AddressSanitizer.cpp revision 8cc5f7cd59c69250ab3b6a68e38405dcdb6a4b25
1//===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11// Details of the algorithm:
12//  http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "asan"
17
18#include "llvm/Transforms/Instrumentation.h"
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/DepthFirstIterator.h"
22#include "llvm/ADT/OwningPtr.h"
23#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/SmallString.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/ADT/Triple.h"
29#include "llvm/DIBuilder.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/IRBuilder.h"
33#include "llvm/IR/InlineAsm.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/Module.h"
37#include "llvm/IR/Type.h"
38#include "llvm/InstVisitor.h"
39#include "llvm/Support/CallSite.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/DataTypes.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/Endian.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Support/system_error.h"
46#include "llvm/Transforms/Utils/BasicBlockUtils.h"
47#include "llvm/Transforms/Utils/Cloning.h"
48#include "llvm/Transforms/Utils/Local.h"
49#include "llvm/Transforms/Utils/ModuleUtils.h"
50#include "llvm/Transforms/Utils/SpecialCaseList.h"
51#include <algorithm>
52#include <string>
53
54using namespace llvm;
55
56static const uint64_t kDefaultShadowScale = 3;
57static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
58static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
59static const uint64_t kDefaultShort64bitShadowOffset = 0x7FFF8000;  // < 2G.
60static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
61static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa8000;
62
63static const size_t kMinStackMallocSize = 1 << 6;  // 64B
64static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
65static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
66static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
67
68static const char *const kAsanModuleCtorName = "asan.module_ctor";
69static const char *const kAsanModuleDtorName = "asan.module_dtor";
70static const int         kAsanCtorAndCtorPriority = 1;
71static const char *const kAsanReportErrorTemplate = "__asan_report_";
72static const char *const kAsanReportLoadN = "__asan_report_load_n";
73static const char *const kAsanReportStoreN = "__asan_report_store_n";
74static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
75static const char *const kAsanUnregisterGlobalsName =
76    "__asan_unregister_globals";
77static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
78static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
79static const char *const kAsanInitName = "__asan_init_v3";
80static const char *const kAsanCovName = "__sanitizer_cov";
81static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
82static const char *const kAsanMappingOffsetName = "__asan_mapping_offset";
83static const char *const kAsanMappingScaleName = "__asan_mapping_scale";
84static const int         kMaxAsanStackMallocSizeClass = 10;
85static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
86static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
87static const char *const kAsanGenPrefix = "__asan_gen_";
88static const char *const kAsanPoisonStackMemoryName =
89    "__asan_poison_stack_memory";
90static const char *const kAsanUnpoisonStackMemoryName =
91    "__asan_unpoison_stack_memory";
92
93static const char *const kAsanOptionDetectUAR =
94    "__asan_option_detect_stack_use_after_return";
95
96// These constants must match the definitions in the run-time library.
97static const int kAsanStackLeftRedzoneMagic = 0xf1;
98static const int kAsanStackMidRedzoneMagic = 0xf2;
99static const int kAsanStackRightRedzoneMagic = 0xf3;
100static const int kAsanStackPartialRedzoneMagic = 0xf4;
101#ifndef NDEBUG
102static const int kAsanStackAfterReturnMagic = 0xf5;
103#endif
104
105// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
106static const size_t kNumberOfAccessSizes = 5;
107
108// Command-line flags.
109
110// This flag may need to be replaced with -f[no-]asan-reads.
111static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
112       cl::desc("instrument read instructions"), cl::Hidden, cl::init(true));
113static cl::opt<bool> ClInstrumentWrites("asan-instrument-writes",
114       cl::desc("instrument write instructions"), cl::Hidden, cl::init(true));
115static cl::opt<bool> ClInstrumentAtomics("asan-instrument-atomics",
116       cl::desc("instrument atomic instructions (rmw, cmpxchg)"),
117       cl::Hidden, cl::init(true));
118static cl::opt<bool> ClAlwaysSlowPath("asan-always-slow-path",
119       cl::desc("use instrumentation with slow path for all accesses"),
120       cl::Hidden, cl::init(false));
121// This flag limits the number of instructions to be instrumented
122// in any given BB. Normally, this should be set to unlimited (INT_MAX),
123// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
124// set it to 10000.
