InstCombineMulDivRem.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- InstCombineMulDivRem.cpp -------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11// srem, urem, frem.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstCombine.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/IR/IntrinsicInst.h"
18#include "llvm/IR/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22
23/// simplifyValueKnownNonZero - The specific integer value is used in a context
24/// where it is known to be non-zero.  If this allows us to simplify the
25/// computation, do so and return the new operand, otherwise return null.
26static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
27  // If V has multiple uses, then we would have to do more analysis to determine
28  // if this is safe.  For example, the use could be in dynamically unreached
29  // code.
30  if (!V->hasOneUse()) return 0;
31
32  bool MadeChange = false;
33
34  // ((1 << A) >>u B) --> (1 << (A-B))
35  // Because V cannot be zero, we know that B is less than A.
36  Value *A = 0, *B = 0, *PowerOf2 = 0;
37  if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
38                      m_Value(B))) &&
39      // The "1" can be any value known to be a power of 2.
40      isKnownToBeAPowerOfTwo(PowerOf2)) {
41    A = IC.Builder->CreateSub(A, B);
42    return IC.Builder->CreateShl(PowerOf2, A);
43  }
44
45  // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
46  // inexact.  Similarly for <<.
47  if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
48    if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) {
49      // We know that this is an exact/nuw shift and that the input is a
50      // non-zero context as well.
51      if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
52        I->setOperand(0, V2);
53        MadeChange = true;
54      }
55
56      if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
57        I->setIsExact();
58        MadeChange = true;
59      }
60
61      if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
62        I->setHasNoUnsignedWrap();
63        MadeChange = true;
64      }
65    }
66
67  // TODO: Lots more we could do here:
68  //    If V is a phi node, we can call this on each of its operands.
69  //    "select cond, X, 0" can simplify to "X".
70
71  return MadeChange ? V : 0;
72}
73
74
75/// MultiplyOverflows - True if the multiply can not be expressed in an int
76/// this size.
77static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
78  uint32_t W = C1->getBitWidth();
79  APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
80  if (sign) {
81    LHSExt = LHSExt.sext(W * 2);
82    RHSExt = RHSExt.sext(W * 2);
83  } else {
84    LHSExt = LHSExt.zext(W * 2);
85    RHSExt = RHSExt.zext(W * 2);
86  }
87
88  APInt MulExt = LHSExt * RHSExt;
89
90  if (!sign)
91    return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
92
93  APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
94  APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
95  return MulExt.slt(Min) || MulExt.sgt(Max);
96}
97
98/// \brief A helper routine of InstCombiner::visitMul().
99///
100/// If C is a vector of known powers of 2, then this function returns
101/// a new vector obtained from C replacing each element with its logBase2.
102/// Return a null pointer otherwise.
103static Constant *getLogBase2Vector(ConstantDataVector *CV) {
104  const APInt *IVal;
105  SmallVector<Constant *, 4> Elts;
106
107  for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
108    Constant *Elt = CV->getElementAsConstant(I);
109    if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
110      return 0;
111    Elts.push_back(ConstantInt::get(Elt->getType(), IVal->logBase2()));
112  }
113
114  return ConstantVector::get(Elts);
115}
116
117Instruction *InstCombiner::visitMul(BinaryOperator &I) {
118  bool Changed = SimplifyAssociativeOrCommutative(I);
119  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
120
121  if (Value *V = SimplifyMulInst(Op0, Op1, DL))
122    return ReplaceInstUsesWith(I, V);
123
124  if (Value *V = SimplifyUsingDistributiveLaws(I))
125    return ReplaceInstUsesWith(I, V);
126
127  if (match(Op1, m_AllOnes()))  // X * -1 == 0 - X
128    return BinaryOperator::CreateNeg(Op0, I.getName());
129
130  // Also allow combining multiply instructions on vectors.
131  {
132    Value *NewOp;
133    Constant *C1, *C2;
134    const APInt *IVal;
135    if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
136                        m_Constant(C1))) &&
137        match(C1, m_APInt(IVal)))
138      // ((X << C1)*C2) == (X * (C2 << C1))
139      return BinaryOperator::CreateMul(NewOp, ConstantExpr::getShl(C1, C2));
140
141    if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
142      Constant *NewCst = 0;
143      if (match(C1, m_APInt(IVal)) && IVal->isPowerOf2())
144        // Replace X*(2^C) with X << C, where C is either a scalar or a splat.
145        NewCst = ConstantInt::get(NewOp->getType(), IVal->logBase2());
146      else if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(C1))
147        // Replace X*(2^C) with X << C, where C is a vector of known
148        // constant powers of 2.
149        NewCst = getLogBase2Vector(CV);
150
151      if (NewCst) {
152        BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
153        if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
154        if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
155        return Shl;
156      }
157    }
158  }
159
160  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
161    // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
162    // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
163    // The "* (2**n)" thus becomes a potential shifting opportunity.
164    {
165      const APInt &   Val = CI->getValue();
166      const APInt &PosVal = Val.abs();
167      if (Val.isNegative() && PosVal.isPowerOf2()) {
168        Value *X = 0, *Y = 0;
169        if (Op0->hasOneUse()) {
170          ConstantInt *C1;
171          Value *Sub = 0;
172          if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
173            Sub = Builder->CreateSub(X, Y, "suba");
174          else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
175            Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
176          if (Sub)
177            return
178              BinaryOperator::CreateMul(Sub,
179                                        ConstantInt::get(Y->getType(), PosVal));
180        }
181      }
182    }
183  }
184
185  // Simplify mul instructions with a constant RHS.
