InstCombineLoadStoreAlloca.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for load, store and alloca.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/ADT/Statistic.h"
16#include "llvm/Analysis/Loads.h"
17#include "llvm/IR/DataLayout.h"
18#include "llvm/IR/IntrinsicInst.h"
19#include "llvm/Transforms/Utils/BasicBlockUtils.h"
20#include "llvm/Transforms/Utils/Local.h"
21using namespace llvm;
22
23STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
24STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
25
26/// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
27/// some part of a constant global variable.  This intentionally only accepts
28/// constant expressions because we can't rewrite arbitrary instructions.
29static bool pointsToConstantGlobal(Value *V) {
30  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
31    return GV->isConstant();
32  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
33    if (CE->getOpcode() == Instruction::BitCast ||
34        CE->getOpcode() == Instruction::GetElementPtr)
35      return pointsToConstantGlobal(CE->getOperand(0));
36  return false;
37}
38
39/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
40/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
41/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
42/// track of whether it moves the pointer (with IsOffset) but otherwise traverse
43/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
44/// the alloca, and if the source pointer is a pointer to a constant global, we
45/// can optimize this.
46static bool
47isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
48                               SmallVectorImpl<Instruction *> &ToDelete,
49                               bool IsOffset = false) {
50  // We track lifetime intrinsics as we encounter them.  If we decide to go
51  // ahead and replace the value with the global, this lets the caller quickly
52  // eliminate the markers.
53
54  for (Use &U : V->uses()) {
55    Instruction *I = cast<Instruction>(U.getUser());
56
57    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
58      // Ignore non-volatile loads, they are always ok.
59      if (!LI->isSimple()) return false;
60      continue;
61    }
62
63    if (BitCastInst *BCI = dyn_cast<BitCastInst>(I)) {
64      // If uses of the bitcast are ok, we are ok.
65      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, ToDelete, IsOffset))
66        return false;
67      continue;
68    }
69    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
70      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
71      // doesn't, it does.
72      if (!isOnlyCopiedFromConstantGlobal(
73              GEP, TheCopy, ToDelete, IsOffset || !GEP->hasAllZeroIndices()))
74        return false;
75      continue;
76    }
77
78    if (CallSite CS = I) {
79      // If this is the function being called then we treat it like a load and
80      // ignore it.
81      if (CS.isCallee(&U))
82        continue;
83
84      // Inalloca arguments are clobbered by the call.
85      unsigned ArgNo = CS.getArgumentNo(&U);
86      if (CS.isInAllocaArgument(ArgNo))
87        return false;
88
89      // If this is a readonly/readnone call site, then we know it is just a
90      // load (but one that potentially returns the value itself), so we can
91      // ignore it if we know that the value isn't captured.
92      if (CS.onlyReadsMemory() &&
93          (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
94        continue;
95
96      // If this is being passed as a byval argument, the caller is making a
97      // copy, so it is only a read of the alloca.
98      if (CS.isByValArgument(ArgNo))
99        continue;
100    }
101
102    // Lifetime intrinsics can be handled by the caller.
103    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
104      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
105          II->getIntrinsicID() == Intrinsic::lifetime_end) {
106        assert(II->use_empty() && "Lifetime markers have no result to use!");
107        ToDelete.push_back(II);
108        continue;
109      }
110    }
111
112    // If this is isn't our memcpy/memmove, reject it as something we can't
113    // handle.
114    MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
115    if (MI == 0)
116      return false;
117
118    // If the transfer is using the alloca as a source of the transfer, then
119    // ignore it since it is a load (unless the transfer is volatile).
120    if (U.getOperandNo() == 1) {
121      if (MI->isVolatile()) return false;
122      continue;
123    }
124
125    // If we already have seen a copy, reject the second one.
126    if (TheCopy) return false;
127
128    // If the pointer has been offset from the start of the alloca, we can't
129    // safely handle this.
130    if (IsOffset) return false;
131
132    // If the memintrinsic isn't using the alloca as the dest, reject it.
133    if (U.getOperandNo() != 0) return false;
134
135    // If the source of the memcpy/move is not a constant global, reject it.
136    if (!pointsToConstantGlobal(MI->getSource()))
137      return false;
138
139    // Otherwise, the transform is safe.  Remember the copy instruction.
