1//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/IR/DataLayout.h"
17#include "llvm/IR/PatternMatch.h"
18#include "llvm/Target/TargetLibraryInfo.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22#define DEBUG_TYPE "instcombine"
23
24/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
25/// expression.  If so, decompose it, returning some value X, such that Val is
26/// X*Scale+Offset.
27///
28static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
29                                        uint64_t &Offset) {
30  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
31    Offset = CI->getZExtValue();
32    Scale  = 0;
33    return ConstantInt::get(Val->getType(), 0);
34  }
35
36  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
37    // Cannot look past anything that might overflow.
38    OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
39    if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
40      Scale = 1;
41      Offset = 0;
42      return Val;
43    }
44
45    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
46      if (I->getOpcode() == Instruction::Shl) {
47        // This is a value scaled by '1 << the shift amt'.
48        Scale = UINT64_C(1) << RHS->getZExtValue();
49        Offset = 0;
50        return I->getOperand(0);
51      }
52
53      if (I->getOpcode() == Instruction::Mul) {
54        // This value is scaled by 'RHS'.
55        Scale = RHS->getZExtValue();
56        Offset = 0;
57        return I->getOperand(0);
58      }
59
60      if (I->getOpcode() == Instruction::Add) {
61        // We have X+C.  Check to see if we really have (X*C2)+C1,
62        // where C1 is divisible by C2.
63        unsigned SubScale;
64        Value *SubVal =
65          DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
66        Offset += RHS->getZExtValue();
67        Scale = SubScale;
68        return SubVal;
69      }
70    }
71  }
72
73  // Otherwise, we can't look past this.
74  Scale = 1;
75  Offset = 0;
76  return Val;
77}
78
79/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
80/// try to eliminate the cast by moving the type information into the alloc.
81Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
82                                                   AllocaInst &AI) {
83  // This requires DataLayout to get the alloca alignment and size information.
84  if (!DL) return nullptr;
85
86  PointerType *PTy = cast<PointerType>(CI.getType());
87
88  BuilderTy AllocaBuilder(*Builder);
89  AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
90
91  // Get the type really allocated and the type casted to.
92  Type *AllocElTy = AI.getAllocatedType();
93  Type *CastElTy = PTy->getElementType();
94  if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
95
96  unsigned AllocElTyAlign = DL->getABITypeAlignment(AllocElTy);
97  unsigned CastElTyAlign = DL->getABITypeAlignment(CastElTy);
98  if (CastElTyAlign < AllocElTyAlign) return nullptr;
99
100  // If the allocation has multiple uses, only promote it if we are strictly
101  // increasing the alignment of the resultant allocation.  If we keep it the
102  // same, we open the door to infinite loops of various kinds.
103  if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
104
105  uint64_t AllocElTySize = DL->getTypeAllocSize(AllocElTy);
106  uint64_t CastElTySize = DL->getTypeAllocSize(CastElTy);
107  if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
108
109  // If the allocation has multiple uses, only promote it if we're not
110  // shrinking the amount of memory being allocated.
111  uint64_t AllocElTyStoreSize = DL->getTypeStoreSize(AllocElTy);
112  uint64_t CastElTyStoreSize = DL->getTypeStoreSize(CastElTy);
113  if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
114
115  // See if we can satisfy the modulus by pulling a scale out of the array
116  // size argument.
117  unsigned ArraySizeScale;
118  uint64_t ArrayOffset;
119  Value *NumElements = // See if the array size is a decomposable linear expr.
120    DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
121
122  // If we can now satisfy the modulus, by using a non-1 scale, we really can
123  // do the xform.
124  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
125      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
126
127  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
128  Value *Amt = nullptr;
129  if (Scale == 1) {
130    Amt = NumElements;
131  } else {
132    Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
133    // Insert before the alloca, not before the cast.
134    Amt = AllocaBuilder.CreateMul(Amt, NumElements);
135  }
136
137  if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
138    Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
139                                  Offset, true);
140    Amt = AllocaBuilder.CreateAdd(Amt, Off);
141  }
142
143  AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
144  New->setAlignment(AI.getAlignment());
145  New->takeName(&AI);
146  New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
147
148  // If the allocation has multiple real uses, insert a cast and change all
149  // things that used it to use the new cast.  This will also hack on CI, but it
150  // will die soon.
151  if (!AI.hasOneUse()) {
152    // New is the allocation instruction, pointer typed. AI is the original
153    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
154    Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
155    ReplaceInstUsesWith(AI, NewCast);
156  }
157  return ReplaceInstUsesWith(CI, New);
158}
159
160/// EvaluateInDifferentType - Given an expression that
161/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
162/// insert the code to evaluate the expression.
163Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
164                                             bool isSigned) {
165  if (Constant *C = dyn_cast<Constant>(V)) {
166    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
167    // If we got a constantexpr back, try to simplify it with DL info.
168    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
169      C = ConstantFoldConstantExpression(CE, DL, TLI);
170    return C;
171  }
172
173  // Otherwise, it must be an instruction.
174  Instruction *I = cast<Instruction>(V);
175  Instruction *Res = nullptr;
176  unsigned Opc = I->getOpcode();
177  switch (Opc) {
178  case Instruction::Add:
179  case Instruction::Sub:
180  case Instruction::Mul:
181  case Instruction::And:
182  case Instruction::Or:
183  case Instruction::Xor:
184  case Instruction::AShr:
185  case Instruction::LShr:
186  case Instruction::Shl:
187  case Instruction::UDiv:
188  case Instruction::URem: {
189    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
190    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
191    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
192    break;
193  }
194  case Instruction::Trunc:
195  case Instruction::ZExt:
196  case Instruction::SExt:
197    // If the source type of the cast is the type we're trying for then we can
198    // just return the source.  There's no need to insert it because it is not
199    // new.
200    if (I->getOperand(0)->getType() == Ty)
201      return I->getOperand(0);
202
203    // Otherwise, must be the same type of cast, so just reinsert a new one.
204    // This also handles the case of zext(trunc(x)) -> zext(x).
205    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
206                                      Opc == Instruction::SExt);
207    break;
208  case Instruction::Select: {
209    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
210    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
211    Res = SelectInst::Create(I->getOperand(0), True, False);
212    break;
213  }
214  case Instruction::PHI: {
215    PHINode *OPN = cast<PHINode>(I);
216    PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
217    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
218      Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
219      NPN->addIncoming(V, OPN->getIncomingBlock(i));
220    }
221    Res = NPN;
222    break;
223  }
224  default:
225    // TODO: Can handle more cases here.
226    llvm_unreachable("Unreachable!");
227  }
228
229  Res->takeName(I);
230  return InsertNewInstWith(Res, *I);
231}
232
233
234/// This function is a wrapper around CastInst::isEliminableCastPair. It
235/// simply extracts arguments and returns what that function returns.
236static Instruction::CastOps
237isEliminableCastPair(
238  const CastInst *CI, ///< The first cast instruction
239  unsigned opcode,       ///< The opcode of the second cast instruction
240  Type *DstTy,     ///< The target type for the second cast instruction
241  const DataLayout *DL ///< The target data for pointer size
242) {
243
244  Type *SrcTy = CI->getOperand(0)->getType();   // A from above
245  Type *MidTy = CI->getType();                  // B from above
246
247  // Get the opcodes of the two Cast instructions
248  Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
249  Instruction::CastOps secondOp = Instruction::CastOps(opcode);
250  Type *SrcIntPtrTy = DL && SrcTy->isPtrOrPtrVectorTy() ?
251    DL->getIntPtrType(SrcTy) : nullptr;
252  Type *MidIntPtrTy = DL && MidTy->isPtrOrPtrVectorTy() ?
253    DL->getIntPtrType(MidTy) : nullptr;
254  Type *DstIntPtrTy = DL && DstTy->isPtrOrPtrVectorTy() ?
255    DL->getIntPtrType(DstTy) : nullptr;
256  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
257                                                DstTy, SrcIntPtrTy, MidIntPtrTy,
258                                                DstIntPtrTy);
259
260  // We don't want to form an inttoptr or ptrtoint that converts to an integer
261  // type that differs from the pointer size.