186  if (isa<Constant>(Op1)) {
187    // Try to fold constant mul into select arguments.
188    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
189      if (Instruction *R = FoldOpIntoSelect(I, SI))
190        return R;
191
192    if (isa<PHINode>(Op0))
193      if (Instruction *NV = FoldOpIntoPhi(I))
194        return NV;
195
196    // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
197    {
198      Value *X;
199      Constant *C1;
200      if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
201        Value *Add = Builder->CreateMul(X, Op1);
202        return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, Op1));
203      }
204    }
205  }
206
207  if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
208    if (Value *Op1v = dyn_castNegVal(Op1))
209      return BinaryOperator::CreateMul(Op0v, Op1v);
210
211  // (X / Y) *  Y = X - (X % Y)
212  // (X / Y) * -Y = (X % Y) - X
213  {
214    Value *Op1C = Op1;
215    BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
216    if (!BO ||
217        (BO->getOpcode() != Instruction::UDiv &&
218         BO->getOpcode() != Instruction::SDiv)) {
219      Op1C = Op0;
220      BO = dyn_cast<BinaryOperator>(Op1);
221    }
222    Value *Neg = dyn_castNegVal(Op1C);
223    if (BO && BO->hasOneUse() &&
224        (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
225        (BO->getOpcode() == Instruction::UDiv ||
226         BO->getOpcode() == Instruction::SDiv)) {
227      Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
228
229      // If the division is exact, X % Y is zero, so we end up with X or -X.
230      if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
231        if (SDiv->isExact()) {
232          if (Op1BO == Op1C)
233            return ReplaceInstUsesWith(I, Op0BO);
234          return BinaryOperator::CreateNeg(Op0BO);
235        }
236
237      Value *Rem;
238      if (BO->getOpcode() == Instruction::UDiv)
239        Rem = Builder->CreateURem(Op0BO, Op1BO);
240      else
241        Rem = Builder->CreateSRem(Op0BO, Op1BO);
242      Rem->takeName(BO);
243
244      if (Op1BO == Op1C)
245        return BinaryOperator::CreateSub(Op0BO, Rem);
246      return BinaryOperator::CreateSub(Rem, Op0BO);
247    }
248  }
249
250  /// i1 mul -> i1 and.
251  if (I.getType()->getScalarType()->isIntegerTy(1))
252    return BinaryOperator::CreateAnd(Op0, Op1);
253
254  // X*(1 << Y) --> X << Y
255  // (1 << Y)*X --> X << Y
256  {
257    Value *Y;
258    if (match(Op0, m_Shl(m_One(), m_Value(Y))))
259      return BinaryOperator::CreateShl(Op1, Y);
260    if (match(Op1, m_Shl(m_One(), m_Value(Y))))
261      return BinaryOperator::CreateShl(Op0, Y);
262  }
263
264  // If one of the operands of the multiply is a cast from a boolean value, then
265  // we know the bool is either zero or one, so this is a 'masking' multiply.
266  //   X * Y (where Y is 0 or 1) -> X & (0-Y)
267  if (!I.getType()->isVectorTy()) {
268    // -2 is "-1 << 1" so it is all bits set except the low one.
269    APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
270
271    Value *BoolCast = 0, *OtherOp = 0;
272    if (MaskedValueIsZero(Op0, Negative2))
273      BoolCast = Op0, OtherOp = Op1;
274    else if (MaskedValueIsZero(Op1, Negative2))
275      BoolCast = Op1, OtherOp = Op0;
276
277    if (BoolCast) {
278      Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
279                                    BoolCast);
280      return BinaryOperator::CreateAnd(V, OtherOp);
281    }
282  }
283
284  return Changed ? &I : 0;
285}
286
287//
288// Detect pattern:
289//
290// log2(Y*0.5)
291//
292// And check for corresponding fast math flags
293//
294
295static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
296
297   if (!Op->hasOneUse())
298     return;
299
300   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
301   if (!II)
302     return;
303   if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
304     return;
305   Log2 = II;
306
307   Value *OpLog2Of = II->getArgOperand(0);
308   if (!OpLog2Of->hasOneUse())
309     return;
310
311   Instruction *I = dyn_cast<Instruction>(OpLog2Of);
312   if (!I)
313     return;
314   if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
315     return;
316
317   if (match(I->getOperand(0), m_SpecificFP(0.5)))
318     Y = I->getOperand(1);
319   else if (match(I->getOperand(1), m_SpecificFP(0.5)))
320     Y = I->getOperand(0);
321}
322
323static bool isFiniteNonZeroFp(Constant *C) {
324  if (C->getType()->isVectorTy()) {
325    for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
326         ++I) {
327      ConstantFP *CFP = dyn_cast<ConstantFP>(C->getAggregateElement(I));
328      if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
329        return false;
330    }
331    return true;
332  }
333
334  return isa<ConstantFP>(C) &&
335         cast<ConstantFP>(C)->getValueAPF().isFiniteNonZero();
336}
337
338static bool isNormalFp(Constant *C) {
339  if (C->getType()->isVectorTy()) {
340    for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
341         ++I) {
342      ConstantFP *CFP = dyn_cast<ConstantFP>(C->getAggregateElement(I));
343      if (!CFP || !CFP->getValueAPF().isNormal())
344        return false;
345    }
346    return true;
347  }
348
349  return isa<ConstantFP>(C) && cast<ConstantFP>(C)->getValueAPF().isNormal();
350}
351
352/// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
353/// true iff the given value is FMul or FDiv with one and only one operand
354/// being a normal constant (i.e. not Zero/NaN/Infinity).
