InstCombinePHI.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- InstCombinePHI.cpp -------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitPHINode function.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/IR/DataLayout.h"
19using namespace llvm;
20
21#define DEBUG_TYPE "instcombine"
22
23/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
24/// and if a/b/c and the add's all have a single use, turn this into a phi
25/// and a single binop.
26Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
27  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
28  assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
29  unsigned Opc = FirstInst->getOpcode();
30  Value *LHSVal = FirstInst->getOperand(0);
31  Value *RHSVal = FirstInst->getOperand(1);
32
33  Type *LHSType = LHSVal->getType();
34  Type *RHSType = RHSVal->getType();
35
36  bool isNUW = false, isNSW = false, isExact = false;
37  if (OverflowingBinaryOperator *BO =
38        dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
39    isNUW = BO->hasNoUnsignedWrap();
40    isNSW = BO->hasNoSignedWrap();
41  } else if (PossiblyExactOperator *PEO =
42               dyn_cast<PossiblyExactOperator>(FirstInst))
43    isExact = PEO->isExact();
44
45  // Scan to see if all operands are the same opcode, and all have one use.
46  for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
47    Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
48    if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
49        // Verify type of the LHS matches so we don't fold cmp's of different
50        // types.
51        I->getOperand(0)->getType() != LHSType ||
52        I->getOperand(1)->getType() != RHSType)
53      return nullptr;
54
55    // If they are CmpInst instructions, check their predicates
56    if (CmpInst *CI = dyn_cast<CmpInst>(I))
57      if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
58        return nullptr;
59
60    if (isNUW)
61      isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
62    if (isNSW)
63      isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
64    if (isExact)
65      isExact = cast<PossiblyExactOperator>(I)->isExact();
66
67    // Keep track of which operand needs a phi node.
68    if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
69    if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
70  }
71
72  // If both LHS and RHS would need a PHI, don't do this transformation,
73  // because it would increase the number of PHIs entering the block,
74  // which leads to higher register pressure. This is especially
75  // bad when the PHIs are in the header of a loop.
76  if (!LHSVal && !RHSVal)
77    return nullptr;
78
79  // Otherwise, this is safe to transform!
80
81  Value *InLHS = FirstInst->getOperand(0);
82  Value *InRHS = FirstInst->getOperand(1);
83  PHINode *NewLHS = nullptr, *NewRHS = nullptr;
84  if (!LHSVal) {
85    NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
86                             FirstInst->getOperand(0)->getName() + ".pn");
87    NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
88    InsertNewInstBefore(NewLHS, PN);
89    LHSVal = NewLHS;
90  }
91
92  if (!RHSVal) {
93    NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
94                             FirstInst->getOperand(1)->getName() + ".pn");
95    NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
96    InsertNewInstBefore(NewRHS, PN);
97    RHSVal = NewRHS;
98  }
99
100  // Add all operands to the new PHIs.
101  if (NewLHS || NewRHS) {
102    for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
103      Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
104      if (NewLHS) {
105        Value *NewInLHS = InInst->getOperand(0);
106        NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
107      }
108      if (NewRHS) {
109        Value *NewInRHS = InInst->getOperand(1);
110        NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
111      }
112    }
113  }
114
115  if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
116    CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
117                                     LHSVal, RHSVal);
118    NewCI->setDebugLoc(FirstInst->getDebugLoc());
119    return NewCI;
120  }
121
122  BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
123  BinaryOperator *NewBinOp =
124    BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
125  if (isNUW) NewBinOp->setHasNoUnsignedWrap();
126  if (isNSW) NewBinOp->setHasNoSignedWrap();
127  if (isExact) NewBinOp->setIsExact();
128  NewBinOp->setDebugLoc(FirstInst->getDebugLoc());
129  return NewBinOp;
130}
131
132Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
133  GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
134
135  SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
136                                        FirstInst->op_end());
137  // This is true if all GEP bases are allocas and if all indices into them are
138  // constants.
139  bool AllBasePointersAreAllocas = true;
140
141  // We don't want to replace this phi if the replacement would require
142  // more than one phi, which leads to higher register pressure. This is
143  // especially bad when the PHIs are in the header of a loop.
144  bool NeededPhi = false;
145
146  bool AllInBounds = true;
147
148  // Scan to see if all operands are the same opcode, and all have one use.
