    if ((Mask & KnownZero) == Mask)
434      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
435                                 APInt(BitWidth, TrailingZeros)));
436
437    }
438    break;
439  case Intrinsic::ctlz: {
440    // If all bits above the first known one are known zero,
441    // this value is constant.
442    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
443    uint32_t BitWidth = IT->getBitWidth();
444    APInt KnownZero(BitWidth, 0);
445    APInt KnownOne(BitWidth, 0);
446    ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
447                      KnownZero, KnownOne);
448    unsigned LeadingZeros = KnownOne.countLeadingZeros();
449    APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
450    if ((Mask & KnownZero) == Mask)
451      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
452                                 APInt(BitWidth, LeadingZeros)));
453
454    }
455    break;
456  case Intrinsic::uadd_with_overflow: {
457    Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
458    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
459    uint32_t BitWidth = IT->getBitWidth();
460    APInt Mask = APInt::getSignBit(BitWidth);
461    APInt LHSKnownZero(BitWidth, 0);
462    APInt LHSKnownOne(BitWidth, 0);
463    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
464    bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
465    bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
466
467    if (LHSKnownNegative || LHSKnownPositive) {
468      APInt RHSKnownZero(BitWidth, 0);
469      APInt RHSKnownOne(BitWidth, 0);
470      ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
471      bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
472      bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
473      if (LHSKnownNegative && RHSKnownNegative) {
474        // The sign bit is set in both cases: this MUST overflow.
475        // Create a simple add instruction, and insert it into the struct.
476        Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
477        Worklist.Add(Add);
478        Constant *V[] = {
479          UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
480        };
481        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
482        return InsertValueInst::Create(Struct, Add, 0);
483      }
484
485      if (LHSKnownPositive && RHSKnownPositive) {
486        // The sign bit is clear in both cases: this CANNOT overflow.
487        // Create a simple add instruction, and insert it into the struct.
488        Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
489        Worklist.Add(Add);
490        Constant *V[] = {
491          UndefValue::get(LHS->getType()),
492          ConstantInt::getFalse(II->getContext())
493        };
494        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
495        return InsertValueInst::Create(Struct, Add, 0);
496      }
497    }
498  }
499  // FALL THROUGH uadd into sadd
500  case Intrinsic::sadd_with_overflow:
501    // Canonicalize constants into the RHS.
502    if (isa<Constant>(II->getOperand(1)) &&
503        !isa<Constant>(II->getOperand(2))) {
504      Value *LHS = II->getOperand(1);
505      II->setOperand(1, II->getOperand(2));
506      II->setOperand(2, LHS);
507      return II;
508    }
509
510    // X + undef -> undef
511    if (isa<UndefValue>(II->getOperand(2)))
512      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
513
514    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
515      // X + 0 -> {X, false}
516      if (RHS->isZero()) {
517        Constant *V[] = {
518          UndefValue::get(II->getOperand(0)->getType()),
519          ConstantInt::getFalse(II->getContext())
520        };
521        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
522        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
523      }
524    }
525    break;
526  case Intrinsic::usub_with_overflow:
527  case Intrinsic::ssub_with_overflow:
528    // undef - X -> undef
529    // X - undef -> undef
530    if (isa<UndefValue>(II->getOperand(1)) ||
531        isa<UndefValue>(II->getOperand(2)))
532      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
533
534    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
535      // X - 0 -> {X, false}
536      if (RHS->isZero()) {
537        Constant *V[] = {
538          UndefValue::get(II->getOperand(1)->getType()),
539          ConstantInt::getFalse(II->getContext())
540        };
541        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
542        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
543      }
544    }
545    break;
546  case Intrinsic::umul_with_overflow:
547  case Intrinsic::smul_with_overflow:
548    // Canonicalize constants into the RHS.
549    if (isa<Constant>(II->getOperand(1)) &&
550        !isa<Constant>(II->getOperand(2))) {
551      Value *LHS = II->getOperand(1);
552      II->setOperand(1, II->getOperand(2));
553      II->setOperand(2, LHS);
554      return II;
555    }
556
557    // X * undef -> undef
558    if (isa<UndefValue>(II->getOperand(2)))
559      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
560
561    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
562      // X*0 -> {0, false}
563      if (RHSI->isZero())
564        return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
565
566      // X * 1 -> {X, false}
567      if (RHSI->equalsInt(1)) {
568        Constant *V[] = {
569          UndefValue::get(II->getOperand(1)->getType()),
570          ConstantInt::getFalse(II->getContext())
571        };
572        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
573        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
574      }
575    }
576    break;
577  case Intrinsic::ppc_altivec_lvx:
578  case Intrinsic::ppc_altivec_lvxl:
579  case Intrinsic::x86_sse_loadu_ps:
580  case Intrinsic::x86_sse2_loadu_pd:
581  case Intrinsic::x86_sse2_loadu_dq:
582    // Turn PPC lvx     -> load if the pointer is known aligned.
