InstCombineMulDivRem.cpp revision da2ed458b4e7066fc414c403173b882ccc2c8833
1//===- InstCombineMulDivRem.cpp -------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11// srem, urem, frem.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstCombine.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/IR/IntrinsicInst.h"
18#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22
23/// simplifyValueKnownNonZero - The specific integer value is used in a context
24/// where it is known to be non-zero.  If this allows us to simplify the
25/// computation, do so and return the new operand, otherwise return null.
26static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
27  // If V has multiple uses, then we would have to do more analysis to determine
28  // if this is safe.  For example, the use could be in dynamically unreached
29  // code.
30  if (!V->hasOneUse()) return 0;
31
32  bool MadeChange = false;
33
34  // ((1 << A) >>u B) --> (1 << (A-B))
35  // Because V cannot be zero, we know that B is less than A.
36  Value *A = 0, *B = 0, *PowerOf2 = 0;
37  if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
38                      m_Value(B))) &&
39      // The "1" can be any value known to be a power of 2.
40      isKnownToBeAPowerOfTwo(PowerOf2)) {
41    A = IC.Builder->CreateSub(A, B);
42    return IC.Builder->CreateShl(PowerOf2, A);
43  }
44
45  // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
46  // inexact.  Similarly for <<.
47  if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
48    if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) {
49      // We know that this is an exact/nuw shift and that the input is a
50      // non-zero context as well.
51      if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
52        I->setOperand(0, V2);
53        MadeChange = true;
54      }
55
56      if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
57        I->setIsExact();
58        MadeChange = true;
59      }
60
61      if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
62        I->setHasNoUnsignedWrap();
63        MadeChange = true;
64      }
65    }
66
67  // TODO: Lots more we could do here:
68  //    If V is a phi node, we can call this on each of its operands.
69  //    "select cond, X, 0" can simplify to "X".
70
71  return MadeChange ? V : 0;
72}
73
74
75/// MultiplyOverflows - True if the multiply can not be expressed in an int
76/// this size.
77static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
78  uint32_t W = C1->getBitWidth();
79  APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
80  if (sign) {
81    LHSExt = LHSExt.sext(W * 2);
82    RHSExt = RHSExt.sext(W * 2);
83  } else {
84    LHSExt = LHSExt.zext(W * 2);
85    RHSExt = RHSExt.zext(W * 2);
86  }
87
88  APInt MulExt = LHSExt * RHSExt;
89
90  if (!sign)
91    return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
92
93  APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
94  APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
95  return MulExt.slt(Min) || MulExt.sgt(Max);
96}
97
98Instruction *InstCombiner::visitMul(BinaryOperator &I) {
99  bool Changed = SimplifyAssociativeOrCommutative(I);
100  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
101
102  if (Value *V = SimplifyMulInst(Op0, Op1, TD))
103    return ReplaceInstUsesWith(I, V);
104
105  if (Value *V = SimplifyUsingDistributiveLaws(I))
106    return ReplaceInstUsesWith(I, V);
107
108  if (match(Op1, m_AllOnes()))  // X * -1 == 0 - X
109    return BinaryOperator::CreateNeg(Op0, I.getName());
110
111  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
112
113    // ((X << C1)*C2) == (X * (C2 << C1))
114    if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
115      if (SI->getOpcode() == Instruction::Shl)
116        if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
117          return BinaryOperator::CreateMul(SI->getOperand(0),
118                                           ConstantExpr::getShl(CI, ShOp));
119
120    const APInt &Val = CI->getValue();
121    if (Val.isPowerOf2()) {          // Replace X*(2^C) with X << C
122      Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2());
123      BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst);
124      if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
125      if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
126      return Shl;
127    }
128
129    // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
130    { Value *X; ConstantInt *C1;
131      if (Op0->hasOneUse() &&
132          match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
133        Value *Add = Builder->CreateMul(X, CI);
134        return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
135      }
136    }
137
138    // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
139    // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
140    // The "* (2**n)" thus becomes a potential shifting opportunity.
141    {
142      const APInt &   Val = CI->getValue();
143      const APInt &PosVal = Val.abs();
144      if (Val.isNegative() && PosVal.isPowerOf2()) {
145        Value *X = 0, *Y = 0;
146        if (Op0->hasOneUse()) {
147          ConstantInt *C1;
148          Value *Sub = 0;
149          if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
150            Sub = Builder->CreateSub(X, Y, "suba");
151          else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
152            Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
153          if (Sub)
154            return
155              BinaryOperator::CreateMul(Sub,
156                                        ConstantInt::get(Y->getType(), PosVal));
157        }
158      }
159    }
160  }
161
162  // Simplify mul instructions with a constant RHS.
