InstCombineCasts.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/IR/DataLayout.h"
17#include "llvm/IR/PatternMatch.h"
18#include "llvm/Target/TargetLibraryInfo.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
23/// expression.  If so, decompose it, returning some value X, such that Val is
24/// X*Scale+Offset.
25///
26static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
27                                        uint64_t &Offset) {
28  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
29    Offset = CI->getZExtValue();
30    Scale  = 0;
31    return ConstantInt::get(Val->getType(), 0);
32  }
33
34  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
35    // Cannot look past anything that might overflow.
36    OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
37    if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
38      Scale = 1;
39      Offset = 0;
40      return Val;
41    }
42
43    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
44      if (I->getOpcode() == Instruction::Shl) {
45        // This is a value scaled by '1 << the shift amt'.
46        Scale = UINT64_C(1) << RHS->getZExtValue();
47        Offset = 0;
48        return I->getOperand(0);
49      }
50
51      if (I->getOpcode() == Instruction::Mul) {
52        // This value is scaled by 'RHS'.
53        Scale = RHS->getZExtValue();
54        Offset = 0;
55        return I->getOperand(0);
56      }
57
58      if (I->getOpcode() == Instruction::Add) {
59        // We have X+C.  Check to see if we really have (X*C2)+C1,
60        // where C1 is divisible by C2.
61        unsigned SubScale;
62        Value *SubVal =
63          DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
64        Offset += RHS->getZExtValue();
65        Scale = SubScale;
66        return SubVal;
67      }
68    }
69  }
70
71  // Otherwise, we can't look past this.
72  Scale = 1;
73  Offset = 0;
74  return Val;
75}
76
77/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
78/// try to eliminate the cast by moving the type information into the alloc.
79Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
80                                                   AllocaInst &AI) {
81  // This requires DataLayout to get the alloca alignment and size information.
82  if (!DL) return 0;
83
84  PointerType *PTy = cast<PointerType>(CI.getType());
85
86  BuilderTy AllocaBuilder(*Builder);
87  AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
88
89  // Get the type really allocated and the type casted to.
90  Type *AllocElTy = AI.getAllocatedType();
91  Type *CastElTy = PTy->getElementType();
92  if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
93
94  unsigned AllocElTyAlign = DL->getABITypeAlignment(AllocElTy);
95  unsigned CastElTyAlign = DL->getABITypeAlignment(CastElTy);
96  if (CastElTyAlign < AllocElTyAlign) return 0;
97
98  // If the allocation has multiple uses, only promote it if we are strictly
99  // increasing the alignment of the resultant allocation.  If we keep it the
100  // same, we open the door to infinite loops of various kinds.
101  if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
102
103  uint64_t AllocElTySize = DL->getTypeAllocSize(AllocElTy);
104  uint64_t CastElTySize = DL->getTypeAllocSize(CastElTy);
105  if (CastElTySize == 0 || AllocElTySize == 0) return 0;
106
107  // If the allocation has multiple uses, only promote it if we're not
108  // shrinking the amount of memory being allocated.
109  uint64_t AllocElTyStoreSize = DL->getTypeStoreSize(AllocElTy);
110  uint64_t CastElTyStoreSize = DL->getTypeStoreSize(CastElTy);
111  if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return 0;
112
113  // See if we can satisfy the modulus by pulling a scale out of the array
114  // size argument.
115  unsigned ArraySizeScale;
116  uint64_t ArrayOffset;
117  Value *NumElements = // See if the array size is a decomposable linear expr.
118    DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
119
120  // If we can now satisfy the modulus, by using a non-1 scale, we really can
121  // do the xform.
122  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
123      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
124
125  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
126  Value *Amt = 0;
127  if (Scale == 1) {
128    Amt = NumElements;
129  } else {
130    Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
131    // Insert before the alloca, not before the cast.
132    Amt = AllocaBuilder.CreateMul(Amt, NumElements);
133  }
134
135  if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
136    Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
137                                  Offset, true);
138    Amt = AllocaBuilder.CreateAdd(Amt, Off);
139  }
140
141  AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
142  New->setAlignment(AI.getAlignment());
143  New->takeName(&AI);
144
145  // If the allocation has multiple real uses, insert a cast and change all
146  // things that used it to use the new cast.  This will also hack on CI, but it
147  // will die soon.
148  if (!AI.hasOneUse()) {
149    // New is the allocation instruction, pointer typed. AI is the original
150    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
151    Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
152    ReplaceInstUsesWith(AI, NewCast);
153  }
154  return ReplaceInstUsesWith(CI, New);
155}
156
157/// EvaluateInDifferentType - Given an expression that
158/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
159/// insert the code to evaluate the expression.
160Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
161                                             bool isSigned) {
162  if (Constant *C = dyn_cast<Constant>(V)) {
163    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
164    // If we got a constantexpr back, try to simplify it with DL info.
165    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
166      C = ConstantFoldConstantExpression(CE, DL, TLI);
167    return C;
168  }
169
170  // Otherwise, it must be an instruction.
171  Instruction *I = cast<Instruction>(V);
172  Instruction *Res = 0;
173  unsigned Opc = I->getOpcode();
174  switch (Opc) {
175  case Instruction::Add:
176  case Instruction::Sub:
177  case Instruction::Mul:
178  case Instruction::And:
179  case Instruction::Or:
180  case Instruction::Xor:
181  case Instruction::AShr:
182  case Instruction::LShr:
183  case Instruction::Shl:
184  case Instruction::UDiv:
185  case Instruction::URem: {
186    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
187    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
188    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
189    break;
190  }
191  case Instruction::Trunc:
192  case Instruction::ZExt:
193  case Instruction::SExt:
194    // If the source type of the cast is the type we're trying for then we can
195    // just return the source.  There's no need to insert it because it is not
196    // new.
197    if (I->getOperand(0)->getType() == Ty)
198      return I->getOperand(0);
199
200    // Otherwise, must be the same type of cast, so just reinsert a new one.
201    // This also handles the case of zext(trunc(x)) -> zext(x).
202    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
203                                      Opc == Instruction::SExt);
204    break;
205  case Instruction::Select: {
206    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
207    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
208    Res = SelectInst::Create(I->getOperand(0), True, False);
209    break;
210  }
211  case Instruction::PHI: {
212    PHINode *OPN = cast<PHINode>(I);
213    PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
214    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
215      Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
216      NPN->addIncoming(V, OPN->getIncomingBlock(i));
217    }
218    Res = NPN;
219    break;
220  }
221  default:
222    // TODO: Can handle more cases here.
223    llvm_unreachable("Unreachable!");
224  }
225
226  Res->takeName(I);
227  return InsertNewInstWith(Res, *I);
228}
229
230
231/// This function is a wrapper around CastInst::isEliminableCastPair. It
232/// simply extracts arguments and returns what that function returns.
233static Instruction::CastOps
234isEliminableCastPair(
235  const CastInst *CI, ///< The first cast instruction
236  unsigned opcode,       ///< The opcode of the second cast instruction
237  Type *DstTy,     ///< The target type for the second cast instruction
238  const DataLayout *DL ///< The target data for pointer size
239) {
240
241  Type *SrcTy = CI->getOperand(0)->getType();   // A from above
242  Type *MidTy = CI->getType();                  // B from above
243
244  // Get the opcodes of the two Cast instructions
245  Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
246  Instruction::CastOps secondOp = Instruction::CastOps(opcode);
247  Type *SrcIntPtrTy = DL && SrcTy->isPtrOrPtrVectorTy() ?
248    DL->getIntPtrType(SrcTy) : 0;
249  Type *MidIntPtrTy = DL && MidTy->isPtrOrPtrVectorTy() ?
250    DL->getIntPtrType(MidTy) : 0;
251  Type *DstIntPtrTy = DL && DstTy->isPtrOrPtrVectorTy() ?
252    DL->getIntPtrType(DstTy) : 0;
253  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
254                                                DstTy, SrcIntPtrTy, MidIntPtrTy,
255                                                DstIntPtrTy);
256
257  // We don't want to form an inttoptr or ptrtoint that converts to an integer
258  // type that differs from the pointer size.