262  if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
263      (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
264    Res = 0;
265
266  return Instruction::CastOps(Res);
267}
268
269/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
270/// results in any code being generated and is interesting to optimize out. If
271/// the cast can be eliminated by some other simple transformation, we prefer
272/// to do the simplification first.
273bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
274                                      Type *Ty) {
275  // Noop casts and casts of constants should be eliminated trivially.
276  if (V->getType() == Ty || isa<Constant>(V)) return false;
277
278  // If this is another cast that can be eliminated, we prefer to have it
279  // eliminated.
280  if (const CastInst *CI = dyn_cast<CastInst>(V))
281    if (isEliminableCastPair(CI, opc, Ty, DL))
282      return false;
283
284  // If this is a vector sext from a compare, then we don't want to break the
285  // idiom where each element of the extended vector is either zero or all ones.
286  if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
287    return false;
288
289  return true;
290}
291
292
293/// @brief Implement the transforms common to all CastInst visitors.
294Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
295  Value *Src = CI.getOperand(0);
296
297  // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
298  // eliminate it now.
299  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
300    if (Instruction::CastOps opc =
301        isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) {
302      // The first cast (CSrc) is eliminable so we need to fix up or replace
303      // the second cast (CI). CSrc will then have a good chance of being dead.
304      return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
305    }
306  }
307
308  // If we are casting a select then fold the cast into the select
309  if (SelectInst *SI = dyn_cast<SelectInst>(Src))
310    if (Instruction *NV = FoldOpIntoSelect(CI, SI))
311      return NV;
312
313  // If we are casting a PHI then fold the cast into the PHI
314  if (isa<PHINode>(Src)) {
315    // We don't do this if this would create a PHI node with an illegal type if
316    // it is currently legal.
317    if (!Src->getType()->isIntegerTy() ||
318        !CI.getType()->isIntegerTy() ||
319        ShouldChangeType(CI.getType(), Src->getType()))
320      if (Instruction *NV = FoldOpIntoPhi(CI))
321        return NV;
322  }
323
324  return nullptr;
325}
326
327/// CanEvaluateTruncated - Return true if we can evaluate the specified
328/// expression tree as type Ty instead of its larger type, and arrive with the
329/// same value.  This is used by code that tries to eliminate truncates.
330///
331/// Ty will always be a type smaller than V.  We should return true if trunc(V)
332/// can be computed by computing V in the smaller type.  If V is an instruction,
333/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
334/// makes sense if x and y can be efficiently truncated.
335///
336/// This function works on both vectors and scalars.
337///
338static bool CanEvaluateTruncated(Value *V, Type *Ty) {
339  // We can always evaluate constants in another type.
340  if (isa<Constant>(V))
341    return true;
342
343  Instruction *I = dyn_cast<Instruction>(V);
344  if (!I) return false;
345
346  Type *OrigTy = V->getType();
347
348  // If this is an extension from the dest type, we can eliminate it, even if it
349  // has multiple uses.
350  if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
351      I->getOperand(0)->getType() == Ty)
352    return true;
353
354  // We can't extend or shrink something that has multiple uses: doing so would
355  // require duplicating the instruction in general, which isn't profitable.
356  if (!I->hasOneUse()) return false;
357
358  unsigned Opc = I->getOpcode();
359  switch (Opc) {
360  case Instruction::Add:
361  case Instruction::Sub:
362  case Instruction::Mul:
363  case Instruction::And:
364  case Instruction::Or:
365  case Instruction::Xor:
366    // These operators can all arbitrarily be extended or truncated.
367    return CanEvaluateTruncated(I->getOperand(0), Ty) &&
368           CanEvaluateTruncated(I->getOperand(1), Ty);
369
370  case Instruction::UDiv:
371  case Instruction::URem: {
372    // UDiv and URem can be truncated if all the truncated bits are zero.
373    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
374    uint32_t BitWidth = Ty->getScalarSizeInBits();
375    if (BitWidth < OrigBitWidth) {
376      APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
377      if (MaskedValueIsZero(I->getOperand(0), Mask) &&
378          MaskedValueIsZero(I->getOperand(1), Mask)) {
379        return CanEvaluateTruncated(I->getOperand(0), Ty) &&
380               CanEvaluateTruncated(I->getOperand(1), Ty);
381      }
382    }
383    break;
384  }
385  case Instruction::Shl:
386    // If we are truncating the result of this SHL, and if it's a shift of a
387    // constant amount, we can always perform a SHL in a smaller type.
388    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
389      uint32_t BitWidth = Ty->getScalarSizeInBits();
390      if (CI->getLimitedValue(BitWidth) < BitWidth)
391        return CanEvaluateTruncated(I->getOperand(0), Ty);
392    }
393    break;
394  case Instruction::LShr:
395    // If this is a truncate of a logical shr, we can truncate it to a smaller
396    // lshr iff we know that the bits we would otherwise be shifting in are
397    // already zeros.
398    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
399      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
400      uint32_t BitWidth = Ty->getScalarSizeInBits();
401      if (MaskedValueIsZero(I->getOperand(0),
402            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
403          CI->getLimitedValue(BitWidth) < BitWidth) {
404        return CanEvaluateTruncated(I->getOperand(0), Ty);
405      }
406    }
407    break;
408  case Instruction::Trunc:
409    // trunc(trunc(x)) -> trunc(x)
410    return true;
411  case Instruction::ZExt:
412  case Instruction::SExt:
413    // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
414    // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
415    return true;
416  case Instruction::Select: {
417    SelectInst *SI = cast<SelectInst>(I);
418    return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
419           CanEvaluateTruncated(SI->getFalseValue(), Ty);
420  }
421  case Instruction::PHI: {
422    // We can change a phi if we can change all operands.  Note that we never
423    // get into trouble with cyclic PHIs here because we only consider
424    // instructions with a single use.
425    PHINode *PN = cast<PHINode>(I);
426    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
427      if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
428        return false;
429    return true;
430  }
431  default:
432    // TODO: Can handle more cases here.
433    break;
434  }
435
436  return false;
437}
438
439Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
440  if (Instruction *Result = commonCastTransforms(CI))
441    return Result;
442
443  // See if we can simplify any instructions used by the input whose sole
444  // purpose is to compute bits we don't care about.
445  if (SimplifyDemandedInstructionBits(CI))
446    return &CI;
447
448  Value *Src = CI.getOperand(0);
449  Type *DestTy = CI.getType(), *SrcTy = Src->getType();
450
451  // Attempt to truncate the entire input expression tree to the destination
452  // type.   Only do this if the dest type is a simple type, don't convert the
453  // expression tree to something weird like i93 unless the source is also
454  // strange.
455  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
456      CanEvaluateTruncated(Src, DestTy)) {
457
458    // If this cast is a truncate, evaluting in a different type always
459    // eliminates the cast, so it is always a win.
460    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
461          " to avoid cast: " << CI << '\n');
462    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
463    assert(Res->getType() == DestTy);
464    return ReplaceInstUsesWith(CI, Res);
465  }
466
467  // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
468  if (DestTy->getScalarSizeInBits() == 1) {
469    Constant *One = ConstantInt::get(Src->getType(), 1);
470    Src = Builder->CreateAnd(Src, One);
471    Value *Zero = Constant::getNullValue(Src->getType());
472    return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
473  }
474
475  // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
476  Value *A = nullptr; ConstantInt *Cst = nullptr;
477  if (Src->hasOneUse() &&
478      match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
479    // We have three types to worry about here, the type of A, the source of
480    // the truncate (MidSize), and the destination of the truncate. We know that
481    // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
482    // between ASize and ResultSize.
483    unsigned ASize = A->getType()->getPrimitiveSizeInBits();
484
485    // If the shift amount is larger than the size of A, then the result is
486    // known to be zero because all the input bits got shifted out.
487    if (Cst->getZExtValue() >= ASize)
488      return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
489
490    // Since we're doing an lshr and a zero extend, and know that the shift
491    // amount is smaller than ASize, it is always safe to do the shift in A's
492    // type, then zero extend or truncate to the result.