583    // Turn X86 loadups -> load if the pointer is known aligned.
584    if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
585      Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
586                                         PointerType::getUnqual(II->getType()));
587      return new LoadInst(Ptr);
588    }
589    break;
590  case Intrinsic::ppc_altivec_stvx:
591  case Intrinsic::ppc_altivec_stvxl:
592    // Turn stvx -> store if the pointer is known aligned.
593    if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
594      const Type *OpPtrTy =
595        PointerType::getUnqual(II->getOperand(1)->getType());
596      Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
597      return new StoreInst(II->getOperand(1), Ptr);
598    }
599    break;
600  case Intrinsic::x86_sse_storeu_ps:
601  case Intrinsic::x86_sse2_storeu_pd:
602  case Intrinsic::x86_sse2_storeu_dq:
603    // Turn X86 storeu -> store if the pointer is known aligned.
604    if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
605      const Type *OpPtrTy =
606        PointerType::getUnqual(II->getOperand(2)->getType());
607      Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
608      return new StoreInst(II->getOperand(2), Ptr);
609    }
610    break;
611
612  case Intrinsic::x86_sse_cvttss2si: {
613    // These intrinsics only demands the 0th element of its input vector.  If
614    // we can simplify the input based on that, do so now.
615    unsigned VWidth =
616      cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
617    APInt DemandedElts(VWidth, 1);
618    APInt UndefElts(VWidth, 0);
619    if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
620                                              UndefElts)) {
621      II->setOperand(1, V);
622      return II;
623    }
624    break;
625  }
626
627  case Intrinsic::ppc_altivec_vperm:
628    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
629    if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
630      assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
631
632      // Check that all of the elements are integer constants or undefs.
633      bool AllEltsOk = true;
634      for (unsigned i = 0; i != 16; ++i) {
635        if (!isa<ConstantInt>(Mask->getOperand(i)) &&
636            !isa<UndefValue>(Mask->getOperand(i))) {
637          AllEltsOk = false;
638          break;
639        }
640      }
641
642      if (AllEltsOk) {
643        // Cast the input vectors to byte vectors.
644        Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
645        Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
646        Value *Result = UndefValue::get(Op0->getType());
647
648        // Only extract each element once.
649        Value *ExtractedElts[32];
650        memset(ExtractedElts, 0, sizeof(ExtractedElts));
651
652        for (unsigned i = 0; i != 16; ++i) {
653          if (isa<UndefValue>(Mask->getOperand(i)))
654            continue;
655          unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
656          Idx &= 31;  // Match the hardware behavior.
657
658          if (ExtractedElts[Idx] == 0) {
659            ExtractedElts[Idx] =
660              Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
661                  ConstantInt::get(Type::getInt32Ty(II->getContext()),
662                                   Idx&15, false), "tmp");
663          }
664
665          // Insert this value into the result vector.
666          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
667                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
668                                          i, false), "tmp");
669        }
670        return CastInst::Create(Instruction::BitCast, Result, CI.getType());
671      }
672    }
673    break;
674
675  case Intrinsic::stackrestore: {
676    // If the save is right next to the restore, remove the restore.  This can
677    // happen when variable allocas are DCE'd.
678    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
679      if (SS->getIntrinsicID() == Intrinsic::stacksave) {
680        BasicBlock::iterator BI = SS;
681        if (&*++BI == II)
682          return EraseInstFromFunction(CI);
683      }
684    }
685
686    // Scan down this block to see if there is another stack restore in the
687    // same block without an intervening call/alloca.
688    BasicBlock::iterator BI = II;
689    TerminatorInst *TI = II->getParent()->getTerminator();
690    bool CannotRemove = false;
691    for (++BI; &*BI != TI; ++BI) {
692      if (isa<AllocaInst>(BI) || isMalloc(BI)) {
693        CannotRemove = true;
694        break;
695      }
696      if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
697        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
698          // If there is a stackrestore below this one, remove this one.