149  for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
150    GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
151    if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
152      GEP->getNumOperands() != FirstInst->getNumOperands())
153      return nullptr;
154
155    AllInBounds &= GEP->isInBounds();
156
157    // Keep track of whether or not all GEPs are of alloca pointers.
158    if (AllBasePointersAreAllocas &&
159        (!isa<AllocaInst>(GEP->getOperand(0)) ||
160         !GEP->hasAllConstantIndices()))
161      AllBasePointersAreAllocas = false;
162
163    // Compare the operand lists.
164    for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
165      if (FirstInst->getOperand(op) == GEP->getOperand(op))
166        continue;
167
168      // Don't merge two GEPs when two operands differ (introducing phi nodes)
169      // if one of the PHIs has a constant for the index.  The index may be
170      // substantially cheaper to compute for the constants, so making it a
171      // variable index could pessimize the path.  This also handles the case
172      // for struct indices, which must always be constant.
173      if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
174          isa<ConstantInt>(GEP->getOperand(op)))
175        return nullptr;
176
177      if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
178        return nullptr;
179
180      // If we already needed a PHI for an earlier operand, and another operand
181      // also requires a PHI, we'd be introducing more PHIs than we're
182      // eliminating, which increases register pressure on entry to the PHI's
183      // block.
184      if (NeededPhi)
185        return nullptr;
186
187      FixedOperands[op] = nullptr;  // Needs a PHI.
188      NeededPhi = true;
189    }
190  }
191
192  // If all of the base pointers of the PHI'd GEPs are from allocas, don't
193  // bother doing this transformation.  At best, this will just save a bit of
194  // offset calculation, but all the predecessors will have to materialize the
195  // stack address into a register anyway.  We'd actually rather *clone* the
196  // load up into the predecessors so that we have a load of a gep of an alloca,
197  // which can usually all be folded into the load.
198  if (AllBasePointersAreAllocas)
199    return nullptr;
200
201  // Otherwise, this is safe to transform.  Insert PHI nodes for each operand
202  // that is variable.
203  SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
204
205  bool HasAnyPHIs = false;
206  for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
207    if (FixedOperands[i]) continue;  // operand doesn't need a phi.
208    Value *FirstOp = FirstInst->getOperand(i);
209    PHINode *NewPN = PHINode::Create(FirstOp->getType(), e,
210                                     FirstOp->getName()+".pn");
211    InsertNewInstBefore(NewPN, PN);
212
213    NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
214    OperandPhis[i] = NewPN;
215    FixedOperands[i] = NewPN;
216    HasAnyPHIs = true;
217  }
218
219
220  // Add all operands to the new PHIs.
221  if (HasAnyPHIs) {
222    for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
223      GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
224      BasicBlock *InBB = PN.getIncomingBlock(i);
225
226      for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
227        if (PHINode *OpPhi = OperandPhis[op])
228          OpPhi->addIncoming(InGEP->getOperand(op), InBB);
229    }
230  }
231
232  Value *Base = FixedOperands[0];
233  GetElementPtrInst *NewGEP =
234    GetElementPtrInst::Create(Base, makeArrayRef(FixedOperands).slice(1));
235  if (AllInBounds) NewGEP->setIsInBounds();
236  NewGEP->setDebugLoc(FirstInst->getDebugLoc());
237  return NewGEP;
238}
239
240
241/// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to
242/// sink the load out of the block that defines it.  This means that it must be
243/// obvious the value of the load is not changed from the point of the load to
244/// the end of the block it is in.
245///
246/// Finally, it is safe, but not profitable, to sink a load targeting a
247/// non-address-taken alloca.  Doing so will cause us to not promote the alloca
248/// to a register.
249static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
250  BasicBlock::iterator BBI = L, E = L->getParent()->end();
251
252  for (++BBI; BBI != E; ++BBI)
253    if (BBI->mayWriteToMemory())
254      return false;
255
256  // Check for non-address taken alloca.  If not address-taken already, it isn't
257  // profitable to do this xform.
258  if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
259    bool isAddressTaken = false;
260    for (User *U : AI->users()) {
261      if (isa<LoadInst>(U)) continue;
262      if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
263        // If storing TO the alloca, then the address isn't taken.