259  if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
260      (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
261    Res = 0;
262
263  return Instruction::CastOps(Res);
264}
265
266/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
267/// results in any code being generated and is interesting to optimize out. If
268/// the cast can be eliminated by some other simple transformation, we prefer
269/// to do the simplification first.
270bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
271                                      Type *Ty) {
272  // Noop casts and casts of constants should be eliminated trivially.
273  if (V->getType() == Ty || isa<Constant>(V)) return false;
274
275  // If this is another cast that can be eliminated, we prefer to have it
276  // eliminated.
277  if (const CastInst *CI = dyn_cast<CastInst>(V))
278    if (isEliminableCastPair(CI, opc, Ty, DL))
279      return false;
280
281  // If this is a vector sext from a compare, then we don't want to break the
282  // idiom where each element of the extended vector is either zero or all ones.
283  if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
284    return false;
285
286  return true;
287}
288
289
290/// @brief Implement the transforms common to all CastInst visitors.
291Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
292  Value *Src = CI.getOperand(0);
293
294  // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
295  // eliminate it now.
296  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
297    if (Instruction::CastOps opc =
298        isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) {
299      // The first cast (CSrc) is eliminable so we need to fix up or replace
300      // the second cast (CI). CSrc will then have a good chance of being dead.
301      return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
302    }
303  }
304
305  // If we are casting a select then fold the cast into the select
306  if (SelectInst *SI = dyn_cast<SelectInst>(Src))
307    if (Instruction *NV = FoldOpIntoSelect(CI, SI))
308      return NV;
309
310  // If we are casting a PHI then fold the cast into the PHI
311  if (isa<PHINode>(Src)) {
312    // We don't do this if this would create a PHI node with an illegal type if
313    // it is currently legal.
314    if (!Src->getType()->isIntegerTy() ||
315        !CI.getType()->isIntegerTy() ||
316        ShouldChangeType(CI.getType(), Src->getType()))
317      if (Instruction *NV = FoldOpIntoPhi(CI))
318        return NV;
319  }
320
321  return 0;
322}
323
324/// CanEvaluateTruncated - Return true if we can evaluate the specified
325/// expression tree as type Ty instead of its larger type, and arrive with the
326/// same value.  This is used by code that tries to eliminate truncates.
327///
328/// Ty will always be a type smaller than V.  We should return true if trunc(V)
329/// can be computed by computing V in the smaller type.  If V is an instruction,
330/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
331/// makes sense if x and y can be efficiently truncated.
332///
333/// This function works on both vectors and scalars.
334///
335static bool CanEvaluateTruncated(Value *V, Type *Ty) {
336  // We can always evaluate constants in another type.
337  if (isa<Constant>(V))
338    return true;
339
340  Instruction *I = dyn_cast<Instruction>(V);
341  if (!I) return false;
342
343  Type *OrigTy = V->getType();
344
345  // If this is an extension from the dest type, we can eliminate it, even if it
346  // has multiple uses.
347  if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
348      I->getOperand(0)->getType() == Ty)
349    return true;
350
351  // We can't extend or shrink something that has multiple uses: doing so would
352  // require duplicating the instruction in general, which isn't profitable.
353  if (!I->hasOneUse()) return false;
354
355  unsigned Opc = I->getOpcode();
356  switch (Opc) {
357  case Instruction::Add:
358  case Instruction::Sub:
359  case Instruction::Mul:
360  case Instruction::And:
361  case Instruction::Or:
362  case Instruction::Xor:
363    // These operators can all arbitrarily be extended or truncated.
364    return CanEvaluateTruncated(I->getOperand(0), Ty) &&
365           CanEvaluateTruncated(I->getOperand(1), Ty);
366
367  case Instruction::UDiv:
368  case Instruction::URem: {
369    // UDiv and URem can be truncated if all the truncated bits are zero.
370    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
371    uint32_t BitWidth = Ty->getScalarSizeInBits();
372    if (BitWidth < OrigBitWidth) {
373      APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
374      if (MaskedValueIsZero(I->getOperand(0), Mask) &&
375          MaskedValueIsZero(I->getOperand(1), Mask)) {
376        return CanEvaluateTruncated(I->getOperand(0), Ty) &&
377               CanEvaluateTruncated(I->getOperand(1), Ty);
378      }
379    }
380    break;
381  }
382  case Instruction::Shl:
383    // If we are truncating the result of this SHL, and if it's a shift of a
384    // constant amount, we can always perform a SHL in a smaller type.
385    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
386      uint32_t BitWidth = Ty->getScalarSizeInBits();
387      if (CI->getLimitedValue(BitWidth) < BitWidth)
388        return CanEvaluateTruncated(I->getOperand(0), Ty);
389    }
390    break;
391  case Instruction::LShr:
392    // If this is a truncate of a logical shr, we can truncate it to a smaller
393    // lshr iff we know that the bits we would otherwise be shifting in are
394    // already zeros.
395    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
396      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
397      uint32_t BitWidth = Ty->getScalarSizeInBits();
398      if (MaskedValueIsZero(I->getOperand(0),
399            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
400          CI->getLimitedValue(BitWidth) < BitWidth) {
401        return CanEvaluateTruncated(I->getOperand(0), Ty);
402      }
403    }
404    break;
405  case Instruction::Trunc:
406    // trunc(trunc(x)) -> trunc(x)
407    return true;
408  case Instruction::ZExt:
409  case Instruction::SExt:
410    // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
411    // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
412    return true;
413  case Instruction::Select: {
414    SelectInst *SI = cast<SelectInst>(I);
415    return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
416           CanEvaluateTruncated(SI->getFalseValue(), Ty);
417  }
418  case Instruction::PHI: {
419    // We can change a phi if we can change all operands.  Note that we never
420    // get into trouble with cyclic PHIs here because we only consider
421    // instructions with a single use.
422    PHINode *PN = cast<PHINode>(I);
423    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
424      if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
425        return false;
426    return true;
427  }
428  default:
429    // TODO: Can handle more cases here.
430    break;
431  }
432
433  return false;
434}
435
436Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
437  if (Instruction *Result = commonCastTransforms(CI))
438    return Result;
439
440  // See if we can simplify any instructions used by the input whose sole
441  // purpose is to compute bits we don't care about.
442  if (SimplifyDemandedInstructionBits(CI))
443    return &CI;
444
445  Value *Src = CI.getOperand(0);
446  Type *DestTy = CI.getType(), *SrcTy = Src->getType();
447
448  // Attempt to truncate the entire input expression tree to the destination
449  // type.   Only do this if the dest type is a simple type, don't convert the
450  // expression tree to something weird like i93 unless the source is also
451  // strange.
452  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
453      CanEvaluateTruncated(Src, DestTy)) {
454
455    // If this cast is a truncate, evaluting in a different type always
456    // eliminates the cast, so it is always a win.
457    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
458          " to avoid cast: " << CI << '\n');
459    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
460    assert(Res->getType() == DestTy);
461    return ReplaceInstUsesWith(CI, Res);
462  }
463
464  // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
465  if (DestTy->getScalarSizeInBits() == 1) {
466    Constant *One = ConstantInt::get(Src->getType(), 1);
467    Src = Builder->CreateAnd(Src, One);
468    Value *Zero = Constant::getNullValue(Src->getType());
469    return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
470  }
471
472  // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
473  Value *A = 0; ConstantInt *Cst = 0;
474  if (Src->hasOneUse() &&
475      match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
476    // We have three types to worry about here, the type of A, the source of
477    // the truncate (MidSize), and the destination of the truncate. We know that
478    // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
479    // between ASize and ResultSize.
480    unsigned ASize = A->getType()->getPrimitiveSizeInBits();
481
482    // If the shift amount is larger than the size of A, then the result is
483    // known to be zero because all the input bits got shifted out.
