InstructionCombining.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
11// instructions.  This pass does not modify the CFG.  This pass is where
12// algebraic simplification happens.
13//
14// This pass combines things like:
15//    %Y = add i32 %X, 1
16//    %Z = add i32 %Y, 1
17// into:
18//    %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24//    1. If a binary operator has a constant operand, it is moved to the RHS
25//    2. Bitwise operators with constant operands are always grouped so that
26//       shifts are performed first, then or's, then and's, then xor's.
27//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28//    4. All cmp instructions on boolean values are replaced with logical ops
29//    5. add X, X is represented as (X*2) => (X << 1)
30//    6. Multiplies with a power-of-two constant argument are transformed into
31//       shifts.
32//   ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "InstCombine.h"
39#include "llvm-c/Initialization.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/StringSwitch.h"
43#include "llvm/Analysis/ConstantFolding.h"
44#include "llvm/Analysis/InstructionSimplify.h"
45#include "llvm/Analysis/MemoryBuiltins.h"
46#include "llvm/IR/CFG.h"
47#include "llvm/IR/DataLayout.h"
48#include "llvm/IR/GetElementPtrTypeIterator.h"
49#include "llvm/IR/IntrinsicInst.h"
50#include "llvm/IR/PatternMatch.h"
51#include "llvm/IR/ValueHandle.h"
52#include "llvm/Support/CommandLine.h"
53#include "llvm/Support/Debug.h"
54#include "llvm/Target/TargetLibraryInfo.h"
55#include "llvm/Transforms/Utils/Local.h"
56#include <algorithm>
57#include <climits>
58using namespace llvm;
59using namespace llvm::PatternMatch;
60
61STATISTIC(NumCombined , "Number of insts combined");
62STATISTIC(NumConstProp, "Number of constant folds");
63STATISTIC(NumDeadInst , "Number of dead inst eliminated");
64STATISTIC(NumSunkInst , "Number of instructions sunk");
65STATISTIC(NumExpand,    "Number of expansions");
66STATISTIC(NumFactor   , "Number of factorizations");
67STATISTIC(NumReassoc  , "Number of reassociations");
68
69static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
70                                   cl::init(false),
71                                   cl::desc("Enable unsafe double to float "
72                                            "shrinking for math lib calls"));
73
74// Initialization Routines
75void llvm::initializeInstCombine(PassRegistry &Registry) {
76  initializeInstCombinerPass(Registry);
77}
78
79void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
80  initializeInstCombine(*unwrap(R));
81}
82
83char InstCombiner::ID = 0;
84INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
85                "Combine redundant instructions", false, false)
86INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
87INITIALIZE_PASS_END(InstCombiner, "instcombine",
88                "Combine redundant instructions", false, false)
89
90void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
91  AU.setPreservesCFG();
92  AU.addRequired<TargetLibraryInfo>();
93}
94
95
96Value *InstCombiner::EmitGEPOffset(User *GEP) {
97  return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
98}
99
100/// ShouldChangeType - Return true if it is desirable to convert a computation
101/// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
102/// type for example, or from a smaller to a larger illegal type.
103bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
104  assert(From->isIntegerTy() && To->isIntegerTy());
105
106  // If we don't have DL, we don't know if the source/dest are legal.
107  if (!DL) return false;
108
109  unsigned FromWidth = From->getPrimitiveSizeInBits();
110  unsigned ToWidth = To->getPrimitiveSizeInBits();
111  bool FromLegal = DL->isLegalInteger(FromWidth);
112  bool ToLegal = DL->isLegalInteger(ToWidth);
113
114  // If this is a legal integer from type, and the result would be an illegal
115  // type, don't do the transformation.
116  if (FromLegal && !ToLegal)
117    return false;
118
119  // Otherwise, if both are illegal, do not increase the size of the result. We
120  // do allow things like i160 -> i64, but not i64 -> i160.
121  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
122    return false;
123
124  return true;
125}
126
127// Return true, if No Signed Wrap should be maintained for I.
128// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
129// where both B and C should be ConstantInts, results in a constant that does
130// not overflow. This function only handles the Add and Sub opcodes. For
131// all other opcodes, the function conservatively returns false.
132static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
133  OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
134  if (!OBO || !OBO->hasNoSignedWrap()) {
135    return false;
136  }
137
138  // We reason about Add and Sub Only.
139  Instruction::BinaryOps Opcode = I.getOpcode();
140  if (Opcode != Instruction::Add &&
141      Opcode != Instruction::Sub) {
142    return false;
143  }
144
145  ConstantInt *CB = dyn_cast<ConstantInt>(B);
146  ConstantInt *CC = dyn_cast<ConstantInt>(C);
147
148  if (!CB || !CC) {
149    return false;
150  }
151
152  const APInt &BVal = CB->getValue();
153  const APInt &CVal = CC->getValue();
154  bool Overflow = false;
155
156  if (Opcode == Instruction::Add) {
157    BVal.sadd_ov(CVal, Overflow);
158  } else {
159    BVal.ssub_ov(CVal, Overflow);
160  }
161
162  return !Overflow;
163}
164
165/// Conservatively clears subclassOptionalData after a reassociation or
166/// commutation. We preserve fast-math flags when applicable as they can be
167/// preserved.
168static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
169  FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
170  if (!FPMO) {
171    I.clearSubclassOptionalData();
172    return;
173  }
174
175  FastMathFlags FMF = I.getFastMathFlags();
176  I.clearSubclassOptionalData();
177  I.setFastMathFlags(FMF);
178}
179
180/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
181/// operators which are associative or commutative:
182//
183//  Commutative operators:
184//
185//  1. Order operands such that they are listed from right (least complex) to
186//     left (most complex).  This puts constants before unary operators before
187//     binary operators.
188//
189//  Associative operators:
190//
191//  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
192//  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
193//
194//  Associative and commutative operators:
195//
196//  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
197//  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
198//  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
199//     if C1 and C2 are constants.
200//
201bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
202  Instruction::BinaryOps Opcode = I.getOpcode();
203  bool Changed = false;
204
205  do {
206    // Order operands such that they are listed from right (least complex) to
207    // left (most complex).  This puts constants before unary operators before
208    // binary operators.
209    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
210        getComplexity(I.getOperand(1)))
211      Changed = !I.swapOperands();
212
213    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
214    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
215
216    if (I.isAssociative()) {
217      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
218      if (Op0 && Op0->getOpcode() == Opcode) {
219        Value *A = Op0->getOperand(0);
220        Value *B = Op0->getOperand(1);
221        Value *C = I.getOperand(1);
222
223        // Does "B op C" simplify?
224        if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
225          // It simplifies to V.  Form "A op V".
226          I.setOperand(0, A);
227          I.setOperand(1, V);
228          // Conservatively clear the optional flags, since they may not be
229          // preserved by the reassociation.
230          if (MaintainNoSignedWrap(I, B, C) &&
231              (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
232            // Note: this is only valid because SimplifyBinOp doesn't look at
233            // the operands to Op0.
234            I.clearSubclassOptionalData();
235            I.setHasNoSignedWrap(true);
236          } else {
237            ClearSubclassDataAfterReassociation(I);
238          }
239
240          Changed = true;
241          ++NumReassoc;
242          continue;
243        }
244      }
245
246      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
247      if (Op1 && Op1->getOpcode() == Opcode) {
248        Value *A = I.getOperand(0);
249        Value *B = Op1->getOperand(0);
250        Value *C = Op1->getOperand(1);
251
252        // Does "A op B" simplify?
253        if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
254          // It simplifies to V.  Form "V op C".
255          I.setOperand(0, V);
256          I.setOperand(1, C);
257          // Conservatively clear the optional flags, since they may not be
258          // preserved by the reassociation.
259          ClearSubclassDataAfterReassociation(I);
260          Changed = true;
261          ++NumReassoc;
262          continue;
263        }
264      }
265    }
266
267    if (I.isAssociative() && I.isCommutative()) {
268      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
269      if (Op0 && Op0->getOpcode() == Opcode) {
270        Value *A = Op0->getOperand(0);
271        Value *B = Op0->getOperand(1);
272        Value *C = I.getOperand(1);
273
274        // Does "C op A" simplify?
275        if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
276          // It simplifies to V.  Form "V op B".
277          I.setOperand(0, V);
278          I.setOperand(1, B);
279          // Conservatively clear the optional flags, since they may not be
280          // preserved by the reassociation.
281          ClearSubclassDataAfterReassociation(I);
282          Changed = true;
283          ++NumReassoc;
284          continue;
285        }
286      }
287
288      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
289      if (Op1 && Op1->getOpcode() == Opcode) {
290        Value *A = I.getOperand(0);
291        Value *B = Op1->getOperand(0);
292        Value *C = Op1->getOperand(1);
293
294        // Does "C op A" simplify?
295        if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
296          // It simplifies to V.  Form "B op V".
297          I.setOperand(0, B);
298          I.setOperand(1, V);
299          // Conservatively clear the optional flags, since they may not be
300          // preserved by the reassociation.
301          ClearSubclassDataAfterReassociation(I);
302          Changed = true;
303          ++NumReassoc;
304          continue;
305        }
306      }
307
308      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
309      // if C1 and C2 are constants.
310      if (Op0 && Op1 &&
311          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
312          isa<Constant>(Op0->getOperand(1)) &&
313          isa<Constant>(Op1->getOperand(1)) &&
314          Op0->hasOneUse() && Op1->hasOneUse()) {
315        Value *A = Op0->getOperand(0);
316        Constant *C1 = cast<Constant>(Op0->getOperand(1));
317        Value *B = Op1->getOperand(0);
318        Constant *C2 = cast<Constant>(Op1->getOperand(1));
319
320        Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
321        BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
322        if (isa<FPMathOperator>(New)) {
323          FastMathFlags Flags = I.getFastMathFlags();
324          Flags &= Op0->getFastMathFlags();
325          Flags &= Op1->getFastMathFlags();
326          New->setFastMathFlags(Flags);
327        }
328        InsertNewInstWith(New, I);
329        New->takeName(Op1);
330        I.setOperand(0, New);
331        I.setOperand(1, Folded);
332        // Conservatively clear the optional flags, since they may not be
333        // preserved by the reassociation.
334        ClearSubclassDataAfterReassociation(I);
335
336        Changed = true;
337        continue;
338      }
339    }
340
341    // No further simplifications.
342    return Changed;
343  } while (1);
344}
345
346/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
347/// "(X LOp Y) ROp (X LOp Z)".
348static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
349                                     Instruction::BinaryOps ROp) {
350  switch (LOp) {
351  default:
352    return false;
353
354  case Instruction::And:
355    // And distributes over Or and Xor.
