InstCombineSimplifyDemanded.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains logic for simplifying instructions based on information
11// about how they are used.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstCombine.h"
16#include "llvm/IR/DataLayout.h"
17#include "llvm/IR/IntrinsicInst.h"
18#include "llvm/IR/PatternMatch.h"
19
20using namespace llvm;
21using namespace llvm::PatternMatch;
22
23#define DEBUG_TYPE "instcombine"
24
25/// ShrinkDemandedConstant - Check to see if the specified operand of the
26/// specified instruction is a constant integer.  If so, check to see if there
27/// are any bits set in the constant that are not demanded.  If so, shrink the
28/// constant and return true.
29static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
30                                   APInt Demanded) {
31  assert(I && "No instruction?");
32  assert(OpNo < I->getNumOperands() && "Operand index too large");
33
34  // If the operand is not a constant integer, nothing to do.
35  ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
36  if (!OpC) return false;
37
38  // If there are no bits set that aren't demanded, nothing to do.
39  Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
40  if ((~Demanded & OpC->getValue()) == 0)
41    return false;
42
43  // This instruction is producing bits that are not demanded. Shrink the RHS.
44  Demanded &= OpC->getValue();
45  I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
46  return true;
47}
48
49
50
51/// SimplifyDemandedInstructionBits - Inst is an integer instruction that
52/// SimplifyDemandedBits knows about.  See if the instruction has any
53/// properties that allow us to simplify its operands.
54bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
55  unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
56  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
57  APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
58
59  Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
60                                     KnownZero, KnownOne, 0);
61  if (!V) return false;
62  if (V == &Inst) return true;
63  ReplaceInstUsesWith(Inst, V);
64  return true;
65}
66
67/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
68/// specified instruction operand if possible, updating it in place.  It returns
69/// true if it made any change and false otherwise.
70bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
71                                        APInt &KnownZero, APInt &KnownOne,
72                                        unsigned Depth) {
73  Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
74                                          KnownZero, KnownOne, Depth);
75  if (!NewVal) return false;
76  U = NewVal;
77  return true;
78}
79
80
81/// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
82/// value based on the demanded bits.  When this function is called, it is known
83/// that only the bits set in DemandedMask of the result of V are ever used
84/// downstream. Consequently, depending on the mask and V, it may be possible
85/// to replace V with a constant or one of its operands. In such cases, this
86/// function does the replacement and returns true. In all other cases, it
87/// returns false after analyzing the expression and setting KnownOne and known
88/// to be one in the expression.  KnownZero contains all the bits that are known
89/// to be zero in the expression. These are provided to potentially allow the
90/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
91/// the expression. KnownOne and KnownZero always follow the invariant that
92/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
93/// the bits in KnownOne and KnownZero may only be accurate for those bits set
94/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
95/// and KnownOne must all be the same.
96///
97/// This returns null if it did not change anything and it permits no
98/// simplification.  This returns V itself if it did some simplification of V's
99/// operands based on the information about what bits are demanded. This returns
100/// some other non-null value if it found out that V is equal to another value
101/// in the context where the specified bits are demanded, but not for all users.
102Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
103                                             APInt &KnownZero, APInt &KnownOne,
104                                             unsigned Depth) {
105  assert(V != nullptr && "Null pointer of Value???");
106  assert(Depth <= 6 && "Limit Search Depth");
107  uint32_t BitWidth = DemandedMask.getBitWidth();
108  Type *VTy = V->getType();
109  assert((DL || !VTy->isPointerTy()) &&
110         "SimplifyDemandedBits needs to know bit widths!");
111  assert((!DL || DL->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
112         (!VTy->isIntOrIntVectorTy() ||
113          VTy->getScalarSizeInBits() == BitWidth) &&
114         KnownZero.getBitWidth() == BitWidth &&
115         KnownOne.getBitWidth() == BitWidth &&
116         "Value *V, DemandedMask, KnownZero and KnownOne "
117         "must have same BitWidth");
118  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
119    // We know all of the bits for a constant!
120    KnownOne = CI->getValue() & DemandedMask;
121    KnownZero = ~KnownOne & DemandedMask;
122    return nullptr;
123  }
124  if (isa<ConstantPointerNull>(V)) {
125    // We know all of the bits for a constant!
126    KnownOne.clearAllBits();
127    KnownZero = DemandedMask;
128    return nullptr;
129  }
130
131  KnownZero.clearAllBits();
132  KnownOne.clearAllBits();
133  if (DemandedMask == 0) {   // Not demanding any bits from V.
134    if (isa<UndefValue>(V))
135      return nullptr;
136    return UndefValue::get(VTy);
137  }
138
139  if (Depth == 6)        // Limit search depth.
140    return nullptr;
141
142  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
143  APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
144
145  Instruction *I = dyn_cast<Instruction>(V);
146  if (!I) {
147    computeKnownBits(V, KnownZero, KnownOne, Depth);
148    return nullptr;        // Only analyze instructions.
149  }
150
151  // If there are multiple uses of this value and we aren't at the root, then
152  // we can't do any simplifications of the operands, because DemandedMask
153  // only reflects the bits demanded by *one* of the users.
154  if (Depth != 0 && !I->hasOneUse()) {
155    // Despite the fact that we can't simplify this instruction in all User's
156    // context, we can at least compute the knownzero/knownone bits, and we can
157    // do simplifications that apply to *just* the one user if we know that
158    // this instruction has a simpler value in that context.