125static cl::opt<int> ClMaxInsnsToInstrumentPerBB("asan-max-ins-per-bb",
126       cl::init(10000),
127       cl::desc("maximal number of instructions to instrument in any given BB"),
128       cl::Hidden);
129// This flag may need to be replaced with -f[no]asan-stack.
130static cl::opt<bool> ClStack("asan-stack",
131       cl::desc("Handle stack memory"), cl::Hidden, cl::init(true));
132// This flag may need to be replaced with -f[no]asan-use-after-return.
133static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
134       cl::desc("Check return-after-free"), cl::Hidden, cl::init(false));
135// This flag may need to be replaced with -f[no]asan-globals.
136static cl::opt<bool> ClGlobals("asan-globals",
137       cl::desc("Handle global objects"), cl::Hidden, cl::init(true));
138static cl::opt<bool> ClCoverage("asan-coverage",
139       cl::desc("ASan coverage"), cl::Hidden, cl::init(false));
140static cl::opt<bool> ClInitializers("asan-initialization-order",
141       cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(false));
142static cl::opt<bool> ClMemIntrin("asan-memintrin",
143       cl::desc("Handle memset/memcpy/memmove"), cl::Hidden, cl::init(true));
144static cl::opt<bool> ClRealignStack("asan-realign-stack",
145       cl::desc("Realign stack to 32"), cl::Hidden, cl::init(true));
146static cl::opt<std::string> ClBlacklistFile("asan-blacklist",
147       cl::desc("File containing the list of objects to ignore "
148                "during instrumentation"), cl::Hidden);
149
150// This is an experimental feature that will allow to choose between
151// instrumented and non-instrumented code at link-time.
152// If this option is on, just before instrumenting a function we create its
153// clone; if the function is not changed by asan the clone is deleted.
154// If we end up with a clone, we put the instrumented function into a section
155// called "ASAN" and the uninstrumented function into a section called "NOASAN".
156//
157// This is still a prototype, we need to figure out a way to keep two copies of
158// a function so that the linker can easily choose one of them.
159static cl::opt<bool> ClKeepUninstrumented("asan-keep-uninstrumented-functions",
160       cl::desc("Keep uninstrumented copies of functions"),
161       cl::Hidden, cl::init(false));
162
163// These flags allow to change the shadow mapping.
164// The shadow mapping looks like
165//    Shadow = (Mem >> scale) + (1 << offset_log)
166static cl::opt<int> ClMappingScale("asan-mapping-scale",
167       cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0));
168static cl::opt<int> ClMappingOffsetLog("asan-mapping-offset-log",
169       cl::desc("offset of asan shadow mapping"), cl::Hidden, cl::init(-1));
170static cl::opt<bool> ClShort64BitOffset("asan-short-64bit-mapping-offset",
171       cl::desc("Use short immediate constant as the mapping offset for 64bit"),
172       cl::Hidden, cl::init(true));
173
174// Optimization flags. Not user visible, used mostly for testing
175// and benchmarking the tool.
176static cl::opt<bool> ClOpt("asan-opt",
177       cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true));
178static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp",
179       cl::desc("Instrument the same temp just once"), cl::Hidden,
180       cl::init(true));
181static cl::opt<bool> ClOptGlobals("asan-opt-globals",
182       cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true));
183
184static cl::opt<bool> ClCheckLifetime("asan-check-lifetime",
185       cl::desc("Use llvm.lifetime intrinsics to insert extra checks"),
186       cl::Hidden, cl::init(false));
187
188// Debug flags.
189static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
190                            cl::init(0));
191static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
192                                 cl::Hidden, cl::init(0));
193static cl::opt<std::string> ClDebugFunc("asan-debug-func",
194                                        cl::Hidden, cl::desc("Debug func"));
195static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
196                               cl::Hidden, cl::init(-1));
197static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
198                               cl::Hidden, cl::init(-1));
199
200STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
201STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
202STATISTIC(NumOptimizedAccessesToGlobalArray,
203          "Number of optimized accesses to global arrays");
204STATISTIC(NumOptimizedAccessesToGlobalVar,
205          "Number of optimized accesses to global vars");
206
207namespace {
208/// A set of dynamically initialized globals extracted from metadata.