356    switch (ROp) {
357    default:
358      return false;
359    case Instruction::Or:
360    case Instruction::Xor:
361      return true;
362    }
363
364  case Instruction::Mul:
365    // Multiplication distributes over addition and subtraction.
366    switch (ROp) {
367    default:
368      return false;
369    case Instruction::Add:
370    case Instruction::Sub:
371      return true;
372    }
373
374  case Instruction::Or:
375    // Or distributes over And.
376    switch (ROp) {
377    default:
378      return false;
379    case Instruction::And:
380      return true;
381    }
382  }
383}
384
385/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
386/// "(X ROp Z) LOp (Y ROp Z)".
387static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
388                                     Instruction::BinaryOps ROp) {
389  if (Instruction::isCommutative(ROp))
390    return LeftDistributesOverRight(ROp, LOp);
391  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
392  // but this requires knowing that the addition does not overflow and other
393  // such subtleties.
394  return false;
395}
396
397/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
398/// which some other binary operation distributes over either by factorizing
399/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
400/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
401/// a win).  Returns the simplified value, or null if it didn't simplify.
402Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
403  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
404  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
405  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
406  Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
407
408  // Factorization.
409  if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
410    // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
411    // a common term.
412    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
413    Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
414    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
415
416    // Does "X op' Y" always equal "Y op' X"?
417    bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
418
419    // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
420    if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
421      // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
422      // commutative case, "(A op' B) op (C op' A)"?
423      if (A == C || (InnerCommutative && A == D)) {
424        if (A != C)
425          std::swap(C, D);
426        // Consider forming "A op' (B op D)".
427        // If "B op D" simplifies then it can be formed with no cost.
428        Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
429        // If "B op D" doesn't simplify then only go on if both of the existing
430        // operations "A op' B" and "C op' D" will be zapped as no longer used.
431        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
432          V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
433        if (V) {
434          ++NumFactor;
435          V = Builder->CreateBinOp(InnerOpcode, A, V);
436          V->takeName(&I);
437          return V;
438        }
439      }
440
441    // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
442    if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
443      // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
444      // commutative case, "(A op' B) op (B op' D)"?
445      if (B == D || (InnerCommutative && B == C)) {
446        if (B != D)
447          std::swap(C, D);
448        // Consider forming "(A op C) op' B".
449        // If "A op C" simplifies then it can be formed with no cost.
450        Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
451        // If "A op C" doesn't simplify then only go on if both of the existing
452        // operations "A op' B" and "C op' D" will be zapped as no longer used.
453        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
454          V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
455        if (V) {
456          ++NumFactor;
457          V = Builder->CreateBinOp(InnerOpcode, V, B);
458          V->takeName(&I);
459          return V;
460        }
461      }
462  }
463
464  // Expansion.
465  if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
466    // The instruction has the form "(A op' B) op C".  See if expanding it out
467    // to "(A op C) op' (B op C)" results in simplifications.
468    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
469    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
470
471    // Do "A op C" and "B op C" both simplify?
472    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
473      if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
474        // They do! Return "L op' R".
475        ++NumExpand;
476        // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
477        if ((L == A && R == B) ||
478            (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
479          return Op0;
480        // Otherwise return "L op' R" if it simplifies.
481        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
482          return V;
483        // Otherwise, create a new instruction.
484        C = Builder->CreateBinOp(InnerOpcode, L, R);
485        C->takeName(&I);
486        return C;
487      }
488  }
489
490  if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
491    // The instruction has the form "A op (B op' C)".  See if expanding it out
492    // to "(A op B) op' (A op C)" results in simplifications.
493    Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
494    Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
495
496    // Do "A op B" and "A op C" both simplify?
497    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
498      if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
499        // They do! Return "L op' R".
500        ++NumExpand;
501        // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
502        if ((L == B && R == C) ||
503            (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
504          return Op1;
505        // Otherwise return "L op' R" if it simplifies.
506        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
507          return V;
508        // Otherwise, create a new instruction.
509        A = Builder->CreateBinOp(InnerOpcode, L, R);
510        A->takeName(&I);
511        return A;
512      }
513  }
514
515  return 0;
516}
517
518// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
519// if the LHS is a constant zero (which is the 'negate' form).
520//
521Value *InstCombiner::dyn_castNegVal(Value *V) const {
522  if (BinaryOperator::isNeg(V))
523    return BinaryOperator::getNegArgument(V);
524
525  // Constants can be considered to be negated values if they can be folded.
526  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
527    return ConstantExpr::getNeg(C);
528
529  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
530    if (C->getType()->getElementType()->isIntegerTy())
531      return ConstantExpr::getNeg(C);
532
533  return 0;
534}
535
536// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
537// instruction if the LHS is a constant negative zero (which is the 'negate'
538// form).
539//
540Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
541  if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
542    return BinaryOperator::getFNegArgument(V);
543
544  // Constants can be considered to be negated values if they can be folded.
545  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
546    return ConstantExpr::getFNeg(C);
547
548  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
549    if (C->getType()->getElementType()->isFloatingPointTy())
550      return ConstantExpr::getFNeg(C);
551
552  return 0;
553}
554
555static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
556                                             InstCombiner *IC) {
557  if (CastInst *CI = dyn_cast<CastInst>(&I)) {
558    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
559  }
560
561  // Figure out if the constant is the left or the right argument.
562  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
563  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
564
565  if (Constant *SOC = dyn_cast<Constant>(SO)) {
566    if (ConstIsRHS)
567      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
568    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
569  }
570
571  Value *Op0 = SO, *Op1 = ConstOperand;
572  if (!ConstIsRHS)
573    std::swap(Op0, Op1);
574
575  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
576    Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
577                                    SO->getName()+".op");
578    Instruction *FPInst = dyn_cast<Instruction>(RI);
579    if (FPInst && isa<FPMathOperator>(FPInst))
580      FPInst->copyFastMathFlags(BO);
581    return RI;
582  }
583  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
584    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
585                                   SO->getName()+".cmp");
586  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
587    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
588                                   SO->getName()+".cmp");
589  llvm_unreachable("Unknown binary instruction type!");
590}
591
592// FoldOpIntoSelect - Given an instruction with a select as one operand and a
593// constant as the other operand, try to fold the binary operator into the
594// select arguments.  This also works for Cast instructions, which obviously do
595// not have a second operand.
596Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
597  // Don't modify shared select instructions
598  if (!SI->hasOneUse()) return 0;
599  Value *TV = SI->getOperand(1);
600  Value *FV = SI->getOperand(2);
601
602  if (isa<Constant>(TV) || isa<Constant>(FV)) {
603    // Bool selects with constant operands can be folded to logical ops.
604    if (SI->getType()->isIntegerTy(1)) return 0;
605
606    // If it's a bitcast involving vectors, make sure it has the same number of
607    // elements on both sides.
608    if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
609      VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
610      VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
611
612      // Verify that either both or neither are vectors.
613      if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
614      // If vectors, verify that they have the same number of elements.
615      if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
616        return 0;
617    }
618
619    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
620    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
621
622    return SelectInst::Create(SI->getCondition(),
623                              SelectTrueVal, SelectFalseVal);
624  }
625  return 0;
626}
627
628
629/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
630/// has a PHI node as operand #0, see if we can fold the instruction into the
631/// PHI (which is only possible if all operands to the PHI are constants).
632///
633Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
634  PHINode *PN = cast<PHINode>(I.getOperand(0));
635  unsigned NumPHIValues = PN->getNumIncomingValues();
636  if (NumPHIValues == 0)
637    return 0;
638
639  // We normally only transform phis with a single use.  However, if a PHI has
640  // multiple uses and they are all the same operation, we can fold *all* of the
641  // uses into the PHI.
642  if (!PN->hasOneUse()) {
643    // Walk the use list for the instruction, comparing them to I.
644    for (User *U : PN->users()) {
645      Instruction *UI = cast<Instruction>(U);
646      if (UI != &I && !I.isIdenticalTo(UI))
647        return 0;
648    }
649    // Otherwise, we can replace *all* users with the new PHI we form.
650  }
651
652  // Check to see if all of the operands of the PHI are simple constants
653  // (constantint/constantfp/undef).  If there is one non-constant value,
654  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
655  // bail out.  We don't do arbitrary constant expressions here because moving
656  // their computation can be expensive without a cost model.
657  BasicBlock *NonConstBB = 0;
658  for (unsigned i = 0; i != NumPHIValues; ++i) {
659    Value *InVal = PN->getIncomingValue(i);
660    if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
661      continue;
662
663    if (isa<PHINode>(InVal)) return 0;  // Itself a phi.
664    if (NonConstBB) return 0;  // More than one non-const value.
665
666    NonConstBB = PN->getIncomingBlock(i);
667
668    // If the InVal is an invoke at the end of the pred block, then we can't
669    // insert a computation after it without breaking the edge.
670    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
671      if (II->getParent() == NonConstBB)
672        return 0;
673
674    // If the incoming non-constant value is in I's block, we will remove one
675    // instruction, but insert another equivalent one, leading to infinite
676    // instcombine.
677    if (NonConstBB == I.getParent())
678      return 0;
679  }
680
681  // If there is exactly one non-constant value, we can insert a copy of the
682  // operation in that block.  However, if this is a critical edge, we would be
683  // inserting the computation one some other paths (e.g. inside a loop).  Only
684  // do this if the pred block is unconditionally branching into the phi block.
685  if (NonConstBB != 0) {
686    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
687    if (!BI || !BI->isUnconditional()) return 0;
688  }
689
690  // Okay, we can do the transformation: create the new PHI node.
691  PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
692  InsertNewInstBefore(NewPN, *PN);
693  NewPN->takeName(PN);
694
695  // If we are going to have to insert a new computation, do so right before the
696  // predecessors terminator.
697  if (NonConstBB)
698    Builder->SetInsertPoint(NonConstBB->getTerminator());
699
700  // Next, add all of the operands to the PHI.
701  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
702    // We only currently try to fold the condition of a select when it is a phi,
703    // not the true/false values.
704    Value *TrueV = SI->getTrueValue();
705    Value *FalseV = SI->getFalseValue();
706    BasicBlock *PhiTransBB = PN->getParent();
707    for (unsigned i = 0; i != NumPHIValues; ++i) {
708      BasicBlock *ThisBB = PN->getIncomingBlock(i);
709      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
710      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
711      Value *InV = 0;
712      // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
713      // even if currently isNullValue gives false.