140    TheCopy = MI;
141  }
142  return true;
143}
144
145/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
146/// modified by a copy from a constant global.  If we can prove this, we can
147/// replace any uses of the alloca with uses of the global directly.
148static MemTransferInst *
149isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
150                               SmallVectorImpl<Instruction *> &ToDelete) {
151  MemTransferInst *TheCopy = 0;
152  if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
153    return TheCopy;
154  return 0;
155}
156
157Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
158  // Ensure that the alloca array size argument has type intptr_t, so that
159  // any casting is exposed early.
160  if (DL) {
161    Type *IntPtrTy = DL->getIntPtrType(AI.getType());
162    if (AI.getArraySize()->getType() != IntPtrTy) {
163      Value *V = Builder->CreateIntCast(AI.getArraySize(),
164                                        IntPtrTy, false);
165      AI.setOperand(0, V);
166      return &AI;
167    }
168  }
169
170  // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
171  if (AI.isArrayAllocation()) {  // Check C != 1
172    if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
173      Type *NewTy =
174        ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
175      AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
176      New->setAlignment(AI.getAlignment());
177
178      // Scan to the end of the allocation instructions, to skip over a block of
179      // allocas if possible...also skip interleaved debug info
180      //
181      BasicBlock::iterator It = New;
182      while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
183
184      // Now that I is pointing to the first non-allocation-inst in the block,
185      // insert our getelementptr instruction...
186      //
187      Type *IdxTy = DL
188                  ? DL->getIntPtrType(AI.getType())
189                  : Type::getInt64Ty(AI.getContext());
190      Value *NullIdx = Constant::getNullValue(IdxTy);
191      Value *Idx[2] = { NullIdx, NullIdx };
192      Instruction *GEP =
193        GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
194      InsertNewInstBefore(GEP, *It);
195
196      // Now make everything use the getelementptr instead of the original
197      // allocation.
198      return ReplaceInstUsesWith(AI, GEP);
199    } else if (isa<UndefValue>(AI.getArraySize())) {
200      return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
201    }
202  }
203
204  if (DL && AI.getAllocatedType()->isSized()) {
205    // If the alignment is 0 (unspecified), assign it the preferred alignment.
206    if (AI.getAlignment() == 0)
207      AI.setAlignment(DL->getPrefTypeAlignment(AI.getAllocatedType()));
208
209    // Move all alloca's of zero byte objects to the entry block and merge them
210    // together.  Note that we only do this for alloca's, because malloc should
211    // allocate and return a unique pointer, even for a zero byte allocation.
212    if (DL->getTypeAllocSize(AI.getAllocatedType()) == 0) {
213      // For a zero sized alloca there is no point in doing an array allocation.
214      // This is helpful if the array size is a complicated expression not used
215      // elsewhere.
216      if (AI.isArrayAllocation()) {
217        AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
218        return &AI;
219      }
220
221      // Get the first instruction in the entry block.
222      BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
223      Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
224      if (FirstInst != &AI) {
225        // If the entry block doesn't start with a zero-size alloca then move
226        // this one to the start of the entry block.  There is no problem with
227        // dominance as the array size was forced to a constant earlier already.
228        AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
229        if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
230            DL->getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
231          AI.moveBefore(FirstInst);
232          return &AI;
233        }
234
235        // If the alignment of the entry block alloca is 0 (unspecified),
236        // assign it the preferred alignment.
237        if (EntryAI->getAlignment() == 0)
238          EntryAI->setAlignment(
239            DL->getPrefTypeAlignment(EntryAI->getAllocatedType()));
240        // Replace this zero-sized alloca with the one at the start of the entry
241        // block after ensuring that the address will be aligned enough for both
242        // types.
243        unsigned MaxAlign = std::max(EntryAI->getAlignment(),
244                                     AI.getAlignment());
245        EntryAI->setAlignment(MaxAlign);
246        if (AI.getType() != EntryAI->getType())
247          return new BitCastInst(EntryAI, AI.getType());
248        return ReplaceInstUsesWith(AI, EntryAI);
249      }
250    }
251  }
252
253  if (AI.getAlignment()) {
254    // Check to see if this allocation is only modified by a memcpy/memmove from
255    // a constant global whose alignment is equal to or exceeds that of the
256    // allocation.  If this is the case, we can change all users to use
257    // the constant global instead.  This is commonly produced by the CFE by
258    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
259    // is only subsequently read.