355static bool isFMulOrFDivWithConstant(Value *V) {
356  Instruction *I = dyn_cast<Instruction>(V);
357  if (!I || (I->getOpcode() != Instruction::FMul &&
358             I->getOpcode() != Instruction::FDiv))
359    return false;
360
361  Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
362  Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
363
364  if (C0 && C1)
365    return false;
366
367  return (C0 && isFiniteNonZeroFp(C0)) || (C1 && isFiniteNonZeroFp(C1));
368}
369
370/// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
371/// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
372/// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
373/// This function is to simplify "FMulOrDiv * C" and returns the
374/// resulting expression. Note that this function could return NULL in
375/// case the constants cannot be folded into a normal floating-point.
376///
377Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, Constant *C,
378                                   Instruction *InsertBefore) {
379  assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
380
381  Value *Opnd0 = FMulOrDiv->getOperand(0);
382  Value *Opnd1 = FMulOrDiv->getOperand(1);
383
384  Constant *C0 = dyn_cast<Constant>(Opnd0);
385  Constant *C1 = dyn_cast<Constant>(Opnd1);
386
387  BinaryOperator *R = 0;
388
389  // (X * C0) * C => X * (C0*C)
390  if (FMulOrDiv->getOpcode() == Instruction::FMul) {
391    Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
392    if (isNormalFp(F))
393      R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
394  } else {
395    if (C0) {
396      // (C0 / X) * C => (C0 * C) / X
397      if (FMulOrDiv->hasOneUse()) {
398        // It would otherwise introduce another div.
399        Constant *F = ConstantExpr::getFMul(C0, C);
400        if (isNormalFp(F))
401          R = BinaryOperator::CreateFDiv(F, Opnd1);
402      }
403    } else {
404      // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
405      Constant *F = ConstantExpr::getFDiv(C, C1);
406      if (isNormalFp(F)) {
407        R = BinaryOperator::CreateFMul(Opnd0, F);
408      } else {
409        // (X / C1) * C => X / (C1/C)
410        Constant *F = ConstantExpr::getFDiv(C1, C);
411        if (isNormalFp(F))
412          R = BinaryOperator::CreateFDiv(Opnd0, F);
413      }
414    }
415  }
416
417  if (R) {
418    R->setHasUnsafeAlgebra(true);
419    InsertNewInstWith(R, *InsertBefore);
420  }
421
422  return R;
423}
424
425Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
426  bool Changed = SimplifyAssociativeOrCommutative(I);
427  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
428
429  if (isa<Constant>(Op0))
430    std::swap(Op0, Op1);
431
432  if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), DL))
433    return ReplaceInstUsesWith(I, V);
434
435  bool AllowReassociate = I.hasUnsafeAlgebra();
436
437  // Simplify mul instructions with a constant RHS.
438  if (isa<Constant>(Op1)) {
439    // Try to fold constant mul into select arguments.
440    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
441      if (Instruction *R = FoldOpIntoSelect(I, SI))
442        return R;
443
444    if (isa<PHINode>(Op0))
445      if (Instruction *NV = FoldOpIntoPhi(I))
446        return NV;
447
448    // (fmul X, -1.0) --> (fsub -0.0, X)
449    if (match(Op1, m_SpecificFP(-1.0))) {
450      Constant *NegZero = ConstantFP::getNegativeZero(Op1->getType());
451      Instruction *RI = BinaryOperator::CreateFSub(NegZero, Op0);
452      RI->copyFastMathFlags(&I);
453      return RI;
454    }
455
456    Constant *C = cast<Constant>(Op1);
457    if (AllowReassociate && isFiniteNonZeroFp(C)) {
458      // Let MDC denote an expression in one of these forms:
459      // X * C, C/X, X/C, where C is a constant.
460      //
461      // Try to simplify "MDC * Constant"
462      if (isFMulOrFDivWithConstant(Op0))
463        if (Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I))
464          return ReplaceInstUsesWith(I, V);
465
466      // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
467      Instruction *FAddSub = dyn_cast<Instruction>(Op0);
468      if (FAddSub &&
469          (FAddSub->getOpcode() == Instruction::FAdd ||
470           FAddSub->getOpcode() == Instruction::FSub)) {
471        Value *Opnd0 = FAddSub->getOperand(0);
472        Value *Opnd1 = FAddSub->getOperand(1);
473        Constant *C0 = dyn_cast<Constant>(Opnd0);
474        Constant *C1 = dyn_cast<Constant>(Opnd1);
475        bool Swap = false;
476        if (C0) {
477          std::swap(C0, C1);
478          std::swap(Opnd0, Opnd1);