209class SetOfDynamicallyInitializedGlobals {
210 public:
211  void Init(Module& M) {
212    // Clang generates metadata identifying all dynamically initialized globals.
213    NamedMDNode *DynamicGlobals =
214        M.getNamedMetadata("llvm.asan.dynamically_initialized_globals");
215    if (!DynamicGlobals)
216      return;
217    for (int i = 0, n = DynamicGlobals->getNumOperands(); i < n; ++i) {
218      MDNode *MDN = DynamicGlobals->getOperand(i);
219      assert(MDN->getNumOperands() == 1);
220      Value *VG = MDN->getOperand(0);
221      // The optimizer may optimize away a global entirely, in which case we
222      // cannot instrument access to it.
223      if (!VG)
224        continue;
225      DynInitGlobals.insert(cast<GlobalVariable>(VG));
226    }
227  }
228  bool Contains(GlobalVariable *G) { return DynInitGlobals.count(G) != 0; }
229 private:
230  SmallSet<GlobalValue*, 32> DynInitGlobals;
231};
232
233/// This struct defines the shadow mapping using the rule:
234///   shadow = (mem >> Scale) ADD-or-OR Offset.
235struct ShadowMapping {
236  int Scale;
237  uint64_t Offset;
238  bool OrShadowOffset;
239};
240
241static ShadowMapping getShadowMapping(const Module &M, int LongSize,
242                                      bool ZeroBaseShadow) {
243  llvm::Triple TargetTriple(M.getTargetTriple());
244  bool IsAndroid = TargetTriple.getEnvironment() == llvm::Triple::Android;
245  bool IsMacOSX = TargetTriple.getOS() == llvm::Triple::MacOSX;
246  bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 ||
247                 TargetTriple.getArch() == llvm::Triple::ppc64le;
248  bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
249  bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips ||
250                  TargetTriple.getArch() == llvm::Triple::mipsel;
251
252  ShadowMapping Mapping;
253
254  // OR-ing shadow offset if more efficient (at least on x86),
255  // but on ppc64 we have to use add since the shadow offset is not neccesary
256  // 1/8-th of the address space.
257  Mapping.OrShadowOffset = !IsPPC64 && !ClShort64BitOffset;
258
259  Mapping.Offset = (IsAndroid || ZeroBaseShadow) ? 0 :
260      (LongSize == 32 ?
261       (IsMIPS32 ? kMIPS32_ShadowOffset32 : kDefaultShadowOffset32) :
262       IsPPC64 ? kPPC64_ShadowOffset64 : kDefaultShadowOffset64);
263  if (!ZeroBaseShadow && ClShort64BitOffset && IsX86_64 && !IsMacOSX) {
264    assert(LongSize == 64);
265    Mapping.Offset = kDefaultShort64bitShadowOffset;
266  }
267  if (!ZeroBaseShadow && ClMappingOffsetLog >= 0) {
268    // Zero offset log is the special case.
269    Mapping.Offset = (ClMappingOffsetLog == 0) ? 0 : 1ULL << ClMappingOffsetLog;
270  }
271
272  Mapping.Scale = kDefaultShadowScale;
273  if (ClMappingScale) {
274    Mapping.Scale = ClMappingScale;
275  }
276
277  return Mapping;
278}
279
280static size_t RedzoneSizeForScale(int MappingScale) {
281  // Redzone used for stack and globals is at least 32 bytes.
282  // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
283  return std::max(32U, 1U << MappingScale);
284}
285
286/// AddressSanitizer: instrument the code in module to find memory bugs.