699          if (II->getIntrinsicID() == Intrinsic::stackrestore)
700            return EraseInstFromFunction(CI);
701          // Otherwise, ignore the intrinsic.
702        } else {
703          // If we found a non-intrinsic call, we can't remove the stack
704          // restore.
705          CannotRemove = true;
706          break;
707        }
708      }
709    }
710
711    // If the stack restore is in a return/unwind block and if there are no
712    // allocas or calls between the restore and the return, nuke the restore.
713    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
714      return EraseInstFromFunction(CI);
715    break;
716  }
717  }
718
719  return visitCallSite(II);
720}
721
722// InvokeInst simplification
723//
724Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
725  return visitCallSite(&II);
726}
727
728/// isSafeToEliminateVarargsCast - If this cast does not affect the value
729/// passed through the varargs area, we can eliminate the use of the cast.
730static bool isSafeToEliminateVarargsCast(const CallSite CS,
731                                         const CastInst * const CI,
732                                         const TargetData * const TD,
733                                         const int ix) {
734  if (!CI->isLosslessCast())
735    return false;
736
737  // The size of ByVal arguments is derived from the type, so we
738  // can't change to a type with a different size.  If the size were
739  // passed explicitly we could avoid this check.
740  if (!CS.paramHasAttr(ix, Attribute::ByVal))
741    return true;
742
743  const Type* SrcTy =
744            cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
745  const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
746  if (!SrcTy->isSized() || !DstTy->isSized())
747    return false;
748  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
749    return false;
750  return true;
751}
752
753// visitCallSite - Improvements for call and invoke instructions.
754//
755Instruction *InstCombiner::visitCallSite(CallSite CS) {
756  bool Changed = false;
757
758  // If the callee is a constexpr cast of a function, attempt to move the cast
759  // to the arguments of the call/invoke.
760  if (transformConstExprCastCall(CS)) return 0;
761
762  Value *Callee = CS.getCalledValue();
763
764  if (Function *CalleeF = dyn_cast<Function>(Callee))
765    // If the call and callee calling conventions don't match, this call must
766    // be unreachable, as the call is undefined.
767    if (CalleeF->getCallingConv() != CS.getCallingConv() &&
768        // Only do this for calls to a function with a body.  A prototype may
769        // not actually end up matching the implementation's calling conv for a
770        // variety of reasons (e.g. it may be written in assembly).
771        !CalleeF->isDeclaration()) {
772      Instruction *OldCall = CS.getInstruction();
773      new StoreInst(ConstantInt::getTrue(Callee->getContext()),
774                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
775                                  OldCall);
776      // If OldCall dues not return void then replaceAllUsesWith undef.
777      // This allows ValueHandlers and custom metadata to adjust itself.
778      if (!OldCall->getType()->isVoidTy())
779        OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
780      if (isa<CallInst>(OldCall))
781        return EraseInstFromFunction(*OldCall);
782
783      // We cannot remove an invoke, because it would change the CFG, just
784      // change the callee to a null pointer.
785      cast<InvokeInst>(OldCall)->setOperand(0,
786                                    Constant::getNullValue(CalleeF->getType()));
787      return 0;
788    }
789
790  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
791    // This instruction is not reachable, just remove it.  We insert a store to
792    // undef so that we know that this code is not reachable, despite the fact
793    // that we can't modify the CFG here.
794    new StoreInst(ConstantInt::getTrue(Callee->getContext()),
795               UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
796                  CS.getInstruction());
797
798    // If CS dues not return void then replaceAllUsesWith undef.
799    // This allows ValueHandlers and custom metadata to adjust itself.
800    if (!CS.getInstruction()->getType()->isVoidTy())
801      CS.getInstruction()->
802        replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
803
804    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
805      // Don't break the CFG, insert a dummy cond branch.
806      BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
807                         ConstantInt::getTrue(Callee->getContext()), II);
808    }
809    return EraseInstFromFunction(*CS.getInstruction());
810  }
811
812  if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
813    if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
814      if (In->getIntrinsicID() == Intrinsic::init_trampoline)
815        return transformCallThroughTrampoline(CS);
816
817  const PointerType *PTy = cast<PointerType>(Callee->getType());
818  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
819  if (FTy->isVarArg()) {
820    int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
821    // See if we can optimize any arguments passed through the varargs area of
822    // the call.