493    Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
494    Shift->takeName(Src);
495    return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
496  }
497
498  // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
499  // type isn't non-native.
500  if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
501      ShouldChangeType(Src->getType(), CI.getType()) &&
502      match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
503    Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
504    return BinaryOperator::CreateAnd(NewTrunc,
505                                     ConstantExpr::getTrunc(Cst, CI.getType()));
506  }
507
508  return nullptr;
509}
510
511/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
512/// in order to eliminate the icmp.
513Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
514                                             bool DoXform) {
515  // If we are just checking for a icmp eq of a single bit and zext'ing it
516  // to an integer, then shift the bit to the appropriate place and then
517  // cast to integer to avoid the comparison.
518  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
519    const APInt &Op1CV = Op1C->getValue();
520
521    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
522    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
523    if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
524        (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
525      if (!DoXform) return ICI;
526
527      Value *In = ICI->getOperand(0);
528      Value *Sh = ConstantInt::get(In->getType(),
529                                   In->getType()->getScalarSizeInBits()-1);
530      In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
531      if (In->getType() != CI.getType())
532        In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
533
534      if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
535        Constant *One = ConstantInt::get(In->getType(), 1);
536        In = Builder->CreateXor(In, One, In->getName()+".not");
537      }
538
539      return ReplaceInstUsesWith(CI, In);
540    }
541
542    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
543    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
544    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
545    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
546    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
547    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
548    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
549    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
550    if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
551        // This only works for EQ and NE
552        ICI->isEquality()) {
553      // If Op1C some other power of two, convert:
554      uint32_t BitWidth = Op1C->getType()->getBitWidth();
555      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
556      computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne);
557
558      APInt KnownZeroMask(~KnownZero);
559      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
560        if (!DoXform) return ICI;
561
562        bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
563        if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
564          // (X&4) == 2 --> false
565          // (X&4) != 2 --> true
566          Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
567                                           isNE);
568          Res = ConstantExpr::getZExt(Res, CI.getType());
569          return ReplaceInstUsesWith(CI, Res);
570        }
571
572        uint32_t ShiftAmt = KnownZeroMask.logBase2();
573        Value *In = ICI->getOperand(0);
574        if (ShiftAmt) {
575          // Perform a logical shr by shiftamt.
576          // Insert the shift to put the result in the low bit.
577          In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
578                                   In->getName()+".lobit");
579        }
580
581        if ((Op1CV != 0) == isNE) { // Toggle the low bit.
582          Constant *One = ConstantInt::get(In->getType(), 1);
583          In = Builder->CreateXor(In, One);
584        }
585
586        if (CI.getType() == In->getType())
587          return ReplaceInstUsesWith(CI, In);
588        return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
589      }
590    }
591  }
592
593  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
594  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
595  // may lead to additional simplifications.
596  if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
597    if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
598      uint32_t BitWidth = ITy->getBitWidth();
599      Value *LHS = ICI->getOperand(0);
600      Value *RHS = ICI->getOperand(1);
601
602      APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
603      APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
604      computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS);
605      computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS);
606
607      if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
608        APInt KnownBits = KnownZeroLHS | KnownOneLHS;
609        APInt UnknownBit = ~KnownBits;
610        if (UnknownBit.countPopulation() == 1) {
611          if (!DoXform) return ICI;
612
613          Value *Result = Builder->CreateXor(LHS, RHS);
614
615          // Mask off any bits that are set and won't be shifted away.
616          if (KnownOneLHS.uge(UnknownBit))
617            Result = Builder->CreateAnd(Result,
618                                        ConstantInt::get(ITy, UnknownBit));
619
620          // Shift the bit we're testing down to the lsb.
621          Result = Builder->CreateLShr(
622               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
623
624          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
625            Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
626          Result->takeName(ICI);
627          return ReplaceInstUsesWith(CI, Result);
628        }
629      }
630    }
631  }
632
633  return nullptr;
634}
635
636/// CanEvaluateZExtd - Determine if the specified value can be computed in the
637/// specified wider type and produce the same low bits.  If not, return false.
638///
639/// If this function returns true, it can also return a non-zero number of bits
640/// (in BitsToClear) which indicates that the value it computes is correct for
641/// the zero extend, but that the additional BitsToClear bits need to be zero'd
642/// out.  For example, to promote something like:
643///
644///   %B = trunc i64 %A to i32
645///   %C = lshr i32 %B, 8
646///   %E = zext i32 %C to i64
647///
648/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
649/// set to 8 to indicate that the promoted value needs to have bits 24-31
650/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
651/// clear the top bits anyway, doing this has no extra cost.
652///
653/// This function works on both vectors and scalars.
654static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
655  BitsToClear = 0;
656  if (isa<Constant>(V))
657    return true;
658
659  Instruction *I = dyn_cast<Instruction>(V);
660  if (!I) return false;
661
662  // If the input is a truncate from the destination type, we can trivially
663  // eliminate it.
664  if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
665    return true;
666
667  // We can't extend or shrink something that has multiple uses: doing so would
668  // require duplicating the instruction in general, which isn't profitable.
669  if (!I->hasOneUse()) return false;
670
671  unsigned Opc = I->getOpcode(), Tmp;
672  switch (Opc) {
673  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
674  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
675  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
676    return true;
677  case Instruction::And:
678  case Instruction::Or:
679  case Instruction::Xor:
680  case Instruction::Add:
681  case Instruction::Sub:
682  case Instruction::Mul:
683    if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
684        !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
685      return false;
686    // These can all be promoted if neither operand has 'bits to clear'.
687    if (BitsToClear == 0 && Tmp == 0)
688      return true;
689
690    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
691    // other side, BitsToClear is ok.
692    if (Tmp == 0 &&
693        (Opc == Instruction::And || Opc == Instruction::Or ||
694         Opc == Instruction::Xor)) {
695      // We use MaskedValueIsZero here for generality, but the case we care
696      // about the most is constant RHS.
697      unsigned VSize = V->getType()->getScalarSizeInBits();
698      if (MaskedValueIsZero(I->getOperand(1),
699                            APInt::getHighBitsSet(VSize, BitsToClear)))
700        return true;
701    }
702
703    // Otherwise, we don't know how to analyze this BitsToClear case yet.
704    return false;
705
706  case Instruction::Shl:
707    // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
708    // upper bits we can reduce BitsToClear by the shift amount.
709    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
710      if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
711        return false;
712      uint64_t ShiftAmt = Amt->getZExtValue();
713      BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
714      return true;
715    }
716    return false;
717  case Instruction::LShr:
718    // We can promote lshr(x, cst) if we can promote x.  This requires the
719    // ultimate 'and' to clear out the high zero bits we're clearing out though.
720    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
721      if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
722        return false;
723      BitsToClear += Amt->getZExtValue();
724      if (BitsToClear > V->getType()->getScalarSizeInBits())
725        BitsToClear = V->getType()->getScalarSizeInBits();
726      return true;
727    }
728    // Cannot promote variable LSHR.
729    return false;
730  case Instruction::Select:
731    if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
732        !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
733        // TODO: If important, we could handle the case when the BitsToClear are
734        // known zero in the disagreeing side.
735        Tmp != BitsToClear)
736      return false;
737    return true;
738
739  case Instruction::PHI: {
740    // We can change a phi if we can change all operands.  Note that we never
741    // get into trouble with cyclic PHIs here because we only consider
742    // instructions with a single use.
743    PHINode *PN = cast<PHINode>(I);
744    if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
745      return false;
746    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
747      if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
748          // TODO: If important, we could handle the case when the BitsToClear
749          // are known zero in the disagreeing input.
750          Tmp != BitsToClear)
751        return false;
752    return true;
753  }
754  default:
755    // TODO: Can handle more cases here.
756    return false;
757  }
758}
759
760Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
761  // If this zero extend is only used by a truncate, let the truncate be
762  // eliminated before we try to optimize this zext.
763  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
764    return nullptr;
765
766  // If one of the common conversion will work, do it.