484    if (Cst->getZExtValue() >= ASize)
485      return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
486
487    // Since we're doing an lshr and a zero extend, and know that the shift
488    // amount is smaller than ASize, it is always safe to do the shift in A's
489    // type, then zero extend or truncate to the result.
490    Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
491    Shift->takeName(Src);
492    return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
493  }
494
495  // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
496  // type isn't non-native.
497  if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
498      ShouldChangeType(Src->getType(), CI.getType()) &&
499      match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
500    Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
501    return BinaryOperator::CreateAnd(NewTrunc,
502                                     ConstantExpr::getTrunc(Cst, CI.getType()));
503  }
504
505  return 0;
506}
507
508/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
509/// in order to eliminate the icmp.
510Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
511                                             bool DoXform) {
512  // If we are just checking for a icmp eq of a single bit and zext'ing it
513  // to an integer, then shift the bit to the appropriate place and then
514  // cast to integer to avoid the comparison.
515  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
516    const APInt &Op1CV = Op1C->getValue();
517
518    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
519    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
520    if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
521        (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
522      if (!DoXform) return ICI;
523
524      Value *In = ICI->getOperand(0);
525      Value *Sh = ConstantInt::get(In->getType(),
526                                   In->getType()->getScalarSizeInBits()-1);
527      In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
528      if (In->getType() != CI.getType())
529        In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
530
531      if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
532        Constant *One = ConstantInt::get(In->getType(), 1);
533        In = Builder->CreateXor(In, One, In->getName()+".not");
534      }
535
536      return ReplaceInstUsesWith(CI, In);
537    }
538
539    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
540    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
541    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
542    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
543    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
544    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
545    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
546    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
547    if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
548        // This only works for EQ and NE
549        ICI->isEquality()) {
550      // If Op1C some other power of two, convert:
551      uint32_t BitWidth = Op1C->getType()->getBitWidth();
552      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
553      ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne);
554
555      APInt KnownZeroMask(~KnownZero);
556      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
557        if (!DoXform) return ICI;
558
559        bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
560        if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
561          // (X&4) == 2 --> false
562          // (X&4) != 2 --> true
563          Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
564                                           isNE);
565          Res = ConstantExpr::getZExt(Res, CI.getType());
566          return ReplaceInstUsesWith(CI, Res);
567        }
568
569        uint32_t ShiftAmt = KnownZeroMask.logBase2();
570        Value *In = ICI->getOperand(0);
571        if (ShiftAmt) {
572          // Perform a logical shr by shiftamt.
573          // Insert the shift to put the result in the low bit.
574          In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
575                                   In->getName()+".lobit");
576        }
577
578        if ((Op1CV != 0) == isNE) { // Toggle the low bit.
579          Constant *One = ConstantInt::get(In->getType(), 1);
580          In = Builder->CreateXor(In, One);
581        }
582
583        if (CI.getType() == In->getType())
584          return ReplaceInstUsesWith(CI, In);
585        return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
586      }
587    }
588  }
589
590  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
591  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
592  // may lead to additional simplifications.
593  if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
594    if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
595      uint32_t BitWidth = ITy->getBitWidth();
596      Value *LHS = ICI->getOperand(0);
597      Value *RHS = ICI->getOperand(1);
598
599      APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
600      APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
601      ComputeMaskedBits(LHS, KnownZeroLHS, KnownOneLHS);
602      ComputeMaskedBits(RHS, KnownZeroRHS, KnownOneRHS);
603
604      if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
605        APInt KnownBits = KnownZeroLHS | KnownOneLHS;
606        APInt UnknownBit = ~KnownBits;
607        if (UnknownBit.countPopulation() == 1) {
608          if (!DoXform) return ICI;
609
610          Value *Result = Builder->CreateXor(LHS, RHS);
611
612          // Mask off any bits that are set and won't be shifted away.
613          if (KnownOneLHS.uge(UnknownBit))
614            Result = Builder->CreateAnd(Result,
615                                        ConstantInt::get(ITy, UnknownBit));
616
617          // Shift the bit we're testing down to the lsb.
618          Result = Builder->CreateLShr(
619               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
620
621          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
622            Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
623          Result->takeName(ICI);
624          return ReplaceInstUsesWith(CI, Result);
625        }
626      }
627    }
628  }
629
630  return 0;
631}
632
633/// CanEvaluateZExtd - Determine if the specified value can be computed in the
634/// specified wider type and produce the same low bits.  If not, return false.
635///
636/// If this function returns true, it can also return a non-zero number of bits
637/// (in BitsToClear) which indicates that the value it computes is correct for
638/// the zero extend, but that the additional BitsToClear bits need to be zero'd
639/// out.  For example, to promote something like:
640///
641///   %B = trunc i64 %A to i32
642///   %C = lshr i32 %B, 8
643///   %E = zext i32 %C to i64
644///
645/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
646/// set to 8 to indicate that the promoted value needs to have bits 24-31
647/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
648/// clear the top bits anyway, doing this has no extra cost.
649///
650/// This function works on both vectors and scalars.
651static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
652  BitsToClear = 0;
653  if (isa<Constant>(V))
654    return true;
655
656  Instruction *I = dyn_cast<Instruction>(V);
657  if (!I) return false;
658
659  // If the input is a truncate from the destination type, we can trivially
660  // eliminate it.
661  if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
662    return true;
663
664  // We can't extend or shrink something that has multiple uses: doing so would
665  // require duplicating the instruction in general, which isn't profitable.
666  if (!I->hasOneUse()) return false;
667
668  unsigned Opc = I->getOpcode(), Tmp;
669  switch (Opc) {
670  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
671  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
672  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
673    return true;
674  case Instruction::And:
675  case Instruction::Or:
676  case Instruction::Xor:
677  case Instruction::Add:
678  case Instruction::Sub:
679  case Instruction::Mul:
680    if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
681        !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
682      return false;
683    // These can all be promoted if neither operand has 'bits to clear'.
684    if (BitsToClear == 0 && Tmp == 0)
685      return true;
686
687    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
688    // other side, BitsToClear is ok.
689    if (Tmp == 0 &&
690        (Opc == Instruction::And || Opc == Instruction::Or ||
691         Opc == Instruction::Xor)) {
692      // We use MaskedValueIsZero here for generality, but the case we care
693      // about the most is constant RHS.
694      unsigned VSize = V->getType()->getScalarSizeInBits();
695      if (MaskedValueIsZero(I->getOperand(1),
696                            APInt::getHighBitsSet(VSize, BitsToClear)))
697        return true;
698    }
699
700    // Otherwise, we don't know how to analyze this BitsToClear case yet.
701    return false;
702
703  case Instruction::Shl:
704    // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
705    // upper bits we can reduce BitsToClear by the shift amount.
706    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
707      if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
708        return false;
709      uint64_t ShiftAmt = Amt->getZExtValue();
710      BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
711      return true;
712    }
713    return false;
714  case Instruction::LShr:
715    // We can promote lshr(x, cst) if we can promote x.  This requires the
716    // ultimate 'and' to clear out the high zero bits we're clearing out though.
717    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
718      if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
719        return false;
720      BitsToClear += Amt->getZExtValue();
721      if (BitsToClear > V->getType()->getScalarSizeInBits())
722        BitsToClear = V->getType()->getScalarSizeInBits();
723      return true;
724    }
725    // Cannot promote variable LSHR.
726    return false;
727  case Instruction::Select:
728    if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
729        !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
730        // TODO: If important, we could handle the case when the BitsToClear are
731        // known zero in the disagreeing side.
732        Tmp != BitsToClear)
733      return false;
734    return true;
735
736  case Instruction::PHI: {
737    // We can change a phi if we can change all operands.  Note that we never
738    // get into trouble with cyclic PHIs here because we only consider
739    // instructions with a single use.