714      Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
715      if (InC && !isa<ConstantExpr>(InC))
716        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
717      else
718        InV = Builder->CreateSelect(PN->getIncomingValue(i),
719                                    TrueVInPred, FalseVInPred, "phitmp");
720      NewPN->addIncoming(InV, ThisBB);
721    }
722  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
723    Constant *C = cast<Constant>(I.getOperand(1));
724    for (unsigned i = 0; i != NumPHIValues; ++i) {
725      Value *InV = 0;
726      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
727        InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
728      else if (isa<ICmpInst>(CI))
729        InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
730                                  C, "phitmp");
731      else
732        InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
733                                  C, "phitmp");
734      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
735    }
736  } else if (I.getNumOperands() == 2) {
737    Constant *C = cast<Constant>(I.getOperand(1));
738    for (unsigned i = 0; i != NumPHIValues; ++i) {
739      Value *InV = 0;
740      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
741        InV = ConstantExpr::get(I.getOpcode(), InC, C);
742      else
743        InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
744                                   PN->getIncomingValue(i), C, "phitmp");
745      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
746    }
747  } else {
748    CastInst *CI = cast<CastInst>(&I);
749    Type *RetTy = CI->getType();
750    for (unsigned i = 0; i != NumPHIValues; ++i) {
751      Value *InV;
752      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
753        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
754      else
755        InV = Builder->CreateCast(CI->getOpcode(),
756                                PN->getIncomingValue(i), I.getType(), "phitmp");
757      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
758    }
759  }
760
761  for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
762    Instruction *User = cast<Instruction>(*UI++);
763    if (User == &I) continue;
764    ReplaceInstUsesWith(*User, NewPN);
765    EraseInstFromFunction(*User);
766  }
767  return ReplaceInstUsesWith(I, NewPN);
768}
769
770/// FindElementAtOffset - Given a pointer type and a constant offset, determine
771/// whether or not there is a sequence of GEP indices into the pointed type that
772/// will land us at the specified offset.  If so, fill them into NewIndices and
773/// return the resultant element type, otherwise return null.
774Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
775                                        SmallVectorImpl<Value*> &NewIndices) {
776  assert(PtrTy->isPtrOrPtrVectorTy());
777
778  if (!DL)
779    return 0;
780
781  Type *Ty = PtrTy->getPointerElementType();
782  if (!Ty->isSized())
783    return 0;
784
785  // Start with the index over the outer type.  Note that the type size
786  // might be zero (even if the offset isn't zero) if the indexed type
787  // is something like [0 x {int, int}]
788  Type *IntPtrTy = DL->getIntPtrType(PtrTy);
789  int64_t FirstIdx = 0;
790  if (int64_t TySize = DL->getTypeAllocSize(Ty)) {
791    FirstIdx = Offset/TySize;
792    Offset -= FirstIdx*TySize;
793
794    // Handle hosts where % returns negative instead of values [0..TySize).
795    if (Offset < 0) {
796      --FirstIdx;
797      Offset += TySize;
798      assert(Offset >= 0);
799    }
800    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
801  }
802
803  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
804
805  // Index into the types.  If we fail, set OrigBase to null.
806  while (Offset) {
807    // Indexing into tail padding between struct/array elements.
808    if (uint64_t(Offset*8) >= DL->getTypeSizeInBits(Ty))
809      return 0;
810
811    if (StructType *STy = dyn_cast<StructType>(Ty)) {
812      const StructLayout *SL = DL->getStructLayout(STy);
813      assert(Offset < (int64_t)SL->getSizeInBytes() &&
814             "Offset must stay within the indexed type");
815
816      unsigned Elt = SL->getElementContainingOffset(Offset);
817      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
818                                            Elt));
819
820      Offset -= SL->getElementOffset(Elt);
821      Ty = STy->getElementType(Elt);
822    } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
823      uint64_t EltSize = DL->getTypeAllocSize(AT->getElementType());
824      assert(EltSize && "Cannot index into a zero-sized array");
825      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
826      Offset %= EltSize;
827      Ty = AT->getElementType();
828    } else {
829      // Otherwise, we can't index into the middle of this atomic type, bail.
830      return 0;
831    }
832  }
833
834  return Ty;
835}
836
837static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
838  // If this GEP has only 0 indices, it is the same pointer as
839  // Src. If Src is not a trivial GEP too, don't combine
840  // the indices.
841  if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
842      !Src.hasOneUse())
843    return false;
844  return true;
845}
846
847/// Descale - Return a value X such that Val = X * Scale, or null if none.  If
848/// the multiplication is known not to overflow then NoSignedWrap is set.
849Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
850  assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
851  assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
852         Scale.getBitWidth() && "Scale not compatible with value!");
853
854  // If Val is zero or Scale is one then Val = Val * Scale.
855  if (match(Val, m_Zero()) || Scale == 1) {
856    NoSignedWrap = true;
857    return Val;
858  }
859
860  // If Scale is zero then it does not divide Val.
861  if (Scale.isMinValue())
862    return 0;
863
864  // Look through chains of multiplications, searching for a constant that is
865  // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
866  // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
867  // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
868  // down from Val:
869  //
870  //     Val = M1 * X          ||   Analysis starts here and works down
871  //      M1 = M2 * Y          ||   Doesn't descend into terms with more
872  //      M2 =  Z * 4          \/   than one use
873  //
874  // Then to modify a term at the bottom:
875  //
876  //     Val = M1 * X
877  //      M1 =  Z * Y          ||   Replaced M2 with Z
878  //
879  // Then to work back up correcting nsw flags.
880
881  // Op - the term we are currently analyzing.  Starts at Val then drills down.
882  // Replaced with its descaled value before exiting from the drill down loop.
883  Value *Op = Val;
884
885  // Parent - initially null, but after drilling down notes where Op came from.
886  // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
887  // 0'th operand of Val.
888  std::pair<Instruction*, unsigned> Parent;
889
890  // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
891  // levels that doesn't overflow.
892  bool RequireNoSignedWrap = false;
893
894  // logScale - log base 2 of the scale.  Negative if not a power of 2.
895  int32_t logScale = Scale.exactLogBase2();
896
897  for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
898
899    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
900      // If Op is a constant divisible by Scale then descale to the quotient.
901      APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
902      APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
903      if (!Remainder.isMinValue())
904        // Not divisible by Scale.
905        return 0;
906      // Replace with the quotient in the parent.
907      Op = ConstantInt::get(CI->getType(), Quotient);
908      NoSignedWrap = true;
909      break;
910    }
911
912    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
913
914      if (BO->getOpcode() == Instruction::Mul) {
915        // Multiplication.
916        NoSignedWrap = BO->hasNoSignedWrap();
917        if (RequireNoSignedWrap && !NoSignedWrap)
918          return 0;
919
920        // There are three cases for multiplication: multiplication by exactly
921        // the scale, multiplication by a constant different to the scale, and
922        // multiplication by something else.
923        Value *LHS = BO->getOperand(0);
924        Value *RHS = BO->getOperand(1);
925
926        if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
927          // Multiplication by a constant.
928          if (CI->getValue() == Scale) {
929            // Multiplication by exactly the scale, replace the multiplication
930            // by its left-hand side in the parent.
931            Op = LHS;
932            break;
933          }
934
935          // Otherwise drill down into the constant.
936          if (!Op->hasOneUse())
937            return 0;
938
939          Parent = std::make_pair(BO, 1);
940          continue;
941        }
942
943        // Multiplication by something else. Drill down into the left-hand side
944        // since that's where the reassociate pass puts the good stuff.
945        if (!Op->hasOneUse())
946          return 0;
947
948        Parent = std::make_pair(BO, 0);
949        continue;
950      }
951
952      if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
953          isa<ConstantInt>(BO->getOperand(1))) {
954        // Multiplication by a power of 2.
955        NoSignedWrap = BO->hasNoSignedWrap();
956        if (RequireNoSignedWrap && !NoSignedWrap)
957          return 0;
958
959        Value *LHS = BO->getOperand(0);
960        int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
961          getLimitedValue(Scale.getBitWidth());
962        // Op = LHS << Amt.
963
964        if (Amt == logScale) {
965          // Multiplication by exactly the scale, replace the multiplication
966          // by its left-hand side in the parent.
967          Op = LHS;
968          break;
969        }
970        if (Amt < logScale || !Op->hasOneUse())
971          return 0;
972
973        // Multiplication by more than the scale.  Reduce the multiplying amount
974        // by the scale in the parent.
975        Parent = std::make_pair(BO, 1);
976        Op = ConstantInt::get(BO->getType(), Amt - logScale);
977        break;
978      }
979    }
980
981    if (!Op->hasOneUse())
982      return 0;
983
984    if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
985      if (Cast->getOpcode() == Instruction::SExt) {
986        // Op is sign-extended from a smaller type, descale in the smaller type.
987        unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
988        APInt SmallScale = Scale.trunc(SmallSize);
989        // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
990        // descale Op as (sext Y) * Scale.  In order to have
991        //   sext (Y * SmallScale) = (sext Y) * Scale
992        // some conditions need to hold however: SmallScale must sign-extend to
993        // Scale and the multiplication Y * SmallScale should not overflow.
994        if (SmallScale.sext(Scale.getBitWidth()) != Scale)
995          // SmallScale does not sign-extend to Scale.
996          return 0;
997        assert(SmallScale.exactLogBase2() == logScale);
998        // Require that Y * SmallScale must not overflow.
999        RequireNoSignedWrap = true;
1000
1001        // Drill down through the cast.
1002        Parent = std::make_pair(Cast, 0);
1003        Scale = SmallScale;
1004        continue;
1005      }
1006
1007      if (Cast->getOpcode() == Instruction::Trunc) {
1008        // Op is truncated from a larger type, descale in the larger type.
1009        // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1010        //   trunc (Y * sext Scale) = (trunc Y) * Scale
1011        // always holds.  However (trunc Y) * Scale may overflow even if
1012        // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1013        // from this point up in the expression (see later).
1014        if (RequireNoSignedWrap)
1015          return 0;
1016
1017        // Drill down through the cast.
1018        unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1019        Parent = std::make_pair(Cast, 0);
1020        Scale = Scale.sext(LargeSize);
1021        if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1022          logScale = -1;
1023        assert(Scale.exactLogBase2() == logScale);
1024        continue;
1025      }
1026    }
1027
1028    // Unsupported expression, bail out.
1029    return 0;
1030  }
1031
1032  // We know that we can successfully descale, so from here on we can safely
1033  // modify the IR.  Op holds the descaled version of the deepest term in the
1034  // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1035  // not to overflow.
1036
1037  if (!Parent.first)
1038    // The expression only had one term.
1039    return Op;
1040
1041  // Rewrite the parent using the descaled version of its operand.
1042  assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1043  assert(Op != Parent.first->getOperand(Parent.second) &&
1044         "Descaling was a no-op?");
1045  Parent.first->setOperand(Parent.second, Op);
1046  Worklist.Add(Parent.first);
1047
1048  // Now work back up the expression correcting nsw flags.  The logic is based
1049  // on the following observation: if X * Y is known not to overflow as a signed
1050  // multiplication, and Y is replaced by a value Z with smaller absolute value,
1051  // then X * Z will not overflow as a signed multiplication either.  As we work
1052  // our way up, having NoSignedWrap 'true' means that the descaled value at the
1053  // current level has strictly smaller absolute value than the original.