767  if (Instruction *Result = commonCastTransforms(CI))
768    return Result;
769
770  // See if we can simplify any instructions used by the input whose sole
771  // purpose is to compute bits we don't care about.
772  if (SimplifyDemandedInstructionBits(CI))
773    return &CI;
774
775  Value *Src = CI.getOperand(0);
776  Type *SrcTy = Src->getType(), *DestTy = CI.getType();
777
778  // Attempt to extend the entire input expression tree to the destination
779  // type.   Only do this if the dest type is a simple type, don't convert the
780  // expression tree to something weird like i93 unless the source is also
781  // strange.
782  unsigned BitsToClear;
783  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
784      CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
785    assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
786           "Unreasonable BitsToClear");
787
788    // Okay, we can transform this!  Insert the new expression now.
789    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
790          " to avoid zero extend: " << CI);
791    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
792    assert(Res->getType() == DestTy);
793
794    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
795    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
796
797    // If the high bits are already filled with zeros, just replace this
798    // cast with the result.
799    if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
800                                                     DestBitSize-SrcBitsKept)))
801      return ReplaceInstUsesWith(CI, Res);
802
803    // We need to emit an AND to clear the high bits.
804    Constant *C = ConstantInt::get(Res->getType(),
805                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
806    return BinaryOperator::CreateAnd(Res, C);
807  }
808
809  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
810  // types and if the sizes are just right we can convert this into a logical
811  // 'and' which will be much cheaper than the pair of casts.
812  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
813    // TODO: Subsume this into EvaluateInDifferentType.
814
815    // Get the sizes of the types involved.  We know that the intermediate type
816    // will be smaller than A or C, but don't know the relation between A and C.
817    Value *A = CSrc->getOperand(0);
818    unsigned SrcSize = A->getType()->getScalarSizeInBits();
819    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
820    unsigned DstSize = CI.getType()->getScalarSizeInBits();
821    // If we're actually extending zero bits, then if
822    // SrcSize <  DstSize: zext(a & mask)
823    // SrcSize == DstSize: a & mask
824    // SrcSize  > DstSize: trunc(a) & mask
825    if (SrcSize < DstSize) {
826      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
827      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
828      Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
829      return new ZExtInst(And, CI.getType());
830    }
831
832    if (SrcSize == DstSize) {
833      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
834      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
835                                                           AndValue));
836    }
837    if (SrcSize > DstSize) {
838      Value *Trunc = Builder->CreateTrunc(A, CI.getType());
839      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
840      return BinaryOperator::CreateAnd(Trunc,
841                                       ConstantInt::get(Trunc->getType(),
842                                                        AndValue));
843    }
844  }
845
846  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
847    return transformZExtICmp(ICI, CI);
848
849  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
850  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
851    // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
852    // of the (zext icmp) will be transformed.
853    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
854    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
855    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
856        (transformZExtICmp(LHS, CI, false) ||
857         transformZExtICmp(RHS, CI, false))) {
858      Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
859      Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
860      return BinaryOperator::Create(Instruction::Or, LCast, RCast);
861    }
862  }
863
864  // zext(trunc(X) & C) -> (X & zext(C)).
865  Constant *C;
866  Value *X;
867  if (SrcI &&
868      match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
869      X->getType() == CI.getType())
870    return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
871
872  // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
873  Value *And;
874  if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
875      match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
876      X->getType() == CI.getType()) {
877    Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
878    return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
879  }
880
881  // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
882  if (SrcI && SrcI->hasOneUse() &&
883      SrcI->getType()->getScalarType()->isIntegerTy(1) &&
884      match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) {
885    Value *New = Builder->CreateZExt(X, CI.getType());
886    return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
887  }
888
889  return nullptr;
890}
891
892/// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
893/// in order to eliminate the icmp.
894Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
895  Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
896  ICmpInst::Predicate Pred = ICI->getPredicate();
897
898  if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
899    // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
900    // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
901    if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
902        (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
903
904      Value *Sh = ConstantInt::get(Op0->getType(),
905                                   Op0->getType()->getScalarSizeInBits()-1);
906      Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
907      if (In->getType() != CI.getType())
908        In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
909
910      if (Pred == ICmpInst::ICMP_SGT)
911        In = Builder->CreateNot(In, In->getName()+".not");
912      return ReplaceInstUsesWith(CI, In);
913    }
914  }
915
916  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
917    // If we know that only one bit of the LHS of the icmp can be set and we
918    // have an equality comparison with zero or a power of 2, we can transform
919    // the icmp and sext into bitwise/integer operations.
920    if (ICI->hasOneUse() &&
921        ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
922      unsigned BitWidth = Op1C->getType()->getBitWidth();
923      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
924      computeKnownBits(Op0, KnownZero, KnownOne);
925
926      APInt KnownZeroMask(~KnownZero);
927      if (KnownZeroMask.isPowerOf2()) {
928        Value *In = ICI->getOperand(0);
929
930        // If the icmp tests for a known zero bit we can constant fold it.
931        if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
932          Value *V = Pred == ICmpInst::ICMP_NE ?
933                       ConstantInt::getAllOnesValue(CI.getType()) :
934                       ConstantInt::getNullValue(CI.getType());
935          return ReplaceInstUsesWith(CI, V);
936        }
937
938        if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
939          // sext ((x & 2^n) == 0)   -> (x >> n) - 1
940          // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
941          unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
942          // Perform a right shift to place the desired bit in the LSB.
943          if (ShiftAmt)
944            In = Builder->CreateLShr(In,
945                                     ConstantInt::get(In->getType(), ShiftAmt));
946
947          // At this point "In" is either 1 or 0. Subtract 1 to turn
948          // {1, 0} -> {0, -1}.
949          In = Builder->CreateAdd(In,
950                                  ConstantInt::getAllOnesValue(In->getType()),
951                                  "sext");
952        } else {
953          // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
954          // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
955          unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
956          // Perform a left shift to place the desired bit in the MSB.
957          if (ShiftAmt)
958            In = Builder->CreateShl(In,
959                                    ConstantInt::get(In->getType(), ShiftAmt));
960
961          // Distribute the bit over the whole bit width.
962          In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
963                                                        BitWidth - 1), "sext");
964        }
965
966        if (CI.getType() == In->getType())
967          return ReplaceInstUsesWith(CI, In);
968        return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
969      }
970    }
971  }
972
973  return nullptr;
974}
975
976/// CanEvaluateSExtd - Return true if we can take the specified value
977/// and return it as type Ty without inserting any new casts and without
978/// changing the value of the common low bits.  This is used by code that tries
979/// to promote integer operations to a wider types will allow us to eliminate
980/// the extension.
981///
982/// This function works on both vectors and scalars.
983///
984static bool CanEvaluateSExtd(Value *V, Type *Ty) {
985  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
986         "Can't sign extend type to a smaller type");
987  // If this is a constant, it can be trivially promoted.
988  if (isa<Constant>(V))
989    return true;
990
991  Instruction *I = dyn_cast<Instruction>(V);
992  if (!I) return false;
993
994  // If this is a truncate from the dest type, we can trivially eliminate it.
995  if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
996    return true;
997
998  // We can't extend or shrink something that has multiple uses: doing so would
999  // require duplicating the instruction in general, which isn't profitable.
1000  if (!I->hasOneUse()) return false;
1001
1002  switch (I->getOpcode()) {
1003  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1004  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1005  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1006    return true;
1007  case Instruction::And:
1008  case Instruction::Or:
1009  case Instruction::Xor:
1010  case Instruction::Add:
1011  case Instruction::Sub:
1012  case Instruction::Mul:
1013    // These operators can all arbitrarily be extended if their inputs can.
1014    return CanEvaluateSExtd(I->getOperand(0), Ty) &&
1015           CanEvaluateSExtd(I->getOperand(1), Ty);
1016
1017  //case Instruction::Shl:   TODO
1018  //case Instruction::LShr:  TODO
1019
1020  case Instruction::Select:
1021    return CanEvaluateSExtd(I->getOperand(1), Ty) &&
1022           CanEvaluateSExtd(I->getOperand(2), Ty);
1023
1024  case Instruction::PHI: {
1025    // We can change a phi if we can change all operands.  Note that we never
1026    // get into trouble with cyclic PHIs here because we only consider
1027    // instructions with a single use.