159    if (I->getOpcode() == Instruction::And) {
160      // If either the LHS or the RHS are Zero, the result is zero.
161      computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
162      computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
163
164      // If all of the demanded bits are known 1 on one side, return the other.
165      // These bits cannot contribute to the result of the 'and' in this
166      // context.
167      if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
168          (DemandedMask & ~LHSKnownZero))
169        return I->getOperand(0);
170      if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
171          (DemandedMask & ~RHSKnownZero))
172        return I->getOperand(1);
173
174      // If all of the demanded bits in the inputs are known zeros, return zero.
175      if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
176        return Constant::getNullValue(VTy);
177
178    } else if (I->getOpcode() == Instruction::Or) {
179      // We can simplify (X|Y) -> X or Y in the user's context if we know that
180      // only bits from X or Y are demanded.
181
182      // If either the LHS or the RHS are One, the result is One.
183      computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
184      computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
185
186      // If all of the demanded bits are known zero on one side, return the
187      // other.  These bits cannot contribute to the result of the 'or' in this
188      // context.
189      if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
190          (DemandedMask & ~LHSKnownOne))
191        return I->getOperand(0);
192      if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
193          (DemandedMask & ~RHSKnownOne))
194        return I->getOperand(1);
195
196      // If all of the potentially set bits on one side are known to be set on
197      // the other side, just use the 'other' side.
198      if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
199          (DemandedMask & (~RHSKnownZero)))
200        return I->getOperand(0);
201      if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
202          (DemandedMask & (~LHSKnownZero)))
203        return I->getOperand(1);
204    } else if (I->getOpcode() == Instruction::Xor) {
205      // We can simplify (X^Y) -> X or Y in the user's context if we know that
206      // only bits from X or Y are demanded.
207
208      computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
209      computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
210
211      // If all of the demanded bits are known zero on one side, return the
212      // other.
213      if ((DemandedMask & RHSKnownZero) == DemandedMask)
214        return I->getOperand(0);
215      if ((DemandedMask & LHSKnownZero) == DemandedMask)
216        return I->getOperand(1);
217    }
218
219    // Compute the KnownZero/KnownOne bits to simplify things downstream.
220    computeKnownBits(I, KnownZero, KnownOne, Depth);
221    return nullptr;
222  }
223
224  // If this is the root being simplified, allow it to have multiple uses,
225  // just set the DemandedMask to all bits so that we can try to simplify the
226  // operands.  This allows visitTruncInst (for example) to simplify the
227  // operand of a trunc without duplicating all the logic below.
228  if (Depth == 0 && !V->hasOneUse())
229    DemandedMask = APInt::getAllOnesValue(BitWidth);
230
231  switch (I->getOpcode()) {
232  default:
233    computeKnownBits(I, KnownZero, KnownOne, Depth);
234    break;
235  case Instruction::And:
236    // If either the LHS or the RHS are Zero, the result is zero.
237    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
238                             RHSKnownZero, RHSKnownOne, Depth+1) ||
239        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
240                             LHSKnownZero, LHSKnownOne, Depth+1))
241      return I;
242    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
243    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
244
245    // If all of the demanded bits are known 1 on one side, return the other.
246    // These bits cannot contribute to the result of the 'and'.
247    if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
248        (DemandedMask & ~LHSKnownZero))
249      return I->getOperand(0);
250    if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
251        (DemandedMask & ~RHSKnownZero))
252      return I->getOperand(1);
253
254    // If all of the demanded bits in the inputs are known zeros, return zero.
255    if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
256      return Constant::getNullValue(VTy);
257
258    // If the RHS is a constant, see if we can simplify it.
259    if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
260      return I;
261
262    // Output known-1 bits are only known if set in both the LHS & RHS.
263    KnownOne = RHSKnownOne & LHSKnownOne;
264    // Output known-0 are known to be clear if zero in either the LHS | RHS.
265    KnownZero = RHSKnownZero | LHSKnownZero;
266    break;
267  case Instruction::Or:
268    // If either the LHS or the RHS are One, the result is One.
269    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
270                             RHSKnownZero, RHSKnownOne, Depth+1) ||
271        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
272                             LHSKnownZero, LHSKnownOne, Depth+1))
273      return I;
274    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
275    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
276
277    // If all of the demanded bits are known zero on one side, return the other.
278    // These bits cannot contribute to the result of the 'or'.
279    if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
280        (DemandedMask & ~LHSKnownOne))
281      return I->getOperand(0);
282    if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
283        (DemandedMask & ~RHSKnownOne))
284      return I->getOperand(1);
285
286    // If all of the potentially set bits on one side are known to be set on
287    // the other side, just use the 'other' side.
288    if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
289        (DemandedMask & (~RHSKnownZero)))
290      return I->getOperand(0);
291    if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
292        (DemandedMask & (~LHSKnownZero)))
293      return I->getOperand(1);
294
295    // If the RHS is a constant, see if we can simplify it.
296    if (ShrinkDemandedConstant(I, 1, DemandedMask))
297      return I;
298
299    // Output known-0 bits are only known if clear in both the LHS & RHS.
300    KnownZero = RHSKnownZero & LHSKnownZero;
301    // Output known-1 are known to be set if set in either the LHS | RHS.