1054  Instruction *Ancestor = Parent.first;
1055  do {
1056    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1057      // If the multiplication wasn't nsw then we can't say anything about the
1058      // value of the descaled multiplication, and we have to clear nsw flags
1059      // from this point on up.
1060      bool OpNoSignedWrap = BO->hasNoSignedWrap();
1061      NoSignedWrap &= OpNoSignedWrap;
1062      if (NoSignedWrap != OpNoSignedWrap) {
1063        BO->setHasNoSignedWrap(NoSignedWrap);
1064        Worklist.Add(Ancestor);
1065      }
1066    } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1067      // The fact that the descaled input to the trunc has smaller absolute
1068      // value than the original input doesn't tell us anything useful about
1069      // the absolute values of the truncations.
1070      NoSignedWrap = false;
1071    }
1072    assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1073           "Failed to keep proper track of nsw flags while drilling down?");
1074
1075    if (Ancestor == Val)
1076      // Got to the top, all done!
1077      return Val;
1078
1079    // Move up one level in the expression.
1080    assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1081    Ancestor = Ancestor->user_back();
1082  } while (1);
1083}
1084
1085Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1086  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1087
1088  if (Value *V = SimplifyGEPInst(Ops, DL))
1089    return ReplaceInstUsesWith(GEP, V);
1090
1091  Value *PtrOp = GEP.getOperand(0);
1092
1093  // Eliminate unneeded casts for indices, and replace indices which displace
1094  // by multiples of a zero size type with zero.
1095  if (DL) {
1096    bool MadeChange = false;
1097    Type *IntPtrTy = DL->getIntPtrType(GEP.getPointerOperandType());
1098
1099    gep_type_iterator GTI = gep_type_begin(GEP);
1100    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
1101         I != E; ++I, ++GTI) {
1102      // Skip indices into struct types.
1103      SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
1104      if (!SeqTy) continue;
1105
1106      // If the element type has zero size then any index over it is equivalent
1107      // to an index of zero, so replace it with zero if it is not zero already.
1108      if (SeqTy->getElementType()->isSized() &&
1109          DL->getTypeAllocSize(SeqTy->getElementType()) == 0)
1110        if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1111          *I = Constant::getNullValue(IntPtrTy);
1112          MadeChange = true;
1113        }
1114
1115      Type *IndexTy = (*I)->getType();
1116      if (IndexTy != IntPtrTy) {
1117        // If we are using a wider index than needed for this platform, shrink
1118        // it to what we need.  If narrower, sign-extend it to what we need.
1119        // This explicit cast can make subsequent optimizations more obvious.
1120        *I = Builder->CreateIntCast(*I, IntPtrTy, true);
1121        MadeChange = true;
1122      }
1123    }
1124    if (MadeChange) return &GEP;
1125  }
1126
1127  // Combine Indices - If the source pointer to this getelementptr instruction
1128  // is a getelementptr instruction, combine the indices of the two
1129  // getelementptr instructions into a single instruction.
1130  //
1131  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
1132    if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1133      return 0;
1134
1135    // Note that if our source is a gep chain itself then we wait for that
1136    // chain to be resolved before we perform this transformation.  This
1137    // avoids us creating a TON of code in some cases.
1138    if (GEPOperator *SrcGEP =
1139          dyn_cast<GEPOperator>(Src->getOperand(0)))
1140      if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1141        return 0;   // Wait until our source is folded to completion.
1142
1143    SmallVector<Value*, 8> Indices;
1144
1145    // Find out whether the last index in the source GEP is a sequential idx.
1146    bool EndsWithSequential = false;
1147    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1148         I != E; ++I)
1149      EndsWithSequential = !(*I)->isStructTy();
1150
1151    // Can we combine the two pointer arithmetics offsets?
1152    if (EndsWithSequential) {
1153      // Replace: gep (gep %P, long B), long A, ...
1154      // With:    T = long A+B; gep %P, T, ...
1155      //
1156      Value *Sum;
1157      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1158      Value *GO1 = GEP.getOperand(1);
1159      if (SO1 == Constant::getNullValue(SO1->getType())) {
1160        Sum = GO1;
1161      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
1162        Sum = SO1;
1163      } else {
1164        // If they aren't the same type, then the input hasn't been processed
1165        // by the loop above yet (which canonicalizes sequential index types to
1166        // intptr_t).  Just avoid transforming this until the input has been
1167        // normalized.
1168        if (SO1->getType() != GO1->getType())
1169          return 0;
1170        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
1171      }
1172
1173      // Update the GEP in place if possible.
1174      if (Src->getNumOperands() == 2) {
1175        GEP.setOperand(0, Src->getOperand(0));
1176        GEP.setOperand(1, Sum);
1177        return &GEP;
1178      }
1179      Indices.append(Src->op_begin()+1, Src->op_end()-1);
1180      Indices.push_back(Sum);
1181      Indices.append(GEP.op_begin()+2, GEP.op_end());
1182    } else if (isa<Constant>(*GEP.idx_begin()) &&
1183               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1184               Src->getNumOperands() != 1) {
1185      // Otherwise we can do the fold if the first index of the GEP is a zero
1186      Indices.append(Src->op_begin()+1, Src->op_end());
1187      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1188    }
1189
1190    if (!Indices.empty())
1191      return (GEP.isInBounds() && Src->isInBounds()) ?
1192        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
1193                                          GEP.getName()) :
1194        GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
1195  }
1196
1197  // Canonicalize (gep i8* X, -(ptrtoint Y)) to (sub (ptrtoint X), (ptrtoint Y))
1198  // The GEP pattern is emitted by the SCEV expander for certain kinds of
1199  // pointer arithmetic.
1200  if (DL && GEP.getNumIndices() == 1 &&
1201      match(GEP.getOperand(1), m_Neg(m_PtrToInt(m_Value())))) {
1202    unsigned AS = GEP.getPointerAddressSpace();
1203    if (GEP.getType() == Builder->getInt8PtrTy(AS) &&
1204        GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
1205        DL->getPointerSizeInBits(AS)) {
1206      Operator *Index = cast<Operator>(GEP.getOperand(1));
1207      Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
1208      Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
1209      return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
1210    }
1211  }
1212
1213  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1214  Value *StrippedPtr = PtrOp->stripPointerCasts();
1215  PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1216
1217  // We do not handle pointer-vector geps here.
1218  if (!StrippedPtrTy)
1219    return 0;
1220
1221  if (StrippedPtr != PtrOp) {
1222    bool HasZeroPointerIndex = false;
1223    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1224      HasZeroPointerIndex = C->isZero();
1225
1226    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1227    // into     : GEP [10 x i8]* X, i32 0, ...
1228    //
1229    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1230    //           into     : GEP i8* X, ...
1231    //
1232    // This occurs when the program declares an array extern like "int X[];"
1233    if (HasZeroPointerIndex) {
1234      PointerType *CPTy = cast<PointerType>(PtrOp->getType());
1235      if (ArrayType *CATy =
1236          dyn_cast<ArrayType>(CPTy->getElementType())) {
1237        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1238        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
1239          // -> GEP i8* X, ...
1240          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1241          GetElementPtrInst *Res =
1242            GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
1243          Res->setIsInBounds(GEP.isInBounds());
1244          return Res;
1245        }
1246
1247        if (ArrayType *XATy =
1248              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
1249          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1250          if (CATy->getElementType() == XATy->getElementType()) {
1251            // -> GEP [10 x i8]* X, i32 0, ...
1252            // At this point, we know that the cast source type is a pointer
1253            // to an array of the same type as the destination pointer
1254            // array.  Because the array type is never stepped over (there
1255            // is a leading zero) we can fold the cast into this GEP.
1256            GEP.setOperand(0, StrippedPtr);
1257            return &GEP;
1258          }
1259        }
1260      }
1261    } else if (GEP.getNumOperands() == 2) {
1262      // Transform things like:
1263      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1264      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1265      Type *SrcElTy = StrippedPtrTy->getElementType();
1266      Type *ResElTy = PtrOp->getType()->getPointerElementType();
1267      if (DL && SrcElTy->isArrayTy() &&
1268          DL->getTypeAllocSize(SrcElTy->getArrayElementType()) ==
1269          DL->getTypeAllocSize(ResElTy)) {
1270        Type *IdxType = DL->getIntPtrType(GEP.getType());
1271        Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
1272        Value *NewGEP = GEP.isInBounds() ?
1273          Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1274          Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1275
1276        // V and GEP are both pointer types --> BitCast
1277        if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace())
1278          return new BitCastInst(NewGEP, GEP.getType());
1279        return new AddrSpaceCastInst(NewGEP, GEP.getType());
1280      }
1281
1282      // Transform things like:
1283      // %V = mul i64 %N, 4
1284      // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1285      // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
1286      if (DL && ResElTy->isSized() && SrcElTy->isSized()) {
1287        // Check that changing the type amounts to dividing the index by a scale
1288        // factor.
1289        uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
1290        uint64_t SrcSize = DL->getTypeAllocSize(SrcElTy);
1291        if (ResSize && SrcSize % ResSize == 0) {
1292          Value *Idx = GEP.getOperand(1);
1293          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1294          uint64_t Scale = SrcSize / ResSize;
1295
1296          // Earlier transforms ensure that the index has type IntPtrType, which
1297          // considerably simplifies the logic by eliminating implicit casts.
1298          assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
1299                 "Index not cast to pointer width?");
1300
1301          bool NSW;
1302          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1303            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1304            // If the multiplication NewIdx * Scale may overflow then the new
1305            // GEP may not be "inbounds".
1306            Value *NewGEP = GEP.isInBounds() && NSW ?
1307              Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
1308              Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
1309
1310            // The NewGEP must be pointer typed, so must the old one -> BitCast
1311            if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace())
1312              return new BitCastInst(NewGEP, GEP.getType());
1313            return new AddrSpaceCastInst(NewGEP, GEP.getType());
1314          }
1315        }
1316      }
1317
1318      // Similarly, transform things like:
1319      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
1320      //   (where tmp = 8*tmp2) into:
1321      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
1322      if (DL && ResElTy->isSized() && SrcElTy->isSized() &&
1323          SrcElTy->isArrayTy()) {
1324        // Check that changing to the array element type amounts to dividing the
1325        // index by a scale factor.
1326        uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
1327        uint64_t ArrayEltSize
1328          = DL->getTypeAllocSize(SrcElTy->getArrayElementType());
1329        if (ResSize && ArrayEltSize % ResSize == 0) {
1330          Value *Idx = GEP.getOperand(1);
1331          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1332          uint64_t Scale = ArrayEltSize / ResSize;
1333
1334          // Earlier transforms ensure that the index has type IntPtrType, which
1335          // considerably simplifies the logic by eliminating implicit casts.