287struct AddressSanitizer : public FunctionPass {
288  AddressSanitizer(bool CheckInitOrder = true,
289                   bool CheckUseAfterReturn = false,
290                   bool CheckLifetime = false,
291                   StringRef BlacklistFile = StringRef(),
292                   bool ZeroBaseShadow = false)
293      : FunctionPass(ID),
294        CheckInitOrder(CheckInitOrder || ClInitializers),
295        CheckUseAfterReturn(CheckUseAfterReturn || ClUseAfterReturn),
296        CheckLifetime(CheckLifetime || ClCheckLifetime),
297        BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
298                                            : BlacklistFile),
299        ZeroBaseShadow(ZeroBaseShadow) {}
300  virtual const char *getPassName() const {
301    return "AddressSanitizerFunctionPass";
302  }
303  void instrumentMop(Instruction *I);
304  void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
305                         Value *Addr, uint32_t TypeSize, bool IsWrite,
306                         Value *SizeArgument);
307  Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
308                           Value *ShadowValue, uint32_t TypeSize);
309  Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
310                                 bool IsWrite, size_t AccessSizeIndex,
311                                 Value *SizeArgument);
312  bool instrumentMemIntrinsic(MemIntrinsic *MI);
313  void instrumentMemIntrinsicParam(Instruction *OrigIns, Value *Addr,
314                                   Value *Size,
315                                   Instruction *InsertBefore, bool IsWrite);
316  Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
317  bool runOnFunction(Function &F);
318  bool maybeInsertAsanInitAtFunctionEntry(Function &F);
319  void emitShadowMapping(Module &M, IRBuilder<> &IRB) const;
320  virtual bool doInitialization(Module &M);
321  static char ID;  // Pass identification, replacement for typeid
322
323 private:
324  void initializeCallbacks(Module &M);
325
326  bool ShouldInstrumentGlobal(GlobalVariable *G);
327  bool LooksLikeCodeInBug11395(Instruction *I);
328  void FindDynamicInitializers(Module &M);
329  bool GlobalIsLinkerInitialized(GlobalVariable *G);
330  bool InjectCoverage(Function &F);
331
332  bool CheckInitOrder;
333  bool CheckUseAfterReturn;
334  bool CheckLifetime;
335  SmallString<64> BlacklistFile;
336  bool ZeroBaseShadow;
337
338  LLVMContext *C;
339  DataLayout *TD;
340  int LongSize;
341  Type *IntptrTy;
342  ShadowMapping Mapping;
343  Function *AsanCtorFunction;
344  Function *AsanInitFunction;
345  Function *AsanHandleNoReturnFunc;
346  Function *AsanCovFunction;
347  OwningPtr<SpecialCaseList> BL;
348  // This array is indexed by AccessIsWrite and log2(AccessSize).
349  Function *AsanErrorCallback[2][kNumberOfAccessSizes];
350  // This array is indexed by AccessIsWrite.
351  Function *AsanErrorCallbackSized[2];
352  InlineAsm *EmptyAsm;
353  SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals;
354
355  friend struct FunctionStackPoisoner;
356};
357
358class AddressSanitizerModule : public ModulePass {
359 public:
360  AddressSanitizerModule(bool CheckInitOrder = true,
361                         StringRef BlacklistFile = StringRef(),
362                         bool ZeroBaseShadow = false)
363      : ModulePass(ID),
364        CheckInitOrder(CheckInitOrder || ClInitializers),
365        BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
366                                            : BlacklistFile),
367        ZeroBaseShadow(ZeroBaseShadow) {}
368  bool runOnModule(Module &M);
369  static char ID;  // Pass identification, replacement for typeid
370  virtual const char *getPassName() const {
371    return "AddressSanitizerModule";
372  }
373
374 private:
375  void initializeCallbacks(Module &M);
376
377  bool ShouldInstrumentGlobal(GlobalVariable *G);
378  void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
379  size_t RedzoneSize() const {
380    return RedzoneSizeForScale(Mapping.Scale);
381  }
382
383  bool CheckInitOrder;
384  SmallString<64> BlacklistFile;
385  bool ZeroBaseShadow;
386
387  OwningPtr<SpecialCaseList> BL;
388  SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals;
389  Type *IntptrTy;
390  LLVMContext *C;
391  DataLayout *TD;
392  ShadowMapping Mapping;
393  Function *AsanPoisonGlobals;
394  Function *AsanUnpoisonGlobals;
395  Function *AsanRegisterGlobals;
396  Function *AsanUnregisterGlobals;
397};
398
399// Stack poisoning does not play well with exception handling.