302    KnownOne = RHSKnownOne | LHSKnownOne;
303    break;
304  case Instruction::Xor: {
305    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
306                             RHSKnownZero, RHSKnownOne, Depth+1) ||
307        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
308                             LHSKnownZero, LHSKnownOne, Depth+1))
309      return I;
310    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
311    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
312
313    // If all of the demanded bits are known zero on one side, return the other.
314    // These bits cannot contribute to the result of the 'xor'.
315    if ((DemandedMask & RHSKnownZero) == DemandedMask)
316      return I->getOperand(0);
317    if ((DemandedMask & LHSKnownZero) == DemandedMask)
318      return I->getOperand(1);
319
320    // If all of the demanded bits are known to be zero on one side or the
321    // other, turn this into an *inclusive* or.
322    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
323    if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
324      Instruction *Or =
325        BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
326                                 I->getName());
327      return InsertNewInstWith(Or, *I);
328    }
329
330    // If all of the demanded bits on one side are known, and all of the set
331    // bits on that side are also known to be set on the other side, turn this
332    // into an AND, as we know the bits will be cleared.
333    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
334    if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
335      // all known
336      if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
337        Constant *AndC = Constant::getIntegerValue(VTy,
338                                                   ~RHSKnownOne & DemandedMask);
339        Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
340        return InsertNewInstWith(And, *I);
341      }
342    }
343
344    // If the RHS is a constant, see if we can simplify it.
345    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
346    if (ShrinkDemandedConstant(I, 1, DemandedMask))
347      return I;
348
349    // If our LHS is an 'and' and if it has one use, and if any of the bits we
350    // are flipping are known to be set, then the xor is just resetting those
351    // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
352    // simplifying both of them.
353    if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
354      if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
355          isa<ConstantInt>(I->getOperand(1)) &&
356          isa<ConstantInt>(LHSInst->getOperand(1)) &&
357          (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
358        ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
359        ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
360        APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
361
362        Constant *AndC =
363          ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
364        Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
365        InsertNewInstWith(NewAnd, *I);
366
367        Constant *XorC =
368          ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
369        Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
370        return InsertNewInstWith(NewXor, *I);
371      }
372
373    // Output known-0 bits are known if clear or set in both the LHS & RHS.
374    KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
375    // Output known-1 are known to be set if set in only one of the LHS, RHS.
376    KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
377    break;
378  }
379  case Instruction::Select:
380    if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
381                             RHSKnownZero, RHSKnownOne, Depth+1) ||
382        SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
383                             LHSKnownZero, LHSKnownOne, Depth+1))
384      return I;
385    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
386    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
387
388    // If the operands are constants, see if we can simplify them.
389    if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
390        ShrinkDemandedConstant(I, 2, DemandedMask))
391      return I;
392
393    // Only known if known in both the LHS and RHS.
394    KnownOne = RHSKnownOne & LHSKnownOne;
395    KnownZero = RHSKnownZero & LHSKnownZero;
396    break;
397  case Instruction::Trunc: {
398    unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
399    DemandedMask = DemandedMask.zext(truncBf);
400    KnownZero = KnownZero.zext(truncBf);
401    KnownOne = KnownOne.zext(truncBf);
402    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
403                             KnownZero, KnownOne, Depth+1))
404      return I;
405    DemandedMask = DemandedMask.trunc(BitWidth);
406    KnownZero = KnownZero.trunc(BitWidth);
407    KnownOne = KnownOne.trunc(BitWidth);
408    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
409    break;
410  }
411  case Instruction::BitCast:
412    if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
413      return nullptr;  // vector->int or fp->int?
414
415    if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
416      if (VectorType *SrcVTy =
417            dyn_cast<VectorType>(I->getOperand(0)->getType())) {
418        if (DstVTy->getNumElements() != SrcVTy->getNumElements())
419          // Don't touch a bitcast between vectors of different element counts.
420          return nullptr;
421      } else
422        // Don't touch a scalar-to-vector bitcast.
423        return nullptr;
424    } else if (I->getOperand(0)->getType()->isVectorTy())
425      // Don't touch a vector-to-scalar bitcast.
426      return nullptr;
427
428    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
429                             KnownZero, KnownOne, Depth+1))
430      return I;
431    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
432    break;
433  case Instruction::ZExt: {
434    // Compute the bits in the result that are not present in the input.
435    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
436
437    DemandedMask = DemandedMask.trunc(SrcBitWidth);
438    KnownZero = KnownZero.trunc(SrcBitWidth);
439    KnownOne = KnownOne.trunc(SrcBitWidth);
440    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
441                             KnownZero, KnownOne, Depth+1))
442      return I;
443    DemandedMask = DemandedMask.zext(BitWidth);
444    KnownZero = KnownZero.zext(BitWidth);
445    KnownOne = KnownOne.zext(BitWidth);
446    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
447    // The top bits are known to be zero.
448    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
449    break;
450  }
451  case Instruction::SExt: {
452    // Compute the bits in the result that are not present in the input.
453    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
454
455    APInt InputDemandedBits = DemandedMask &
456                              APInt::getLowBitsSet(BitWidth, SrcBitWidth);
457
458    APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
459    // If any of the sign extended bits are demanded, we know that the sign
460    // bit is demanded.
461    if ((NewBits & DemandedMask) != 0)
462      InputDemandedBits.setBit(SrcBitWidth-1);
463
464    InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
465    KnownZero = KnownZero.trunc(SrcBitWidth);
466    KnownOne = KnownOne.trunc(SrcBitWidth);
467    if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
468                             KnownZero, KnownOne, Depth+1))
469      return I;
470    InputDemandedBits = InputDemandedBits.zext(BitWidth);
471    KnownZero = KnownZero.zext(BitWidth);
472    KnownOne = KnownOne.zext(BitWidth);
473    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
474
475    // If the sign bit of the input is known set or clear, then we know the
476    // top bits of the result.