1028    PHINode *PN = cast<PHINode>(I);
1029    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1030      if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
1031    return true;
1032  }
1033  default:
1034    // TODO: Can handle more cases here.
1035    break;
1036  }
1037
1038  return false;
1039}
1040
1041Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1042  // If this sign extend is only used by a truncate, let the truncate be
1043  // eliminated before we try to optimize this sext.
1044  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1045    return nullptr;
1046
1047  if (Instruction *I = commonCastTransforms(CI))
1048    return I;
1049
1050  // See if we can simplify any instructions used by the input whose sole
1051  // purpose is to compute bits we don't care about.
1052  if (SimplifyDemandedInstructionBits(CI))
1053    return &CI;
1054
1055  Value *Src = CI.getOperand(0);
1056  Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1057
1058  // Attempt to extend the entire input expression tree to the destination
1059  // type.   Only do this if the dest type is a simple type, don't convert the
1060  // expression tree to something weird like i93 unless the source is also
1061  // strange.
1062  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
1063      CanEvaluateSExtd(Src, DestTy)) {
1064    // Okay, we can transform this!  Insert the new expression now.
1065    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1066          " to avoid sign extend: " << CI);
1067    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1068    assert(Res->getType() == DestTy);
1069
1070    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1071    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1072
1073    // If the high bits are already filled with sign bit, just replace this
1074    // cast with the result.
1075    if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
1076      return ReplaceInstUsesWith(CI, Res);
1077
1078    // We need to emit a shl + ashr to do the sign extend.
1079    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1080    return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1081                                      ShAmt);
1082  }
1083
1084  // If this input is a trunc from our destination, then turn sext(trunc(x))
1085  // into shifts.
1086  if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1087    if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1088      uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1089      uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1090
1091      // We need to emit a shl + ashr to do the sign extend.
1092      Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1093      Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1094      return BinaryOperator::CreateAShr(Res, ShAmt);
1095    }
1096
1097  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1098    return transformSExtICmp(ICI, CI);
1099
1100  // If the input is a shl/ashr pair of a same constant, then this is a sign
1101  // extension from a smaller value.  If we could trust arbitrary bitwidth
1102  // integers, we could turn this into a truncate to the smaller bit and then
1103  // use a sext for the whole extension.  Since we don't, look deeper and check
1104  // for a truncate.  If the source and dest are the same type, eliminate the
1105  // trunc and extend and just do shifts.  For example, turn:
1106  //   %a = trunc i32 %i to i8
1107  //   %b = shl i8 %a, 6
1108  //   %c = ashr i8 %b, 6
1109  //   %d = sext i8 %c to i32
1110  // into:
1111  //   %a = shl i32 %i, 30
1112  //   %d = ashr i32 %a, 30
1113  Value *A = nullptr;
1114  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1115  ConstantInt *BA = nullptr, *CA = nullptr;
1116  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1117                        m_ConstantInt(CA))) &&
1118      BA == CA && A->getType() == CI.getType()) {
1119    unsigned MidSize = Src->getType()->getScalarSizeInBits();
1120    unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1121    unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1122    Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1123    A = Builder->CreateShl(A, ShAmtV, CI.getName());
1124    return BinaryOperator::CreateAShr(A, ShAmtV);
1125  }
1126
1127  return nullptr;
1128}
1129
1130
1131/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1132/// in the specified FP type without changing its value.
1133static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1134  bool losesInfo;
1135  APFloat F = CFP->getValueAPF();
1136  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1137  if (!losesInfo)
1138    return ConstantFP::get(CFP->getContext(), F);
1139  return nullptr;
1140}
1141
1142/// LookThroughFPExtensions - If this is an fp extension instruction, look
1143/// through it until we get the source value.
1144static Value *LookThroughFPExtensions(Value *V) {
1145  if (Instruction *I = dyn_cast<Instruction>(V))
1146    if (I->getOpcode() == Instruction::FPExt)
1147      return LookThroughFPExtensions(I->getOperand(0));
1148
1149  // If this value is a constant, return the constant in the smallest FP type
1150  // that can accurately represent it.  This allows us to turn
1151  // (float)((double)X+2.0) into x+2.0f.
1152  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1153    if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1154      return V;  // No constant folding of this.
1155    // See if the value can be truncated to half and then reextended.
1156    if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
1157      return V;
1158    // See if the value can be truncated to float and then reextended.
1159    if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1160      return V;
1161    if (CFP->getType()->isDoubleTy())
1162      return V;  // Won't shrink.
1163    if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1164      return V;
1165    // Don't try to shrink to various long double types.
1166  }
1167
1168  return V;
1169}
1170
1171Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1172  if (Instruction *I = commonCastTransforms(CI))
1173    return I;
1174  // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1175  // simpilify this expression to avoid one or more of the trunc/extend
1176  // operations if we can do so without changing the numerical results.
1177  //
1178  // The exact manner in which the widths of the operands interact to limit
1179  // what we can and cannot do safely varies from operation to operation, and
1180  // is explained below in the various case statements.
1181  BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1182  if (OpI && OpI->hasOneUse()) {
1183    Value *LHSOrig = LookThroughFPExtensions(OpI->getOperand(0));
1184    Value *RHSOrig = LookThroughFPExtensions(OpI->getOperand(1));
1185    unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1186    unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
1187    unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
1188    unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1189    unsigned DstWidth = CI.getType()->getFPMantissaWidth();
1190    switch (OpI->getOpcode()) {
1191      default: break;
1192      case Instruction::FAdd:
1193      case Instruction::FSub:
1194        // For addition and subtraction, the infinitely precise result can
1195        // essentially be arbitrarily wide; proving that double rounding
1196        // will not occur because the result of OpI is exact (as we will for
1197        // FMul, for example) is hopeless.  However, we *can* nonetheless
1198        // frequently know that double rounding cannot occur (or that it is
1199        // innocuous) by taking advantage of the specific structure of
1200        // infinitely-precise results that admit double rounding.
1201        //
1202        // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1203        // to represent both sources, we can guarantee that the double
1204        // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1205        // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1206        // for proof of this fact).
1207        //
1208        // Note: Figueroa does not consider the case where DstFormat !=
1209        // SrcFormat.  It's possible (likely even!) that this analysis
1210        // could be tightened for those cases, but they are rare (the main
1211        // case of interest here is (float)((double)float + float)).
1212        if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1213          if (LHSOrig->getType() != CI.getType())
1214            LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1215          if (RHSOrig->getType() != CI.getType())
1216            RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1217          Instruction *RI =
1218            BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
1219          RI->copyFastMathFlags(OpI);
1220          return RI;
1221        }
1222        break;
1223      case Instruction::FMul:
1224        // For multiplication, the infinitely precise result has at most
1225        // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1226        // that such a value can be exactly represented, then no double
1227        // rounding can possibly occur; we can safely perform the operation
1228        // in the destination format if it can represent both sources.
1229        if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1230          if (LHSOrig->getType() != CI.getType())
1231            LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1232          if (RHSOrig->getType() != CI.getType())
1233            RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1234          Instruction *RI =
1235            BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
1236          RI->copyFastMathFlags(OpI);
1237          return RI;
1238        }
1239        break;
1240      case Instruction::FDiv:
1241        // For division, we use again use the bound from Figueroa's
1242        // dissertation.  I am entirely certain that this bound can be
1243        // tightened in the unbalanced operand case by an analysis based on
1244        // the diophantine rational approximation bound, but the well-known
1245        // condition used here is a good conservative first pass.
1246        // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1247        if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1248          if (LHSOrig->getType() != CI.getType())
1249            LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1250          if (RHSOrig->getType() != CI.getType())
1251            RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1252          Instruction *RI =
1253            BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
1254          RI->copyFastMathFlags(OpI);
1255          return RI;
1256        }
1257        break;
1258      case Instruction::FRem:
1259        // Remainder is straightforward.  Remainder is always exact, so the
1260        // type of OpI doesn't enter into things at all.  We simply evaluate
1261        // in whichever source type is larger, then convert to the
1262        // destination type.