1336          assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
1337                 "Index not cast to pointer width?");
1338
1339          bool NSW;
1340          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1341            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1342            // If the multiplication NewIdx * Scale may overflow then the new
1343            // GEP may not be "inbounds".
1344            Value *Off[2] = {
1345              Constant::getNullValue(DL->getIntPtrType(GEP.getType())),
1346              NewIdx
1347            };
1348
1349            Value *NewGEP = GEP.isInBounds() && NSW ?
1350              Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
1351              Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
1352            // The NewGEP must be pointer typed, so must the old one -> BitCast
1353            if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace())
1354              return new BitCastInst(NewGEP, GEP.getType());
1355            return new AddrSpaceCastInst(NewGEP, GEP.getType());
1356          }
1357        }
1358      }
1359    }
1360  }
1361
1362  if (!DL)
1363    return 0;
1364
1365  /// See if we can simplify:
1366  ///   X = bitcast A* to B*
1367  ///   Y = gep X, <...constant indices...>
1368  /// into a gep of the original struct.  This is important for SROA and alias
1369  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
1370  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1371    Value *Operand = BCI->getOperand(0);
1372    PointerType *OpType = cast<PointerType>(Operand->getType());
1373    unsigned OffsetBits = DL->getPointerTypeSizeInBits(OpType);
1374    APInt Offset(OffsetBits, 0);
1375    if (!isa<BitCastInst>(Operand) &&
1376        GEP.accumulateConstantOffset(*DL, Offset) &&
1377        StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1378
1379      // If this GEP instruction doesn't move the pointer, just replace the GEP
1380      // with a bitcast of the real input to the dest type.
1381      if (!Offset) {
1382        // If the bitcast is of an allocation, and the allocation will be
1383        // converted to match the type of the cast, don't touch this.
1384        if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
1385          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1386          if (Instruction *I = visitBitCast(*BCI)) {
1387            if (I != BCI) {
1388              I->takeName(BCI);
1389              BCI->getParent()->getInstList().insert(BCI, I);
1390              ReplaceInstUsesWith(*BCI, I);
1391            }
1392            return &GEP;
1393          }
1394        }
1395        return new BitCastInst(Operand, GEP.getType());
1396      }
1397
1398      // Otherwise, if the offset is non-zero, we need to find out if there is a
1399      // field at Offset in 'A's type.  If so, we can pull the cast through the
1400      // GEP.
1401      SmallVector<Value*, 8> NewIndices;
1402      if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
1403        Value *NGEP = GEP.isInBounds() ?
1404          Builder->CreateInBoundsGEP(Operand, NewIndices) :
1405          Builder->CreateGEP(Operand, NewIndices);
1406
1407        if (NGEP->getType() == GEP.getType())
1408          return ReplaceInstUsesWith(GEP, NGEP);
1409        NGEP->takeName(&GEP);
1410        return new BitCastInst(NGEP, GEP.getType());
1411      }
1412    }
1413  }
1414
1415  return 0;
1416}
1417
1418static bool
1419isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1420                     const TargetLibraryInfo *TLI) {
1421  SmallVector<Instruction*, 4> Worklist;
1422  Worklist.push_back(AI);
1423
1424  do {
1425    Instruction *PI = Worklist.pop_back_val();
1426    for (User *U : PI->users()) {
1427      Instruction *I = cast<Instruction>(U);
1428      switch (I->getOpcode()) {
1429      default:
1430        // Give up the moment we see something we can't handle.
1431        return false;
1432
1433      case Instruction::BitCast:
1434      case Instruction::GetElementPtr:
1435        Users.push_back(I);
1436        Worklist.push_back(I);
1437        continue;
1438
1439      case Instruction::ICmp: {
1440        ICmpInst *ICI = cast<ICmpInst>(I);
1441        // We can fold eq/ne comparisons with null to false/true, respectively.
1442        if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1443          return false;
1444        Users.push_back(I);
1445        continue;
1446      }
1447
1448      case Instruction::Call:
1449        // Ignore no-op and store intrinsics.
1450        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1451          switch (II->getIntrinsicID()) {
1452          default:
1453            return false;
1454
1455          case Intrinsic::memmove:
1456          case Intrinsic::memcpy:
1457          case Intrinsic::memset: {
1458            MemIntrinsic *MI = cast<MemIntrinsic>(II);
1459            if (MI->isVolatile() || MI->getRawDest() != PI)
1460              return false;
1461          }
1462          // fall through
1463          case Intrinsic::dbg_declare:
1464          case Intrinsic::dbg_value:
1465          case Intrinsic::invariant_start:
1466          case Intrinsic::invariant_end:
1467          case Intrinsic::lifetime_start:
1468          case Intrinsic::lifetime_end:
1469          case Intrinsic::objectsize:
1470            Users.push_back(I);
1471            continue;
1472          }
1473        }
1474
1475        if (isFreeCall(I, TLI)) {
1476          Users.push_back(I);
1477          continue;
1478        }
1479        return false;
1480
1481      case Instruction::Store: {
1482        StoreInst *SI = cast<StoreInst>(I);
1483        if (SI->isVolatile() || SI->getPointerOperand() != PI)
1484          return false;
1485        Users.push_back(I);
1486        continue;
1487      }
1488      }
1489      llvm_unreachable("missing a return?");
1490    }
1491  } while (!Worklist.empty());
1492  return true;
1493}
1494
1495Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
1496  // If we have a malloc call which is only used in any amount of comparisons
1497  // to null and free calls, delete the calls and replace the comparisons with
1498  // true or false as appropriate.
1499  SmallVector<WeakVH, 64> Users;
1500  if (isAllocSiteRemovable(&MI, Users, TLI)) {
1501    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1502      Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1503      if (!I) continue;
1504
1505      if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1506        ReplaceInstUsesWith(*C,
1507                            ConstantInt::get(Type::getInt1Ty(C->getContext()),
1508                                             C->isFalseWhenEqual()));
1509      } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1510        ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
1511      } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1512        if (II->getIntrinsicID() == Intrinsic::objectsize) {
1513          ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1514          uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1515          ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1516        }
1517      }
1518      EraseInstFromFunction(*I);
1519    }
1520
1521    if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
1522      // Replace invoke with a NOP intrinsic to maintain the original CFG
1523      Module *M = II->getParent()->getParent()->getParent();
1524      Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1525      InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
1526                         None, "", II->getParent());
1527    }
1528    return EraseInstFromFunction(MI);
1529  }
1530  return 0;
1531}
1532
1533/// \brief Move the call to free before a NULL test.
1534///
1535/// Check if this free is accessed after its argument has been test
1536/// against NULL (property 0).
1537/// If yes, it is legal to move this call in its predecessor block.
1538///
1539/// The move is performed only if the block containing the call to free
1540/// will be removed, i.e.:
1541/// 1. it has only one predecessor P, and P has two successors
1542/// 2. it contains the call and an unconditional branch
1543/// 3. its successor is the same as its predecessor's successor
1544///
1545/// The profitability is out-of concern here and this function should
1546/// be called only if the caller knows this transformation would be
1547/// profitable (e.g., for code size).
1548static Instruction *
1549tryToMoveFreeBeforeNullTest(CallInst &FI) {
1550  Value *Op = FI.getArgOperand(0);
1551  BasicBlock *FreeInstrBB = FI.getParent();
1552  BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
1553
1554  // Validate part of constraint #1: Only one predecessor
1555  // FIXME: We can extend the number of predecessor, but in that case, we
1556  //        would duplicate the call to free in each predecessor and it may
1557  //        not be profitable even for code size.
1558  if (!PredBB)
1559    return 0;
1560
1561  // Validate constraint #2: Does this block contains only the call to
1562  //                         free and an unconditional branch?
1563  // FIXME: We could check if we can speculate everything in the
1564  //        predecessor block
1565  if (FreeInstrBB->size() != 2)
1566    return 0;
1567  BasicBlock *SuccBB;
1568  if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
1569    return 0;
1570
1571  // Validate the rest of constraint #1 by matching on the pred branch.
1572  TerminatorInst *TI = PredBB->getTerminator();
1573  BasicBlock *TrueBB, *FalseBB;
1574  ICmpInst::Predicate Pred;
1575  if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
1576    return 0;
1577  if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
1578    return 0;
1579
1580  // Validate constraint #3: Ensure the null case just falls through.
1581  if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
1582    return 0;
1583  assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
1584         "Broken CFG: missing edge from predecessor to successor");
1585
1586  FI.moveBefore(TI);
1587  return &FI;
1588}
1589
1590
1591Instruction *InstCombiner::visitFree(CallInst &FI) {
1592  Value *Op = FI.getArgOperand(0);
1593
1594  // free undef -> unreachable.
1595  if (isa<UndefValue>(Op)) {
1596    // Insert a new store to null because we cannot modify the CFG here.
1597    Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1598                         UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
1599    return EraseInstFromFunction(FI);
1600  }
1601
1602  // If we have 'free null' delete the instruction.  This can happen in stl code
1603  // when lots of inlining happens.
1604  if (isa<ConstantPointerNull>(Op))
1605    return EraseInstFromFunction(FI);
1606
1607  // If we optimize for code size, try to move the call to free before the null
1608  // test so that simplify cfg can remove the empty block and dead code
1609  // elimination the branch. I.e., helps to turn something like:
1610  // if (foo) free(foo);
1611  // into
1612  // free(foo);
1613  if (MinimizeSize)
1614    if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
1615      return I;
1616
1617  return 0;
1618}
1619
1620
1621
1622Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1623  // Change br (not X), label True, label False to: br X, label False, True
1624  Value *X = 0;
1625  BasicBlock *TrueDest;
1626  BasicBlock *FalseDest;
1627  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
1628      !isa<Constant>(X)) {
1629    // Swap Destinations and condition...
1630    BI.setCondition(X);
1631    BI.swapSuccessors();
1632    return &BI;
1633  }
1634
1635  // Canonicalize fcmp_one -> fcmp_oeq
1636  FCmpInst::Predicate FPred; Value *Y;
1637  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
1638                             TrueDest, FalseDest)) &&
1639      BI.getCondition()->hasOneUse())
1640    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1641        FPred == FCmpInst::FCMP_OGE) {
1642      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1643      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
1644
1645      // Swap Destinations and condition.
1646      BI.swapSuccessors();
1647      Worklist.Add(Cond);
1648      return &BI;
1649    }
1650
1651  // Canonicalize icmp_ne -> icmp_eq
1652  ICmpInst::Predicate IPred;
1653  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
1654                      TrueDest, FalseDest)) &&
1655      BI.getCondition()->hasOneUse())
1656    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
1657        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1658        IPred == ICmpInst::ICMP_SGE) {
1659      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1660      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1661      // Swap Destinations and condition.