477
478    // If the input sign bit is known zero, or if the NewBits are not demanded
479    // convert this into a zero extension.
480    if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
481      // Convert to ZExt cast
482      CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
483      return InsertNewInstWith(NewCast, *I);
484    } else if (KnownOne[SrcBitWidth-1]) {    // Input sign bit known set
485      KnownOne |= NewBits;
486    }
487    break;
488  }
489  case Instruction::Add: {
490    // Figure out what the input bits are.  If the top bits of the and result
491    // are not demanded, then the add doesn't demand them from its input
492    // either.
493    unsigned NLZ = DemandedMask.countLeadingZeros();
494
495    // If there is a constant on the RHS, there are a variety of xformations
496    // we can do.
497    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
498      // If null, this should be simplified elsewhere.  Some of the xforms here
499      // won't work if the RHS is zero.
500      if (RHS->isZero())
501        break;
502
503      // If the top bit of the output is demanded, demand everything from the
504      // input.  Otherwise, we demand all the input bits except NLZ top bits.
505      APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
506
507      // Find information about known zero/one bits in the input.
508      if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
509                               LHSKnownZero, LHSKnownOne, Depth+1))
510        return I;
511
512      // If the RHS of the add has bits set that can't affect the input, reduce
513      // the constant.
514      if (ShrinkDemandedConstant(I, 1, InDemandedBits))
515        return I;
516
517      // Avoid excess work.
518      if (LHSKnownZero == 0 && LHSKnownOne == 0)
519        break;
520
521      // Turn it into OR if input bits are zero.
522      if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
523        Instruction *Or =
524          BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
525                                   I->getName());
526        return InsertNewInstWith(Or, *I);
527      }
528
529      // We can say something about the output known-zero and known-one bits,
530      // depending on potential carries from the input constant and the
531      // unknowns.  For example if the LHS is known to have at most the 0x0F0F0
532      // bits set and the RHS constant is 0x01001, then we know we have a known
533      // one mask of 0x00001 and a known zero mask of 0xE0F0E.
534
535      // To compute this, we first compute the potential carry bits.  These are
536      // the bits which may be modified.  I'm not aware of a better way to do
537      // this scan.
538      const APInt &RHSVal = RHS->getValue();
539      APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
540
541      // Now that we know which bits have carries, compute the known-1/0 sets.
542
543      // Bits are known one if they are known zero in one operand and one in the
544      // other, and there is no input carry.
545      KnownOne = ((LHSKnownZero & RHSVal) |
546                  (LHSKnownOne & ~RHSVal)) & ~CarryBits;
547
548      // Bits are known zero if they are known zero in both operands and there
549      // is no input carry.
550      KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
551    } else {
552      // If the high-bits of this ADD are not demanded, then it does not demand
553      // the high bits of its LHS or RHS.
554      if (DemandedMask[BitWidth-1] == 0) {
555        // Right fill the mask of bits for this ADD to demand the most
556        // significant bit and all those below it.
557        APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
558        if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
559                                 LHSKnownZero, LHSKnownOne, Depth+1) ||
560            SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
561                                 LHSKnownZero, LHSKnownOne, Depth+1))
562          return I;
563      }
564    }
565    break;
566  }
567  case Instruction::Sub:
568    // If the high-bits of this SUB are not demanded, then it does not demand
569    // the high bits of its LHS or RHS.
570    if (DemandedMask[BitWidth-1] == 0) {
571      // Right fill the mask of bits for this SUB to demand the most
572      // significant bit and all those below it.
573      uint32_t NLZ = DemandedMask.countLeadingZeros();
574      APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
575      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
576                               LHSKnownZero, LHSKnownOne, Depth+1) ||
577          SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
578                               LHSKnownZero, LHSKnownOne, Depth+1))
579        return I;
580    }
581
582    // Otherwise just hand the sub off to computeKnownBits to fill in
583    // the known zeros and ones.
584    computeKnownBits(V, KnownZero, KnownOne, Depth);
585
586    // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
587    // zero.
588    if (ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(0))) {
589      APInt I0 = C0->getValue();
590      if ((I0 + 1).isPowerOf2() && (I0 | KnownZero).isAllOnesValue()) {
591        Instruction *Xor = BinaryOperator::CreateXor(I->getOperand(1), C0);
592        return InsertNewInstWith(Xor, *I);
593      }
594    }
595    break;
596  case Instruction::Shl:
597    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
598      {
599        Value *VarX; ConstantInt *C1;
600        if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
601          Instruction *Shr = cast<Instruction>(I->getOperand(0));
602          Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
603                                                KnownZero, KnownOne);
604          if (R)
605            return R;
606        }
607      }
608
609      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
610      APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
611
612      // If the shift is NUW/NSW, then it does demand the high bits.
613      ShlOperator *IOp = cast<ShlOperator>(I);
614      if (IOp->hasNoSignedWrap())
615        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
616      else if (IOp->hasNoUnsignedWrap())
617        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
618
619      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
620                               KnownZero, KnownOne, Depth+1))
621        return I;
622      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
623      KnownZero <<= ShiftAmt;
624      KnownOne  <<= ShiftAmt;
625      // low bits known zero.