740    PHINode *PN = cast<PHINode>(I);
741    if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
742      return false;
743    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
744      if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
745          // TODO: If important, we could handle the case when the BitsToClear
746          // are known zero in the disagreeing input.
747          Tmp != BitsToClear)
748        return false;
749    return true;
750  }
751  default:
752    // TODO: Can handle more cases here.
753    return false;
754  }
755}
756
757Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
758  // If this zero extend is only used by a truncate, let the truncate be
759  // eliminated before we try to optimize this zext.
760  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
761    return 0;
762
763  // If one of the common conversion will work, do it.
764  if (Instruction *Result = commonCastTransforms(CI))
765    return Result;
766
767  // See if we can simplify any instructions used by the input whose sole
768  // purpose is to compute bits we don't care about.
769  if (SimplifyDemandedInstructionBits(CI))
770    return &CI;
771
772  Value *Src = CI.getOperand(0);
773  Type *SrcTy = Src->getType(), *DestTy = CI.getType();
774
775  // Attempt to extend the entire input expression tree to the destination
776  // type.   Only do this if the dest type is a simple type, don't convert the
777  // expression tree to something weird like i93 unless the source is also
778  // strange.
779  unsigned BitsToClear;
780  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
781      CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
782    assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
783           "Unreasonable BitsToClear");
784
785    // Okay, we can transform this!  Insert the new expression now.
786    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
787          " to avoid zero extend: " << CI);
788    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
789    assert(Res->getType() == DestTy);
790
791    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
792    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
793
794    // If the high bits are already filled with zeros, just replace this
795    // cast with the result.
796    if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
797                                                     DestBitSize-SrcBitsKept)))
798      return ReplaceInstUsesWith(CI, Res);
799
800    // We need to emit an AND to clear the high bits.
801    Constant *C = ConstantInt::get(Res->getType(),
802                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
803    return BinaryOperator::CreateAnd(Res, C);
804  }
805
806  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
807  // types and if the sizes are just right we can convert this into a logical
808  // 'and' which will be much cheaper than the pair of casts.
809  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
810    // TODO: Subsume this into EvaluateInDifferentType.
811
812    // Get the sizes of the types involved.  We know that the intermediate type
813    // will be smaller than A or C, but don't know the relation between A and C.
814    Value *A = CSrc->getOperand(0);
815    unsigned SrcSize = A->getType()->getScalarSizeInBits();
816    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
817    unsigned DstSize = CI.getType()->getScalarSizeInBits();
818    // If we're actually extending zero bits, then if
819    // SrcSize <  DstSize: zext(a & mask)
820    // SrcSize == DstSize: a & mask
821    // SrcSize  > DstSize: trunc(a) & mask
822    if (SrcSize < DstSize) {
823      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
824      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
825      Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
826      return new ZExtInst(And, CI.getType());
827    }
828
829    if (SrcSize == DstSize) {
830      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
831      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
832                                                           AndValue));
833    }
834    if (SrcSize > DstSize) {
835      Value *Trunc = Builder->CreateTrunc(A, CI.getType());
836      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
837      return BinaryOperator::CreateAnd(Trunc,
838                                       ConstantInt::get(Trunc->getType(),
839                                                        AndValue));
840    }
841  }
842
843  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
844    return transformZExtICmp(ICI, CI);
845
846  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
847  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
848    // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
849    // of the (zext icmp) will be transformed.
850    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
851    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
852    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
853        (transformZExtICmp(LHS, CI, false) ||
854         transformZExtICmp(RHS, CI, false))) {
855      Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
856      Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
857      return BinaryOperator::Create(Instruction::Or, LCast, RCast);
858    }
859  }
860
861  // zext(trunc(X) & C) -> (X & zext(C)).
862  Constant *C;
863  Value *X;
864  if (SrcI &&
865      match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
866      X->getType() == CI.getType())
867    return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
868
869  // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
870  Value *And;
871  if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
872      match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
873      X->getType() == CI.getType()) {
874    Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
875    return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
876  }
877
878  // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
879  if (SrcI && SrcI->hasOneUse() &&
880      SrcI->getType()->getScalarType()->isIntegerTy(1) &&
881      match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) {
882    Value *New = Builder->CreateZExt(X, CI.getType());
883    return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
884  }
885
886  return 0;
887}
888
889/// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
890/// in order to eliminate the icmp.
891Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
892  Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
893  ICmpInst::Predicate Pred = ICI->getPredicate();
894
895  if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
896    // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
897    // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
898    if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
899        (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
900
901      Value *Sh = ConstantInt::get(Op0->getType(),
902                                   Op0->getType()->getScalarSizeInBits()-1);
903      Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
904      if (In->getType() != CI.getType())
905        In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
906
907      if (Pred == ICmpInst::ICMP_SGT)
908        In = Builder->CreateNot(In, In->getName()+".not");
909      return ReplaceInstUsesWith(CI, In);
910    }
911  }
912
913  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
914    // If we know that only one bit of the LHS of the icmp can be set and we
915    // have an equality comparison with zero or a power of 2, we can transform
916    // the icmp and sext into bitwise/integer operations.
917    if (ICI->hasOneUse() &&
918        ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
919      unsigned BitWidth = Op1C->getType()->getBitWidth();
920      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
921      ComputeMaskedBits(Op0, KnownZero, KnownOne);
922
923      APInt KnownZeroMask(~KnownZero);
924      if (KnownZeroMask.isPowerOf2()) {
925        Value *In = ICI->getOperand(0);
926
927        // If the icmp tests for a known zero bit we can constant fold it.
928        if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
929          Value *V = Pred == ICmpInst::ICMP_NE ?
930                       ConstantInt::getAllOnesValue(CI.getType()) :
931                       ConstantInt::getNullValue(CI.getType());
932          return ReplaceInstUsesWith(CI, V);
933        }
934
935        if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
936          // sext ((x & 2^n) == 0)   -> (x >> n) - 1
937          // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
938          unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
939          // Perform a right shift to place the desired bit in the LSB.
940          if (ShiftAmt)
941            In = Builder->CreateLShr(In,
942                                     ConstantInt::get(In->getType(), ShiftAmt));
943
944          // At this point "In" is either 1 or 0. Subtract 1 to turn
945          // {1, 0} -> {0, -1}.
946          In = Builder->CreateAdd(In,
947                                  ConstantInt::getAllOnesValue(In->getType()),
948                                  "sext");
949        } else {
950          // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
951          // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
952          unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
953          // Perform a left shift to place the desired bit in the MSB.
954          if (ShiftAmt)
955            In = Builder->CreateShl(In,
956                                    ConstantInt::get(In->getType(), ShiftAmt));
957
958          // Distribute the bit over the whole bit width.
959          In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
960                                                        BitWidth - 1), "sext");
961        }
962
963        if (CI.getType() == In->getType())
964          return ReplaceInstUsesWith(CI, In);
965        return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
966      }
967    }
968  }
969
970  return 0;
971}
972
973/// CanEvaluateSExtd - Return true if we can take the specified value
974/// and return it as type Ty without inserting any new casts and without
975/// changing the value of the common low bits.  This is used by code that tries
976/// to promote integer operations to a wider types will allow us to eliminate
977/// the extension.
978///
979/// This function works on both vectors and scalars.
980///
981static bool CanEvaluateSExtd(Value *V, Type *Ty) {
982  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
983         "Can't sign extend type to a smaller type");
984  // If this is a constant, it can be trivially promoted.
985  if (isa<Constant>(V))
986    return true;
987
988  Instruction *I = dyn_cast<Instruction>(V);
989  if (!I) return false;
990
991  // If this is a truncate from the dest type, we can trivially eliminate it.
992  if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
993    return true;
994
995  // We can't extend or shrink something that has multiple uses: doing so would
996  // require duplicating the instruction in general, which isn't profitable.