1263        if (LHSWidth < SrcWidth)
1264          LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
1265        else if (RHSWidth <= SrcWidth)
1266          RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
1267        Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
1268        if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
1269          RI->copyFastMathFlags(OpI);
1270        return CastInst::CreateFPCast(ExactResult, CI.getType());
1271    }
1272
1273    // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1274    if (BinaryOperator::isFNeg(OpI)) {
1275      Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
1276                                                 CI.getType());
1277      Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
1278      RI->copyFastMathFlags(OpI);
1279      return RI;
1280    }
1281  }
1282
1283  // (fptrunc (select cond, R1, Cst)) -->
1284  // (select cond, (fptrunc R1), (fptrunc Cst))
1285  SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
1286  if (SI &&
1287      (isa<ConstantFP>(SI->getOperand(1)) ||
1288       isa<ConstantFP>(SI->getOperand(2)))) {
1289    Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
1290                                             CI.getType());
1291    Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
1292                                             CI.getType());
1293    return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
1294  }
1295
1296  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
1297  if (II) {
1298    switch (II->getIntrinsicID()) {
1299      default: break;
1300      case Intrinsic::fabs: {
1301        // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1302        Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
1303                                                   CI.getType());
1304        Type *IntrinsicType[] = { CI.getType() };
1305        Function *Overload =
1306          Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(),
1307                                    II->getIntrinsicID(), IntrinsicType);
1308
1309        Value *Args[] = { InnerTrunc };
1310        return CallInst::Create(Overload, Args, II->getName());
1311      }
1312    }
1313  }
1314
1315  // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
1316  // Note that we restrict this transformation based on
1317  // TLI->has(LibFunc::sqrtf), even for the sqrt intrinsic, because
1318  // TLI->has(LibFunc::sqrtf) is sufficient to guarantee that the
1319  // single-precision intrinsic can be expanded in the backend.
1320  CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
1321  if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
1322      (Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) ||
1323       Call->getCalledFunction()->getIntrinsicID() == Intrinsic::sqrt) &&
1324      Call->getNumArgOperands() == 1 &&
1325      Call->hasOneUse()) {
1326    CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
1327    if (Arg && Arg->getOpcode() == Instruction::FPExt &&
1328        CI.getType()->isFloatTy() &&
1329        Call->getType()->isDoubleTy() &&
1330        Arg->getType()->isDoubleTy() &&
1331        Arg->getOperand(0)->getType()->isFloatTy()) {
1332      Function *Callee = Call->getCalledFunction();
1333      Module *M = CI.getParent()->getParent()->getParent();
1334      Constant *SqrtfFunc = (Callee->getIntrinsicID() == Intrinsic::sqrt) ?
1335        Intrinsic::getDeclaration(M, Intrinsic::sqrt, Builder->getFloatTy()) :
1336        M->getOrInsertFunction("sqrtf", Callee->getAttributes(),
1337                               Builder->getFloatTy(), Builder->getFloatTy(),
1338                               NULL);
1339      CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
1340                                       "sqrtfcall");
1341      ret->setAttributes(Callee->getAttributes());
1342
1343
1344      // Remove the old Call.  With -fmath-errno, it won't get marked readnone.
1345      ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
1346      EraseInstFromFunction(*Call);
1347      return ret;
1348    }
1349  }
1350
1351  return nullptr;
1352}
1353
1354Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1355  return commonCastTransforms(CI);
1356}
1357
1358Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1359  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1360  if (!OpI)
1361    return commonCastTransforms(FI);
1362
1363  // fptoui(uitofp(X)) --> X
1364  // fptoui(sitofp(X)) --> X
1365  // This is safe if the intermediate type has enough bits in its mantissa to
1366  // accurately represent all values of X.  For example, do not do this with
1367  // i64->float->i64.  This is also safe for sitofp case, because any negative
1368  // 'X' value would cause an undefined result for the fptoui.
1369  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1370      OpI->getOperand(0)->getType() == FI.getType() &&
1371      (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
1372                    OpI->getType()->getFPMantissaWidth())
1373    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1374
1375  return commonCastTransforms(FI);
1376}
1377
1378Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1379  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1380  if (!OpI)
1381    return commonCastTransforms(FI);
1382
1383  // fptosi(sitofp(X)) --> X
1384  // fptosi(uitofp(X)) --> X
1385  // This is safe if the intermediate type has enough bits in its mantissa to
1386  // accurately represent all values of X.  For example, do not do this with
1387  // i64->float->i64.  This is also safe for sitofp case, because any negative
1388  // 'X' value would cause an undefined result for the fptoui.
1389  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1390      OpI->getOperand(0)->getType() == FI.getType() &&
1391      (int)FI.getType()->getScalarSizeInBits() <=
1392                    OpI->getType()->getFPMantissaWidth())
1393    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1394
1395  return commonCastTransforms(FI);
1396}
1397
1398Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1399  return commonCastTransforms(CI);
1400}
1401
1402Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1403  return commonCastTransforms(CI);
1404}
1405
1406Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1407  // If the source integer type is not the intptr_t type for this target, do a
1408  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1409  // cast to be exposed to other transforms.
1410
1411  if (DL) {
1412    unsigned AS = CI.getAddressSpace();
1413    if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1414        DL->getPointerSizeInBits(AS)) {
1415      Type *Ty = DL->getIntPtrType(CI.getContext(), AS);
1416      if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1417        Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1418
1419      Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
1420      return new IntToPtrInst(P, CI.getType());
1421    }
1422  }
1423
1424  if (Instruction *I = commonCastTransforms(CI))
1425    return I;
1426
1427  return nullptr;
1428}
1429
1430/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1431Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1432  Value *Src = CI.getOperand(0);
1433
1434  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1435    // If casting the result of a getelementptr instruction with no offset, turn
1436    // this into a cast of the original pointer!
1437    if (GEP->hasAllZeroIndices() &&
1438        // If CI is an addrspacecast and GEP changes the poiner type, merging
1439        // GEP into CI would undo canonicalizing addrspacecast with different
1440        // pointer types, causing infinite loops.
1441        (!isa<AddrSpaceCastInst>(CI) ||
1442          GEP->getType() == GEP->getPointerOperand()->getType())) {
1443      // Changing the cast operand is usually not a good idea but it is safe
1444      // here because the pointer operand is being replaced with another
1445      // pointer operand so the opcode doesn't need to change.
1446      Worklist.Add(GEP);
1447      CI.setOperand(0, GEP->getOperand(0));
1448      return &CI;
1449    }
1450
1451    if (!DL)
1452      return commonCastTransforms(CI);
1453
1454    // If the GEP has a single use, and the base pointer is a bitcast, and the
1455    // GEP computes a constant offset, see if we can convert these three
1456    // instructions into fewer.  This typically happens with unions and other
1457    // non-type-safe code.
1458    unsigned AS = GEP->getPointerAddressSpace();
1459    unsigned OffsetBits = DL->getPointerSizeInBits(AS);
1460    APInt Offset(OffsetBits, 0);
1461    BitCastInst *BCI = dyn_cast<BitCastInst>(GEP->getOperand(0));
1462    if (GEP->hasOneUse() &&
1463        BCI &&
1464        GEP->accumulateConstantOffset(*DL, Offset)) {
1465      // Get the base pointer input of the bitcast, and the type it points to.
1466      Value *OrigBase = BCI->getOperand(0);
1467      SmallVector<Value*, 8> NewIndices;
1468      if (FindElementAtOffset(OrigBase->getType(),
1469                              Offset.getSExtValue(),
1470                              NewIndices)) {
1471        // If we were able to index down into an element, create the GEP
1472        // and bitcast the result.  This eliminates one bitcast, potentially
1473        // two.