626      if (ShiftAmt)
627        KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
628    }
629    break;
630  case Instruction::LShr:
631    // For a logical shift right
632    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
633      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
634
635      // Unsigned shift right.
636      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
637
638      // If the shift is exact, then it does demand the low bits (and knows that
639      // they are zero).
640      if (cast<LShrOperator>(I)->isExact())
641        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
642
643      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
644                               KnownZero, KnownOne, Depth+1))
645        return I;
646      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
647      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
648      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
649      if (ShiftAmt) {
650        // Compute the new bits that are at the top now.
651        APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
652        KnownZero |= HighBits;  // high bits known zero.
653      }
654    }
655    break;
656  case Instruction::AShr:
657    // If this is an arithmetic shift right and only the low-bit is set, we can
658    // always convert this into a logical shr, even if the shift amount is
659    // variable.  The low bit of the shift cannot be an input sign bit unless
660    // the shift amount is >= the size of the datatype, which is undefined.
661    if (DemandedMask == 1) {
662      // Perform the logical shift right.
663      Instruction *NewVal = BinaryOperator::CreateLShr(
664                        I->getOperand(0), I->getOperand(1), I->getName());
665      return InsertNewInstWith(NewVal, *I);
666    }
667
668    // If the sign bit is the only bit demanded by this ashr, then there is no
669    // need to do it, the shift doesn't change the high bit.
670    if (DemandedMask.isSignBit())
671      return I->getOperand(0);
672
673    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
674      uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
675
676      // Signed shift right.
677      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
678      // If any of the "high bits" are demanded, we should set the sign bit as
679      // demanded.
680      if (DemandedMask.countLeadingZeros() <= ShiftAmt)
681        DemandedMaskIn.setBit(BitWidth-1);
682
683      // If the shift is exact, then it does demand the low bits (and knows that
684      // they are zero).
685      if (cast<AShrOperator>(I)->isExact())
686        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
687
688      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
689                               KnownZero, KnownOne, Depth+1))
690        return I;
691      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
692      // Compute the new bits that are at the top now.
693      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
694      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
695      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
696
697      // Handle the sign bits.
698      APInt SignBit(APInt::getSignBit(BitWidth));
699      // Adjust to where it is now in the mask.
700      SignBit = APIntOps::lshr(SignBit, ShiftAmt);
701
702      // If the input sign bit is known to be zero, or if none of the top bits
703      // are demanded, turn this into an unsigned shift right.
704      if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
705          (HighBits & ~DemandedMask) == HighBits) {
706        // Perform the logical shift right.
707        BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
708                                                            SA, I->getName());
709        NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
710        return InsertNewInstWith(NewVal, *I);
711      } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
712        KnownOne |= HighBits;
713      }
714    }
715    break;
716  case Instruction::SRem:
717    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
718      // X % -1 demands all the bits because we don't want to introduce
719      // INT_MIN % -1 (== undef) by accident.
720      if (Rem->isAllOnesValue())
721        break;
722      APInt RA = Rem->getValue().abs();
723      if (RA.isPowerOf2()) {
724        if (DemandedMask.ult(RA))    // srem won't affect demanded bits
725          return I->getOperand(0);
726
727        APInt LowBits = RA - 1;
728        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
729        if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
730                                 LHSKnownZero, LHSKnownOne, Depth+1))
731          return I;
732
733        // The low bits of LHS are unchanged by the srem.
734        KnownZero = LHSKnownZero & LowBits;
735        KnownOne = LHSKnownOne & LowBits;
736
737        // If LHS is non-negative or has all low bits zero, then the upper bits
738        // are all zero.
739        if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
740          KnownZero |= ~LowBits;
741
742        // If LHS is negative and not all low bits are zero, then the upper bits
743        // are all one.
744        if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
745          KnownOne |= ~LowBits;
746
747        assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
748      }
749    }
750
751    // The sign bit is the LHS's sign bit, except when the result of the
752    // remainder is zero.
753    if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
754      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
755      computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
756      // If it's known zero, our sign bit is also zero.
757      if (LHSKnownZero.isNegative())
758        KnownZero.setBit(KnownZero.getBitWidth() - 1);
759    }
760    break;
761  case Instruction::URem: {
762    APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
763    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
764    if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
765                             KnownZero2, KnownOne2, Depth+1) ||
766        SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
767                             KnownZero2, KnownOne2, Depth+1))
768      return I;
769
770    unsigned Leaders = KnownZero2.countLeadingOnes();
771    Leaders = std::max(Leaders,
772                       KnownZero2.countLeadingOnes());
773    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
774    break;
775  }
776  case Instruction::Call:
777    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
778      switch (II->getIntrinsicID()) {
779      default: break;
780      case Intrinsic::bswap: {
781        // If the only bits demanded come from one byte of the bswap result,
782        // just shift the input byte into position to eliminate the bswap.
783        unsigned NLZ = DemandedMask.countLeadingZeros();
784        unsigned NTZ = DemandedMask.countTrailingZeros();
785
786        // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
787        // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
788        // have 14 leading zeros, round to 8.
789        NLZ &= ~7;
790        NTZ &= ~7;
791        // If we need exactly one byte, we can do this transformation.
792        if (BitWidth-NLZ-NTZ == 8) {
793          unsigned ResultBit = NTZ;
794          unsigned InputBit = BitWidth-NTZ-8;
795
796          // Replace this with either a left or right shift to get the byte into
797          // the right place.