163  if (isa<Constant>(Op1)) {
164    // Try to fold constant mul into select arguments.
165    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
166      if (Instruction *R = FoldOpIntoSelect(I, SI))
167        return R;
168
169    if (isa<PHINode>(Op0))
170      if (Instruction *NV = FoldOpIntoPhi(I))
171        return NV;
172  }
173
174  if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
175    if (Value *Op1v = dyn_castNegVal(Op1))
176      return BinaryOperator::CreateMul(Op0v, Op1v);
177
178  // (X / Y) *  Y = X - (X % Y)
179  // (X / Y) * -Y = (X % Y) - X
180  {
181    Value *Op1C = Op1;
182    BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
183    if (!BO ||
184        (BO->getOpcode() != Instruction::UDiv &&
185         BO->getOpcode() != Instruction::SDiv)) {
186      Op1C = Op0;
187      BO = dyn_cast<BinaryOperator>(Op1);
188    }
189    Value *Neg = dyn_castNegVal(Op1C);
190    if (BO && BO->hasOneUse() &&
191        (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
192        (BO->getOpcode() == Instruction::UDiv ||
193         BO->getOpcode() == Instruction::SDiv)) {
194      Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
195
196      // If the division is exact, X % Y is zero, so we end up with X or -X.
197      if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
198        if (SDiv->isExact()) {
199          if (Op1BO == Op1C)
200            return ReplaceInstUsesWith(I, Op0BO);
201          return BinaryOperator::CreateNeg(Op0BO);
202        }
203
204      Value *Rem;
205      if (BO->getOpcode() == Instruction::UDiv)
206        Rem = Builder->CreateURem(Op0BO, Op1BO);
207      else
208        Rem = Builder->CreateSRem(Op0BO, Op1BO);
209      Rem->takeName(BO);
210
211      if (Op1BO == Op1C)
212        return BinaryOperator::CreateSub(Op0BO, Rem);
213      return BinaryOperator::CreateSub(Rem, Op0BO);
214    }
215  }
216
217  /// i1 mul -> i1 and.
218  if (I.getType()->isIntegerTy(1))
219    return BinaryOperator::CreateAnd(Op0, Op1);
220
221  // X*(1 << Y) --> X << Y
222  // (1 << Y)*X --> X << Y
223  {
224    Value *Y;
225    if (match(Op0, m_Shl(m_One(), m_Value(Y))))
226      return BinaryOperator::CreateShl(Op1, Y);
227    if (match(Op1, m_Shl(m_One(), m_Value(Y))))
228      return BinaryOperator::CreateShl(Op0, Y);
229  }
230
231  // If one of the operands of the multiply is a cast from a boolean value, then
232  // we know the bool is either zero or one, so this is a 'masking' multiply.
233  //   X * Y (where Y is 0 or 1) -> X & (0-Y)
234  if (!I.getType()->isVectorTy()) {
235    // -2 is "-1 << 1" so it is all bits set except the low one.
236    APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
237
238    Value *BoolCast = 0, *OtherOp = 0;
239    if (MaskedValueIsZero(Op0, Negative2))
240      BoolCast = Op0, OtherOp = Op1;
241    else if (MaskedValueIsZero(Op1, Negative2))
242      BoolCast = Op1, OtherOp = Op0;
243
244    if (BoolCast) {
245      Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
246                                    BoolCast);
247      return BinaryOperator::CreateAnd(V, OtherOp);
248    }
249  }
250
251  return Changed ? &I : 0;
252}
253
254//
255// Detect pattern:
256//
257// log2(Y*0.5)
258//
259// And check for corresponding fast math flags
260//
261
262static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
263
264   if (!Op->hasOneUse())
265     return;
266
267   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
268   if (!II)
269     return;
270   if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
271     return;
272   Log2 = II;
273
274   Value *OpLog2Of = II->getArgOperand(0);
275   if (!OpLog2Of->hasOneUse())
276     return;
277
278   Instruction *I = dyn_cast<Instruction>(OpLog2Of);
279   if (!I)
280     return;
281   if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
282     return;
283
284   ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(0));
285   if (CFP && CFP->isExactlyValue(0.5)) {
286     Y = I->getOperand(1);
287     return;
288   }
289   CFP = dyn_cast<ConstantFP>(I->getOperand(1));
290   if (CFP && CFP->isExactlyValue(0.5))
291     Y = I->getOperand(0);
292}
293
294/// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
295/// true iff the given value is FMul or FDiv with one and only one operand
296/// being a normal constant (i.e. not Zero/NaN/Infinity).