264        if (SI->getOperand(1) == AI) continue;
265      }
266      isAddressTaken = true;
267      break;
268    }
269
270    if (!isAddressTaken && AI->isStaticAlloca())
271      return false;
272  }
273
274  // If this load is a load from a GEP with a constant offset from an alloca,
275  // then we don't want to sink it.  In its present form, it will be
276  // load [constant stack offset].  Sinking it will cause us to have to
277  // materialize the stack addresses in each predecessor in a register only to
278  // do a shared load from register in the successor.
279  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
280    if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
281      if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
282        return false;
283
284  return true;
285}
286
287Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
288  LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
289
290  // FIXME: This is overconservative; this transform is allowed in some cases
291  // for atomic operations.
292  if (FirstLI->isAtomic())
293    return nullptr;
294
295  // When processing loads, we need to propagate two bits of information to the
296  // sunk load: whether it is volatile, and what its alignment is.  We currently
297  // don't sink loads when some have their alignment specified and some don't.
298  // visitLoadInst will propagate an alignment onto the load when TD is around,
299  // and if TD isn't around, we can't handle the mixed case.
300  bool isVolatile = FirstLI->isVolatile();
301  unsigned LoadAlignment = FirstLI->getAlignment();
302  unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
303
304  // We can't sink the load if the loaded value could be modified between the
305  // load and the PHI.
306  if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
307      !isSafeAndProfitableToSinkLoad(FirstLI))
308    return nullptr;
309
310  // If the PHI is of volatile loads and the load block has multiple
311  // successors, sinking it would remove a load of the volatile value from
312  // the path through the other successor.
313  if (isVolatile &&
314      FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
315    return nullptr;
316
317  // Check to see if all arguments are the same operation.
318  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
319    LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
320    if (!LI || !LI->hasOneUse())
321      return nullptr;
322
323    // We can't sink the load if the loaded value could be modified between
324    // the load and the PHI.
325    if (LI->isVolatile() != isVolatile ||
326        LI->getParent() != PN.getIncomingBlock(i) ||
327        LI->getPointerAddressSpace() != LoadAddrSpace ||
328        !isSafeAndProfitableToSinkLoad(LI))
329      return nullptr;
330
331    // If some of the loads have an alignment specified but not all of them,
332    // we can't do the transformation.
333    if ((LoadAlignment != 0) != (LI->getAlignment() != 0))
334      return nullptr;
335
336    LoadAlignment = std::min(LoadAlignment, LI->getAlignment());
337
338    // If the PHI is of volatile loads and the load block has multiple
339    // successors, sinking it would remove a load of the volatile value from
340    // the path through the other successor.
341    if (isVolatile &&
342        LI->getParent()->getTerminator()->getNumSuccessors() != 1)
343      return nullptr;
344  }
345
346  // Okay, they are all the same operation.  Create a new PHI node of the
347  // correct type, and PHI together all of the LHS's of the instructions.
348  PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
349                                   PN.getNumIncomingValues(),
350                                   PN.getName()+".in");
351
352  Value *InVal = FirstLI->getOperand(0);
353  NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
354
355  // Add all operands to the new PHI.
356  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
357    Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0);
358    if (NewInVal != InVal)
359      InVal = nullptr;
360    NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
361  }
362
363  Value *PhiVal;
364  if (InVal) {
365    // The new PHI unions all of the same values together.  This is really
366    // common, so we handle it intelligently here for compile-time speed.
367    PhiVal = InVal;
368    delete NewPN;
369  } else {
370    InsertNewInstBefore(NewPN, PN);
371    PhiVal = NewPN;
372  }
373
374  // If this was a volatile load that we are merging, make sure to loop through
375  // and mark all the input loads as non-volatile.  If we don't do this, we will
376  // insert a new volatile load and the old ones will not be deletable.
377  if (isVolatile)
378    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
379      cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
380
381  LoadInst *NewLI = new LoadInst(PhiVal, "", isVolatile, LoadAlignment);
382  NewLI->setDebugLoc(FirstLI->getDebugLoc());
383  return NewLI;
384}
385
386
387
388/// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
389/// operator and they all are only used by the PHI, PHI together their
390/// inputs, and do the operation once, to the result of the PHI.
391Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
392  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
393
394  if (isa<GetElementPtrInst>(FirstInst))
395    return FoldPHIArgGEPIntoPHI(PN);
396  if (isa<LoadInst>(FirstInst))
397    return FoldPHIArgLoadIntoPHI(PN);
398
399  // Scan the instruction, looking for input operations that can be folded away.