1662      BI.swapSuccessors();
1663      Worklist.Add(Cond);
1664      return &BI;
1665    }
1666
1667  return 0;
1668}
1669
1670Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1671  Value *Cond = SI.getCondition();
1672  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1673    if (I->getOpcode() == Instruction::Add)
1674      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1675        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
1676        // Skip the first item since that's the default case.
1677        for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1678             i != e; ++i) {
1679          ConstantInt* CaseVal = i.getCaseValue();
1680          Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1681                                                      AddRHS);
1682          assert(isa<ConstantInt>(NewCaseVal) &&
1683                 "Result of expression should be constant");
1684          i.setValue(cast<ConstantInt>(NewCaseVal));
1685        }
1686        SI.setCondition(I->getOperand(0));
1687        Worklist.Add(I);
1688        return &SI;
1689      }
1690  }
1691  return 0;
1692}
1693
1694Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
1695  Value *Agg = EV.getAggregateOperand();
1696
1697  if (!EV.hasIndices())
1698    return ReplaceInstUsesWith(EV, Agg);
1699
1700  if (Constant *C = dyn_cast<Constant>(Agg)) {
1701    if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
1702      if (EV.getNumIndices() == 0)
1703        return ReplaceInstUsesWith(EV, C2);
1704      // Extract the remaining indices out of the constant indexed by the
1705      // first index
1706      return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
1707    }
1708    return 0; // Can't handle other constants
1709  }
1710
1711  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1712    // We're extracting from an insertvalue instruction, compare the indices
1713    const unsigned *exti, *exte, *insi, *inse;
1714    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1715         exte = EV.idx_end(), inse = IV->idx_end();
1716         exti != exte && insi != inse;
1717         ++exti, ++insi) {
1718      if (*insi != *exti)
1719        // The insert and extract both reference distinctly different elements.
1720        // This means the extract is not influenced by the insert, and we can
1721        // replace the aggregate operand of the extract with the aggregate
1722        // operand of the insert. i.e., replace
1723        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1724        // %E = extractvalue { i32, { i32 } } %I, 0
1725        // with
1726        // %E = extractvalue { i32, { i32 } } %A, 0
1727        return ExtractValueInst::Create(IV->getAggregateOperand(),
1728                                        EV.getIndices());
1729    }
1730    if (exti == exte && insi == inse)
1731      // Both iterators are at the end: Index lists are identical. Replace
1732      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1733      // %C = extractvalue { i32, { i32 } } %B, 1, 0
1734      // with "i32 42"
1735      return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1736    if (exti == exte) {
1737      // The extract list is a prefix of the insert list. i.e. replace
1738      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1739      // %E = extractvalue { i32, { i32 } } %I, 1
1740      // with
1741      // %X = extractvalue { i32, { i32 } } %A, 1
1742      // %E = insertvalue { i32 } %X, i32 42, 0
1743      // by switching the order of the insert and extract (though the
1744      // insertvalue should be left in, since it may have other uses).
1745      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
1746                                                 EV.getIndices());
1747      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
1748                                     makeArrayRef(insi, inse));
1749    }
1750    if (insi == inse)
1751      // The insert list is a prefix of the extract list
1752      // We can simply remove the common indices from the extract and make it
1753      // operate on the inserted value instead of the insertvalue result.
1754      // i.e., replace
1755      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1756      // %E = extractvalue { i32, { i32 } } %I, 1, 0
1757      // with
1758      // %E extractvalue { i32 } { i32 42 }, 0
1759      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
1760                                      makeArrayRef(exti, exte));
1761  }
1762  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1763    // We're extracting from an intrinsic, see if we're the only user, which
1764    // allows us to simplify multiple result intrinsics to simpler things that
1765    // just get one value.
1766    if (II->hasOneUse()) {
1767      // Check if we're grabbing the overflow bit or the result of a 'with
1768      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
1769      // and replace it with a traditional binary instruction.
1770      switch (II->getIntrinsicID()) {
1771      case Intrinsic::uadd_with_overflow:
1772      case Intrinsic::sadd_with_overflow:
1773        if (*EV.idx_begin() == 0) {  // Normal result.
1774          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1775          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1776          EraseInstFromFunction(*II);
1777          return BinaryOperator::CreateAdd(LHS, RHS);
1778        }
1779
1780        // If the normal result of the add is dead, and the RHS is a constant,
1781        // we can transform this into a range comparison.
1782        // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
1783        if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1784          if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1785            return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1786                                ConstantExpr::getNot(CI));
1787        break;
1788      case Intrinsic::usub_with_overflow:
1789      case Intrinsic::ssub_with_overflow:
1790        if (*EV.idx_begin() == 0) {  // Normal result.
1791          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1792          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1793          EraseInstFromFunction(*II);
1794          return BinaryOperator::CreateSub(LHS, RHS);
1795        }
1796        break;
1797      case Intrinsic::umul_with_overflow:
1798      case Intrinsic::smul_with_overflow:
1799        if (*EV.idx_begin() == 0) {  // Normal result.
1800          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1801          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1802          EraseInstFromFunction(*II);
1803          return BinaryOperator::CreateMul(LHS, RHS);
1804        }
1805        break;
1806      default:
1807        break;
1808      }
1809    }
1810  }
1811  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1812    // If the (non-volatile) load only has one use, we can rewrite this to a
1813    // load from a GEP. This reduces the size of the load.
1814    // FIXME: If a load is used only by extractvalue instructions then this
1815    //        could be done regardless of having multiple uses.
1816    if (L->isSimple() && L->hasOneUse()) {
1817      // extractvalue has integer indices, getelementptr has Value*s. Convert.
1818      SmallVector<Value*, 4> Indices;
1819      // Prefix an i32 0 since we need the first element.
1820      Indices.push_back(Builder->getInt32(0));
1821      for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1822            I != E; ++I)
1823        Indices.push_back(Builder->getInt32(*I));
1824
1825      // We need to insert these at the location of the old load, not at that of
1826      // the extractvalue.
1827      Builder->SetInsertPoint(L->getParent(), L);
1828      Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
1829      // Returning the load directly will cause the main loop to insert it in
1830      // the wrong spot, so use ReplaceInstUsesWith().
1831      return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1832    }
1833  // We could simplify extracts from other values. Note that nested extracts may
1834  // already be simplified implicitly by the above: extract (extract (insert) )
1835  // will be translated into extract ( insert ( extract ) ) first and then just
1836  // the value inserted, if appropriate. Similarly for extracts from single-use
1837  // loads: extract (extract (load)) will be translated to extract (load (gep))
1838  // and if again single-use then via load (gep (gep)) to load (gep).
1839  // However, double extracts from e.g. function arguments or return values
1840  // aren't handled yet.
1841  return 0;
1842}
1843
1844enum Personality_Type {
1845  Unknown_Personality,
1846  GNU_Ada_Personality,
1847  GNU_CXX_Personality,
1848  GNU_ObjC_Personality
1849};
1850
1851/// RecognizePersonality - See if the given exception handling personality
1852/// function is one that we understand.  If so, return a description of it;
1853/// otherwise return Unknown_Personality.
1854static Personality_Type RecognizePersonality(Value *Pers) {
1855  Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
1856  if (!F)
1857    return Unknown_Personality;
1858  return StringSwitch<Personality_Type>(F->getName())
1859    .Case("__gnat_eh_personality", GNU_Ada_Personality)
1860    .Case("__gxx_personality_v0",  GNU_CXX_Personality)
1861    .Case("__objc_personality_v0", GNU_ObjC_Personality)
1862    .Default(Unknown_Personality);
1863}
1864
1865/// isCatchAll - Return 'true' if the given typeinfo will match anything.
1866static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
1867  switch (Personality) {
1868  case Unknown_Personality:
1869    return false;
1870  case GNU_Ada_Personality:
1871    // While __gnat_all_others_value will match any Ada exception, it doesn't
1872    // match foreign exceptions (or didn't, before gcc-4.7).
1873    return false;
1874  case GNU_CXX_Personality:
1875  case GNU_ObjC_Personality:
1876    return TypeInfo->isNullValue();
1877  }
1878  llvm_unreachable("Unknown personality!");
1879}
1880
1881static bool shorter_filter(const Value *LHS, const Value *RHS) {
1882  return
1883    cast<ArrayType>(LHS->getType())->getNumElements()
1884  <
1885    cast<ArrayType>(RHS->getType())->getNumElements();
1886}
1887
1888Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
1889  // The logic here should be correct for any real-world personality function.
1890  // However if that turns out not to be true, the offending logic can always
1891  // be conditioned on the personality function, like the catch-all logic is.
1892  Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
1893
1894  // Simplify the list of clauses, eg by removing repeated catch clauses
1895  // (these are often created by inlining).
1896  bool MakeNewInstruction = false; // If true, recreate using the following:
1897  SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
1898  bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
1899
1900  SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
1901  for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
1902    bool isLastClause = i + 1 == e;
1903    if (LI.isCatch(i)) {
1904      // A catch clause.
1905      Value *CatchClause = LI.getClause(i);
1906      Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
1907
1908      // If we already saw this clause, there is no point in having a second
1909      // copy of it.
1910      if (AlreadyCaught.insert(TypeInfo)) {
1911        // This catch clause was not already seen.
1912        NewClauses.push_back(CatchClause);
1913      } else {
1914        // Repeated catch clause - drop the redundant copy.
1915        MakeNewInstruction = true;
1916      }
1917
1918      // If this is a catch-all then there is no point in keeping any following
1919      // clauses or marking the landingpad as having a cleanup.
1920      if (isCatchAll(Personality, TypeInfo)) {
1921        if (!isLastClause)
1922          MakeNewInstruction = true;
1923        CleanupFlag = false;
1924        break;
1925      }
1926    } else {
1927      // A filter clause.  If any of the filter elements were already caught
1928      // then they can be dropped from the filter.  It is tempting to try to
1929      // exploit the filter further by saying that any typeinfo that does not
1930      // occur in the filter can't be caught later (and thus can be dropped).
1931      // However this would be wrong, since typeinfos can match without being
1932      // equal (for example if one represents a C++ class, and the other some
1933      // class derived from it).
1934      assert(LI.isFilter(i) && "Unsupported landingpad clause!");
1935      Value *FilterClause = LI.getClause(i);
1936      ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
1937      unsigned NumTypeInfos = FilterType->getNumElements();
1938
1939      // An empty filter catches everything, so there is no point in keeping any
1940      // following clauses or marking the landingpad as having a cleanup.  By
1941      // dealing with this case here the following code is made a bit simpler.