297static bool isFMulOrFDivWithConstant(Value *V) {
298  Instruction *I = dyn_cast<Instruction>(V);
299  if (!I || (I->getOpcode() != Instruction::FMul &&
300             I->getOpcode() != Instruction::FDiv))
301    return false;
302
303  ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
304  ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
305
306  if (C0 && C1)
307    return false;
308
309  return (C0 && C0->getValueAPF().isNormal()) ||
310         (C1 && C1->getValueAPF().isNormal());
311}
312
313static bool isNormalFp(const ConstantFP *C) {
314  const APFloat &Flt = C->getValueAPF();
315  return Flt.isNormal() && !Flt.isDenormal();
316}
317
318/// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
319/// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
320/// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
321/// This function is to simplify "FMulOrDiv * C" and returns the
322/// resulting expression. Note that this function could return NULL in
323/// case the constants cannot be folded into a normal floating-point.
324///
325Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C,
326                                   Instruction *InsertBefore) {
327  assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
328
329  Value *Opnd0 = FMulOrDiv->getOperand(0);
330  Value *Opnd1 = FMulOrDiv->getOperand(1);
331
332  ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
333  ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
334
335  BinaryOperator *R = 0;
336
337  // (X * C0) * C => X * (C0*C)
338  if (FMulOrDiv->getOpcode() == Instruction::FMul) {
339    Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
340    if (isNormalFp(cast<ConstantFP>(F)))
341      R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
342  } else {
343    if (C0) {
344      // (C0 / X) * C => (C0 * C) / X
345      ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C));
346      if (isNormalFp(F))
347        R = BinaryOperator::CreateFDiv(F, Opnd1);
348    } else {
349      // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
350      ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1));
351      if (isNormalFp(F)) {
352        R = BinaryOperator::CreateFMul(Opnd0, F);
353      } else {
354        // (X / C1) * C => X / (C1/C)
355        Constant *F = ConstantExpr::getFDiv(C1, C);
356        if (isNormalFp(cast<ConstantFP>(F)))
357          R = BinaryOperator::CreateFDiv(Opnd0, F);
358      }
359    }
360  }
361
362  if (R) {
363    R->setHasUnsafeAlgebra(true);
364    InsertNewInstWith(R, *InsertBefore);
365  }
366
367  return R;
368}
369
370Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
371  bool Changed = SimplifyAssociativeOrCommutative(I);
372  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
373
374  if (isa<Constant>(Op0))
375    std::swap(Op0, Op1);
376
377  if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD))
378    return ReplaceInstUsesWith(I, V);
379
380  bool AllowReassociate = I.hasUnsafeAlgebra();
381
382  // Simplify mul instructions with a constant RHS.
383  if (isa<Constant>(Op1)) {
384    // Try to fold constant mul into select arguments.
385    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
386      if (Instruction *R = FoldOpIntoSelect(I, SI))
387        return R;
388
389    if (isa<PHINode>(Op0))
390      if (Instruction *NV = FoldOpIntoPhi(I))
391        return NV;
392
393    ConstantFP *C = dyn_cast<ConstantFP>(Op1);
394    if (C && AllowReassociate && C->getValueAPF().isNormal()) {
395      // Let MDC denote an expression in one of these forms:
396      // X * C, C/X, X/C, where C is a constant.
397      //
398      // Try to simplify "MDC * Constant"
399      if (isFMulOrFDivWithConstant(Op0)) {
400        Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I);
401        if (V)
402          return ReplaceInstUsesWith(I, V);
403      }
404
405      // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
406      Instruction *FAddSub = dyn_cast<Instruction>(Op0);
407      if (FAddSub &&
408          (FAddSub->getOpcode() == Instruction::FAdd ||
409           FAddSub->getOpcode() == Instruction::FSub)) {
410        Value *Opnd0 = FAddSub->getOperand(0);
411        Value *Opnd1 = FAddSub->getOperand(1);
412        ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
413        ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
414        bool Swap = false;
415        if (C0) {
416          std::swap(C0, C1);
417          std::swap(Opnd0, Opnd1);