400  // If all input operands to the phi are the same instruction (e.g. a cast from
401  // the same type or "+42") we can pull the operation through the PHI, reducing
402  // code size and simplifying code.
403  Constant *ConstantOp = nullptr;
404  Type *CastSrcTy = nullptr;
405  bool isNUW = false, isNSW = false, isExact = false;
406
407  if (isa<CastInst>(FirstInst)) {
408    CastSrcTy = FirstInst->getOperand(0)->getType();
409
410    // Be careful about transforming integer PHIs.  We don't want to pessimize
411    // the code by turning an i32 into an i1293.
412    if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
413      if (!ShouldChangeType(PN.getType(), CastSrcTy))
414        return nullptr;
415    }
416  } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
417    // Can fold binop, compare or shift here if the RHS is a constant,
418    // otherwise call FoldPHIArgBinOpIntoPHI.
419    ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
420    if (!ConstantOp)
421      return FoldPHIArgBinOpIntoPHI(PN);
422
423    if (OverflowingBinaryOperator *BO =
424        dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
425      isNUW = BO->hasNoUnsignedWrap();
426      isNSW = BO->hasNoSignedWrap();
427    } else if (PossiblyExactOperator *PEO =
428               dyn_cast<PossiblyExactOperator>(FirstInst))
429      isExact = PEO->isExact();
430  } else {
431    return nullptr;  // Cannot fold this operation.
432  }
433
434  // Check to see if all arguments are the same operation.
435  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
436    Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
437    if (!I || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
438      return nullptr;
439    if (CastSrcTy) {
440      if (I->getOperand(0)->getType() != CastSrcTy)
441        return nullptr;  // Cast operation must match.
442    } else if (I->getOperand(1) != ConstantOp) {
443      return nullptr;
444    }
445
446    if (isNUW)
447      isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
448    if (isNSW)
449      isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
450    if (isExact)
451      isExact = cast<PossiblyExactOperator>(I)->isExact();
452  }
453
454  // Okay, they are all the same operation.  Create a new PHI node of the
455  // correct type, and PHI together all of the LHS's of the instructions.
456  PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
457                                   PN.getNumIncomingValues(),
458                                   PN.getName()+".in");
459
460  Value *InVal = FirstInst->getOperand(0);
461  NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
462
463  // Add all operands to the new PHI.
464  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
465    Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
466    if (NewInVal != InVal)
467      InVal = nullptr;
468    NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
469  }
470
471  Value *PhiVal;
472  if (InVal) {
473    // The new PHI unions all of the same values together.  This is really
474    // common, so we handle it intelligently here for compile-time speed.
475    PhiVal = InVal;
476    delete NewPN;
477  } else {
478    InsertNewInstBefore(NewPN, PN);
479    PhiVal = NewPN;
480  }
481
482  // Insert and return the new operation.
483  if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
484    CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
485                                       PN.getType());
486    NewCI->setDebugLoc(FirstInst->getDebugLoc());
487    return NewCI;
488  }
489
490  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
491    BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
492    if (isNUW) BinOp->setHasNoUnsignedWrap();
493    if (isNSW) BinOp->setHasNoSignedWrap();
494    if (isExact) BinOp->setIsExact();
495    BinOp->setDebugLoc(FirstInst->getDebugLoc());
496    return BinOp;
497  }
498
499  CmpInst *CIOp = cast<CmpInst>(FirstInst);
500  CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
501                                   PhiVal, ConstantOp);
502  NewCI->setDebugLoc(FirstInst->getDebugLoc());
503  return NewCI;
504}
505
506/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
507/// that is dead.
508static bool DeadPHICycle(PHINode *PN,
509                         SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
510  if (PN->use_empty()) return true;
511  if (!PN->hasOneUse()) return false;
512
513  // Remember this node, and if we find the cycle, return.
514  if (!PotentiallyDeadPHIs.insert(PN))
515    return true;
516
517  // Don't scan crazily complex things.
518  if (PotentiallyDeadPHIs.size() == 16)
519    return false;
520
521  if (PHINode *PU = dyn_cast<PHINode>(PN->user_back()))
522    return DeadPHICycle(PU, PotentiallyDeadPHIs);
523
524  return false;
525}
526
527/// PHIsEqualValue - Return true if this phi node is always equal to
528/// NonPhiInVal.  This happens with mutually cyclic phi nodes like:
529///   z = some value; x = phi (y, z); y = phi (x, z)
530static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
531                           SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
532  // See if we already saw this PHI node.