798          Instruction *NewVal;
799          if (InputBit > ResultBit)
800            NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
801                    ConstantInt::get(I->getType(), InputBit-ResultBit));
802          else
803            NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
804                    ConstantInt::get(I->getType(), ResultBit-InputBit));
805          NewVal->takeName(I);
806          return InsertNewInstWith(NewVal, *I);
807        }
808
809        // TODO: Could compute known zero/one bits based on the input.
810        break;
811      }
812      case Intrinsic::x86_sse42_crc32_64_64:
813        KnownZero = APInt::getHighBitsSet(64, 32);
814        return nullptr;
815      }
816    }
817    computeKnownBits(V, KnownZero, KnownOne, Depth);
818    break;
819  }
820
821  // If the client is only demanding bits that we know, return the known
822  // constant.
823  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
824    return Constant::getIntegerValue(VTy, KnownOne);
825  return nullptr;
826}
827
828/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
829/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
830/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
831/// of "C2-C1".
832///
833/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
834/// ..., bn}, without considering the specific value X is holding.
835/// This transformation is legal iff one of following conditions is hold:
836///  1) All the bit in S are 0, in this case E1 == E2.
837///  2) We don't care those bits in S, per the input DemandedMask.
838///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
839///     rest bits.
840///
841/// Currently we only test condition 2).
842///
843/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
844/// not successful.
845Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
846  Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) {
847
848  const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue();
849  const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue();
850  if (!ShlOp1 || !ShrOp1)
851      return nullptr; // Noop.
852
853  Value *VarX = Shr->getOperand(0);
854  Type *Ty = VarX->getType();
855  unsigned BitWidth = Ty->getIntegerBitWidth();
856  if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
857    return nullptr; // Undef.
858
859  unsigned ShlAmt = ShlOp1.getZExtValue();
860  unsigned ShrAmt = ShrOp1.getZExtValue();
861
862  KnownOne.clearAllBits();
863  KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1);
864  KnownZero &= DemandedMask;
865
866  APInt BitMask1(APInt::getAllOnesValue(BitWidth));
867  APInt BitMask2(APInt::getAllOnesValue(BitWidth));
868
869  bool isLshr = (Shr->getOpcode() == Instruction::LShr);
870  BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
871                      (BitMask1.ashr(ShrAmt) << ShlAmt);
872
873  if (ShrAmt <= ShlAmt) {
874    BitMask2 <<= (ShlAmt - ShrAmt);
875  } else {
876    BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
877                        BitMask2.ashr(ShrAmt - ShlAmt);
878  }
879
880  // Check if condition-2 (see the comment to this function) is satified.
881  if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
882    if (ShrAmt == ShlAmt)
883      return VarX;
884
885    if (!Shr->hasOneUse())
886      return nullptr;
887
888    BinaryOperator *New;
889    if (ShrAmt < ShlAmt) {
890      Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
891      New = BinaryOperator::CreateShl(VarX, Amt);
892      BinaryOperator *Orig = cast<BinaryOperator>(Shl);
893      New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
894      New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
895    } else {
896      Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
897      New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
898                     BinaryOperator::CreateAShr(VarX, Amt);
899      if (cast<BinaryOperator>(Shr)->isExact())
900        New->setIsExact(true);
901    }
902
903    return InsertNewInstWith(New, *Shl);
904  }
905
906  return nullptr;
907}
908
909/// SimplifyDemandedVectorElts - The specified value produces a vector with
910/// any number of elements. DemandedElts contains the set of elements that are
911/// actually used by the caller.  This method analyzes which elements of the
912/// operand are undef and returns that information in UndefElts.
913///
914/// If the information about demanded elements can be used to simplify the
915/// operation, the operation is simplified, then the resultant value is
916/// returned.  This returns null if no change was made.
917Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
918                                                APInt &UndefElts,
919                                                unsigned Depth) {
920  unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
921  APInt EltMask(APInt::getAllOnesValue(VWidth));
922  assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
923
924  if (isa<UndefValue>(V)) {
925    // If the entire vector is undefined, just return this info.
926    UndefElts = EltMask;
927    return nullptr;
928  }
929
930  if (DemandedElts == 0) { // If nothing is demanded, provide undef.
931    UndefElts = EltMask;
932    return UndefValue::get(V->getType());
933  }
934
935  UndefElts = 0;
936
937  // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
938  if (Constant *C = dyn_cast<Constant>(V)) {
939    // Check if this is identity. If so, return 0 since we are not simplifying
940    // anything.
941    if (DemandedElts.isAllOnesValue())
942      return nullptr;
943
944    Type *EltTy = cast<VectorType>(V->getType())->getElementType();
945    Constant *Undef = UndefValue::get(EltTy);
946
947    SmallVector<Constant*, 16> Elts;
948    for (unsigned i = 0; i != VWidth; ++i) {
949      if (!DemandedElts[i]) {   // If not demanded, set to undef.
950        Elts.push_back(Undef);
951        UndefElts.setBit(i);
952        continue;
953      }
954
955      Constant *Elt = C->getAggregateElement(i);
956      if (!Elt) return nullptr;
957
958      if (isa<UndefValue>(Elt)) {   // Already undef.
959        Elts.push_back(Undef);
960        UndefElts.setBit(i);
961      } else {                               // Otherwise, defined.
962        Elts.push_back(Elt);
963      }
964    }
965
966    // If we changed the constant, return it.