418          Swap = true;
419        }
420
421        if (C1 && C1->getValueAPF().isNormal() &&
422            isFMulOrFDivWithConstant(Opnd0)) {
423          Value *M1 = ConstantExpr::getFMul(C1, C);
424          Value *M0 = isNormalFp(cast<ConstantFP>(M1)) ?
425                      foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
426                      0;
427          if (M0 && M1) {
428            if (Swap && FAddSub->getOpcode() == Instruction::FSub)
429              std::swap(M0, M1);
430
431            Value *R = (FAddSub->getOpcode() == Instruction::FAdd) ?
432                        BinaryOperator::CreateFAdd(M0, M1) :
433                        BinaryOperator::CreateFSub(M0, M1);
434            Instruction *RI = cast<Instruction>(R);
435            RI->copyFastMathFlags(&I);
436            return RI;
437          }
438        }
439      }
440    }
441  }
442
443
444  // Under unsafe algebra do:
445  // X * log2(0.5*Y) = X*log2(Y) - X
446  if (I.hasUnsafeAlgebra()) {
447    Value *OpX = NULL;
448    Value *OpY = NULL;
449    IntrinsicInst *Log2;
450    detectLog2OfHalf(Op0, OpY, Log2);
451    if (OpY) {
452      OpX = Op1;
453    } else {
454      detectLog2OfHalf(Op1, OpY, Log2);
455      if (OpY) {
456        OpX = Op0;
457      }
458    }
459    // if pattern detected emit alternate sequence
460    if (OpX && OpY) {
461      Log2->setArgOperand(0, OpY);
462      Value *FMulVal = Builder->CreateFMul(OpX, Log2);
463      Instruction *FMul = cast<Instruction>(FMulVal);
464      FMul->copyFastMathFlags(Log2);
465      Instruction *FSub = BinaryOperator::CreateFSub(FMulVal, OpX);
466      FSub->copyFastMathFlags(Log2);
467      return FSub;
468    }
469  }
470
471  // Handle symmetric situation in a 2-iteration loop
472  Value *Opnd0 = Op0;
473  Value *Opnd1 = Op1;
474  for (int i = 0; i < 2; i++) {
475    bool IgnoreZeroSign = I.hasNoSignedZeros();
476    if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) {
477      Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign);
478      Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign);
479
480      // -X * -Y => X*Y
481      if (N1)
482        return BinaryOperator::CreateFMul(N0, N1);
483
484      if (Opnd0->hasOneUse()) {
485        // -X * Y => -(X*Y) (Promote negation as high as possible)
486        Value *T = Builder->CreateFMul(N0, Opnd1);
487        cast<Instruction>(T)->setDebugLoc(I.getDebugLoc());
488        Instruction *Neg = BinaryOperator::CreateFNeg(T);
489        if (I.getFastMathFlags().any()) {
490          cast<Instruction>(T)->copyFastMathFlags(&I);
491          Neg->copyFastMathFlags(&I);
492        }
493        return Neg;
494      }
495    }
496
497    // (X*Y) * X => (X*X) * Y where Y != X
498    //  The purpose is two-fold:
499    //   1) to form a power expression (of X).
500    //   2) potentially shorten the critical path: After transformation, the
501    //  latency of the instruction Y is amortized by the expression of X*X,
502    //  and therefore Y is in a "less critical" position compared to what it
503    //  was before the transformation.
504    //
505    if (AllowReassociate) {
506      Value *Opnd0_0, *Opnd0_1;
507      if (Opnd0->hasOneUse() &&
508          match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) {
509        Value *Y = 0;
510        if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1)
511          Y = Opnd0_1;
512        else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1)
513          Y = Opnd0_0;
514
515        if (Y) {
516          Instruction *T = cast<Instruction>(Builder->CreateFMul(Opnd1, Opnd1));
517          T->copyFastMathFlags(&I);
518          T->setDebugLoc(I.getDebugLoc());
519
520          Instruction *R = BinaryOperator::CreateFMul(T, Y);
521          R->copyFastMathFlags(&I);
522          return R;
523        }
524      }
525    }
526
527    // B * (uitofp i1 C) -> select C, B, 0
528    if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) {
529      Value *LHS = Op0, *RHS = Op1;
530      Value *B, *C;
531      if (!match(RHS, m_UIToFp(m_Value(C))))
532        std::swap(LHS, RHS);
533
534      if (match(RHS, m_UIToFp(m_Value(C))) && C->getType()->isIntegerTy(1)) {
535        B = LHS;
536        Value *Zero = ConstantFP::getNegativeZero(B->getType());
537        return SelectInst::Create(C, B, Zero);
538      }
539    }
540
541    // A * (1 - uitofp i1 C) -> select C, 0, A
542    if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) {
543      Value *LHS = Op0, *RHS = Op1;
544      Value *A, *C;
545      if (!match(RHS, m_FSub(m_FPOne(), m_UIToFp(m_Value(C)))))
546        std::swap(LHS, RHS);
547
548      if (match(RHS, m_FSub(m_FPOne(), m_UIToFp(m_Value(C)))) &&
549          C->getType()->isIntegerTy(1)) {
550        A = LHS;
551        Value *Zero = ConstantFP::getNegativeZero(A->getType());
552        return SelectInst::Create(C, Zero, A);
553      }
554    }
555
556    if (!isa<Constant>(Op1))
557      std::swap(Opnd0, Opnd1);
558    else
559      break;
560  }
561
562  return Changed ? &I : 0;
563}
564
565/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
566/// instruction.
567bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
568  SelectInst *SI = cast<SelectInst>(I.getOperand(1));
569
570  // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
571  int NonNullOperand = -1;
572  if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
573    if (ST->isNullValue())
574      NonNullOperand = 2;
575  // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
576  if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
577    if (ST->isNullValue())
578      NonNullOperand = 1;
579
580  if (NonNullOperand == -1)
581    return false;
582
583  Value *SelectCond = SI->getOperand(0);
584
585  // Change the div/rem to use 'Y' instead of the select.
586  I.setOperand(1, SI->getOperand(NonNullOperand));
587
588  // Okay, we know we replace the operand of the div/rem with 'Y' with no
589  // problem.  However, the select, or the condition of the select may have
590  // multiple uses.  Based on our knowledge that the operand must be non-zero,
591  // propagate the known value for the select into other uses of it, and
592  // propagate a known value of the condition into its other users.
593
594  // If the select and condition only have a single use, don't bother with this,
595  // early exit.
596  if (SI->use_empty() && SelectCond->hasOneUse())
597    return true;
598
599  // Scan the current block backward, looking for other uses of SI.
600  BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
601
602  while (BBI != BBFront) {
603    --BBI;
604    // If we found a call to a function, we can't assume it will return, so
605    // information from below it cannot be propagated above it.
606    if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
607      break;
608
609    // Replace uses of the select or its condition with the known values.
610    for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
611         I != E; ++I) {
612      if (*I == SI) {
613        *I = SI->getOperand(NonNullOperand);
614        Worklist.Add(BBI);
615      } else if (*I == SelectCond) {
616        *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
617                                   ConstantInt::getFalse(BBI->getContext());
618        Worklist.Add(BBI);
619      }
620    }
621
622    // If we past the instruction, quit looking for it.
623    if (&*BBI == SI)
624      SI = 0;
625    if (&*BBI == SelectCond)
626      SelectCond = 0;
627
628    // If we ran out of things to eliminate, break out of the loop.
629    if (SelectCond == 0 && SI == 0)
630      break;
631
632  }
633  return true;
634}
635
636
637/// This function implements the transforms common to both integer division
638/// instructions (udiv and sdiv). It is called by the visitors to those integer
639/// division instructions.
640/// @brief Common integer divide transforms
641Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
642  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
643
644  // The RHS is known non-zero.
645  if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
646    I.setOperand(1, V);
647    return &I;
648  }
649
650  // Handle cases involving: [su]div X, (select Cond, Y, Z)
651  // This does not apply for fdiv.
652  if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
653    return &I;
654
655  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
656    // (X / C1) / C2  -> X / (C1*C2)
657    if (Instruction *LHS = dyn_cast<Instruction>(Op0))
658      if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
659        if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
660          if (MultiplyOverflows(RHS, LHSRHS,
661                                I.getOpcode()==Instruction::SDiv))
662            return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
663          return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
664                                        ConstantExpr::getMul(RHS, LHSRHS));
665        }
666
667    if (!RHS->isZero()) { // avoid X udiv 0
668      if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
669        if (Instruction *R = FoldOpIntoSelect(I, SI))
670          return R;
671      if (isa<PHINode>(Op0))
672        if (Instruction *NV = FoldOpIntoPhi(I))
673          return NV;
674    }
675  }
676
677  // See if we can fold away this div instruction.
678  if (SimplifyDemandedInstructionBits(I))
679    return &I;
680
681  // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
682  Value *X = 0, *Z = 0;
683  if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
684    bool isSigned = I.getOpcode() == Instruction::SDiv;
685    if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
686        (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
687      return BinaryOperator::Create(I.getOpcode(), X, Op1);
688  }
689
690  return 0;
691}
692
693/// dyn_castZExtVal - Checks if V is a zext or constant that can
694/// be truncated to Ty without losing bits.