823    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
824           E = CS.arg_end(); I != E; ++I, ++ix) {
825      CastInst *CI = dyn_cast<CastInst>(*I);
826      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
827        *I = CI->getOperand(0);
828        Changed = true;
829      }
830    }
831  }
832
833  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
834    // Inline asm calls cannot throw - mark them 'nounwind'.
835    CS.setDoesNotThrow();
836    Changed = true;
837  }
838
839  return Changed ? CS.getInstruction() : 0;
840}
841
842// transformConstExprCastCall - If the callee is a constexpr cast of a function,
843// attempt to move the cast to the arguments of the call/invoke.
844//
845bool InstCombiner::transformConstExprCastCall(CallSite CS) {
846  if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
847  ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
848  if (CE->getOpcode() != Instruction::BitCast ||
849      !isa<Function>(CE->getOperand(0)))
850    return false;
851  Function *Callee = cast<Function>(CE->getOperand(0));
852  Instruction *Caller = CS.getInstruction();
853  const AttrListPtr &CallerPAL = CS.getAttributes();
854
855  // Okay, this is a cast from a function to a different type.  Unless doing so
856  // would cause a type conversion of one of our arguments, change this call to
857  // be a direct call with arguments casted to the appropriate types.
858  //
859  const FunctionType *FT = Callee->getFunctionType();
860  const Type *OldRetTy = Caller->getType();
861  const Type *NewRetTy = FT->getReturnType();
862
863  if (NewRetTy->isStructTy())
864    return false; // TODO: Handle multiple return values.
865
866  // Check to see if we are changing the return type...
867  if (OldRetTy != NewRetTy) {
868    if (Callee->isDeclaration() &&
869        // Conversion is ok if changing from one pointer type to another or from
870        // a pointer to an integer of the same size.
871        !((OldRetTy->isPointerTy() || !TD ||
872           OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
873          (NewRetTy->isPointerTy() || !TD ||
874           NewRetTy == TD->getIntPtrType(Caller->getContext()))))
875      return false;   // Cannot transform this return value.
876
877    if (!Caller->use_empty() &&
878        // void -> non-void is handled specially
879        !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
880      return false;   // Cannot transform this return value.
881
882    if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
883      Attributes RAttrs = CallerPAL.getRetAttributes();
884      if (RAttrs & Attribute::typeIncompatible(NewRetTy))
885        return false;   // Attribute not compatible with transformed value.
886    }
887
888    // If the callsite is an invoke instruction, and the return value is used by
889    // a PHI node in a successor, we cannot change the return type of the call
890    // because there is no place to put the cast instruction (without breaking
891    // the critical edge).  Bail out in this case.
892    if (!Caller->use_empty())
893      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
894        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
895             UI != E; ++UI)
896          if (PHINode *PN = dyn_cast<PHINode>(*UI))
897            if (PN->getParent() == II->getNormalDest() ||
898                PN->getParent() == II->getUnwindDest())
899              return false;
900  }
901
902  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
903  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
904
905  CallSite::arg_iterator AI = CS.arg_begin();
906  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
907    const Type *ParamTy = FT->getParamType(i);
908    const Type *ActTy = (*AI)->getType();
909
910    if (!CastInst::isCastable(ActTy, ParamTy))
911      return false;   // Cannot transform this parameter value.
912
913    if (CallerPAL.getParamAttributes(i + 1)
914        & Attribute::typeIncompatible(ParamTy))
915      return false;   // Attribute not compatible with transformed value.
916
917    // Converting from one pointer type to another or between a pointer and an
918    // integer of the same size is safe even if we do not have a body.
919    bool isConvertible = ActTy == ParamTy ||
920      (TD && ((ParamTy->isPointerTy() ||
921      ParamTy == TD->getIntPtrType(Caller->getContext())) &&
922              (ActTy->isPointerTy() ||
923              ActTy == TD->getIntPtrType(Caller->getContext()))));
924    if (Callee->isDeclaration() && !isConvertible) return false;
925  }
926
927  if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
928      Callee->isDeclaration())
929    return false;   // Do not delete arguments unless we have a function body.
930
931  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
932      !CallerPAL.isEmpty())
933    // In this case we have more arguments than the new function type, but we
934    // won't be dropping them.  Check that these extra arguments have attributes
935    // that are compatible with being a vararg call argument.
936    for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
937      if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
938        break;
939      Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
940      if (PAttrs & Attribute::VarArgsIncompatible)
941        return false;
942    }
943
944  // Okay, we decided that this is a safe thing to do: go ahead and start
945  // inserting cast instructions as necessary...