1942      if (!NumTypeInfos) {
1943        NewClauses.push_back(FilterClause);
1944        if (!isLastClause)
1945          MakeNewInstruction = true;
1946        CleanupFlag = false;
1947        break;
1948      }
1949
1950      bool MakeNewFilter = false; // If true, make a new filter.
1951      SmallVector<Constant *, 16> NewFilterElts; // New elements.
1952      if (isa<ConstantAggregateZero>(FilterClause)) {
1953        // Not an empty filter - it contains at least one null typeinfo.
1954        assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
1955        Constant *TypeInfo =
1956          Constant::getNullValue(FilterType->getElementType());
1957        // If this typeinfo is a catch-all then the filter can never match.
1958        if (isCatchAll(Personality, TypeInfo)) {
1959          // Throw the filter away.
1960          MakeNewInstruction = true;
1961          continue;
1962        }
1963
1964        // There is no point in having multiple copies of this typeinfo, so
1965        // discard all but the first copy if there is more than one.
1966        NewFilterElts.push_back(TypeInfo);
1967        if (NumTypeInfos > 1)
1968          MakeNewFilter = true;
1969      } else {
1970        ConstantArray *Filter = cast<ConstantArray>(FilterClause);
1971        SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
1972        NewFilterElts.reserve(NumTypeInfos);
1973
1974        // Remove any filter elements that were already caught or that already
1975        // occurred in the filter.  While there, see if any of the elements are
1976        // catch-alls.  If so, the filter can be discarded.
1977        bool SawCatchAll = false;
1978        for (unsigned j = 0; j != NumTypeInfos; ++j) {
1979          Value *Elt = Filter->getOperand(j);
1980          Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
1981          if (isCatchAll(Personality, TypeInfo)) {
1982            // This element is a catch-all.  Bail out, noting this fact.
1983            SawCatchAll = true;
1984            break;
1985          }
1986          if (AlreadyCaught.count(TypeInfo))
1987            // Already caught by an earlier clause, so having it in the filter
1988            // is pointless.
1989            continue;
1990          // There is no point in having multiple copies of the same typeinfo in
1991          // a filter, so only add it if we didn't already.
1992          if (SeenInFilter.insert(TypeInfo))
1993            NewFilterElts.push_back(cast<Constant>(Elt));
1994        }
1995        // A filter containing a catch-all cannot match anything by definition.
1996        if (SawCatchAll) {
1997          // Throw the filter away.
1998          MakeNewInstruction = true;
1999          continue;
2000        }
2001
2002        // If we dropped something from the filter, make a new one.
2003        if (NewFilterElts.size() < NumTypeInfos)
2004          MakeNewFilter = true;
2005      }
2006      if (MakeNewFilter) {
2007        FilterType = ArrayType::get(FilterType->getElementType(),
2008                                    NewFilterElts.size());
2009        FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2010        MakeNewInstruction = true;
2011      }
2012
2013      NewClauses.push_back(FilterClause);
2014
2015      // If the new filter is empty then it will catch everything so there is
2016      // no point in keeping any following clauses or marking the landingpad
2017      // as having a cleanup.  The case of the original filter being empty was
2018      // already handled above.
2019      if (MakeNewFilter && !NewFilterElts.size()) {
2020        assert(MakeNewInstruction && "New filter but not a new instruction!");
2021        CleanupFlag = false;
2022        break;
2023      }
2024    }
2025  }
2026
2027  // If several filters occur in a row then reorder them so that the shortest
2028  // filters come first (those with the smallest number of elements).  This is
2029  // advantageous because shorter filters are more likely to match, speeding up
2030  // unwinding, but mostly because it increases the effectiveness of the other
2031  // filter optimizations below.
2032  for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2033    unsigned j;
2034    // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2035    for (j = i; j != e; ++j)
2036      if (!isa<ArrayType>(NewClauses[j]->getType()))
2037        break;
2038
2039    // Check whether the filters are already sorted by length.  We need to know
2040    // if sorting them is actually going to do anything so that we only make a
2041    // new landingpad instruction if it does.
2042    for (unsigned k = i; k + 1 < j; ++k)
2043      if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2044        // Not sorted, so sort the filters now.  Doing an unstable sort would be
2045        // correct too but reordering filters pointlessly might confuse users.
2046        std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2047                         shorter_filter);
2048        MakeNewInstruction = true;
2049        break;
2050      }
2051
2052    // Look for the next batch of filters.
2053    i = j + 1;
2054  }
2055
2056  // If typeinfos matched if and only if equal, then the elements of a filter L
2057  // that occurs later than a filter F could be replaced by the intersection of
2058  // the elements of F and L.  In reality two typeinfos can match without being
2059  // equal (for example if one represents a C++ class, and the other some class
2060  // derived from it) so it would be wrong to perform this transform in general.
2061  // However the transform is correct and useful if F is a subset of L.  In that
2062  // case L can be replaced by F, and thus removed altogether since repeating a
2063  // filter is pointless.  So here we look at all pairs of filters F and L where
2064  // L follows F in the list of clauses, and remove L if every element of F is
2065  // an element of L.  This can occur when inlining C++ functions with exception
2066  // specifications.
2067  for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2068    // Examine each filter in turn.
2069    Value *Filter = NewClauses[i];
2070    ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2071    if (!FTy)
2072      // Not a filter - skip it.
2073      continue;
2074    unsigned FElts = FTy->getNumElements();
2075    // Examine each filter following this one.  Doing this backwards means that
2076    // we don't have to worry about filters disappearing under us when removed.
2077    for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2078      Value *LFilter = NewClauses[j];
2079      ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2080      if (!LTy)
2081        // Not a filter - skip it.
2082        continue;
2083      // If Filter is a subset of LFilter, i.e. every element of Filter is also
2084      // an element of LFilter, then discard LFilter.
2085      SmallVectorImpl<Value *>::iterator J = NewClauses.begin() + j;
2086      // If Filter is empty then it is a subset of LFilter.
2087      if (!FElts) {
2088        // Discard LFilter.
2089        NewClauses.erase(J);
2090        MakeNewInstruction = true;
2091        // Move on to the next filter.
2092        continue;
2093      }
2094      unsigned LElts = LTy->getNumElements();
2095      // If Filter is longer than LFilter then it cannot be a subset of it.
2096      if (FElts > LElts)
2097        // Move on to the next filter.
2098        continue;
2099      // At this point we know that LFilter has at least one element.
2100      if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
2101        // Filter is a subset of LFilter iff Filter contains only zeros (as we
2102        // already know that Filter is not longer than LFilter).
2103        if (isa<ConstantAggregateZero>(Filter)) {
2104          assert(FElts <= LElts && "Should have handled this case earlier!");
2105          // Discard LFilter.
2106          NewClauses.erase(J);
2107          MakeNewInstruction = true;
2108        }
2109        // Move on to the next filter.
2110        continue;
2111      }
2112      ConstantArray *LArray = cast<ConstantArray>(LFilter);
2113      if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2114        // Since Filter is non-empty and contains only zeros, it is a subset of
2115        // LFilter iff LFilter contains a zero.
2116        assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2117        for (unsigned l = 0; l != LElts; ++l)
2118          if (LArray->getOperand(l)->isNullValue()) {
2119            // LFilter contains a zero - discard it.
2120            NewClauses.erase(J);
2121            MakeNewInstruction = true;
2122            break;
2123          }
2124        // Move on to the next filter.
2125        continue;
2126      }
2127      // At this point we know that both filters are ConstantArrays.  Loop over
2128      // operands to see whether every element of Filter is also an element of
2129      // LFilter.  Since filters tend to be short this is probably faster than
2130      // using a method that scales nicely.
2131      ConstantArray *FArray = cast<ConstantArray>(Filter);
2132      bool AllFound = true;
2133      for (unsigned f = 0; f != FElts; ++f) {
2134        Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2135        AllFound = false;
2136        for (unsigned l = 0; l != LElts; ++l) {
2137          Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2138          if (LTypeInfo == FTypeInfo) {
2139            AllFound = true;
2140            break;
2141          }
2142        }
2143        if (!AllFound)
2144          break;
2145      }
2146      if (AllFound) {
2147        // Discard LFilter.
2148        NewClauses.erase(J);
2149        MakeNewInstruction = true;
2150      }
2151      // Move on to the next filter.
2152    }
2153  }
2154
2155  // If we changed any of the clauses, replace the old landingpad instruction
2156  // with a new one.
2157  if (MakeNewInstruction) {
2158    LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2159                                                 LI.getPersonalityFn(),
2160                                                 NewClauses.size());
2161    for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2162      NLI->addClause(NewClauses[i]);
2163    // A landing pad with no clauses must have the cleanup flag set.  It is
2164    // theoretically possible, though highly unlikely, that we eliminated all
2165    // clauses.  If so, force the cleanup flag to true.
2166    if (NewClauses.empty())
2167      CleanupFlag = true;
2168    NLI->setCleanup(CleanupFlag);
2169    return NLI;
2170  }
2171
2172  // Even if none of the clauses changed, we may nonetheless have understood
2173  // that the cleanup flag is pointless.  Clear it if so.
2174  if (LI.isCleanup() != CleanupFlag) {
2175    assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2176    LI.setCleanup(CleanupFlag);
2177    return &LI;
2178  }
2179
2180  return 0;
2181}
2182
2183
2184
2185
2186/// TryToSinkInstruction - Try to move the specified instruction from its
2187/// current block into the beginning of DestBlock, which can only happen if it's
2188/// safe to move the instruction past all of the instructions between it and the
2189/// end of its block.
2190static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2191  assert(I->hasOneUse() && "Invariants didn't hold!");
2192
2193  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
2194  if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
2195      isa<TerminatorInst>(I))
2196    return false;
2197
2198  // Do not sink alloca instructions out of the entry block.
2199  if (isa<AllocaInst>(I) && I->getParent() ==
2200        &DestBlock->getParent()->getEntryBlock())
2201    return false;
2202
2203  // We can only sink load instructions if there is nothing between the load and
2204  // the end of block that could change the value.
2205  if (I->mayReadFromMemory()) {
2206    for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
2207         Scan != E; ++Scan)
2208      if (Scan->mayWriteToMemory())
2209        return false;
2210  }
2211
2212  BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
2213  I->moveBefore(InsertPos);
2214  ++NumSunkInst;
2215  return true;
2216}
2217
2218
2219/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
2220/// all reachable code to the worklist.
2221///
2222/// This has a couple of tricks to make the code faster and more powerful.  In
2223/// particular, we constant fold and DCE instructions as we go, to avoid adding
2224/// them to the worklist (this significantly speeds up instcombine on code where
2225/// many instructions are dead or constant).  Additionally, if we find a branch
2226/// whose condition is a known constant, we only visit the reachable successors.