260    SmallVector<Instruction *, 4> ToDelete;
261    if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
262      unsigned SourceAlign = getOrEnforceKnownAlignment(Copy->getSource(),
263                                                        AI.getAlignment(), DL);
264      if (AI.getAlignment() <= SourceAlign) {
265        DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
266        DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
267        for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
268          EraseInstFromFunction(*ToDelete[i]);
269        Constant *TheSrc = cast<Constant>(Copy->getSource());
270        Constant *Cast
271          = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType());
272        Instruction *NewI = ReplaceInstUsesWith(AI, Cast);
273        EraseInstFromFunction(*Copy);
274        ++NumGlobalCopies;
275        return NewI;
276      }
277    }
278  }
279
280  // At last, use the generic allocation site handler to aggressively remove
281  // unused allocas.
282  return visitAllocSite(AI);
283}
284
285
286/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
287static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
288                                        const DataLayout *DL) {
289  User *CI = cast<User>(LI.getOperand(0));
290  Value *CastOp = CI->getOperand(0);
291
292  PointerType *DestTy = cast<PointerType>(CI->getType());
293  Type *DestPTy = DestTy->getElementType();
294  if (PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
295
296    // If the address spaces don't match, don't eliminate the cast.
297    if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
298      return 0;
299
300    Type *SrcPTy = SrcTy->getElementType();
301
302    if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() ||
303         DestPTy->isVectorTy()) {
304      // If the source is an array, the code below will not succeed.  Check to
305      // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
306      // constants.
307      if (ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
308        if (Constant *CSrc = dyn_cast<Constant>(CastOp))
309          if (ASrcTy->getNumElements() != 0) {
310            Type *IdxTy = DL
311                        ? DL->getIntPtrType(SrcTy)
312                        : Type::getInt64Ty(SrcTy->getContext());
313            Value *Idx = Constant::getNullValue(IdxTy);
314            Value *Idxs[2] = { Idx, Idx };
315            CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
316            SrcTy = cast<PointerType>(CastOp->getType());
317            SrcPTy = SrcTy->getElementType();
318          }
319
320      if (IC.getDataLayout() &&
321          (SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() ||
322            SrcPTy->isVectorTy()) &&
323          // Do not allow turning this into a load of an integer, which is then
324          // casted to a pointer, this pessimizes pointer analysis a lot.
325          (SrcPTy->isPtrOrPtrVectorTy() ==
326           LI.getType()->isPtrOrPtrVectorTy()) &&
327          IC.getDataLayout()->getTypeSizeInBits(SrcPTy) ==
328               IC.getDataLayout()->getTypeSizeInBits(DestPTy)) {
329
330        // Okay, we are casting from one integer or pointer type to another of
331        // the same size.  Instead of casting the pointer before the load, cast
332        // the result of the loaded value.
333        LoadInst *NewLoad =
334          IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
335        NewLoad->setAlignment(LI.getAlignment());
336        NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
337        // Now cast the result of the load.
338        PointerType *OldTy = dyn_cast<PointerType>(NewLoad->getType());
339        PointerType *NewTy = dyn_cast<PointerType>(LI.getType());
340        if (OldTy && NewTy &&
341            OldTy->getAddressSpace() != NewTy->getAddressSpace()) {
342          return new AddrSpaceCastInst(NewLoad, LI.getType());
343        }
344
345        return new BitCastInst(NewLoad, LI.getType());
346      }
347    }
348  }
349  return 0;
350}
351
352Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
353  Value *Op = LI.getOperand(0);
354
355  // Attempt to improve the alignment.
356  if (DL) {
357    unsigned KnownAlign =
358      getOrEnforceKnownAlignment(Op, DL->getPrefTypeAlignment(LI.getType()),DL);
359    unsigned LoadAlign = LI.getAlignment();
360    unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign :
361      DL->getABITypeAlignment(LI.getType());
362
363    if (KnownAlign > EffectiveLoadAlign)
364      LI.setAlignment(KnownAlign);
365    else if (LoadAlign == 0)
366      LI.setAlignment(EffectiveLoadAlign);
367  }
368
369  // load (cast X) --> cast (load X) iff safe.