997  if (!I->hasOneUse()) return false;
998
999  switch (I->getOpcode()) {
1000  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1001  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1002  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1003    return true;
1004  case Instruction::And:
1005  case Instruction::Or:
1006  case Instruction::Xor:
1007  case Instruction::Add:
1008  case Instruction::Sub:
1009  case Instruction::Mul:
1010    // These operators can all arbitrarily be extended if their inputs can.
1011    return CanEvaluateSExtd(I->getOperand(0), Ty) &&
1012           CanEvaluateSExtd(I->getOperand(1), Ty);
1013
1014  //case Instruction::Shl:   TODO
1015  //case Instruction::LShr:  TODO
1016
1017  case Instruction::Select:
1018    return CanEvaluateSExtd(I->getOperand(1), Ty) &&
1019           CanEvaluateSExtd(I->getOperand(2), Ty);
1020
1021  case Instruction::PHI: {
1022    // We can change a phi if we can change all operands.  Note that we never
1023    // get into trouble with cyclic PHIs here because we only consider
1024    // instructions with a single use.
1025    PHINode *PN = cast<PHINode>(I);
1026    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1027      if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
1028    return true;
1029  }
1030  default:
1031    // TODO: Can handle more cases here.
1032    break;
1033  }
1034
1035  return false;
1036}
1037
1038Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1039  // If this sign extend is only used by a truncate, let the truncate be
1040  // eliminated before we try to optimize this sext.
1041  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1042    return 0;
1043
1044  if (Instruction *I = commonCastTransforms(CI))
1045    return I;
1046
1047  // See if we can simplify any instructions used by the input whose sole
1048  // purpose is to compute bits we don't care about.
1049  if (SimplifyDemandedInstructionBits(CI))
1050    return &CI;
1051
1052  Value *Src = CI.getOperand(0);
1053  Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1054
1055  // Attempt to extend the entire input expression tree to the destination
1056  // type.   Only do this if the dest type is a simple type, don't convert the
1057  // expression tree to something weird like i93 unless the source is also
1058  // strange.
1059  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
1060      CanEvaluateSExtd(Src, DestTy)) {
1061    // Okay, we can transform this!  Insert the new expression now.
1062    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1063          " to avoid sign extend: " << CI);
1064    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1065    assert(Res->getType() == DestTy);
1066
1067    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1068    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1069
1070    // If the high bits are already filled with sign bit, just replace this
1071    // cast with the result.
1072    if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
1073      return ReplaceInstUsesWith(CI, Res);
1074
1075    // We need to emit a shl + ashr to do the sign extend.
1076    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1077    return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1078                                      ShAmt);
1079  }
1080
1081  // If this input is a trunc from our destination, then turn sext(trunc(x))
1082  // into shifts.
1083  if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1084    if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1085      uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1086      uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1087
1088      // We need to emit a shl + ashr to do the sign extend.
1089      Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1090      Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1091      return BinaryOperator::CreateAShr(Res, ShAmt);
1092    }
1093
1094  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1095    return transformSExtICmp(ICI, CI);
1096
1097  // If the input is a shl/ashr pair of a same constant, then this is a sign
1098  // extension from a smaller value.  If we could trust arbitrary bitwidth
1099  // integers, we could turn this into a truncate to the smaller bit and then
1100  // use a sext for the whole extension.  Since we don't, look deeper and check
1101  // for a truncate.  If the source and dest are the same type, eliminate the
1102  // trunc and extend and just do shifts.  For example, turn:
1103  //   %a = trunc i32 %i to i8
1104  //   %b = shl i8 %a, 6
1105  //   %c = ashr i8 %b, 6
1106  //   %d = sext i8 %c to i32
1107  // into:
1108  //   %a = shl i32 %i, 30
1109  //   %d = ashr i32 %a, 30
1110  Value *A = 0;
1111  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1112  ConstantInt *BA = 0, *CA = 0;
1113  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1114                        m_ConstantInt(CA))) &&
1115      BA == CA && A->getType() == CI.getType()) {
1116    unsigned MidSize = Src->getType()->getScalarSizeInBits();
1117    unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1118    unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1119    Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1120    A = Builder->CreateShl(A, ShAmtV, CI.getName());
1121    return BinaryOperator::CreateAShr(A, ShAmtV);
1122  }
1123
1124  return 0;
1125}
1126
1127
1128/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1129/// in the specified FP type without changing its value.
1130static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1131  bool losesInfo;
1132  APFloat F = CFP->getValueAPF();
1133  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1134  if (!losesInfo)
1135    return ConstantFP::get(CFP->getContext(), F);
1136  return 0;
1137}
1138
1139/// LookThroughFPExtensions - If this is an fp extension instruction, look
1140/// through it until we get the source value.
1141static Value *LookThroughFPExtensions(Value *V) {
1142  if (Instruction *I = dyn_cast<Instruction>(V))
1143    if (I->getOpcode() == Instruction::FPExt)
1144      return LookThroughFPExtensions(I->getOperand(0));
1145
1146  // If this value is a constant, return the constant in the smallest FP type
1147  // that can accurately represent it.  This allows us to turn
1148  // (float)((double)X+2.0) into x+2.0f.
1149  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1150    if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1151      return V;  // No constant folding of this.
1152    // See if the value can be truncated to half and then reextended.
1153    if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
1154      return V;
1155    // See if the value can be truncated to float and then reextended.
1156    if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1157      return V;
1158    if (CFP->getType()->isDoubleTy())
1159      return V;  // Won't shrink.
1160    if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1161      return V;
1162    // Don't try to shrink to various long double types.
1163  }
1164
1165  return V;
1166}
1167
1168Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1169  if (Instruction *I = commonCastTransforms(CI))
1170    return I;
1171  // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1172  // simpilify this expression to avoid one or more of the trunc/extend
1173  // operations if we can do so without changing the numerical results.
1174  //
1175  // The exact manner in which the widths of the operands interact to limit
1176  // what we can and cannot do safely varies from operation to operation, and
1177  // is explained below in the various case statements.
1178  BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1179  if (OpI && OpI->hasOneUse()) {
1180    Value *LHSOrig = LookThroughFPExtensions(OpI->getOperand(0));
1181    Value *RHSOrig = LookThroughFPExtensions(OpI->getOperand(1));
1182    unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1183    unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
1184    unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
1185    unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1186    unsigned DstWidth = CI.getType()->getFPMantissaWidth();
1187    switch (OpI->getOpcode()) {
1188      default: break;
1189      case Instruction::FAdd:
1190      case Instruction::FSub:
1191        // For addition and subtraction, the infinitely precise result can
1192        // essentially be arbitrarily wide; proving that double rounding
1193        // will not occur because the result of OpI is exact (as we will for
1194        // FMul, for example) is hopeless.  However, we *can* nonetheless
1195        // frequently know that double rounding cannot occur (or that it is
1196        // innocuous) by taking advantage of the specific structure of
1197        // infinitely-precise results that admit double rounding.
1198        //
1199        // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1200        // to represent both sources, we can guarantee that the double
1201        // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1202        // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1203        // for proof of this fact).
1204        //
1205        // Note: Figueroa does not consider the case where DstFormat !=
1206        // SrcFormat.  It's possible (likely even!) that this analysis
1207        // could be tightened for those cases, but they are rare (the main
1208        // case of interest here is (float)((double)float + float)).
1209        if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1210          if (LHSOrig->getType() != CI.getType())
1211            LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1212          if (RHSOrig->getType() != CI.getType())
1213            RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1214          Instruction *RI =
1215            BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
1216          RI->copyFastMathFlags(OpI);
1217          return RI;
1218        }
1219        break;
1220      case Instruction::FMul:
1221        // For multiplication, the infinitely precise result has at most
1222        // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1223        // that such a value can be exactly represented, then no double
1224        // rounding can possibly occur; we can safely perform the operation
1225        // in the destination format if it can represent both sources.