400// When an exception is thrown, we essentially bypass the code
401// that unpoisones the stack. This is why the run-time library has
402// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
403// stack in the interceptor. This however does not work inside the
404// actual function which catches the exception. Most likely because the
405// compiler hoists the load of the shadow value somewhere too high.
406// This causes asan to report a non-existing bug on 453.povray.
407// It sounds like an LLVM bug.
408struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
409  Function &F;
410  AddressSanitizer &ASan;
411  DIBuilder DIB;
412  LLVMContext *C;
413  Type *IntptrTy;
414  Type *IntptrPtrTy;
415  ShadowMapping Mapping;
416
417  SmallVector<AllocaInst*, 16> AllocaVec;
418  SmallVector<Instruction*, 8> RetVec;
419  uint64_t TotalStackSize;
420  unsigned StackAlignment;
421
422  Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
423           *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
424  Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
425
426  // Stores a place and arguments of poisoning/unpoisoning call for alloca.
427  struct AllocaPoisonCall {
428    IntrinsicInst *InsBefore;
429    uint64_t Size;
430    bool DoPoison;
431  };
432  SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;
433
434  // Maps Value to an AllocaInst from which the Value is originated.
435  typedef DenseMap<Value*, AllocaInst*> AllocaForValueMapTy;
436  AllocaForValueMapTy AllocaForValue;
437
438  FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
439      : F(F), ASan(ASan), DIB(*F.getParent()), C(ASan.C),
440        IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)),
441        Mapping(ASan.Mapping),
442        TotalStackSize(0), StackAlignment(1 << Mapping.Scale) {}
443
444  bool runOnFunction() {
445    if (!ClStack) return false;
446    // Collect alloca, ret, lifetime instructions etc.
447    for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
448         DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
449      BasicBlock *BB = *DI;
450      visit(*BB);
451    }
452    if (AllocaVec.empty()) return false;
453
454    initializeCallbacks(*F.getParent());
455
456    poisonStack();
457
458    if (ClDebugStack) {
459      DEBUG(dbgs() << F);
460    }
461    return true;
462  }
463
464  // Finds all static Alloca instructions and puts
465  // poisoned red zones around all of them.
466  // Then unpoison everything back before the function returns.
467  void poisonStack();
468
469  // ----------------------- Visitors.
470  /// \brief Collect all Ret instructions.
471  void visitReturnInst(ReturnInst &RI) {
472    RetVec.push_back(&RI);
473  }
474
475  /// \brief Collect Alloca instructions we want (and can) handle.
476  void visitAllocaInst(AllocaInst &AI) {
477    if (!isInterestingAlloca(AI)) return;
478
479    StackAlignment = std::max(StackAlignment, AI.getAlignment());
480    AllocaVec.push_back(&AI);
481    uint64_t AlignedSize = getAlignedAllocaSize(&AI);
482    TotalStackSize += AlignedSize;
483  }
484
485  /// \brief Collect lifetime intrinsic calls to check for use-after-scope
486  /// errors.
487  void visitIntrinsicInst(IntrinsicInst &II) {
488    if (!ASan.CheckLifetime) return;
489    Intrinsic::ID ID = II.getIntrinsicID();
490    if (ID != Intrinsic::lifetime_start &&
491        ID != Intrinsic::lifetime_end)
492      return;
493    // Found lifetime intrinsic, add ASan instrumentation if necessary.
494    ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
495    // If size argument is undefined, don't do anything.
496    if (Size->isMinusOne()) return;
497    // Check that size doesn't saturate uint64_t and can
498    // be stored in IntptrTy.
499    const uint64_t SizeValue = Size->getValue().getLimitedValue();
500    if (SizeValue == ~0ULL ||
501        !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
502      return;
503    // Find alloca instruction that corresponds to llvm.lifetime argument.
504    AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
505    if (!AI) return;
506    bool DoPoison = (ID == Intrinsic::lifetime_end);
507    AllocaPoisonCall APC = {&II, SizeValue, DoPoison};
508    AllocaPoisonCallVec.push_back(APC);
509  }
510
511  // ---------------------- Helpers.
512  void initializeCallbacks(Module &M);
513
514  // Check if we want (and can) handle this alloca.