370  if (isa<CastInst>(Op))
371    if (Instruction *Res = InstCombineLoadCast(*this, LI, DL))
372      return Res;
373
374  // None of the following transforms are legal for volatile/atomic loads.
375  // FIXME: Some of it is okay for atomic loads; needs refactoring.
376  if (!LI.isSimple()) return 0;
377
378  // Do really simple store-to-load forwarding and load CSE, to catch cases
379  // where there are several consecutive memory accesses to the same location,
380  // separated by a few arithmetic operations.
381  BasicBlock::iterator BBI = &LI;
382  if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
383    return ReplaceInstUsesWith(LI, AvailableVal);
384
385  // load(gep null, ...) -> unreachable
386  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
387    const Value *GEPI0 = GEPI->getOperand(0);
388    // TODO: Consider a target hook for valid address spaces for this xform.
389    if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
390      // Insert a new store to null instruction before the load to indicate
391      // that this code is not reachable.  We do this instead of inserting
392      // an unreachable instruction directly because we cannot modify the
393      // CFG.
394      new StoreInst(UndefValue::get(LI.getType()),
395                    Constant::getNullValue(Op->getType()), &LI);
396      return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
397    }
398  }
399
400  // load null/undef -> unreachable
401  // TODO: Consider a target hook for valid address spaces for this xform.
402  if (isa<UndefValue>(Op) ||
403      (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
404    // Insert a new store to null instruction before the load to indicate that
405    // this code is not reachable.  We do this instead of inserting an
406    // unreachable instruction directly because we cannot modify the CFG.
407    new StoreInst(UndefValue::get(LI.getType()),
408                  Constant::getNullValue(Op->getType()), &LI);
409    return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
410  }
411
412  // Instcombine load (constantexpr_cast global) -> cast (load global)
413  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
414    if (CE->isCast())
415      if (Instruction *Res = InstCombineLoadCast(*this, LI, DL))
416        return Res;
417
418  if (Op->hasOneUse()) {
419    // Change select and PHI nodes to select values instead of addresses: this
420    // helps alias analysis out a lot, allows many others simplifications, and
421    // exposes redundancy in the code.
422    //
423    // Note that we cannot do the transformation unless we know that the
424    // introduced loads cannot trap!  Something like this is valid as long as
425    // the condition is always false: load (select bool %C, int* null, int* %G),
426    // but it would not be valid if we transformed it to load from null
427    // unconditionally.
428    //
429    if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
430      // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
431      unsigned Align = LI.getAlignment();
432      if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, DL) &&
433          isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, DL)) {
434        LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
435                                           SI->getOperand(1)->getName()+".val");
436        LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
437                                           SI->getOperand(2)->getName()+".val");
438        V1->setAlignment(Align);
439        V2->setAlignment(Align);
440        return SelectInst::Create(SI->getCondition(), V1, V2);
441      }
442
443      // load (select (cond, null, P)) -> load P
444      if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
445        if (C->isNullValue()) {
446          LI.setOperand(0, SI->getOperand(2));
447          return &LI;
448        }
449
450      // load (select (cond, P, null)) -> load P
451      if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
452        if (C->isNullValue()) {
453          LI.setOperand(0, SI->getOperand(1));
454          return &LI;
455        }
456    }
457  }
458  return 0;
459}
460
461/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
462/// when possible.  This makes it generally easy to do alias analysis and/or
463/// SROA/mem2reg of the memory object.
464static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
465  User *CI = cast<User>(SI.getOperand(1));
466  Value *CastOp = CI->getOperand(0);
467
468  Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
469  PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
470  if (SrcTy == 0) return 0;
471
472  Type *SrcPTy = SrcTy->getElementType();
473
474  if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy())
475    return 0;
476
477  /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
478  /// to its first element.  This allows us to handle things like:
479  ///   store i32 xxx, (bitcast {foo*, float}* %P to i32*)
480  /// on 32-bit hosts.
481  SmallVector<Value*, 4> NewGEPIndices;
482
483  // If the source is an array, the code below will not succeed.  Check to
484  // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
485  // constants.
486  if (SrcPTy->isArrayTy() || SrcPTy->isStructTy()) {
487    // Index through pointer.