967    Constant *NewCV = ConstantVector::get(Elts);
968    return NewCV != C ? NewCV : nullptr;
969  }
970
971  // Limit search depth.
972  if (Depth == 10)
973    return nullptr;
974
975  // If multiple users are using the root value, proceed with
976  // simplification conservatively assuming that all elements
977  // are needed.
978  if (!V->hasOneUse()) {
979    // Quit if we find multiple users of a non-root value though.
980    // They'll be handled when it's their turn to be visited by
981    // the main instcombine process.
982    if (Depth != 0)
983      // TODO: Just compute the UndefElts information recursively.
984      return nullptr;
985
986    // Conservatively assume that all elements are needed.
987    DemandedElts = EltMask;
988  }
989
990  Instruction *I = dyn_cast<Instruction>(V);
991  if (!I) return nullptr;        // Only analyze instructions.
992
993  bool MadeChange = false;
994  APInt UndefElts2(VWidth, 0);
995  Value *TmpV;
996  switch (I->getOpcode()) {
997  default: break;
998
999  case Instruction::InsertElement: {
1000    // If this is a variable index, we don't know which element it overwrites.
1001    // demand exactly the same input as we produce.
1002    ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1003    if (!Idx) {
1004      // Note that we can't propagate undef elt info, because we don't know
1005      // which elt is getting updated.
1006      TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1007                                        UndefElts2, Depth+1);
1008      if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1009      break;
1010    }
1011
1012    // If this is inserting an element that isn't demanded, remove this
1013    // insertelement.
1014    unsigned IdxNo = Idx->getZExtValue();
1015    if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1016      Worklist.Add(I);
1017      return I->getOperand(0);
1018    }
1019
1020    // Otherwise, the element inserted overwrites whatever was there, so the
1021    // input demanded set is simpler than the output set.
1022    APInt DemandedElts2 = DemandedElts;
1023    DemandedElts2.clearBit(IdxNo);
1024    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
1025                                      UndefElts, Depth+1);
1026    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1027
1028    // The inserted element is defined.
1029    UndefElts.clearBit(IdxNo);
1030    break;
1031  }
1032  case Instruction::ShuffleVector: {
1033    ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1034    uint64_t LHSVWidth =
1035      cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
1036    APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1037    for (unsigned i = 0; i < VWidth; i++) {
1038      if (DemandedElts[i]) {
1039        unsigned MaskVal = Shuffle->getMaskValue(i);
1040        if (MaskVal != -1u) {
1041          assert(MaskVal < LHSVWidth * 2 &&
1042                 "shufflevector mask index out of range!");
1043          if (MaskVal < LHSVWidth)
1044            LeftDemanded.setBit(MaskVal);
1045          else
1046            RightDemanded.setBit(MaskVal - LHSVWidth);
1047        }
1048      }
1049    }
1050
1051    APInt UndefElts4(LHSVWidth, 0);
1052    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1053                                      UndefElts4, Depth+1);
1054    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1055
1056    APInt UndefElts3(LHSVWidth, 0);
1057    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1058                                      UndefElts3, Depth+1);
1059    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1060
1061    bool NewUndefElts = false;
1062    for (unsigned i = 0; i < VWidth; i++) {
1063      unsigned MaskVal = Shuffle->getMaskValue(i);
1064      if (MaskVal == -1u) {
1065        UndefElts.setBit(i);
1066      } else if (!DemandedElts[i]) {
1067        NewUndefElts = true;
1068        UndefElts.setBit(i);
1069      } else if (MaskVal < LHSVWidth) {
1070        if (UndefElts4[MaskVal]) {
1071          NewUndefElts = true;
1072          UndefElts.setBit(i);
1073        }
1074      } else {
1075        if (UndefElts3[MaskVal - LHSVWidth]) {
1076          NewUndefElts = true;
1077          UndefElts.setBit(i);
1078        }
1079      }
1080    }
1081
1082    if (NewUndefElts) {
1083      // Add additional discovered undefs.
1084      SmallVector<Constant*, 16> Elts;
1085      for (unsigned i = 0; i < VWidth; ++i) {
1086        if (UndefElts[i])
1087          Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1088        else
1089          Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1090                                          Shuffle->getMaskValue(i)));
1091      }
1092      I->setOperand(2, ConstantVector::get(Elts));
1093      MadeChange = true;
1094    }
1095    break;
1096  }
1097  case Instruction::Select: {
1098    APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1099    if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1100      for (unsigned i = 0; i < VWidth; i++) {
1101        if (CV->getAggregateElement(i)->isNullValue())
1102          LeftDemanded.clearBit(i);
1103        else
1104          RightDemanded.clearBit(i);
1105      }
1106    }
1107
1108    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded,
1109                                      UndefElts, Depth+1);
1110    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1111
1112    TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
1113                                      UndefElts2, Depth+1);
1114    if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
1115
1116    // Output elements are undefined if both are undefined.
1117    UndefElts &= UndefElts2;
1118    break;
1119  }
1120  case Instruction::BitCast: {
1121    // Vector->vector casts only.
1122    VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1123    if (!VTy) break;
1124    unsigned InVWidth = VTy->getNumElements();
1125    APInt InputDemandedElts(InVWidth, 0);
1126    unsigned Ratio;
1127
1128    if (VWidth == InVWidth) {
1129      // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1130      // elements as are demanded of us.