533  if (!ValueEqualPHIs.insert(PN))
534    return true;
535
536  // Don't scan crazily complex things.
537  if (ValueEqualPHIs.size() == 16)
538    return false;
539
540  // Scan the operands to see if they are either phi nodes or are equal to
541  // the value.
542  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
543    Value *Op = PN->getIncomingValue(i);
544    if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
545      if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
546        return false;
547    } else if (Op != NonPhiInVal)
548      return false;
549  }
550
551  return true;
552}
553
554
555namespace {
556struct PHIUsageRecord {
557  unsigned PHIId;     // The ID # of the PHI (something determinstic to sort on)
558  unsigned Shift;     // The amount shifted.
559  Instruction *Inst;  // The trunc instruction.
560
561  PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
562    : PHIId(pn), Shift(Sh), Inst(User) {}
563
564  bool operator<(const PHIUsageRecord &RHS) const {
565    if (PHIId < RHS.PHIId) return true;
566    if (PHIId > RHS.PHIId) return false;
567    if (Shift < RHS.Shift) return true;
568    if (Shift > RHS.Shift) return false;
569    return Inst->getType()->getPrimitiveSizeInBits() <
570           RHS.Inst->getType()->getPrimitiveSizeInBits();
571  }
572};
573
574struct LoweredPHIRecord {
575  PHINode *PN;        // The PHI that was lowered.
576  unsigned Shift;     // The amount shifted.
577  unsigned Width;     // The width extracted.
578
579  LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty)
580    : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
581
582  // Ctor form used by DenseMap.
583  LoweredPHIRecord(PHINode *pn, unsigned Sh)
584    : PN(pn), Shift(Sh), Width(0) {}
585};
586}
587
588namespace llvm {
589  template<>
590  struct DenseMapInfo<LoweredPHIRecord> {
591    static inline LoweredPHIRecord getEmptyKey() {
592      return LoweredPHIRecord(nullptr, 0);
593    }
594    static inline LoweredPHIRecord getTombstoneKey() {
595      return LoweredPHIRecord(nullptr, 1);
596    }
597    static unsigned getHashValue(const LoweredPHIRecord &Val) {
598      return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
599             (Val.Width>>3);
600    }
601    static bool isEqual(const LoweredPHIRecord &LHS,
602                        const LoweredPHIRecord &RHS) {
603      return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
604             LHS.Width == RHS.Width;
605    }
606  };
607}
608
609
610/// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an
611/// illegal type: see if it is only used by trunc or trunc(lshr) operations.  If
612/// so, we split the PHI into the various pieces being extracted.  This sort of
613/// thing is introduced when SROA promotes an aggregate to large integer values.
614///
615/// TODO: The user of the trunc may be an bitcast to float/double/vector or an
616/// inttoptr.  We should produce new PHIs in the right type.
617///
618Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
619  // PHIUsers - Keep track of all of the truncated values extracted from a set
620  // of PHIs, along with their offset.  These are the things we want to rewrite.
621  SmallVector<PHIUsageRecord, 16> PHIUsers;
622
623  // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
624  // nodes which are extracted from. PHIsToSlice is a set we use to avoid
625  // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
626  // check the uses of (to ensure they are all extracts).
627  SmallVector<PHINode*, 8> PHIsToSlice;
628  SmallPtrSet<PHINode*, 8> PHIsInspected;
629
630  PHIsToSlice.push_back(&FirstPhi);
631  PHIsInspected.insert(&FirstPhi);
632
633  for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
634    PHINode *PN = PHIsToSlice[PHIId];
635
636    // Scan the input list of the PHI.  If any input is an invoke, and if the
637    // input is defined in the predecessor, then we won't be split the critical
638    // edge which is required to insert a truncate.  Because of this, we have to
639    // bail out.
640    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
641      InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
642      if (!II) continue;
643      if (II->getParent() != PN->getIncomingBlock(i))
644        continue;
645
646      // If we have a phi, and if it's directly in the predecessor, then we have
647      // a critical edge where we need to put the truncate.  Since we can't
648      // split the edge in instcombine, we have to bail out.
649      return nullptr;
650    }
651
652    for (User *U : PN->users()) {
653      Instruction *UserI = cast<Instruction>(U);
654
655      // If the user is a PHI, inspect its uses recursively.