946  std::vector<Value*> Args;
947  Args.reserve(NumActualArgs);
948  SmallVector<AttributeWithIndex, 8> attrVec;
949  attrVec.reserve(NumCommonArgs);
950
951  // Get any return attributes.
952  Attributes RAttrs = CallerPAL.getRetAttributes();
953
954  // If the return value is not being used, the type may not be compatible
955  // with the existing attributes.  Wipe out any problematic attributes.
956  RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
957
958  // Add the new return attributes.
959  if (RAttrs)
960    attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
961
962  AI = CS.arg_begin();
963  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
964    const Type *ParamTy = FT->getParamType(i);
965    if ((*AI)->getType() == ParamTy) {
966      Args.push_back(*AI);
967    } else {
968      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
969          false, ParamTy, false);
970      Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
971    }
972
973    // Add any parameter attributes.
974    if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
975      attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
976  }
977
978  // If the function takes more arguments than the call was taking, add them
979  // now.
980  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
981    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
982
983  // If we are removing arguments to the function, emit an obnoxious warning.
984  if (FT->getNumParams() < NumActualArgs) {
985    if (!FT->isVarArg()) {
986      errs() << "WARNING: While resolving call to function '"
987             << Callee->getName() << "' arguments were dropped!\n";
988    } else {
989      // Add all of the arguments in their promoted form to the arg list.
990      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
991        const Type *PTy = getPromotedType((*AI)->getType());
992        if (PTy != (*AI)->getType()) {
993          // Must promote to pass through va_arg area!
994          Instruction::CastOps opcode =
995            CastInst::getCastOpcode(*AI, false, PTy, false);
996          Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
997        } else {
998          Args.push_back(*AI);
999        }
1000
1001        // Add any parameter attributes.
1002        if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1003          attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1004      }
1005    }
1006  }
1007
1008  if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
1009    attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
1010
1011  if (NewRetTy->isVoidTy())
1012    Caller->setName("");   // Void type should not have a name.
1013
1014  const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
1015                                                     attrVec.end());
1016
1017  Instruction *NC;
1018  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1019    NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
1020                            Args.begin(), Args.end(),
1021                            Caller->getName(), Caller);
1022    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1023    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1024  } else {
1025    NC = CallInst::Create(Callee, Args.begin(), Args.end(),
1026                          Caller->getName(), Caller);
1027    CallInst *CI = cast<CallInst>(Caller);
1028    if (CI->isTailCall())
1029      cast<CallInst>(NC)->setTailCall();
1030    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1031    cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1032  }
1033
1034  // Insert a cast of the return type as necessary.
1035  Value *NV = NC;
1036  if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1037    if (!NV->getType()->isVoidTy()) {
1038      Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
1039                                                            OldRetTy, false);
1040      NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
1041
1042      // If this is an invoke instruction, we should insert it after the first
1043      // non-phi, instruction in the normal successor block.
1044      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1045        BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
1046        InsertNewInstBefore(NC, *I);
1047      } else {
1048        // Otherwise, it's a call, just insert cast right after the call instr
1049        InsertNewInstBefore(NC, *Caller);
1050      }
1051      Worklist.AddUsersToWorkList(*Caller);
1052    } else {
1053      NV = UndefValue::get(Caller->getType());
1054    }
1055  }
1056
1057
1058  if (!Caller->use_empty())
1059    Caller->replaceAllUsesWith(NV);
1060
1061  EraseInstFromFunction(*Caller);
1062  return true;
1063}
1064
1065// transformCallThroughTrampoline - Turn a call to a function created by the
1066// init_trampoline intrinsic into a direct call to the underlying function.
1067//
1068Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
1069  Value *Callee = CS.getCalledValue();
1070  const PointerType *PTy = cast<PointerType>(Callee->getType());
1071  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1072  const AttrListPtr &Attrs = CS.getAttributes();
1073
1074  // If the call already has the 'nest' attribute somewhere then give up -
1075  // otherwise 'nest' would occur twice after splicing in the chain.
1076  if (Attrs.hasAttrSomewhere(Attribute::Nest))
1077    return 0;
1078
1079  IntrinsicInst *Tramp =
1080    cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
1081
1082  Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
1083  const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1084  const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1085
1086  const AttrListPtr &NestAttrs = NestF->getAttributes();
1087  if (!NestAttrs.isEmpty()) {
1088    unsigned NestIdx = 1;
1089    const Type *NestTy = 0;
1090    Attributes NestAttr = Attribute::None;
1091
1092    // Look for a parameter marked with the 'nest' attribute.