1131      Ratio = 1;
1132      InputDemandedElts = DemandedElts;
1133    } else if (VWidth > InVWidth) {
1134      // Untested so far.
1135      break;
1136
1137      // If there are more elements in the result than there are in the source,
1138      // then an input element is live if any of the corresponding output
1139      // elements are live.
1140      Ratio = VWidth/InVWidth;
1141      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1142        if (DemandedElts[OutIdx])
1143          InputDemandedElts.setBit(OutIdx/Ratio);
1144      }
1145    } else {
1146      // Untested so far.
1147      break;
1148
1149      // If there are more elements in the source than there are in the result,
1150      // then an input element is live if the corresponding output element is
1151      // live.
1152      Ratio = InVWidth/VWidth;
1153      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1154        if (DemandedElts[InIdx/Ratio])
1155          InputDemandedElts.setBit(InIdx);
1156    }
1157
1158    // div/rem demand all inputs, because they don't want divide by zero.
1159    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1160                                      UndefElts2, Depth+1);
1161    if (TmpV) {
1162      I->setOperand(0, TmpV);
1163      MadeChange = true;
1164    }
1165
1166    UndefElts = UndefElts2;
1167    if (VWidth > InVWidth) {
1168      llvm_unreachable("Unimp");
1169      // If there are more elements in the result than there are in the source,
1170      // then an output element is undef if the corresponding input element is
1171      // undef.
1172      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1173        if (UndefElts2[OutIdx/Ratio])
1174          UndefElts.setBit(OutIdx);
1175    } else if (VWidth < InVWidth) {
1176      llvm_unreachable("Unimp");
1177      // If there are more elements in the source than there are in the result,
1178      // then a result element is undef if all of the corresponding input
1179      // elements are undef.
1180      UndefElts = ~0ULL >> (64-VWidth);  // Start out all undef.
1181      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1182        if (!UndefElts2[InIdx])            // Not undef?
1183          UndefElts.clearBit(InIdx/Ratio);    // Clear undef bit.
1184    }
1185    break;
1186  }
1187  case Instruction::And:
1188  case Instruction::Or:
1189  case Instruction::Xor:
1190  case Instruction::Add:
1191  case Instruction::Sub:
1192  case Instruction::Mul:
1193    // div/rem demand all inputs, because they don't want divide by zero.
1194    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1195                                      UndefElts, Depth+1);
1196    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1197    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1198                                      UndefElts2, Depth+1);
1199    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1200
1201    // Output elements are undefined if both are undefined.  Consider things
1202    // like undef&0.  The result is known zero, not undef.
1203    UndefElts &= UndefElts2;
1204    break;
1205  case Instruction::FPTrunc:
1206  case Instruction::FPExt:
1207    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1208                                      UndefElts, Depth+1);
1209    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1210    break;
1211
1212  case Instruction::Call: {
1213    IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1214    if (!II) break;
1215    switch (II->getIntrinsicID()) {
1216    default: break;
1217
1218    // Binary vector operations that work column-wise.  A dest element is a
1219    // function of the corresponding input elements from the two inputs.
1220    case Intrinsic::x86_sse_sub_ss:
1221    case Intrinsic::x86_sse_mul_ss:
1222    case Intrinsic::x86_sse_min_ss:
1223    case Intrinsic::x86_sse_max_ss:
1224    case Intrinsic::x86_sse2_sub_sd:
1225    case Intrinsic::x86_sse2_mul_sd:
1226    case Intrinsic::x86_sse2_min_sd:
1227    case Intrinsic::x86_sse2_max_sd:
1228      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1229                                        UndefElts, Depth+1);
1230      if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1231      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1232                                        UndefElts2, Depth+1);
1233      if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1234
1235      // If only the low elt is demanded and this is a scalarizable intrinsic,
1236      // scalarize it now.
1237      if (DemandedElts == 1) {
1238        switch (II->getIntrinsicID()) {
1239        default: break;
1240        case Intrinsic::x86_sse_sub_ss:
1241        case Intrinsic::x86_sse_mul_ss:
1242        case Intrinsic::x86_sse2_sub_sd:
1243        case Intrinsic::x86_sse2_mul_sd:
1244          // TODO: Lower MIN/MAX/ABS/etc
1245          Value *LHS = II->getArgOperand(0);
1246          Value *RHS = II->getArgOperand(1);
1247          // Extract the element as scalars.
1248          LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
1249            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1250          RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
1251            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1252
1253          switch (II->getIntrinsicID()) {
1254          default: llvm_unreachable("Case stmts out of sync!");
1255          case Intrinsic::x86_sse_sub_ss:
1256          case Intrinsic::x86_sse2_sub_sd:
1257            TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
1258                                                        II->getName()), *II);
1259            break;
1260          case Intrinsic::x86_sse_mul_ss:
1261          case Intrinsic::x86_sse2_mul_sd:
1262            TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
1263                                                         II->getName()), *II);
1264            break;
1265          }
1266
1267          Instruction *New =
1268            InsertElementInst::Create(
1269              UndefValue::get(II->getType()), TmpV,
1270              ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1271                                      II->getName());
1272          InsertNewInstWith(New, *II);
1273          return New;
1274        }
1275      }
1276
1277      // Output elements are undefined if both are undefined.  Consider things
1278      // like undef&0.  The result is known zero, not undef.
1279      UndefElts &= UndefElts2;
1280      break;
1281    }
1282    break;
1283  }
1284  }
1285  return MadeChange ? I : nullptr;
1286}
1287