695static Value *dyn_castZExtVal(Value *V, Type *Ty) {
696  if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
697    if (Z->getSrcTy() == Ty)
698      return Z->getOperand(0);
699  } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
700    if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
701      return ConstantExpr::getTrunc(C, Ty);
702  }
703  return 0;
704}
705
706Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
707  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
708
709  if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
710    return ReplaceInstUsesWith(I, V);
711
712  // Handle the integer div common cases
713  if (Instruction *Common = commonIDivTransforms(I))
714    return Common;
715
716  {
717    // X udiv 2^C -> X >> C
718    // Check to see if this is an unsigned division with an exact power of 2,
719    // if so, convert to a right shift.
720    const APInt *C;
721    if (match(Op1, m_Power2(C))) {
722      BinaryOperator *LShr =
723      BinaryOperator::CreateLShr(Op0,
724                                 ConstantInt::get(Op0->getType(),
725                                                  C->logBase2()));
726      if (I.isExact()) LShr->setIsExact();
727      return LShr;
728    }
729  }
730
731  if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
732    // X udiv C, where C >= signbit
733    if (C->getValue().isNegative()) {
734      Value *IC = Builder->CreateICmpULT(Op0, C);
735      return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
736                                ConstantInt::get(I.getType(), 1));
737    }
738  }
739
740  // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
741  if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) {
742    Value *X;
743    ConstantInt *C1;
744    if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) {
745      APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1));
746      return BinaryOperator::CreateUDiv(X, Builder->getInt(NC));
747    }
748  }
749
750  // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
751  { const APInt *CI; Value *N;
752    if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) ||
753        match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) {
754      if (*CI != 1)
755        N = Builder->CreateAdd(N,
756                               ConstantInt::get(N->getType(), CI->logBase2()));
757      if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
758        N = Builder->CreateZExt(N, Z->getDestTy());
759      if (I.isExact())
760        return BinaryOperator::CreateExactLShr(Op0, N);
761      return BinaryOperator::CreateLShr(Op0, N);
762    }
763  }
764
765  // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
766  // where C1&C2 are powers of two.
767  { Value *Cond; const APInt *C1, *C2;
768    if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
769      // Construct the "on true" case of the select
770      Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t",
771                                       I.isExact());
772
773      // Construct the "on false" case of the select
774      Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f",
775                                       I.isExact());
776
777      // construct the select instruction and return it.
778      return SelectInst::Create(Cond, TSI, FSI);
779    }
780  }
781
782  // (zext A) udiv (zext B) --> zext (A udiv B)
783  if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
784    if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
785      return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
786                                              I.isExact()),
787                          I.getType());
788
789  return 0;
790}
791
792Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
793  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
794
795  if (Value *V = SimplifySDivInst(Op0, Op1, TD))
796    return ReplaceInstUsesWith(I, V);
797
798  // Handle the integer div common cases
799  if (Instruction *Common = commonIDivTransforms(I))
800    return Common;
801
802  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
803    // sdiv X, -1 == -X
804    if (RHS->isAllOnesValue())
805      return BinaryOperator::CreateNeg(Op0);
806
807    // sdiv X, C  -->  ashr exact X, log2(C)
808    if (I.isExact() && RHS->getValue().isNonNegative() &&
809        RHS->getValue().isPowerOf2()) {
810      Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
811                                            RHS->getValue().exactLogBase2());
812      return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
813    }
814
815    // -X/C  -->  X/-C  provided the negation doesn't overflow.
816    if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
817      if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
818        return BinaryOperator::CreateSDiv(Sub->getOperand(1),
819                                          ConstantExpr::getNeg(RHS));
820  }
821
822  // If the sign bits of both operands are zero (i.e. we can prove they are
823  // unsigned inputs), turn this into a udiv.
824  if (I.getType()->isIntegerTy()) {
825    APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
826    if (MaskedValueIsZero(Op0, Mask)) {
827      if (MaskedValueIsZero(Op1, Mask)) {
828        // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
829        return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
830      }
831
832      if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
833        // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
834        // Safe because the only negative value (1 << Y) can take on is
835        // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
836        // the sign bit set.
837        return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
838      }
839    }
840  }
841
842  return 0;
843}
844
845/// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special
846/// FP value and:
847///    1) 1/C is exact, or
848///    2) reciprocal is allowed.
849/// If the conversion was successful, the simplified expression "X * 1/C" is
850/// returned; otherwise, NULL is returned.