479          Swap = true;
480        }
481
482        if (C1 && isFiniteNonZeroFp(C1) && isFMulOrFDivWithConstant(Opnd0)) {
483          Value *M1 = ConstantExpr::getFMul(C1, C);
484          Value *M0 = isNormalFp(cast<Constant>(M1)) ?
485                      foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
486                      0;
487          if (M0 && M1) {
488            if (Swap && FAddSub->getOpcode() == Instruction::FSub)
489              std::swap(M0, M1);
490
491            Instruction *RI = (FAddSub->getOpcode() == Instruction::FAdd)
492                                  ? BinaryOperator::CreateFAdd(M0, M1)
493                                  : BinaryOperator::CreateFSub(M0, M1);
494            RI->copyFastMathFlags(&I);
495            return RI;
496          }
497        }
498      }
499    }
500  }
501
502
503  // Under unsafe algebra do:
504  // X * log2(0.5*Y) = X*log2(Y) - X
505  if (I.hasUnsafeAlgebra()) {
506    Value *OpX = NULL;
507    Value *OpY = NULL;
508    IntrinsicInst *Log2;
509    detectLog2OfHalf(Op0, OpY, Log2);
510    if (OpY) {
511      OpX = Op1;
512    } else {
513      detectLog2OfHalf(Op1, OpY, Log2);
514      if (OpY) {
515        OpX = Op0;
516      }
517    }
518    // if pattern detected emit alternate sequence
519    if (OpX && OpY) {
520      BuilderTy::FastMathFlagGuard Guard(*Builder);
521      Builder->SetFastMathFlags(Log2->getFastMathFlags());
522      Log2->setArgOperand(0, OpY);
523      Value *FMulVal = Builder->CreateFMul(OpX, Log2);
524      Value *FSub = Builder->CreateFSub(FMulVal, OpX);
525      FSub->takeName(&I);
526      return ReplaceInstUsesWith(I, FSub);
527    }
528  }
529
530  // Handle symmetric situation in a 2-iteration loop
531  Value *Opnd0 = Op0;
532  Value *Opnd1 = Op1;
533  for (int i = 0; i < 2; i++) {
534    bool IgnoreZeroSign = I.hasNoSignedZeros();
535    if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) {
536      BuilderTy::FastMathFlagGuard Guard(*Builder);
537      Builder->SetFastMathFlags(I.getFastMathFlags());
538
539      Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign);
540      Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign);
541
542      // -X * -Y => X*Y
543      if (N1) {
544        Value *FMul = Builder->CreateFMul(N0, N1);
545        FMul->takeName(&I);
546        return ReplaceInstUsesWith(I, FMul);
547      }
548
549      if (Opnd0->hasOneUse()) {
550        // -X * Y => -(X*Y) (Promote negation as high as possible)
551        Value *T = Builder->CreateFMul(N0, Opnd1);
552        Value *Neg = Builder->CreateFNeg(T);
553        Neg->takeName(&I);
554        return ReplaceInstUsesWith(I, Neg);
555      }
556    }
557
558    // (X*Y) * X => (X*X) * Y where Y != X
559    //  The purpose is two-fold:
560    //   1) to form a power expression (of X).
561    //   2) potentially shorten the critical path: After transformation, the
562    //  latency of the instruction Y is amortized by the expression of X*X,
563    //  and therefore Y is in a "less critical" position compared to what it
564    //  was before the transformation.
565    //
566    if (AllowReassociate) {
567      Value *Opnd0_0, *Opnd0_1;
568      if (Opnd0->hasOneUse() &&
569          match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) {
570        Value *Y = 0;
571        if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1)
572          Y = Opnd0_1;
573        else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1)
574          Y = Opnd0_0;
575
576        if (Y) {
577          BuilderTy::FastMathFlagGuard Guard(*Builder);
578          Builder->SetFastMathFlags(I.getFastMathFlags());
579          Value *T = Builder->CreateFMul(Opnd1, Opnd1);
580
581          Value *R = Builder->CreateFMul(T, Y);
582          R->takeName(&I);
583          return ReplaceInstUsesWith(I, R);
584        }
585      }
586    }
587
588    // B * (uitofp i1 C) -> select C, B, 0
589    if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) {
590      Value *LHS = Op0, *RHS = Op1;
591      Value *B, *C;
592      if (!match(RHS, m_UIToFP(m_Value(C))))
593        std::swap(LHS, RHS);
594
595      if (match(RHS, m_UIToFP(m_Value(C))) &&
596          C->getType()->getScalarType()->isIntegerTy(1)) {
597        B = LHS;
598        Value *Zero = ConstantFP::getNegativeZero(B->getType());
599        return SelectInst::Create(C, B, Zero);
600      }
601    }
602
603    // A * (1 - uitofp i1 C) -> select C, 0, A
604    if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) {
605      Value *LHS = Op0, *RHS = Op1;
606      Value *A, *C;
607      if (!match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))))
608        std::swap(LHS, RHS);
609
610      if (match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))) &&
611          C->getType()->getScalarType()->isIntegerTy(1)) {
612        A = LHS;
613        Value *Zero = ConstantFP::getNegativeZero(A->getType());
614        return SelectInst::Create(C, Zero, A);
615      }
616    }
617
618    if (!isa<Constant>(Op1))
619      std::swap(Opnd0, Opnd1);
620    else
621      break;
622  }
623
624  return Changed ? &I : 0;
625}
626
627/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
628/// instruction.
629bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
630  SelectInst *SI = cast<SelectInst>(I.getOperand(1));
631
632  // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
633  int NonNullOperand = -1;
634  if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
635    if (ST->isNullValue())
636      NonNullOperand = 2;
637  // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
638  if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
639    if (ST->isNullValue())
640      NonNullOperand = 1;
641
642  if (NonNullOperand == -1)
643    return false;
644
645  Value *SelectCond = SI->getOperand(0);
646
647  // Change the div/rem to use 'Y' instead of the select.