488    Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
489    NewGEPIndices.push_back(Zero);
490
491    while (1) {
492      if (StructType *STy = dyn_cast<StructType>(SrcPTy)) {
493        if (!STy->getNumElements()) /* Struct can be empty {} */
494          break;
495        NewGEPIndices.push_back(Zero);
496        SrcPTy = STy->getElementType(0);
497      } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
498        NewGEPIndices.push_back(Zero);
499        SrcPTy = ATy->getElementType();
500      } else {
501        break;
502      }
503    }
504
505    SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
506  }
507
508  if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy())
509    return 0;
510
511  // If the pointers point into different address spaces don't do the
512  // transformation.
513  if (SrcTy->getAddressSpace() !=
514      cast<PointerType>(CI->getType())->getAddressSpace())
515    return 0;
516
517  // If the pointers point to values of different sizes don't do the
518  // transformation.
519  if (!IC.getDataLayout() ||
520      IC.getDataLayout()->getTypeSizeInBits(SrcPTy) !=
521      IC.getDataLayout()->getTypeSizeInBits(DestPTy))
522    return 0;
523
524  // If the pointers point to pointers to different address spaces don't do the
525  // transformation. It is not safe to introduce an addrspacecast instruction in
526  // this case since, depending on the target, addrspacecast may not be a no-op
527  // cast.
528  if (SrcPTy->isPointerTy() && DestPTy->isPointerTy() &&
529      SrcPTy->getPointerAddressSpace() != DestPTy->getPointerAddressSpace())
530    return 0;
531
532  // Okay, we are casting from one integer or pointer type to another of
533  // the same size.  Instead of casting the pointer before
534  // the store, cast the value to be stored.
535  Value *NewCast;
536  Instruction::CastOps opcode = Instruction::BitCast;
537  Type* CastSrcTy = DestPTy;
538  Type* CastDstTy = SrcPTy;
539  if (CastDstTy->isPointerTy()) {
540    if (CastSrcTy->isIntegerTy())
541      opcode = Instruction::IntToPtr;
542  } else if (CastDstTy->isIntegerTy()) {
543    if (CastSrcTy->isPointerTy())
544      opcode = Instruction::PtrToInt;
545  }
546
547  // SIOp0 is a pointer to aggregate and this is a store to the first field,
548  // emit a GEP to index into its first field.
549  if (!NewGEPIndices.empty())
550    CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices);
551
552  Value *SIOp0 = SI.getOperand(0);
553  NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
554                                   SIOp0->getName()+".c");
555  SI.setOperand(0, NewCast);
556  SI.setOperand(1, CastOp);
557  return &SI;
558}
559
560/// equivalentAddressValues - Test if A and B will obviously have the same
561/// value. This includes recognizing that %t0 and %t1 will have the same
562/// value in code like this:
563///   %t0 = getelementptr \@a, 0, 3
564///   store i32 0, i32* %t0
565///   %t1 = getelementptr \@a, 0, 3
566///   %t2 = load i32* %t1
567///
568static bool equivalentAddressValues(Value *A, Value *B) {
569  // Test if the values are trivially equivalent.
570  if (A == B) return true;
571
572  // Test if the values come form identical arithmetic instructions.
573  // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
574  // its only used to compare two uses within the same basic block, which
575  // means that they'll always either have the same value or one of them
576  // will have an undefined value.
577  if (isa<BinaryOperator>(A) ||
578      isa<CastInst>(A) ||
579      isa<PHINode>(A) ||
580      isa<GetElementPtrInst>(A))
581    if (Instruction *BI = dyn_cast<Instruction>(B))
582      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
583        return true;
584
585  // Otherwise they may not be equivalent.
586  return false;
587}
588
589Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
590  Value *Val = SI.getOperand(0);
591  Value *Ptr = SI.getOperand(1);
592
593  // Attempt to improve the alignment.
594  if (DL) {
595    unsigned KnownAlign =
596      getOrEnforceKnownAlignment(Ptr, DL->getPrefTypeAlignment(Val->getType()),
597                                 DL);
598    unsigned StoreAlign = SI.getAlignment();
599    unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign :
600      DL->getABITypeAlignment(Val->getType());
601
602    if (KnownAlign > EffectiveStoreAlign)
603      SI.setAlignment(KnownAlign);
604    else if (StoreAlign == 0)
605      SI.setAlignment(EffectiveStoreAlign);
606  }
607
608  // Don't hack volatile/atomic stores.