851///
852static Instruction *CvtFDivConstToReciprocal(Value *Dividend,
853                                             ConstantFP *Divisor,
854                                             bool AllowReciprocal) {
855  const APFloat &FpVal = Divisor->getValueAPF();
856  APFloat Reciprocal(FpVal.getSemantics());
857  bool Cvt = FpVal.getExactInverse(&Reciprocal);
858
859  if (!Cvt && AllowReciprocal && FpVal.isNormal()) {
860    Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
861    (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
862    Cvt = !Reciprocal.isDenormal();
863  }
864
865  if (!Cvt)
866    return 0;
867
868  ConstantFP *R;
869  R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal);
870  return BinaryOperator::CreateFMul(Dividend, R);
871}
872
873Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
874  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
875
876  if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
877    return ReplaceInstUsesWith(I, V);
878
879  bool AllowReassociate = I.hasUnsafeAlgebra();
880  bool AllowReciprocal = I.hasAllowReciprocal();
881
882  if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
883    if (AllowReassociate) {
884      ConstantFP *C1 = 0;
885      ConstantFP *C2 = Op1C;
886      Value *X;
887      Instruction *Res = 0;
888
889      if (match(Op0, m_FMul(m_Value(X), m_ConstantFP(C1)))) {
890        // (X*C1)/C2 => X * (C1/C2)
891        //
892        Constant *C = ConstantExpr::getFDiv(C1, C2);
893        const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
894        if (F.isNormal() && !F.isDenormal())
895          Res = BinaryOperator::CreateFMul(X, C);
896      } else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) {
897        // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
898        //
899        Constant *C = ConstantExpr::getFMul(C1, C2);
900        const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
901        if (F.isNormal() && !F.isDenormal()) {
902          Res = CvtFDivConstToReciprocal(X, cast<ConstantFP>(C),
903                                         AllowReciprocal);
904          if (!Res)
905            Res = BinaryOperator::CreateFDiv(X, C);
906        }
907      }
908
909      if (Res) {
910        Res->setFastMathFlags(I.getFastMathFlags());
911        return Res;
912      }
913    }
914
915    // X / C => X * 1/C
916    if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal))
917      return T;
918
919    return 0;
920  }
921
922  if (AllowReassociate && isa<ConstantFP>(Op0)) {
923    ConstantFP *C1 = cast<ConstantFP>(Op0), *C2;
924    Constant *Fold = 0;
925    Value *X;
926    bool CreateDiv = true;
927
928    // C1 / (X*C2) => (C1/C2) / X
929    if (match(Op1, m_FMul(m_Value(X), m_ConstantFP(C2))))
930      Fold = ConstantExpr::getFDiv(C1, C2);
931    else if (match(Op1, m_FDiv(m_Value(X), m_ConstantFP(C2)))) {
932      // C1 / (X/C2) => (C1*C2) / X
933      Fold = ConstantExpr::getFMul(C1, C2);
934    } else if (match(Op1, m_FDiv(m_ConstantFP(C2), m_Value(X)))) {
935      // C1 / (C2/X) => (C1/C2) * X
936      Fold = ConstantExpr::getFDiv(C1, C2);
937      CreateDiv = false;
938    }
939
940    if (Fold) {
941      const APFloat &FoldC = cast<ConstantFP>(Fold)->getValueAPF();
942      if (FoldC.isNormal() && !FoldC.isDenormal()) {
943        Instruction *R = CreateDiv ?
944                         BinaryOperator::CreateFDiv(Fold, X) :
945                         BinaryOperator::CreateFMul(X, Fold);
946        R->setFastMathFlags(I.getFastMathFlags());
947        return R;
948      }
949    }
950    return 0;
951  }
952
953  if (AllowReassociate) {
954    Value *X, *Y;
955    Value *NewInst = 0;
956    Instruction *SimpR = 0;
957
958    if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
959      // (X/Y) / Z => X / (Y*Z)
960      //
961      if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op1)) {
962        NewInst = Builder->CreateFMul(Y, Op1);
963        SimpR = BinaryOperator::CreateFDiv(X, NewInst);
964      }
965    } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
966      // Z / (X/Y) => Z*Y / X
967      //
968      if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op0)) {
969        NewInst = Builder->CreateFMul(Op0, Y);
970        SimpR = BinaryOperator::CreateFDiv(NewInst, X);
971      }
972    }
973
974    if (NewInst) {
975      if (Instruction *T = dyn_cast<Instruction>(NewInst))
976        T->setDebugLoc(I.getDebugLoc());
977      SimpR->setFastMathFlags(I.getFastMathFlags());
978      return SimpR;
979    }
980  }
981
982  return 0;
983}
984
985/// This function implements the transforms common to both integer remainder
986/// instructions (urem and srem). It is called by the visitors to those integer
987/// remainder instructions.