648  I.setOperand(1, SI->getOperand(NonNullOperand));
649
650  // Okay, we know we replace the operand of the div/rem with 'Y' with no
651  // problem.  However, the select, or the condition of the select may have
652  // multiple uses.  Based on our knowledge that the operand must be non-zero,
653  // propagate the known value for the select into other uses of it, and
654  // propagate a known value of the condition into its other users.
655
656  // If the select and condition only have a single use, don't bother with this,
657  // early exit.
658  if (SI->use_empty() && SelectCond->hasOneUse())
659    return true;
660
661  // Scan the current block backward, looking for other uses of SI.
662  BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
663
664  while (BBI != BBFront) {
665    --BBI;
666    // If we found a call to a function, we can't assume it will return, so
667    // information from below it cannot be propagated above it.
668    if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
669      break;
670
671    // Replace uses of the select or its condition with the known values.
672    for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
673         I != E; ++I) {
674      if (*I == SI) {
675        *I = SI->getOperand(NonNullOperand);
676        Worklist.Add(BBI);
677      } else if (*I == SelectCond) {
678        *I = Builder->getInt1(NonNullOperand == 1);
679        Worklist.Add(BBI);
680      }
681    }
682
683    // If we past the instruction, quit looking for it.
684    if (&*BBI == SI)
685      SI = 0;
686    if (&*BBI == SelectCond)
687      SelectCond = 0;
688
689    // If we ran out of things to eliminate, break out of the loop.
690    if (SelectCond == 0 && SI == 0)
691      break;
692
693  }
694  return true;
695}
696
697
698/// This function implements the transforms common to both integer division
699/// instructions (udiv and sdiv). It is called by the visitors to those integer
700/// division instructions.
701/// @brief Common integer divide transforms
702Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
703  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
704
705  // The RHS is known non-zero.
706  if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
707    I.setOperand(1, V);
708    return &I;
709  }
710
711  // Handle cases involving: [su]div X, (select Cond, Y, Z)
712  // This does not apply for fdiv.
713  if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
714    return &I;
715
716  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
717    // (X / C1) / C2  -> X / (C1*C2)
718    if (Instruction *LHS = dyn_cast<Instruction>(Op0))
719      if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
720        if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
721          if (MultiplyOverflows(RHS, LHSRHS,
722                                I.getOpcode()==Instruction::SDiv))
723            return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
724          return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
725                                        ConstantExpr::getMul(RHS, LHSRHS));
726        }
727
728    if (!RHS->isZero()) { // avoid X udiv 0
729      if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
730        if (Instruction *R = FoldOpIntoSelect(I, SI))
731          return R;
732      if (isa<PHINode>(Op0))
733        if (Instruction *NV = FoldOpIntoPhi(I))
734          return NV;
735    }
736  }
737
738  // See if we can fold away this div instruction.
739  if (SimplifyDemandedInstructionBits(I))
740    return &I;
741
742  // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
743  Value *X = 0, *Z = 0;
744  if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
745    bool isSigned = I.getOpcode() == Instruction::SDiv;
746    if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
747        (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
748      return BinaryOperator::Create(I.getOpcode(), X, Op1);
749  }
750
751  return 0;
752}
753
754/// dyn_castZExtVal - Checks if V is a zext or constant that can
755/// be truncated to Ty without losing bits.
756static Value *dyn_castZExtVal(Value *V, Type *Ty) {
757  if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
758    if (Z->getSrcTy() == Ty)
759      return Z->getOperand(0);
760  } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
761    if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
762      return ConstantExpr::getTrunc(C, Ty);
763  }
764  return 0;
765}
766
767namespace {
768const unsigned MaxDepth = 6;
769typedef Instruction *(*FoldUDivOperandCb)(Value *Op0, Value *Op1,
770                                          const BinaryOperator &I,
771                                          InstCombiner &IC);
772
773/// \brief Used to maintain state for visitUDivOperand().
774struct UDivFoldAction {
775  FoldUDivOperandCb FoldAction; ///< Informs visitUDiv() how to fold this
776                                ///< operand.  This can be zero if this action
777                                ///< joins two actions together.
778
779  Value *OperandToFold;         ///< Which operand to fold.
780  union {
781    Instruction *FoldResult;    ///< The instruction returned when FoldAction is
782                                ///< invoked.
783
784    size_t SelectLHSIdx;        ///< Stores the LHS action index if this action
785                                ///< joins two actions together.
786  };
787
788  UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
789      : FoldAction(FA), OperandToFold(InputOperand), FoldResult(0) {}
790  UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
791      : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
792};
793}
794
795// X udiv 2^C -> X >> C
796static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
797                                    const BinaryOperator &I, InstCombiner &IC) {
798  const APInt &C = cast<Constant>(Op1)->getUniqueInteger();
799  BinaryOperator *LShr = BinaryOperator::CreateLShr(
800      Op0, ConstantInt::get(Op0->getType(), C.logBase2()));
801  if (I.isExact()) LShr->setIsExact();
802  return LShr;
803}
804
805// X udiv C, where C >= signbit
806static Instruction *foldUDivNegCst(Value *Op0, Value *Op1,
807                                   const BinaryOperator &I, InstCombiner &IC) {
808  Value *ICI = IC.Builder->CreateICmpULT(Op0, cast<ConstantInt>(Op1));
809
810  return SelectInst::Create(ICI, Constant::getNullValue(I.getType()),
811                            ConstantInt::get(I.getType(), 1));
812}
813
814// X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
815static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
816                                InstCombiner &IC) {
817  Instruction *ShiftLeft = cast<Instruction>(Op1);
818  if (isa<ZExtInst>(ShiftLeft))
819    ShiftLeft = cast<Instruction>(ShiftLeft->getOperand(0));
820
821  const APInt &CI =
822      cast<Constant>(ShiftLeft->getOperand(0))->getUniqueInteger();
823  Value *N = ShiftLeft->getOperand(1);
824  if (CI != 1)
825    N = IC.Builder->CreateAdd(N, ConstantInt::get(N->getType(), CI.logBase2()));
826  if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
827    N = IC.Builder->CreateZExt(N, Z->getDestTy());
828  BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
829  if (I.isExact()) LShr->setIsExact();
830  return LShr;
831}
832
833// \brief Recursively visits the possible right hand operands of a udiv
834// instruction, seeing through select instructions, to determine if we can
835// replace the udiv with something simpler.  If we find that an operand is not
836// able to simplify the udiv, we abort the entire transformation.