1226        if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1227          if (LHSOrig->getType() != CI.getType())
1228            LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1229          if (RHSOrig->getType() != CI.getType())
1230            RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1231          Instruction *RI =
1232            BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
1233          RI->copyFastMathFlags(OpI);
1234          return RI;
1235        }
1236        break;
1237      case Instruction::FDiv:
1238        // For division, we use again use the bound from Figueroa's
1239        // dissertation.  I am entirely certain that this bound can be
1240        // tightened in the unbalanced operand case by an analysis based on
1241        // the diophantine rational approximation bound, but the well-known
1242        // condition used here is a good conservative first pass.
1243        // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1244        if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1245          if (LHSOrig->getType() != CI.getType())
1246            LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1247          if (RHSOrig->getType() != CI.getType())
1248            RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1249          Instruction *RI =
1250            BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
1251          RI->copyFastMathFlags(OpI);
1252          return RI;
1253        }
1254        break;
1255      case Instruction::FRem:
1256        // Remainder is straightforward.  Remainder is always exact, so the
1257        // type of OpI doesn't enter into things at all.  We simply evaluate
1258        // in whichever source type is larger, then convert to the
1259        // destination type.
1260        if (LHSWidth < SrcWidth)
1261          LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
1262        else if (RHSWidth <= SrcWidth)
1263          RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
1264        Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
1265        if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
1266          RI->copyFastMathFlags(OpI);
1267        return CastInst::CreateFPCast(ExactResult, CI.getType());
1268    }
1269
1270    // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1271    if (BinaryOperator::isFNeg(OpI)) {
1272      Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
1273                                                 CI.getType());
1274      Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
1275      RI->copyFastMathFlags(OpI);
1276      return RI;
1277    }
1278  }
1279
1280  // (fptrunc (select cond, R1, Cst)) -->
1281  // (select cond, (fptrunc R1), (fptrunc Cst))
1282  SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
1283  if (SI &&
1284      (isa<ConstantFP>(SI->getOperand(1)) ||
1285       isa<ConstantFP>(SI->getOperand(2)))) {
1286    Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
1287                                             CI.getType());
1288    Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
1289                                             CI.getType());
1290    return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
1291  }
1292
1293  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
1294  if (II) {
1295    switch (II->getIntrinsicID()) {
1296      default: break;
1297      case Intrinsic::fabs: {
1298        // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1299        Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
1300                                                   CI.getType());
1301        Type *IntrinsicType[] = { CI.getType() };
1302        Function *Overload =
1303          Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(),
1304                                    II->getIntrinsicID(), IntrinsicType);
1305
1306        Value *Args[] = { InnerTrunc };
1307        return CallInst::Create(Overload, Args, II->getName());
1308      }
1309    }
1310  }
1311
1312  // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
1313  // Note that we restrict this transformation based on
1314  // TLI->has(LibFunc::sqrtf), even for the sqrt intrinsic, because
1315  // TLI->has(LibFunc::sqrtf) is sufficient to guarantee that the
1316  // single-precision intrinsic can be expanded in the backend.
1317  CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
1318  if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
1319      (Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) ||
1320       Call->getCalledFunction()->getIntrinsicID() == Intrinsic::sqrt) &&
1321      Call->getNumArgOperands() == 1 &&
1322      Call->hasOneUse()) {
1323    CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
1324    if (Arg && Arg->getOpcode() == Instruction::FPExt &&
1325        CI.getType()->isFloatTy() &&
1326        Call->getType()->isDoubleTy() &&
1327        Arg->getType()->isDoubleTy() &&
1328        Arg->getOperand(0)->getType()->isFloatTy()) {
1329      Function *Callee = Call->getCalledFunction();
1330      Module *M = CI.getParent()->getParent()->getParent();
1331      Constant *SqrtfFunc = (Callee->getIntrinsicID() == Intrinsic::sqrt) ?
1332        Intrinsic::getDeclaration(M, Intrinsic::sqrt, Builder->getFloatTy()) :
1333        M->getOrInsertFunction("sqrtf", Callee->getAttributes(),
1334                               Builder->getFloatTy(), Builder->getFloatTy(),
1335                               NULL);
1336      CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
1337                                       "sqrtfcall");
1338      ret->setAttributes(Callee->getAttributes());
1339
1340
1341      // Remove the old Call.  With -fmath-errno, it won't get marked readnone.
1342      ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
1343      EraseInstFromFunction(*Call);
1344      return ret;
1345    }
1346  }
1347
1348  return 0;
1349}
1350
1351Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1352  return commonCastTransforms(CI);
1353}
1354
1355Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1356  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1357  if (OpI == 0)
1358    return commonCastTransforms(FI);
1359
1360  // fptoui(uitofp(X)) --> X
1361  // fptoui(sitofp(X)) --> X
1362  // This is safe if the intermediate type has enough bits in its mantissa to
1363  // accurately represent all values of X.  For example, do not do this with
1364  // i64->float->i64.  This is also safe for sitofp case, because any negative
1365  // 'X' value would cause an undefined result for the fptoui.
1366  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1367      OpI->getOperand(0)->getType() == FI.getType() &&
1368      (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
1369                    OpI->getType()->getFPMantissaWidth())
1370    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1371
1372  return commonCastTransforms(FI);
1373}
1374
1375Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1376  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1377  if (OpI == 0)
1378    return commonCastTransforms(FI);
1379
1380  // fptosi(sitofp(X)) --> X
1381  // fptosi(uitofp(X)) --> X
1382  // This is safe if the intermediate type has enough bits in its mantissa to
1383  // accurately represent all values of X.  For example, do not do this with
1384  // i64->float->i64.  This is also safe for sitofp case, because any negative
1385  // 'X' value would cause an undefined result for the fptoui.
1386  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1387      OpI->getOperand(0)->getType() == FI.getType() &&
1388      (int)FI.getType()->getScalarSizeInBits() <=
1389                    OpI->getType()->getFPMantissaWidth())
1390    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1391
1392  return commonCastTransforms(FI);
1393}
1394
1395Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1396  return commonCastTransforms(CI);
1397}
1398
1399Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1400  return commonCastTransforms(CI);
1401}
1402
1403Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1404  // If the source integer type is not the intptr_t type for this target, do a
1405  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1406  // cast to be exposed to other transforms.
1407
1408  if (DL) {
1409    unsigned AS = CI.getAddressSpace();
1410    if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1411        DL->getPointerSizeInBits(AS)) {
1412      Type *Ty = DL->getIntPtrType(CI.getContext(), AS);
1413      if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1414        Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1415
1416      Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
1417      return new IntToPtrInst(P, CI.getType());
1418    }
1419  }
1420
1421  if (Instruction *I = commonCastTransforms(CI))
1422    return I;
1423
1424  return 0;
1425}
1426
1427/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1428Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1429  Value *Src = CI.getOperand(0);
1430
1431  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1432    // If casting the result of a getelementptr instruction with no offset, turn
1433    // this into a cast of the original pointer!
1434    if (GEP->hasAllZeroIndices()) {
1435      // Changing the cast operand is usually not a good idea but it is safe
1436      // here because the pointer operand is being replaced with another
1437      // pointer operand so the opcode doesn't need to change.
1438      Worklist.Add(GEP);
1439      CI.setOperand(0, GEP->getOperand(0));
1440      return &CI;
1441    }
1442
1443    if (!DL)
1444      return commonCastTransforms(CI);
1445
1446    // If the GEP has a single use, and the base pointer is a bitcast, and the
1447    // GEP computes a constant offset, see if we can convert these three
1448    // instructions into fewer.  This typically happens with unions and other
1449    // non-type-safe code.
1450    unsigned AS = GEP->getPointerAddressSpace();
1451    unsigned OffsetBits = DL->getPointerSizeInBits(AS);
1452    APInt Offset(OffsetBits, 0);
1453    BitCastInst *BCI = dyn_cast<BitCastInst>(GEP->getOperand(0));
1454    if (GEP->hasOneUse() &&
1455        BCI &&
1456        GEP->accumulateConstantOffset(*DL, Offset)) {
1457      // Get the base pointer input of the bitcast, and the type it points to.