656      if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
657        if (PHIsInspected.insert(UserPN))
658          PHIsToSlice.push_back(UserPN);
659        continue;
660      }
661
662      // Truncates are always ok.
663      if (isa<TruncInst>(UserI)) {
664        PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
665        continue;
666      }
667
668      // Otherwise it must be a lshr which can only be used by one trunc.
669      if (UserI->getOpcode() != Instruction::LShr ||
670          !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
671          !isa<ConstantInt>(UserI->getOperand(1)))
672        return nullptr;
673
674      unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
675      PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
676    }
677  }
678
679  // If we have no users, they must be all self uses, just nuke the PHI.
680  if (PHIUsers.empty())
681    return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
682
683  // If this phi node is transformable, create new PHIs for all the pieces
684  // extracted out of it.  First, sort the users by their offset and size.
685  array_pod_sort(PHIUsers.begin(), PHIUsers.end());
686
687  DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
688        for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
689          dbgs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] << '\n';
690    );
691
692  // PredValues - This is a temporary used when rewriting PHI nodes.  It is
693  // hoisted out here to avoid construction/destruction thrashing.
694  DenseMap<BasicBlock*, Value*> PredValues;
695
696  // ExtractedVals - Each new PHI we introduce is saved here so we don't
697  // introduce redundant PHIs.
698  DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
699
700  for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
701    unsigned PHIId = PHIUsers[UserI].PHIId;
702    PHINode *PN = PHIsToSlice[PHIId];
703    unsigned Offset = PHIUsers[UserI].Shift;
704    Type *Ty = PHIUsers[UserI].Inst->getType();
705
706    PHINode *EltPHI;
707
708    // If we've already lowered a user like this, reuse the previously lowered
709    // value.
710    if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {
711
712      // Otherwise, Create the new PHI node for this user.
713      EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
714                               PN->getName()+".off"+Twine(Offset), PN);
715      assert(EltPHI->getType() != PN->getType() &&
716             "Truncate didn't shrink phi?");
717
718      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
719        BasicBlock *Pred = PN->getIncomingBlock(i);
720        Value *&PredVal = PredValues[Pred];
721
722        // If we already have a value for this predecessor, reuse it.
723        if (PredVal) {
724          EltPHI->addIncoming(PredVal, Pred);
725          continue;
726        }
727
728        // Handle the PHI self-reuse case.
729        Value *InVal = PN->getIncomingValue(i);
730        if (InVal == PN) {
731          PredVal = EltPHI;
732          EltPHI->addIncoming(PredVal, Pred);
733          continue;
734        }
735
736        if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
737          // If the incoming value was a PHI, and if it was one of the PHIs we
738          // already rewrote it, just use the lowered value.
739          if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
740            PredVal = Res;
741            EltPHI->addIncoming(PredVal, Pred);
742            continue;
743          }
744        }
745
746        // Otherwise, do an extract in the predecessor.
747        Builder->SetInsertPoint(Pred, Pred->getTerminator());
748        Value *Res = InVal;
749        if (Offset)
750          Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(),
751                                                          Offset), "extract");
752        Res = Builder->CreateTrunc(Res, Ty, "extract.t");
753        PredVal = Res;
754        EltPHI->addIncoming(Res, Pred);
755
756        // If the incoming value was a PHI, and if it was one of the PHIs we are
757        // rewriting, we will ultimately delete the code we inserted.  This
758        // means we need to revisit that PHI to make sure we extract out the
759        // needed piece.
760        if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
761          if (PHIsInspected.count(OldInVal)) {
762            unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(),
763                                          OldInVal)-PHIsToSlice.begin();
764            PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,
765                                              cast<Instruction>(Res)));
766            ++UserE;
767          }
768      }
769      PredValues.clear();
770
771      DEBUG(dbgs() << "  Made element PHI for offset " << Offset << ": "
772                   << *EltPHI << '\n');
773      ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
774    }
775
776    // Replace the use of this piece with the PHI node.
777    ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
778  }
779
780  // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
781  // with undefs.