837static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
838                               SmallVectorImpl<UDivFoldAction> &Actions,
839                               unsigned Depth = 0) {
840  // Check to see if this is an unsigned division with an exact power of 2,
841  // if so, convert to a right shift.
842  if (match(Op1, m_Power2())) {
843    Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
844    return Actions.size();
845  }
846
847  if (ConstantInt *C = dyn_cast<ConstantInt>(Op1))
848    // X udiv C, where C >= signbit
849    if (C->getValue().isNegative()) {
850      Actions.push_back(UDivFoldAction(foldUDivNegCst, C));
851      return Actions.size();
852    }
853
854  // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
855  if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
856      match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
857    Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
858    return Actions.size();
859  }
860
861  // The remaining tests are all recursive, so bail out if we hit the limit.
862  if (Depth++ == MaxDepth)
863    return 0;
864
865  if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
866    if (size_t LHSIdx = visitUDivOperand(Op0, SI->getOperand(1), I, Actions))
867      if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions)) {
868        Actions.push_back(UDivFoldAction((FoldUDivOperandCb)0, Op1, LHSIdx-1));
869        return Actions.size();
870      }
871
872  return 0;
873}
874
875Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
876  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
877
878  if (Value *V = SimplifyUDivInst(Op0, Op1, DL))
879    return ReplaceInstUsesWith(I, V);
880
881  // Handle the integer div common cases
882  if (Instruction *Common = commonIDivTransforms(I))
883    return Common;
884
885  // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
886  if (Constant *C2 = dyn_cast<Constant>(Op1)) {
887    Value *X;
888    Constant *C1;
889    if (match(Op0, m_LShr(m_Value(X), m_Constant(C1))))
890      return BinaryOperator::CreateUDiv(X, ConstantExpr::getShl(C2, C1));
891  }
892
893  // (zext A) udiv (zext B) --> zext (A udiv B)
894  if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
895    if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
896      return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
897                                              I.isExact()),
898                          I.getType());
899
900  // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
901  SmallVector<UDivFoldAction, 6> UDivActions;
902  if (visitUDivOperand(Op0, Op1, I, UDivActions))
903    for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
904      FoldUDivOperandCb Action = UDivActions[i].FoldAction;
905      Value *ActionOp1 = UDivActions[i].OperandToFold;
906      Instruction *Inst;
907      if (Action)
908        Inst = Action(Op0, ActionOp1, I, *this);
909      else {
910        // This action joins two actions together.  The RHS of this action is
911        // simply the last action we processed, we saved the LHS action index in
912        // the joining action.
913        size_t SelectRHSIdx = i - 1;
914        Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
915        size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
916        Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
917        Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
918                                  SelectLHS, SelectRHS);
919      }
920
921      // If this is the last action to process, return it to the InstCombiner.
922      // Otherwise, we insert it before the UDiv and record it so that we may
923      // use it as part of a joining action (i.e., a SelectInst).
924      if (e - i != 1) {
925        Inst->insertBefore(&I);
926        UDivActions[i].FoldResult = Inst;
927      } else
928        return Inst;
929    }
930
931  return 0;
932}
933
934Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
935  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
936
937  if (Value *V = SimplifySDivInst(Op0, Op1, DL))
938    return ReplaceInstUsesWith(I, V);
939
940  // Handle the integer div common cases
941  if (Instruction *Common = commonIDivTransforms(I))
942    return Common;
943
944  // sdiv X, -1 == -X
945  if (match(Op1, m_AllOnes()))
946    return BinaryOperator::CreateNeg(Op0);
947
948  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
949    // sdiv X, C  -->  ashr exact X, log2(C)
950    if (I.isExact() && RHS->getValue().isNonNegative() &&
951        RHS->getValue().isPowerOf2()) {
952      Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
953                                            RHS->getValue().exactLogBase2());
954      return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
955    }
956  }
957
958  if (Constant *RHS = dyn_cast<Constant>(Op1)) {
959    // -X/C  -->  X/-C  provided the negation doesn't overflow.
960    if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
961      if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
962        return BinaryOperator::CreateSDiv(Sub->getOperand(1),
963                                          ConstantExpr::getNeg(RHS));
964  }
965
966  // If the sign bits of both operands are zero (i.e. we can prove they are
967  // unsigned inputs), turn this into a udiv.
968  if (I.getType()->isIntegerTy()) {
969    APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
970    if (MaskedValueIsZero(Op0, Mask)) {
971      if (MaskedValueIsZero(Op1, Mask)) {
972        // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
973        return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
974      }
975
976      if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
977        // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
978        // Safe because the only negative value (1 << Y) can take on is
979        // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
980        // the sign bit set.