1458      Value *OrigBase = BCI->getOperand(0);
1459      SmallVector<Value*, 8> NewIndices;
1460      if (FindElementAtOffset(OrigBase->getType(),
1461                              Offset.getSExtValue(),
1462                              NewIndices)) {
1463        // If we were able to index down into an element, create the GEP
1464        // and bitcast the result.  This eliminates one bitcast, potentially
1465        // two.
1466        Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
1467          Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
1468          Builder->CreateGEP(OrigBase, NewIndices);
1469        NGEP->takeName(GEP);
1470
1471        if (isa<BitCastInst>(CI))
1472          return new BitCastInst(NGEP, CI.getType());
1473        assert(isa<PtrToIntInst>(CI));
1474        return new PtrToIntInst(NGEP, CI.getType());
1475      }
1476    }
1477  }
1478
1479  return commonCastTransforms(CI);
1480}
1481
1482Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1483  // If the destination integer type is not the intptr_t type for this target,
1484  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1485  // to be exposed to other transforms.
1486
1487  if (!DL)
1488    return commonPointerCastTransforms(CI);
1489
1490  Type *Ty = CI.getType();
1491  unsigned AS = CI.getPointerAddressSpace();
1492
1493  if (Ty->getScalarSizeInBits() == DL->getPointerSizeInBits(AS))
1494    return commonPointerCastTransforms(CI);
1495
1496  Type *PtrTy = DL->getIntPtrType(CI.getContext(), AS);
1497  if (Ty->isVectorTy()) // Handle vectors of pointers.
1498    PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1499
1500  Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
1501  return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1502}
1503
1504/// OptimizeVectorResize - This input value (which is known to have vector type)
1505/// is being zero extended or truncated to the specified vector type.  Try to
1506/// replace it with a shuffle (and vector/vector bitcast) if possible.
1507///
1508/// The source and destination vector types may have different element types.
1509static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
1510                                         InstCombiner &IC) {
1511  // We can only do this optimization if the output is a multiple of the input
1512  // element size, or the input is a multiple of the output element size.
1513  // Convert the input type to have the same element type as the output.
1514  VectorType *SrcTy = cast<VectorType>(InVal->getType());
1515
1516  if (SrcTy->getElementType() != DestTy->getElementType()) {
1517    // The input types don't need to be identical, but for now they must be the
1518    // same size.  There is no specific reason we couldn't handle things like
1519    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1520    // there yet.
1521    if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1522        DestTy->getElementType()->getPrimitiveSizeInBits())
1523      return 0;
1524
1525    SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1526    InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1527  }
1528
1529  // Now that the element types match, get the shuffle mask and RHS of the
1530  // shuffle to use, which depends on whether we're increasing or decreasing the
1531  // size of the input.
1532  SmallVector<uint32_t, 16> ShuffleMask;
1533  Value *V2;
1534
1535  if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1536    // If we're shrinking the number of elements, just shuffle in the low
1537    // elements from the input and use undef as the second shuffle input.
1538    V2 = UndefValue::get(SrcTy);
1539    for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1540      ShuffleMask.push_back(i);
1541
1542  } else {
1543    // If we're increasing the number of elements, shuffle in all of the
1544    // elements from InVal and fill the rest of the result elements with zeros
1545    // from a constant zero.
1546    V2 = Constant::getNullValue(SrcTy);
1547    unsigned SrcElts = SrcTy->getNumElements();
1548    for (unsigned i = 0, e = SrcElts; i != e; ++i)
1549      ShuffleMask.push_back(i);
1550
1551    // The excess elements reference the first element of the zero input.
1552    for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1553      ShuffleMask.push_back(SrcElts);
1554  }
1555
1556  return new ShuffleVectorInst(InVal, V2,
1557                               ConstantDataVector::get(V2->getContext(),
1558                                                       ShuffleMask));
1559}
1560
1561static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1562  return Value % Ty->getPrimitiveSizeInBits() == 0;
1563}
1564
1565static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1566  return Value / Ty->getPrimitiveSizeInBits();
1567}
1568
1569/// CollectInsertionElements - V is a value which is inserted into a vector of
1570/// VecEltTy.  Look through the value to see if we can decompose it into
1571/// insertions into the vector.  See the example in the comment for
1572/// OptimizeIntegerToVectorInsertions for the pattern this handles.
1573/// The type of V is always a non-zero multiple of VecEltTy's size.
1574/// Shift is the number of bits between the lsb of V and the lsb of
1575/// the vector.
1576///
1577/// This returns false if the pattern can't be matched or true if it can,
1578/// filling in Elements with the elements found here.
1579static bool CollectInsertionElements(Value *V, unsigned Shift,
1580                                     SmallVectorImpl<Value*> &Elements,
1581                                     Type *VecEltTy, InstCombiner &IC) {
1582  assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1583         "Shift should be a multiple of the element type size");
1584
1585  // Undef values never contribute useful bits to the result.
1586  if (isa<UndefValue>(V)) return true;
1587
1588  // If we got down to a value of the right type, we win, try inserting into the
1589  // right element.
1590  if (V->getType() == VecEltTy) {
1591    // Inserting null doesn't actually insert any elements.
1592    if (Constant *C = dyn_cast<Constant>(V))
1593      if (C->isNullValue())
1594        return true;
1595
1596    unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1597    if (IC.getDataLayout()->isBigEndian())
1598      ElementIndex = Elements.size() - ElementIndex - 1;
1599
1600    // Fail if multiple elements are inserted into this slot.
1601    if (Elements[ElementIndex] != 0)
1602      return false;
1603
1604    Elements[ElementIndex] = V;
1605    return true;
1606  }
1607
1608  if (Constant *C = dyn_cast<Constant>(V)) {
1609    // Figure out the # elements this provides, and bitcast it or slice it up
1610    // as required.
1611    unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1612                                        VecEltTy);
1613    // If the constant is the size of a vector element, we just need to bitcast
1614    // it to the right type so it gets properly inserted.
1615    if (NumElts == 1)
1616      return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1617                                      Shift, Elements, VecEltTy, IC);
1618
1619    // Okay, this is a constant that covers multiple elements.  Slice it up into
1620    // pieces and insert each element-sized piece into the vector.
1621    if (!isa<IntegerType>(C->getType()))
1622      C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1623                                       C->getType()->getPrimitiveSizeInBits()));
1624    unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1625    Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1626
1627    for (unsigned i = 0; i != NumElts; ++i) {
1628      unsigned ShiftI = Shift+i*ElementSize;
1629      Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1630                                                                  ShiftI));
1631      Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1632      if (!CollectInsertionElements(Piece, ShiftI, Elements, VecEltTy, IC))
1633        return false;
1634    }
1635    return true;
1636  }
1637
1638  if (!V->hasOneUse()) return false;
1639
1640  Instruction *I = dyn_cast<Instruction>(V);
1641  if (I == 0) return false;
1642  switch (I->getOpcode()) {
1643  default: return false; // Unhandled case.
1644  case Instruction::BitCast:
1645    return CollectInsertionElements(I->getOperand(0), Shift,
1646                                    Elements, VecEltTy, IC);
1647  case Instruction::ZExt:
1648    if (!isMultipleOfTypeSize(
1649                          I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1650                              VecEltTy))
1651      return false;
1652    return CollectInsertionElements(I->getOperand(0), Shift,
1653                                    Elements, VecEltTy, IC);
1654  case Instruction::Or:
1655    return CollectInsertionElements(I->getOperand(0), Shift,
1656                                    Elements, VecEltTy, IC) &&
1657           CollectInsertionElements(I->getOperand(1), Shift,
1658                                    Elements, VecEltTy, IC);
1659  case Instruction::Shl: {
1660    // Must be shifting by a constant that is a multiple of the element size.
1661    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1662    if (CI == 0) return false;
1663    Shift += CI->getZExtValue();
1664    if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1665    return CollectInsertionElements(I->getOperand(0), Shift,
1666                                    Elements, VecEltTy, IC);
1667  }
1668
1669  }
1670}
1671
1672
1673/// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
1674/// may be doing shifts and ors to assemble the elements of the vector manually.