988/// @brief Common integer remainder transforms
989Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
990  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
991
992  // The RHS is known non-zero.
993  if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
994    I.setOperand(1, V);
995    return &I;
996  }
997
998  // Handle cases involving: rem X, (select Cond, Y, Z)
999  if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
1000    return &I;
1001
1002  if (isa<ConstantInt>(Op1)) {
1003    if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1004      if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1005        if (Instruction *R = FoldOpIntoSelect(I, SI))
1006          return R;
1007      } else if (isa<PHINode>(Op0I)) {
1008        if (Instruction *NV = FoldOpIntoPhi(I))
1009          return NV;
1010      }
1011
1012      // See if we can fold away this rem instruction.
1013      if (SimplifyDemandedInstructionBits(I))
1014        return &I;
1015    }
1016  }
1017
1018  return 0;
1019}
1020
1021Instruction *InstCombiner::visitURem(BinaryOperator &I) {
1022  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1023
1024  if (Value *V = SimplifyURemInst(Op0, Op1, TD))
1025    return ReplaceInstUsesWith(I, V);
1026
1027  if (Instruction *common = commonIRemTransforms(I))
1028    return common;
1029
1030  // (zext A) urem (zext B) --> zext (A urem B)
1031  if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
1032    if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
1033      return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
1034                          I.getType());
1035
1036  // X urem Y -> X and Y-1, where Y is a power of 2,
1037  if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true)) {
1038    Constant *N1 = Constant::getAllOnesValue(I.getType());
1039    Value *Add = Builder->CreateAdd(Op1, N1);
1040    return BinaryOperator::CreateAnd(Op0, Add);
1041  }
1042
1043  return 0;
1044}
1045
1046Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
1047  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1048
1049  if (Value *V = SimplifySRemInst(Op0, Op1, TD))
1050    return ReplaceInstUsesWith(I, V);
1051
1052  // Handle the integer rem common cases
1053  if (Instruction *Common = commonIRemTransforms(I))
1054    return Common;
1055
1056  if (Value *RHSNeg = dyn_castNegVal(Op1))
1057    if (!isa<Constant>(RHSNeg) ||
1058        (isa<ConstantInt>(RHSNeg) &&
1059         cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
1060      // X % -Y -> X % Y
1061      Worklist.AddValue(I.getOperand(1));
1062      I.setOperand(1, RHSNeg);
1063      return &I;
1064    }
1065
1066  // If the sign bits of both operands are zero (i.e. we can prove they are
1067  // unsigned inputs), turn this into a urem.
1068  if (I.getType()->isIntegerTy()) {
1069    APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
1070    if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
1071      // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1072      return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1073    }
1074  }
1075
1076  // If it's a constant vector, flip any negative values positive.
1077  if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1078    Constant *C = cast<Constant>(Op1);
1079    unsigned VWidth = C->getType()->getVectorNumElements();
1080
1081    bool hasNegative = false;
1082    bool hasMissing = false;
1083    for (unsigned i = 0; i != VWidth; ++i) {
1084      Constant *Elt = C->getAggregateElement(i);
1085      if (Elt == 0) {
1086        hasMissing = true;
1087        break;
1088      }
1089
1090      if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1091        if (RHS->isNegative())
1092          hasNegative = true;
1093    }
1094
1095    if (hasNegative && !hasMissing) {
1096      SmallVector<Constant *, 16> Elts(VWidth);
1097      for (unsigned i = 0; i != VWidth; ++i) {
1098        Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
1099        if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1100          if (RHS->isNegative())
1101            Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1102        }
1103      }
1104
1105      Constant *NewRHSV = ConstantVector::get(Elts);
1106      if (NewRHSV != C) {  // Don't loop on -MININT
1107        Worklist.AddValue(I.getOperand(1));
1108        I.setOperand(1, NewRHSV);
1109        return &I;
1110      }
1111    }
1112  }
1113
1114  return 0;
1115}
1116
1117Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
1118  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1119
1120  if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
1121    return ReplaceInstUsesWith(I, V);
1122
1123  // Handle cases involving: rem X, (select Cond, Y, Z)
1124  if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
1125    return &I;
1126
1127  return 0;
1128}
1129