981        return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
982      }
983    }
984  }
985
986  return 0;
987}
988
989/// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special
990/// FP value and:
991///    1) 1/C is exact, or
992///    2) reciprocal is allowed.
993/// If the conversion was successful, the simplified expression "X * 1/C" is
994/// returned; otherwise, NULL is returned.
995///
996static Instruction *CvtFDivConstToReciprocal(Value *Dividend,
997                                             Constant *Divisor,
998                                             bool AllowReciprocal) {
999  if (!isa<ConstantFP>(Divisor)) // TODO: handle vectors.
1000    return 0;
1001
1002  const APFloat &FpVal = cast<ConstantFP>(Divisor)->getValueAPF();
1003  APFloat Reciprocal(FpVal.getSemantics());
1004  bool Cvt = FpVal.getExactInverse(&Reciprocal);
1005
1006  if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) {
1007    Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
1008    (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
1009    Cvt = !Reciprocal.isDenormal();
1010  }
1011
1012  if (!Cvt)
1013    return 0;
1014
1015  ConstantFP *R;
1016  R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal);
1017  return BinaryOperator::CreateFMul(Dividend, R);
1018}
1019
1020Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
1021  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1022
1023  if (Value *V = SimplifyFDivInst(Op0, Op1, DL))
1024    return ReplaceInstUsesWith(I, V);
1025
1026  if (isa<Constant>(Op0))
1027    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1028      if (Instruction *R = FoldOpIntoSelect(I, SI))
1029        return R;
1030
1031  bool AllowReassociate = I.hasUnsafeAlgebra();
1032  bool AllowReciprocal = I.hasAllowReciprocal();
1033
1034  if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
1035    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1036      if (Instruction *R = FoldOpIntoSelect(I, SI))
1037        return R;
1038
1039    if (AllowReassociate) {
1040      Constant *C1 = 0;
1041      Constant *C2 = Op1C;
1042      Value *X;
1043      Instruction *Res = 0;
1044
1045      if (match(Op0, m_FMul(m_Value(X), m_Constant(C1)))) {
1046        // (X*C1)/C2 => X * (C1/C2)
1047        //
1048        Constant *C = ConstantExpr::getFDiv(C1, C2);
1049        if (isNormalFp(C))
1050          Res = BinaryOperator::CreateFMul(X, C);
1051      } else if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
1052        // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
1053        //
1054        Constant *C = ConstantExpr::getFMul(C1, C2);
1055        if (isNormalFp(C)) {
1056          Res = CvtFDivConstToReciprocal(X, C, AllowReciprocal);
1057          if (!Res)
1058            Res = BinaryOperator::CreateFDiv(X, C);
1059        }
1060      }
1061
1062      if (Res) {
1063        Res->setFastMathFlags(I.getFastMathFlags());
1064        return Res;
1065      }
1066    }
1067
1068    // X / C => X * 1/C
1069    if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) {
1070      T->copyFastMathFlags(&I);
1071      return T;
1072    }
1073
1074    return 0;
1075  }
1076
1077  if (AllowReassociate && isa<Constant>(Op0)) {
1078    Constant *C1 = cast<Constant>(Op0), *C2;
1079    Constant *Fold = 0;
1080    Value *X;
1081    bool CreateDiv = true;
1082
1083    // C1 / (X*C2) => (C1/C2) / X
1084    if (match(Op1, m_FMul(m_Value(X), m_Constant(C2))))
1085      Fold = ConstantExpr::getFDiv(C1, C2);
1086    else if (match(Op1, m_FDiv(m_Value(X), m_Constant(C2)))) {
1087      // C1 / (X/C2) => (C1*C2) / X
1088      Fold = ConstantExpr::getFMul(C1, C2);
1089    } else if (match(Op1, m_FDiv(m_Constant(C2), m_Value(X)))) {
1090      // C1 / (C2/X) => (C1/C2) * X
1091      Fold = ConstantExpr::getFDiv(C1, C2);
1092      CreateDiv = false;
1093    }
1094
1095    if (Fold && isNormalFp(Fold)) {
1096      Instruction *R = CreateDiv ? BinaryOperator::CreateFDiv(Fold, X)
1097                                 : BinaryOperator::CreateFMul(X, Fold);
1098      R->setFastMathFlags(I.getFastMathFlags());
1099      return R;
1100    }
1101    return 0;
1102  }
1103
1104  if (AllowReassociate) {
1105    Value *X, *Y;
1106    Value *NewInst = 0;
1107    Instruction *SimpR = 0;
1108
1109    if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
1110      // (X/Y) / Z => X / (Y*Z)
1111      //
1112      if (!isa<Constant>(Y) || !isa<Constant>(Op1)) {
1113        NewInst = Builder->CreateFMul(Y, Op1);
1114        if (Instruction *RI = dyn_cast<Instruction>(NewInst)) {
1115          FastMathFlags Flags = I.getFastMathFlags();
1116          Flags &= cast<Instruction>(Op0)->getFastMathFlags();
1117          RI->setFastMathFlags(Flags);
1118        }
1119        SimpR = BinaryOperator::CreateFDiv(X, NewInst);
1120      }
1121    } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
1122      // Z / (X/Y) => Z*Y / X
1123      //
1124      if (!isa<Constant>(Y) || !isa<Constant>(Op0)) {
1125        NewInst = Builder->CreateFMul(Op0, Y);
1126        if (Instruction *RI = dyn_cast<Instruction>(NewInst)) {
1127          FastMathFlags Flags = I.getFastMathFlags();
1128          Flags &= cast<Instruction>(Op1)->getFastMathFlags();
1129          RI->setFastMathFlags(Flags);
1130        }
1131        SimpR = BinaryOperator::CreateFDiv(NewInst, X);
1132      }
1133    }
1134
1135    if (NewInst) {
1136      if (Instruction *T = dyn_cast<Instruction>(NewInst))
1137        T->setDebugLoc(I.getDebugLoc());
1138      SimpR->setFastMathFlags(I.getFastMathFlags());
1139      return SimpR;
1140    }
1141  }
1142
1143  return 0;
1144}
1145
1146/// This function implements the transforms common to both integer remainder
1147/// instructions (urem and srem). It is called by the visitors to those integer
1148/// remainder instructions.