1474        Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
1475          Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
1476          Builder->CreateGEP(OrigBase, NewIndices);
1477        NGEP->takeName(GEP);
1478
1479        if (isa<BitCastInst>(CI))
1480          return new BitCastInst(NGEP, CI.getType());
1481        assert(isa<PtrToIntInst>(CI));
1482        return new PtrToIntInst(NGEP, CI.getType());
1483      }
1484    }
1485  }
1486
1487  return commonCastTransforms(CI);
1488}
1489
1490Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1491  // If the destination integer type is not the intptr_t type for this target,
1492  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1493  // to be exposed to other transforms.
1494
1495  if (!DL)
1496    return commonPointerCastTransforms(CI);
1497
1498  Type *Ty = CI.getType();
1499  unsigned AS = CI.getPointerAddressSpace();
1500
1501  if (Ty->getScalarSizeInBits() == DL->getPointerSizeInBits(AS))
1502    return commonPointerCastTransforms(CI);
1503
1504  Type *PtrTy = DL->getIntPtrType(CI.getContext(), AS);
1505  if (Ty->isVectorTy()) // Handle vectors of pointers.
1506    PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1507
1508  Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
1509  return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1510}
1511
1512/// OptimizeVectorResize - This input value (which is known to have vector type)
1513/// is being zero extended or truncated to the specified vector type.  Try to
1514/// replace it with a shuffle (and vector/vector bitcast) if possible.
1515///
1516/// The source and destination vector types may have different element types.
1517static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
1518                                         InstCombiner &IC) {
1519  // We can only do this optimization if the output is a multiple of the input
1520  // element size, or the input is a multiple of the output element size.
1521  // Convert the input type to have the same element type as the output.
1522  VectorType *SrcTy = cast<VectorType>(InVal->getType());
1523
1524  if (SrcTy->getElementType() != DestTy->getElementType()) {
1525    // The input types don't need to be identical, but for now they must be the
1526    // same size.  There is no specific reason we couldn't handle things like
1527    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1528    // there yet.
1529    if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1530        DestTy->getElementType()->getPrimitiveSizeInBits())
1531      return nullptr;
1532
1533    SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1534    InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1535  }
1536
1537  // Now that the element types match, get the shuffle mask and RHS of the
1538  // shuffle to use, which depends on whether we're increasing or decreasing the
1539  // size of the input.
1540  SmallVector<uint32_t, 16> ShuffleMask;
1541  Value *V2;
1542
1543  if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1544    // If we're shrinking the number of elements, just shuffle in the low
1545    // elements from the input and use undef as the second shuffle input.
1546    V2 = UndefValue::get(SrcTy);
1547    for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1548      ShuffleMask.push_back(i);
1549
1550  } else {
1551    // If we're increasing the number of elements, shuffle in all of the
1552    // elements from InVal and fill the rest of the result elements with zeros
1553    // from a constant zero.
1554    V2 = Constant::getNullValue(SrcTy);
1555    unsigned SrcElts = SrcTy->getNumElements();
1556    for (unsigned i = 0, e = SrcElts; i != e; ++i)
1557      ShuffleMask.push_back(i);
1558
1559    // The excess elements reference the first element of the zero input.
1560    for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1561      ShuffleMask.push_back(SrcElts);
1562  }
1563
1564  return new ShuffleVectorInst(InVal, V2,
1565                               ConstantDataVector::get(V2->getContext(),
1566                                                       ShuffleMask));
1567}
1568
1569static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1570  return Value % Ty->getPrimitiveSizeInBits() == 0;
1571}
1572
1573static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1574  return Value / Ty->getPrimitiveSizeInBits();
1575}
1576
1577/// CollectInsertionElements - V is a value which is inserted into a vector of
1578/// VecEltTy.  Look through the value to see if we can decompose it into
1579/// insertions into the vector.  See the example in the comment for
1580/// OptimizeIntegerToVectorInsertions for the pattern this handles.
1581/// The type of V is always a non-zero multiple of VecEltTy's size.
1582/// Shift is the number of bits between the lsb of V and the lsb of
1583/// the vector.
1584///
1585/// This returns false if the pattern can't be matched or true if it can,
1586/// filling in Elements with the elements found here.
1587static bool CollectInsertionElements(Value *V, unsigned Shift,
1588                                     SmallVectorImpl<Value*> &Elements,
1589                                     Type *VecEltTy, InstCombiner &IC) {
1590  assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1591         "Shift should be a multiple of the element type size");
1592
1593  // Undef values never contribute useful bits to the result.
1594  if (isa<UndefValue>(V)) return true;
1595
1596  // If we got down to a value of the right type, we win, try inserting into the
1597  // right element.
1598  if (V->getType() == VecEltTy) {
1599    // Inserting null doesn't actually insert any elements.
1600    if (Constant *C = dyn_cast<Constant>(V))
1601      if (C->isNullValue())
1602        return true;
1603
1604    unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1605    if (IC.getDataLayout()->isBigEndian())
1606      ElementIndex = Elements.size() - ElementIndex - 1;
1607
1608    // Fail if multiple elements are inserted into this slot.
1609    if (Elements[ElementIndex])
1610      return false;
1611
1612    Elements[ElementIndex] = V;
1613    return true;
1614  }
1615
1616  if (Constant *C = dyn_cast<Constant>(V)) {
1617    // Figure out the # elements this provides, and bitcast it or slice it up
1618    // as required.
1619    unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1620                                        VecEltTy);
1621    // If the constant is the size of a vector element, we just need to bitcast
1622    // it to the right type so it gets properly inserted.
1623    if (NumElts == 1)
1624      return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1625                                      Shift, Elements, VecEltTy, IC);
1626
1627    // Okay, this is a constant that covers multiple elements.  Slice it up into
1628    // pieces and insert each element-sized piece into the vector.
1629    if (!isa<IntegerType>(C->getType()))
1630      C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1631                                       C->getType()->getPrimitiveSizeInBits()));
1632    unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1633    Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1634
1635    for (unsigned i = 0; i != NumElts; ++i) {
1636      unsigned ShiftI = Shift+i*ElementSize;
1637      Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1638                                                                  ShiftI));
1639      Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1640      if (!CollectInsertionElements(Piece, ShiftI, Elements, VecEltTy, IC))
1641        return false;
1642    }
1643    return true;
1644  }
1645
1646  if (!V->hasOneUse()) return false;
1647
1648  Instruction *I = dyn_cast<Instruction>(V);
1649  if (!I) return false;
1650  switch (I->getOpcode()) {
1651  default: return false; // Unhandled case.
1652  case Instruction::BitCast:
1653    return CollectInsertionElements(I->getOperand(0), Shift,
1654                                    Elements, VecEltTy, IC);
1655  case Instruction::ZExt:
1656    if (!isMultipleOfTypeSize(
1657                          I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1658                              VecEltTy))
1659      return false;
1660    return CollectInsertionElements(I->getOperand(0), Shift,
1661                                    Elements, VecEltTy, IC);
1662  case Instruction::Or:
1663    return CollectInsertionElements(I->getOperand(0), Shift,
1664                                    Elements, VecEltTy, IC) &&
1665           CollectInsertionElements(I->getOperand(1), Shift,
1666                                    Elements, VecEltTy, IC);
1667  case Instruction::Shl: {
1668    // Must be shifting by a constant that is a multiple of the element size.
1669    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1670    if (!CI) return false;
1671    Shift += CI->getZExtValue();
1672    if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1673    return CollectInsertionElements(I->getOperand(0), Shift,
1674                                    Elements, VecEltTy, IC);
1675  }
1676
1677  }
1678}
1679
1680
1681/// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
1682/// may be doing shifts and ors to assemble the elements of the vector manually.
1683/// Try to rip the code out and replace it with insertelements.  This is to
1684/// optimize code like this:
1685///
1686///    %tmp37 = bitcast float %inc to i32
1687///    %tmp38 = zext i32 %tmp37 to i64
1688///    %tmp31 = bitcast float %inc5 to i32
1689///    %tmp32 = zext i32 %tmp31 to i64
1690///    %tmp33 = shl i64 %tmp32, 32
1691///    %ins35 = or i64 %tmp33, %tmp38
1692///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1693///
1694/// Into two insertelements that do "buildvector{%inc, %inc5}".