2227///
2228static bool AddReachableCodeToWorklist(BasicBlock *BB,
2229                                       SmallPtrSet<BasicBlock*, 64> &Visited,
2230                                       InstCombiner &IC,
2231                                       const DataLayout *DL,
2232                                       const TargetLibraryInfo *TLI) {
2233  bool MadeIRChange = false;
2234  SmallVector<BasicBlock*, 256> Worklist;
2235  Worklist.push_back(BB);
2236
2237  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
2238  DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2239
2240  do {
2241    BB = Worklist.pop_back_val();
2242
2243    // We have now visited this block!  If we've already been here, ignore it.
2244    if (!Visited.insert(BB)) continue;
2245
2246    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2247      Instruction *Inst = BBI++;
2248
2249      // DCE instruction if trivially dead.
2250      if (isInstructionTriviallyDead(Inst, TLI)) {
2251        ++NumDeadInst;
2252        DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
2253        Inst->eraseFromParent();
2254        continue;
2255      }
2256
2257      // ConstantProp instruction if trivially constant.
2258      if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
2259        if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
2260          DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
2261                       << *Inst << '\n');
2262          Inst->replaceAllUsesWith(C);
2263          ++NumConstProp;
2264          Inst->eraseFromParent();
2265          continue;
2266        }
2267
2268      if (DL) {
2269        // See if we can constant fold its operands.
2270        for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
2271             i != e; ++i) {
2272          ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
2273          if (CE == 0) continue;
2274
2275          Constant*& FoldRes = FoldedConstants[CE];
2276          if (!FoldRes)
2277            FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
2278          if (!FoldRes)
2279            FoldRes = CE;
2280
2281          if (FoldRes != CE) {
2282            *i = FoldRes;
2283            MadeIRChange = true;
2284          }
2285        }
2286      }
2287
2288      InstrsForInstCombineWorklist.push_back(Inst);
2289    }
2290
2291    // Recursively visit successors.  If this is a branch or switch on a
2292    // constant, only visit the reachable successor.
2293    TerminatorInst *TI = BB->getTerminator();
2294    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2295      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2296        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
2297        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
2298        Worklist.push_back(ReachableBB);
2299        continue;
2300      }
2301    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2302      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2303        // See if this is an explicit destination.
2304        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2305             i != e; ++i)
2306          if (i.getCaseValue() == Cond) {
2307            BasicBlock *ReachableBB = i.getCaseSuccessor();
2308            Worklist.push_back(ReachableBB);
2309            continue;
2310          }
2311
2312        // Otherwise it is the default destination.
2313        Worklist.push_back(SI->getDefaultDest());
2314        continue;
2315      }
2316    }
2317
2318    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
2319      Worklist.push_back(TI->getSuccessor(i));
2320  } while (!Worklist.empty());
2321
2322  // Once we've found all of the instructions to add to instcombine's worklist,
2323  // add them in reverse order.  This way instcombine will visit from the top
2324  // of the function down.  This jives well with the way that it adds all uses
2325  // of instructions to the worklist after doing a transformation, thus avoiding
2326  // some N^2 behavior in pathological cases.
2327  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
2328                              InstrsForInstCombineWorklist.size());
2329
2330  return MadeIRChange;
2331}
2332
2333bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
2334  MadeIRChange = false;
2335
2336  DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
2337               << F.getName() << "\n");
2338
2339  {
2340    // Do a depth-first traversal of the function, populate the worklist with
2341    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
2342    // track of which blocks we visit.
2343    SmallPtrSet<BasicBlock*, 64> Visited;
2344    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, DL,
2345                                               TLI);
2346
2347    // Do a quick scan over the function.  If we find any blocks that are
2348    // unreachable, remove any instructions inside of them.  This prevents
2349    // the instcombine code from having to deal with some bad special cases.
2350    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2351      if (Visited.count(BB)) continue;
2352
2353      // Delete the instructions backwards, as it has a reduced likelihood of
2354      // having to update as many def-use and use-def chains.
2355      Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2356      while (EndInst != BB->begin()) {
2357        // Delete the next to last instruction.
2358        BasicBlock::iterator I = EndInst;
2359        Instruction *Inst = --I;
2360        if (!Inst->use_empty())
2361          Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2362        if (isa<LandingPadInst>(Inst)) {
2363          EndInst = Inst;
2364          continue;
2365        }
2366        if (!isa<DbgInfoIntrinsic>(Inst)) {
2367          ++NumDeadInst;
2368          MadeIRChange = true;
2369        }
2370        Inst->eraseFromParent();
2371      }
2372    }
2373  }
2374
2375  while (!Worklist.isEmpty()) {
2376    Instruction *I = Worklist.RemoveOne();
2377    if (I == 0) continue;  // skip null values.
2378
2379    // Check to see if we can DCE the instruction.
2380    if (isInstructionTriviallyDead(I, TLI)) {
2381      DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
2382      EraseInstFromFunction(*I);
2383      ++NumDeadInst;
2384      MadeIRChange = true;
2385      continue;
2386    }
2387
2388    // Instruction isn't dead, see if we can constant propagate it.
2389    if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
2390      if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
2391        DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
2392
2393        // Add operands to the worklist.
2394        ReplaceInstUsesWith(*I, C);
2395        ++NumConstProp;
2396        EraseInstFromFunction(*I);
2397        MadeIRChange = true;
2398        continue;
2399      }
2400
2401    // See if we can trivially sink this instruction to a successor basic block.
2402    if (I->hasOneUse()) {
2403      BasicBlock *BB = I->getParent();
2404      Instruction *UserInst = cast<Instruction>(*I->user_begin());
2405      BasicBlock *UserParent;
2406
2407      // Get the block the use occurs in.
2408      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2409        UserParent = PN->getIncomingBlock(*I->use_begin());
2410      else
2411        UserParent = UserInst->getParent();
2412
2413      if (UserParent != BB) {
2414        bool UserIsSuccessor = false;
2415        // See if the user is one of our successors.
2416        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2417          if (*SI == UserParent) {
2418            UserIsSuccessor = true;
2419            break;
2420          }
2421
2422        // If the user is one of our immediate successors, and if that successor
2423        // only has us as a predecessors (we'd have to split the critical edge
2424        // otherwise), we can keep going.
2425        if (UserIsSuccessor && UserParent->getSinglePredecessor())
2426          // Okay, the CFG is simple enough, try to sink this instruction.
2427          MadeIRChange |= TryToSinkInstruction(I, UserParent);
2428      }
2429    }
2430
2431    // Now that we have an instruction, try combining it to simplify it.
2432    Builder->SetInsertPoint(I->getParent(), I);
2433    Builder->SetCurrentDebugLocation(I->getDebugLoc());
2434
2435#ifndef NDEBUG
2436    std::string OrigI;
2437#endif
2438    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2439    DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
2440
2441    if (Instruction *Result = visit(*I)) {
2442      ++NumCombined;
2443      // Should we replace the old instruction with a new one?
2444      if (Result != I) {
2445        DEBUG(dbgs() << "IC: Old = " << *I << '\n'
2446                     << "    New = " << *Result << '\n');
2447
2448        if (!I->getDebugLoc().isUnknown())
2449          Result->setDebugLoc(I->getDebugLoc());
2450        // Everything uses the new instruction now.
2451        I->replaceAllUsesWith(Result);
2452
2453        // Move the name to the new instruction first.
2454        Result->takeName(I);
2455
2456        // Push the new instruction and any users onto the worklist.
2457        Worklist.Add(Result);
2458        Worklist.AddUsersToWorkList(*Result);
2459
2460        // Insert the new instruction into the basic block...
2461        BasicBlock *InstParent = I->getParent();
2462        BasicBlock::iterator InsertPos = I;
2463
2464        // If we replace a PHI with something that isn't a PHI, fix up the
2465        // insertion point.
2466        if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2467          InsertPos = InstParent->getFirstInsertionPt();
2468
2469        InstParent->getInstList().insert(InsertPos, Result);
2470
2471        EraseInstFromFunction(*I);
2472      } else {
2473#ifndef NDEBUG
2474        DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
2475                     << "    New = " << *I << '\n');
2476#endif
2477
2478        // If the instruction was modified, it's possible that it is now dead.
2479        // if so, remove it.
2480        if (isInstructionTriviallyDead(I, TLI)) {
2481          EraseInstFromFunction(*I);
2482        } else {
2483          Worklist.Add(I);
2484          Worklist.AddUsersToWorkList(*I);
2485        }
2486      }
2487      MadeIRChange = true;
2488    }
2489  }
2490
2491  Worklist.Zap();
2492  return MadeIRChange;
2493}
2494
2495namespace {
2496class InstCombinerLibCallSimplifier : public LibCallSimplifier {
2497  InstCombiner *IC;
2498public:
2499  InstCombinerLibCallSimplifier(const DataLayout *DL,
2500                                const TargetLibraryInfo *TLI,
2501                                InstCombiner *IC)
2502    : LibCallSimplifier(DL, TLI, UnsafeFPShrink) {
2503    this->IC = IC;
2504  }
2505
2506  /// replaceAllUsesWith - override so that instruction replacement
2507  /// can be defined in terms of the instruction combiner framework.
2508  void replaceAllUsesWith(Instruction *I, Value *With) const override {
2509    IC->ReplaceInstUsesWith(*I, With);
2510  }
2511};
2512}
2513
2514bool InstCombiner::runOnFunction(Function &F) {
2515  if (skipOptnoneFunction(F))
2516    return false;
2517
2518  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
2519  DL = DLP ? &DLP->getDataLayout() : 0;
2520  TLI = &getAnalysis<TargetLibraryInfo>();
2521  // Minimizing size?
2522  MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
2523                                                Attribute::MinSize);
2524
2525  /// Builder - This is an IRBuilder that automatically inserts new
2526  /// instructions into the worklist when they are created.
2527  IRBuilder<true, TargetFolder, InstCombineIRInserter>
2528    TheBuilder(F.getContext(), TargetFolder(DL),
2529               InstCombineIRInserter(Worklist));
2530  Builder = &TheBuilder;
2531
2532  InstCombinerLibCallSimplifier TheSimplifier(DL, TLI, this);
2533  Simplifier = &TheSimplifier;
2534
2535  bool EverMadeChange = false;
2536
2537  // Lower dbg.declare intrinsics otherwise their value may be clobbered
2538  // by instcombiner.
2539  EverMadeChange = LowerDbgDeclare(F);
2540
2541  // Iterate while there is work to do.
2542  unsigned Iteration = 0;
2543  while (DoOneIteration(F, Iteration++))
2544    EverMadeChange = true;
2545
2546  Builder = 0;
2547  return EverMadeChange;
2548}
2549
2550FunctionPass *llvm::createInstructionCombiningPass() {
2551  return new InstCombiner();
2552}
2553