609  // FIXME: Some bits are legal for atomic stores; needs refactoring.
610  if (!SI.isSimple()) return 0;
611
612  // If the RHS is an alloca with a single use, zapify the store, making the
613  // alloca dead.
614  if (Ptr->hasOneUse()) {
615    if (isa<AllocaInst>(Ptr))
616      return EraseInstFromFunction(SI);
617    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
618      if (isa<AllocaInst>(GEP->getOperand(0))) {
619        if (GEP->getOperand(0)->hasOneUse())
620          return EraseInstFromFunction(SI);
621      }
622    }
623  }
624
625  // Do really simple DSE, to catch cases where there are several consecutive
626  // stores to the same location, separated by a few arithmetic operations. This
627  // situation often occurs with bitfield accesses.
628  BasicBlock::iterator BBI = &SI;
629  for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
630       --ScanInsts) {
631    --BBI;
632    // Don't count debug info directives, lest they affect codegen,
633    // and we skip pointer-to-pointer bitcasts, which are NOPs.
634    if (isa<DbgInfoIntrinsic>(BBI) ||
635        (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
636      ScanInsts++;
637      continue;
638    }
639
640    if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
641      // Prev store isn't volatile, and stores to the same location?
642      if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1),
643                                                        SI.getOperand(1))) {
644        ++NumDeadStore;
645        ++BBI;
646        EraseInstFromFunction(*PrevSI);
647        continue;
648      }
649      break;
650    }
651
652    // If this is a load, we have to stop.  However, if the loaded value is from
653    // the pointer we're loading and is producing the pointer we're storing,
654    // then *this* store is dead (X = load P; store X -> P).
655    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
656      if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
657          LI->isSimple())
658        return EraseInstFromFunction(SI);
659
660      // Otherwise, this is a load from some other location.  Stores before it
661      // may not be dead.
662      break;
663    }
664
665    // Don't skip over loads or things that can modify memory.
666    if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
667      break;
668  }
669
670  // store X, null    -> turns into 'unreachable' in SimplifyCFG
671  if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
672    if (!isa<UndefValue>(Val)) {
673      SI.setOperand(0, UndefValue::get(Val->getType()));
674      if (Instruction *U = dyn_cast<Instruction>(Val))
675        Worklist.Add(U);  // Dropped a use.
676    }
677    return 0;  // Do not modify these!
678  }
679
680  // store undef, Ptr -> noop
681  if (isa<UndefValue>(Val))
682    return EraseInstFromFunction(SI);
683
684  // If the pointer destination is a cast, see if we can fold the cast into the
685  // source instead.
686  if (isa<CastInst>(Ptr))
687    if (Instruction *Res = InstCombineStoreToCast(*this, SI))
688      return Res;
689  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
690    if (CE->isCast())
691      if (Instruction *Res = InstCombineStoreToCast(*this, SI))
692        return Res;
693
694
695  // If this store is the last instruction in the basic block (possibly
696  // excepting debug info instructions), and if the block ends with an
697  // unconditional branch, try to move it to the successor block.
698  BBI = &SI;
699  do {
700    ++BBI;
701  } while (isa<DbgInfoIntrinsic>(BBI) ||
702           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
703  if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
704    if (BI->isUnconditional())
705      if (SimplifyStoreAtEndOfBlock(SI))
706        return 0;  // xform done!
707
708  return 0;
709}
710
711/// SimplifyStoreAtEndOfBlock - Turn things like:
712///   if () { *P = v1; } else { *P = v2 }
713/// into a phi node with a store in the successor.
714///
715/// Simplify things like:
716///   *P = v1; if () { *P = v2; }
717/// into a phi node with a store in the successor.
718///
719bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
720  BasicBlock *StoreBB = SI.getParent();
721
722  // Check to see if the successor block has exactly two incoming edges.  If
723  // so, see if the other predecessor contains a store to the same location.
724  // if so, insert a PHI node (if needed) and move the stores down.