1675/// Try to rip the code out and replace it with insertelements.  This is to
1676/// optimize code like this:
1677///
1678///    %tmp37 = bitcast float %inc to i32
1679///    %tmp38 = zext i32 %tmp37 to i64
1680///    %tmp31 = bitcast float %inc5 to i32
1681///    %tmp32 = zext i32 %tmp31 to i64
1682///    %tmp33 = shl i64 %tmp32, 32
1683///    %ins35 = or i64 %tmp33, %tmp38
1684///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1685///
1686/// Into two insertelements that do "buildvector{%inc, %inc5}".
1687static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
1688                                                InstCombiner &IC) {
1689  // We need to know the target byte order to perform this optimization.
1690  if (!IC.getDataLayout()) return 0;
1691
1692  VectorType *DestVecTy = cast<VectorType>(CI.getType());
1693  Value *IntInput = CI.getOperand(0);
1694
1695  SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1696  if (!CollectInsertionElements(IntInput, 0, Elements,
1697                                DestVecTy->getElementType(), IC))
1698    return 0;
1699
1700  // If we succeeded, we know that all of the element are specified by Elements
1701  // or are zero if Elements has a null entry.  Recast this as a set of
1702  // insertions.
1703  Value *Result = Constant::getNullValue(CI.getType());
1704  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1705    if (Elements[i] == 0) continue;  // Unset element.
1706
1707    Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1708                                             IC.Builder->getInt32(i));
1709  }
1710
1711  return Result;
1712}
1713
1714
1715/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
1716/// bitcast.  The various long double bitcasts can't get in here.
1717static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
1718  // We need to know the target byte order to perform this optimization.
1719  if (!IC.getDataLayout()) return 0;
1720
1721  Value *Src = CI.getOperand(0);
1722  Type *DestTy = CI.getType();
1723
1724  // If this is a bitcast from int to float, check to see if the int is an
1725  // extraction from a vector.
1726  Value *VecInput = 0;
1727  // bitcast(trunc(bitcast(somevector)))
1728  if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1729      isa<VectorType>(VecInput->getType())) {
1730    VectorType *VecTy = cast<VectorType>(VecInput->getType());
1731    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1732
1733    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1734      // If the element type of the vector doesn't match the result type,
1735      // bitcast it to be a vector type we can extract from.
1736      if (VecTy->getElementType() != DestTy) {
1737        VecTy = VectorType::get(DestTy,
1738                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1739        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1740      }
1741
1742      unsigned Elt = 0;
1743      if (IC.getDataLayout()->isBigEndian())
1744        Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1;
1745      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1746    }
1747  }
1748
1749  // bitcast(trunc(lshr(bitcast(somevector), cst))
1750  ConstantInt *ShAmt = 0;
1751  if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1752                                m_ConstantInt(ShAmt)))) &&
1753      isa<VectorType>(VecInput->getType())) {
1754    VectorType *VecTy = cast<VectorType>(VecInput->getType());
1755    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1756    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1757        ShAmt->getZExtValue() % DestWidth == 0) {
1758      // If the element type of the vector doesn't match the result type,
1759      // bitcast it to be a vector type we can extract from.
1760      if (VecTy->getElementType() != DestTy) {
1761        VecTy = VectorType::get(DestTy,
1762                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1763        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1764      }
1765
1766      unsigned Elt = ShAmt->getZExtValue() / DestWidth;
1767      if (IC.getDataLayout()->isBigEndian())
1768        Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1 - Elt;
1769      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1770    }
1771  }
1772  return 0;
1773}
1774
1775Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1776  // If the operands are integer typed then apply the integer transforms,
1777  // otherwise just apply the common ones.
1778  Value *Src = CI.getOperand(0);
1779  Type *SrcTy = Src->getType();
1780  Type *DestTy = CI.getType();
1781
1782  // Get rid of casts from one type to the same type. These are useless and can
1783  // be replaced by the operand.
1784  if (DestTy == Src->getType())
1785    return ReplaceInstUsesWith(CI, Src);
1786
1787  if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1788    PointerType *SrcPTy = cast<PointerType>(SrcTy);
1789    Type *DstElTy = DstPTy->getElementType();
1790    Type *SrcElTy = SrcPTy->getElementType();
1791
1792    // If we are casting a alloca to a pointer to a type of the same
1793    // size, rewrite the allocation instruction to allocate the "right" type.
1794    // There is no need to modify malloc calls because it is their bitcast that
1795    // needs to be cleaned up.
1796    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1797      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1798        return V;
1799
1800    // If the source and destination are pointers, and this cast is equivalent
1801    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
1802    // This can enhance SROA and other transforms that want type-safe pointers.
1803    Constant *ZeroUInt =
1804      Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1805    unsigned NumZeros = 0;
1806    while (SrcElTy != DstElTy &&
1807           isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1808           SrcElTy->getNumContainedTypes() /* not "{}" */) {
1809      SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1810      ++NumZeros;
1811    }
1812
1813    // If we found a path from the src to dest, create the getelementptr now.
1814    if (SrcElTy == DstElTy) {
1815      SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1816      return GetElementPtrInst::CreateInBounds(Src, Idxs);
1817    }
1818  }
1819
1820  // Try to optimize int -> float bitcasts.
1821  if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1822    if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
1823      return I;
1824
1825  if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1826    if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1827      Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1828      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1829                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1830      // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1831    }
1832
1833    if (isa<IntegerType>(SrcTy)) {
1834      // If this is a cast from an integer to vector, check to see if the input
1835      // is a trunc or zext of a bitcast from vector.  If so, we can replace all
1836      // the casts with a shuffle and (potentially) a bitcast.
1837      if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1838        CastInst *SrcCast = cast<CastInst>(Src);
1839        if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1840          if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1841            if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
1842                                               cast<VectorType>(DestTy), *this))
1843              return I;
1844      }
1845
1846      // If the input is an 'or' instruction, we may be doing shifts and ors to
1847      // assemble the elements of the vector manually.  Try to rip the code out
1848      // and replace it with insertelements.
1849      if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
1850        return ReplaceInstUsesWith(CI, V);
1851    }
1852  }
1853
1854  if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1855    if (SrcVTy->getNumElements() == 1) {
1856      // If our destination is not a vector, then make this a straight
1857      // scalar-scalar cast.
1858      if (!DestTy->isVectorTy()) {
1859        Value *Elem =
1860          Builder->CreateExtractElement(Src,
1861                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1862        return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1863      }
1864
1865      // Otherwise, see if our source is an insert. If so, then use the scalar
1866      // component directly.
1867      if (InsertElementInst *IEI =
1868            dyn_cast<InsertElementInst>(CI.getOperand(0)))
1869        return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
1870                                DestTy);
1871    }
1872  }
1873
1874  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1875    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
1876    // a bitcast to a vector with the same # elts.
1877    if (SVI->hasOneUse() && DestTy->isVectorTy() &&
1878        DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
1879        SVI->getType()->getNumElements() ==
1880        SVI->getOperand(0)->getType()->getVectorNumElements()) {
1881      BitCastInst *Tmp;
1882      // If either of the operands is a cast from CI.getType(), then
1883      // evaluating the shuffle in the casted destination's type will allow
1884      // us to eliminate at least one cast.
1885      if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1886           Tmp->getOperand(0)->getType() == DestTy) ||
1887          ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1888           Tmp->getOperand(0)->getType() == DestTy)) {
1889        Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1890        Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1891        // Return a new shuffle vector.  Use the same element ID's, as we
1892        // know the vector types match #elts.
1893        return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1894      }
1895    }
1896  }
1897
1898  if (SrcTy->isPointerTy())
1899    return commonPointerCastTransforms(CI);
1900  return commonCastTransforms(CI);
1901}
1902
1903Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
1904  return commonPointerCastTransforms(CI);
1905}
1906