1149/// @brief Common integer remainder transforms
1150Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
1151  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1152
1153  // The RHS is known non-zero.
1154  if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
1155    I.setOperand(1, V);
1156    return &I;
1157  }
1158
1159  // Handle cases involving: rem X, (select Cond, Y, Z)
1160  if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
1161    return &I;
1162
1163  if (isa<Constant>(Op1)) {
1164    if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1165      if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1166        if (Instruction *R = FoldOpIntoSelect(I, SI))
1167          return R;
1168      } else if (isa<PHINode>(Op0I)) {
1169        if (Instruction *NV = FoldOpIntoPhi(I))
1170          return NV;
1171      }
1172
1173      // See if we can fold away this rem instruction.
1174      if (SimplifyDemandedInstructionBits(I))
1175        return &I;
1176    }
1177  }
1178
1179  return 0;
1180}
1181
1182Instruction *InstCombiner::visitURem(BinaryOperator &I) {
1183  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1184
1185  if (Value *V = SimplifyURemInst(Op0, Op1, DL))
1186    return ReplaceInstUsesWith(I, V);
1187
1188  if (Instruction *common = commonIRemTransforms(I))
1189    return common;
1190
1191  // (zext A) urem (zext B) --> zext (A urem B)
1192  if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
1193    if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
1194      return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
1195                          I.getType());
1196
1197  // X urem Y -> X and Y-1, where Y is a power of 2,
1198  if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true)) {
1199    Constant *N1 = Constant::getAllOnesValue(I.getType());
1200    Value *Add = Builder->CreateAdd(Op1, N1);
1201    return BinaryOperator::CreateAnd(Op0, Add);
1202  }
1203
1204  // 1 urem X -> zext(X != 1)
1205  if (match(Op0, m_One())) {
1206    Value *Cmp = Builder->CreateICmpNE(Op1, Op0);
1207    Value *Ext = Builder->CreateZExt(Cmp, I.getType());
1208    return ReplaceInstUsesWith(I, Ext);
1209  }
1210
1211  return 0;
1212}
1213
1214Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
1215  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1216
1217  if (Value *V = SimplifySRemInst(Op0, Op1, DL))
1218    return ReplaceInstUsesWith(I, V);
1219
1220  // Handle the integer rem common cases
1221  if (Instruction *Common = commonIRemTransforms(I))
1222    return Common;
1223
1224  if (Value *RHSNeg = dyn_castNegVal(Op1))
1225    if (!isa<Constant>(RHSNeg) ||
1226        (isa<ConstantInt>(RHSNeg) &&
1227         cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
1228      // X % -Y -> X % Y
1229      Worklist.AddValue(I.getOperand(1));
1230      I.setOperand(1, RHSNeg);
1231      return &I;
1232    }
1233
1234  // If the sign bits of both operands are zero (i.e. we can prove they are
1235  // unsigned inputs), turn this into a urem.
1236  if (I.getType()->isIntegerTy()) {
1237    APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
1238    if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
1239      // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1240      return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1241    }
1242  }
1243
1244  // If it's a constant vector, flip any negative values positive.
1245  if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1246    Constant *C = cast<Constant>(Op1);
1247    unsigned VWidth = C->getType()->getVectorNumElements();
1248
1249    bool hasNegative = false;
1250    bool hasMissing = false;
1251    for (unsigned i = 0; i != VWidth; ++i) {
1252      Constant *Elt = C->getAggregateElement(i);
1253      if (Elt == 0) {
1254        hasMissing = true;
1255        break;
1256      }
1257
1258      if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1259        if (RHS->isNegative())
1260          hasNegative = true;
1261    }
1262
1263    if (hasNegative && !hasMissing) {
1264      SmallVector<Constant *, 16> Elts(VWidth);
1265      for (unsigned i = 0; i != VWidth; ++i) {
1266        Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
1267        if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1268          if (RHS->isNegative())
1269            Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1270        }
1271      }
1272
1273      Constant *NewRHSV = ConstantVector::get(Elts);
1274      if (NewRHSV != C) {  // Don't loop on -MININT
1275        Worklist.AddValue(I.getOperand(1));
1276        I.setOperand(1, NewRHSV);
1277        return &I;
1278      }
1279    }
1280  }
1281
1282  return 0;
1283}
1284
1285Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
1286  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1287
1288  if (Value *V = SimplifyFRemInst(Op0, Op1, DL))
1289    return ReplaceInstUsesWith(I, V);
1290
1291  // Handle cases involving: rem X, (select Cond, Y, Z)
1292  if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
1293    return &I;
1294
1295  return 0;
1296}
1297