725  BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
726
727  // Determine whether Dest has exactly two predecessors and, if so, compute
728  // the other predecessor.
729  pred_iterator PI = pred_begin(DestBB);
730  BasicBlock *P = *PI;
731  BasicBlock *OtherBB = 0;
732
733  if (P != StoreBB)
734    OtherBB = P;
735
736  if (++PI == pred_end(DestBB))
737    return false;
738
739  P = *PI;
740  if (P != StoreBB) {
741    if (OtherBB)
742      return false;
743    OtherBB = P;
744  }
745  if (++PI != pred_end(DestBB))
746    return false;
747
748  // Bail out if all the relevant blocks aren't distinct (this can happen,
749  // for example, if SI is in an infinite loop)
750  if (StoreBB == DestBB || OtherBB == DestBB)
751    return false;
752
753  // Verify that the other block ends in a branch and is not otherwise empty.
754  BasicBlock::iterator BBI = OtherBB->getTerminator();
755  BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
756  if (!OtherBr || BBI == OtherBB->begin())
757    return false;
758
759  // If the other block ends in an unconditional branch, check for the 'if then
760  // else' case.  there is an instruction before the branch.
761  StoreInst *OtherStore = 0;
762  if (OtherBr->isUnconditional()) {
763    --BBI;
764    // Skip over debugging info.
765    while (isa<DbgInfoIntrinsic>(BBI) ||
766           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
767      if (BBI==OtherBB->begin())
768        return false;
769      --BBI;
770    }
771    // If this isn't a store, isn't a store to the same location, or is not the
772    // right kind of store, bail out.
773    OtherStore = dyn_cast<StoreInst>(BBI);
774    if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
775        !SI.isSameOperationAs(OtherStore))
776      return false;
777  } else {
778    // Otherwise, the other block ended with a conditional branch. If one of the
779    // destinations is StoreBB, then we have the if/then case.
780    if (OtherBr->getSuccessor(0) != StoreBB &&
781        OtherBr->getSuccessor(1) != StoreBB)
782      return false;
783
784    // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
785    // if/then triangle.  See if there is a store to the same ptr as SI that
786    // lives in OtherBB.
787    for (;; --BBI) {
788      // Check to see if we find the matching store.
789      if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
790        if (OtherStore->getOperand(1) != SI.getOperand(1) ||
791            !SI.isSameOperationAs(OtherStore))
792          return false;
793        break;
794      }
795      // If we find something that may be using or overwriting the stored
796      // value, or if we run out of instructions, we can't do the xform.
797      if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
798          BBI == OtherBB->begin())
799        return false;
800    }
801
802    // In order to eliminate the store in OtherBr, we have to
803    // make sure nothing reads or overwrites the stored value in
804    // StoreBB.
805    for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
806      // FIXME: This should really be AA driven.
807      if (I->mayReadFromMemory() || I->mayWriteToMemory())
808        return false;
809    }
810  }
811
812  // Insert a PHI node now if we need it.
813  Value *MergedVal = OtherStore->getOperand(0);
814  if (MergedVal != SI.getOperand(0)) {
815    PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
816    PN->addIncoming(SI.getOperand(0), SI.getParent());
817    PN->addIncoming(OtherStore->getOperand(0), OtherBB);
818    MergedVal = InsertNewInstBefore(PN, DestBB->front());
819  }
820
821  // Advance to a place where it is safe to insert the new store and
822  // insert it.
823  BBI = DestBB->getFirstInsertionPt();
824  StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
825                                   SI.isVolatile(),
826                                   SI.getAlignment(),
827                                   SI.getOrdering(),
828                                   SI.getSynchScope());
829  InsertNewInstBefore(NewSI, *BBI);
830  NewSI->setDebugLoc(OtherStore->getDebugLoc());
831
832  // If the two stores had the same TBAA tag, preserve it.
833  if (MDNode *TBAATag = SI.getMetadata(LLVMContext::MD_tbaa))
834    if ((TBAATag = MDNode::getMostGenericTBAA(TBAATag,
835                               OtherStore->getMetadata(LLVMContext::MD_tbaa))))
836      NewSI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
837
838
839  // Nuke the old stores.
840  EraseInstFromFunction(SI);
841  EraseInstFromFunction(*OtherStore);
842  return true;
843}
844