1093    for (FunctionType::param_iterator I = NestFTy->param_begin(),
1094         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1095      if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1096        // Record the parameter type and any other attributes.
1097        NestTy = *I;
1098        NestAttr = NestAttrs.getParamAttributes(NestIdx);
1099        break;
1100      }
1101
1102    if (NestTy) {
1103      Instruction *Caller = CS.getInstruction();
1104      std::vector<Value*> NewArgs;
1105      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1106
1107      SmallVector<AttributeWithIndex, 8> NewAttrs;
1108      NewAttrs.reserve(Attrs.getNumSlots() + 1);
1109
1110      // Insert the nest argument into the call argument list, which may
1111      // mean appending it.  Likewise for attributes.
1112
1113      // Add any result attributes.
1114      if (Attributes Attr = Attrs.getRetAttributes())
1115        NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1116
1117      {
1118        unsigned Idx = 1;
1119        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1120        do {
1121          if (Idx == NestIdx) {
1122            // Add the chain argument and attributes.
1123            Value *NestVal = Tramp->getOperand(3);
1124            if (NestVal->getType() != NestTy)
1125              NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
1126            NewArgs.push_back(NestVal);
1127            NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1128          }
1129
1130          if (I == E)
1131            break;
1132
1133          // Add the original argument and attributes.
1134          NewArgs.push_back(*I);
1135          if (Attributes Attr = Attrs.getParamAttributes(Idx))
1136            NewAttrs.push_back
1137              (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1138
1139          ++Idx, ++I;
1140        } while (1);
1141      }
1142
1143      // Add any function attributes.
1144      if (Attributes Attr = Attrs.getFnAttributes())
1145        NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1146
1147      // The trampoline may have been bitcast to a bogus type (FTy).
1148      // Handle this by synthesizing a new function type, equal to FTy
1149      // with the chain parameter inserted.
1150
1151      std::vector<const Type*> NewTypes;
1152      NewTypes.reserve(FTy->getNumParams()+1);
1153
1154      // Insert the chain's type into the list of parameter types, which may
1155      // mean appending it.
1156      {
1157        unsigned Idx = 1;
1158        FunctionType::param_iterator I = FTy->param_begin(),
1159          E = FTy->param_end();
1160
1161        do {
1162          if (Idx == NestIdx)
1163            // Add the chain's type.
1164            NewTypes.push_back(NestTy);
1165
1166          if (I == E)
1167            break;
1168
1169          // Add the original type.
1170          NewTypes.push_back(*I);
1171
1172          ++Idx, ++I;
1173        } while (1);
1174      }
1175
1176      // Replace the trampoline call with a direct call.  Let the generic
1177      // code sort out any function type mismatches.
1178      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1179                                                FTy->isVarArg());
1180      Constant *NewCallee =
1181        NestF->getType() == PointerType::getUnqual(NewFTy) ?
1182        NestF : ConstantExpr::getBitCast(NestF,
1183                                         PointerType::getUnqual(NewFTy));
1184      const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
1185                                                   NewAttrs.end());
1186
1187      Instruction *NewCaller;
1188      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1189        NewCaller = InvokeInst::Create(NewCallee,
1190                                       II->getNormalDest(), II->getUnwindDest(),
1191                                       NewArgs.begin(), NewArgs.end(),
1192                                       Caller->getName(), Caller);
1193        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1194        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1195      } else {
1196        NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
1197                                     Caller->getName(), Caller);
1198        if (cast<CallInst>(Caller)->isTailCall())
1199          cast<CallInst>(NewCaller)->setTailCall();
1200        cast<CallInst>(NewCaller)->
1201          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1202        cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1203      }
1204      if (!Caller->getType()->isVoidTy())
1205        Caller->replaceAllUsesWith(NewCaller);
1206      Caller->eraseFromParent();
1207      Worklist.Remove(Caller);
1208      return 0;
1209    }
1210  }
1211
1212  // Replace the trampoline call with a direct call.  Since there is no 'nest'
1213  // parameter, there is no need to adjust the argument list.  Let the generic
1214  // code sort out any function type mismatches.
1215  Constant *NewCallee =
1216    NestF->getType() == PTy ? NestF :
1217                              ConstantExpr::getBitCast(NestF, PTy);
1218  CS.setCalledFunction(NewCallee);
1219  return CS.getInstruction();
1220}
1221
1222