782  Value *Undef = UndefValue::get(FirstPhi.getType());
783  for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
784    ReplaceInstUsesWith(*PHIsToSlice[i], Undef);
785  return ReplaceInstUsesWith(FirstPhi, Undef);
786}
787
788// PHINode simplification
789//
790Instruction *InstCombiner::visitPHINode(PHINode &PN) {
791  if (Value *V = SimplifyInstruction(&PN, DL, TLI))
792    return ReplaceInstUsesWith(PN, V);
793
794  // If all PHI operands are the same operation, pull them through the PHI,
795  // reducing code size.
796  if (isa<Instruction>(PN.getIncomingValue(0)) &&
797      isa<Instruction>(PN.getIncomingValue(1)) &&
798      cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
799      cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
800      // FIXME: The hasOneUse check will fail for PHIs that use the value more
801      // than themselves more than once.
802      PN.getIncomingValue(0)->hasOneUse())
803    if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
804      return Result;
805
806  // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
807  // this PHI only has a single use (a PHI), and if that PHI only has one use (a
808  // PHI)... break the cycle.
809  if (PN.hasOneUse()) {
810    Instruction *PHIUser = cast<Instruction>(PN.user_back());
811    if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
812      SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
813      PotentiallyDeadPHIs.insert(&PN);
814      if (DeadPHICycle(PU, PotentiallyDeadPHIs))
815        return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
816    }
817
818    // If this phi has a single use, and if that use just computes a value for
819    // the next iteration of a loop, delete the phi.  This occurs with unused
820    // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this
821    // common case here is good because the only other things that catch this
822    // are induction variable analysis (sometimes) and ADCE, which is only run
823    // late.
824    if (PHIUser->hasOneUse() &&
825        (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
826        PHIUser->user_back() == &PN) {
827      return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
828    }
829  }
830
831  // We sometimes end up with phi cycles that non-obviously end up being the
832  // same value, for example:
833  //   z = some value; x = phi (y, z); y = phi (x, z)
834  // where the phi nodes don't necessarily need to be in the same block.  Do a
835  // quick check to see if the PHI node only contains a single non-phi value, if
836  // so, scan to see if the phi cycle is actually equal to that value.
837  {
838    unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
839    // Scan for the first non-phi operand.
840    while (InValNo != NumIncomingVals &&
841           isa<PHINode>(PN.getIncomingValue(InValNo)))
842      ++InValNo;
843
844    if (InValNo != NumIncomingVals) {
845      Value *NonPhiInVal = PN.getIncomingValue(InValNo);
846
847      // Scan the rest of the operands to see if there are any conflicts, if so
848      // there is no need to recursively scan other phis.
849      for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
850        Value *OpVal = PN.getIncomingValue(InValNo);
851        if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
852          break;
853      }
854
855      // If we scanned over all operands, then we have one unique value plus
856      // phi values.  Scan PHI nodes to see if they all merge in each other or
857      // the value.
858      if (InValNo == NumIncomingVals) {
859        SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
860        if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
861          return ReplaceInstUsesWith(PN, NonPhiInVal);
862      }
863    }
864  }
865
866  // If there are multiple PHIs, sort their operands so that they all list
867  // the blocks in the same order. This will help identical PHIs be eliminated
868  // by other passes. Other passes shouldn't depend on this for correctness
869  // however.
870  PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
871  if (&PN != FirstPN)
872    for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
873      BasicBlock *BBA = PN.getIncomingBlock(i);
874      BasicBlock *BBB = FirstPN->getIncomingBlock(i);
875      if (BBA != BBB) {
876        Value *VA = PN.getIncomingValue(i);
877        unsigned j = PN.getBasicBlockIndex(BBB);
878        Value *VB = PN.getIncomingValue(j);
879        PN.setIncomingBlock(i, BBB);
880        PN.setIncomingValue(i, VB);
881        PN.setIncomingBlock(j, BBA);
882        PN.setIncomingValue(j, VA);
883        // NOTE: Instcombine normally would want us to "return &PN" if we
884        // modified any of the operands of an instruction.  However, since we
885        // aren't adding or removing uses (just rearranging them) we don't do
886        // this in this case.
887      }
888    }
889
890  // If this is an integer PHI and we know that it has an illegal type, see if
891  // it is only used by trunc or trunc(lshr) operations.  If so, we split the
892  // PHI into the various pieces being extracted.  This sort of thing is
893  // introduced when SROA promotes an aggregate to a single large integer type.
894  if (PN.getType()->isIntegerTy() && DL &&
895      !DL->isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
896    if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
897      return Res;
898
899  return nullptr;
900}
901