1695static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
1696                                                InstCombiner &IC) {
1697  // We need to know the target byte order to perform this optimization.
1698  if (!IC.getDataLayout()) return nullptr;
1699
1700  VectorType *DestVecTy = cast<VectorType>(CI.getType());
1701  Value *IntInput = CI.getOperand(0);
1702
1703  SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1704  if (!CollectInsertionElements(IntInput, 0, Elements,
1705                                DestVecTy->getElementType(), IC))
1706    return nullptr;
1707
1708  // If we succeeded, we know that all of the element are specified by Elements
1709  // or are zero if Elements has a null entry.  Recast this as a set of
1710  // insertions.
1711  Value *Result = Constant::getNullValue(CI.getType());
1712  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1713    if (!Elements[i]) continue;  // Unset element.
1714
1715    Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1716                                             IC.Builder->getInt32(i));
1717  }
1718
1719  return Result;
1720}
1721
1722
1723/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
1724/// bitcast.  The various long double bitcasts can't get in here.
1725static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
1726  // We need to know the target byte order to perform this optimization.
1727  if (!IC.getDataLayout()) return nullptr;
1728
1729  Value *Src = CI.getOperand(0);
1730  Type *DestTy = CI.getType();
1731
1732  // If this is a bitcast from int to float, check to see if the int is an
1733  // extraction from a vector.
1734  Value *VecInput = nullptr;
1735  // bitcast(trunc(bitcast(somevector)))
1736  if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1737      isa<VectorType>(VecInput->getType())) {
1738    VectorType *VecTy = cast<VectorType>(VecInput->getType());
1739    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1740
1741    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1742      // If the element type of the vector doesn't match the result type,
1743      // bitcast it to be a vector type we can extract from.
1744      if (VecTy->getElementType() != DestTy) {
1745        VecTy = VectorType::get(DestTy,
1746                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1747        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1748      }
1749
1750      unsigned Elt = 0;
1751      if (IC.getDataLayout()->isBigEndian())
1752        Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1;
1753      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1754    }
1755  }
1756
1757  // bitcast(trunc(lshr(bitcast(somevector), cst))
1758  ConstantInt *ShAmt = nullptr;
1759  if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1760                                m_ConstantInt(ShAmt)))) &&
1761      isa<VectorType>(VecInput->getType())) {
1762    VectorType *VecTy = cast<VectorType>(VecInput->getType());
1763    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1764    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1765        ShAmt->getZExtValue() % DestWidth == 0) {
1766      // If the element type of the vector doesn't match the result type,
1767      // bitcast it to be a vector type we can extract from.
1768      if (VecTy->getElementType() != DestTy) {
1769        VecTy = VectorType::get(DestTy,
1770                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1771        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1772      }
1773
1774      unsigned Elt = ShAmt->getZExtValue() / DestWidth;
1775      if (IC.getDataLayout()->isBigEndian())
1776        Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1 - Elt;
1777      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1778    }
1779  }
1780  return nullptr;
1781}
1782
1783Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1784  // If the operands are integer typed then apply the integer transforms,
1785  // otherwise just apply the common ones.
1786  Value *Src = CI.getOperand(0);
1787  Type *SrcTy = Src->getType();
1788  Type *DestTy = CI.getType();
1789
1790  // Get rid of casts from one type to the same type. These are useless and can
1791  // be replaced by the operand.
1792  if (DestTy == Src->getType())
1793    return ReplaceInstUsesWith(CI, Src);
1794
1795  if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1796    PointerType *SrcPTy = cast<PointerType>(SrcTy);
1797    Type *DstElTy = DstPTy->getElementType();
1798    Type *SrcElTy = SrcPTy->getElementType();
1799
1800    // If we are casting a alloca to a pointer to a type of the same
1801    // size, rewrite the allocation instruction to allocate the "right" type.
1802    // There is no need to modify malloc calls because it is their bitcast that
1803    // needs to be cleaned up.
1804    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1805      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1806        return V;
1807
1808    // If the source and destination are pointers, and this cast is equivalent
1809    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
1810    // This can enhance SROA and other transforms that want type-safe pointers.
1811    Constant *ZeroUInt =
1812      Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1813    unsigned NumZeros = 0;
1814    while (SrcElTy != DstElTy &&
1815           isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1816           SrcElTy->getNumContainedTypes() /* not "{}" */) {
1817      SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1818      ++NumZeros;
1819    }
1820
1821    // If we found a path from the src to dest, create the getelementptr now.
1822    if (SrcElTy == DstElTy) {
1823      SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1824      return GetElementPtrInst::CreateInBounds(Src, Idxs);
1825    }
1826  }
1827
1828  // Try to optimize int -> float bitcasts.
1829  if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1830    if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
1831      return I;
1832
1833  if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1834    if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1835      Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1836      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1837                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1838      // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1839    }
1840
1841    if (isa<IntegerType>(SrcTy)) {
1842      // If this is a cast from an integer to vector, check to see if the input
1843      // is a trunc or zext of a bitcast from vector.  If so, we can replace all
1844      // the casts with a shuffle and (potentially) a bitcast.
1845      if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1846        CastInst *SrcCast = cast<CastInst>(Src);
1847        if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1848          if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1849            if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
1850                                               cast<VectorType>(DestTy), *this))
1851              return I;
1852      }
1853
1854      // If the input is an 'or' instruction, we may be doing shifts and ors to
1855      // assemble the elements of the vector manually.  Try to rip the code out
1856      // and replace it with insertelements.
1857      if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
1858        return ReplaceInstUsesWith(CI, V);
1859    }
1860  }
1861
1862  if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1863    if (SrcVTy->getNumElements() == 1) {
1864      // If our destination is not a vector, then make this a straight
1865      // scalar-scalar cast.
1866      if (!DestTy->isVectorTy()) {
1867        Value *Elem =
1868          Builder->CreateExtractElement(Src,
1869                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1870        return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1871      }
1872
1873      // Otherwise, see if our source is an insert. If so, then use the scalar
1874      // component directly.
1875      if (InsertElementInst *IEI =
1876            dyn_cast<InsertElementInst>(CI.getOperand(0)))
1877        return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
1878                                DestTy);
1879    }
1880  }
1881
1882  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1883    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
1884    // a bitcast to a vector with the same # elts.
1885    if (SVI->hasOneUse() && DestTy->isVectorTy() &&
1886        DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
1887        SVI->getType()->getNumElements() ==
1888        SVI->getOperand(0)->getType()->getVectorNumElements()) {
1889      BitCastInst *Tmp;
1890      // If either of the operands is a cast from CI.getType(), then
1891      // evaluating the shuffle in the casted destination's type will allow
1892      // us to eliminate at least one cast.
1893      if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1894           Tmp->getOperand(0)->getType() == DestTy) ||
1895          ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1896           Tmp->getOperand(0)->getType() == DestTy)) {
1897        Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1898        Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1899        // Return a new shuffle vector.  Use the same element ID's, as we
1900        // know the vector types match #elts.
1901        return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1902      }
1903    }
1904  }
1905
1906  if (SrcTy->isPointerTy())
1907    return commonPointerCastTransforms(CI);
1908  return commonCastTransforms(CI);
1909}
1910
1911Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
1912  // If the destination pointer element type is not the the same as the source's
1913  // do the addrspacecast to the same type, and then the bitcast in the new
1914  // address space. This allows the cast to be exposed to other transforms.
1915  Value *Src = CI.getOperand(0);
1916  PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
1917  PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
1918
1919  Type *DestElemTy = DestTy->getElementType();
1920  if (SrcTy->getElementType() != DestElemTy) {
1921    Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
1922    if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
1923      // Handle vectors of pointers.
1924      MidTy = VectorType::get(MidTy, VT->getNumElements());
1925    }
1926
1927    Value *NewBitCast = Builder->CreateBitCast(Src, MidTy);
1928    return new AddrSpaceCastInst(NewBitCast, CI.getType());
1929  }
1930
1931  return commonPointerCastTransforms(CI);
1932}
1933