515  bool isInterestingAlloca(AllocaInst &AI) const {
516    return (!AI.isArrayAllocation() &&
517            AI.isStaticAlloca() &&
518            AI.getAlignment() <= RedzoneSize() &&
519            AI.getAllocatedType()->isSized());
520  }
521
522  size_t RedzoneSize() const {
523    return RedzoneSizeForScale(Mapping.Scale);
524  }
525  uint64_t getAllocaSizeInBytes(AllocaInst *AI) const {
526    Type *Ty = AI->getAllocatedType();
527    uint64_t SizeInBytes = ASan.TD->getTypeAllocSize(Ty);
528    return SizeInBytes;
529  }
530  uint64_t getAlignedSize(uint64_t SizeInBytes) const {
531    size_t RZ = RedzoneSize();
532    return ((SizeInBytes + RZ - 1) / RZ) * RZ;
533  }
534  uint64_t getAlignedAllocaSize(AllocaInst *AI) const {
535    uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
536    return getAlignedSize(SizeInBytes);
537  }
538  /// Finds alloca where the value comes from.
539  AllocaInst *findAllocaForValue(Value *V);
540  void poisonRedZones(const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> &IRB,
541                      Value *ShadowBase, bool DoPoison);
542  void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
543
544  void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase,
545                                          int Size);
546};
547
548}  // namespace
549
550char AddressSanitizer::ID = 0;
551INITIALIZE_PASS(AddressSanitizer, "asan",
552    "AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
553    false, false)
554FunctionPass *llvm::createAddressSanitizerFunctionPass(
555    bool CheckInitOrder, bool CheckUseAfterReturn, bool CheckLifetime,
556    StringRef BlacklistFile, bool ZeroBaseShadow) {
557  return new AddressSanitizer(CheckInitOrder, CheckUseAfterReturn,
558                              CheckLifetime, BlacklistFile, ZeroBaseShadow);
559}
560
561char AddressSanitizerModule::ID = 0;
562INITIALIZE_PASS(AddressSanitizerModule, "asan-module",
563    "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
564    "ModulePass", false, false)
565ModulePass *llvm::createAddressSanitizerModulePass(
566    bool CheckInitOrder, StringRef BlacklistFile, bool ZeroBaseShadow) {
567  return new AddressSanitizerModule(CheckInitOrder, BlacklistFile,
568                                    ZeroBaseShadow);
569}
570
571static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
572  size_t Res = countTrailingZeros(TypeSize / 8);
573  assert(Res < kNumberOfAccessSizes);
574  return Res;
575}
576
577// \brief Create a constant for Str so that we can pass it to the run-time lib.
578static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str) {
579  Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
580  GlobalVariable *GV = new GlobalVariable(M, StrConst->getType(), true,
581                            GlobalValue::InternalLinkage, StrConst,
582                            kAsanGenPrefix);
583  GV->setUnnamedAddr(true);  // Ok to merge these.
584  GV->setAlignment(1);  // Strings may not be merged w/o setting align 1.
585  return GV;
586}
587
588static bool GlobalWasGeneratedByAsan(GlobalVariable *G) {
589  return G->getName().find(kAsanGenPrefix) == 0;
590}
591
592Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
593  // Shadow >> scale
594  Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
595  if (Mapping.Offset == 0)
596    return Shadow;
597  // (Shadow >> scale) | offset
598  if (Mapping.OrShadowOffset)
599    return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
600  else
601    return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
602}
603
604void AddressSanitizer::instrumentMemIntrinsicParam(
605    Instruction *OrigIns,
606    Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite) {
607  IRBuilder<> IRB(InsertBefore);
608  if (Size->getType() != IntptrTy)
609    Size = IRB.CreateIntCast(Size, IntptrTy, false);
610  // Check the first byte.
611  instrumentAddress(OrigIns, InsertBefore, Addr, 8, IsWrite, Size);
612  // Check the last byte.
613  IRB.SetInsertPoint(InsertBefore);
614  Value *SizeMinusOne = IRB.CreateSub(Size, ConstantInt::get(IntptrTy, 1));
615  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
616  Value *AddrLast = IRB.CreateAdd(AddrLong, SizeMinusOne);
617  instrumentAddress(OrigIns, InsertBefore, AddrLast, 8, IsWrite, Size);
618}
619
620// Instrument memset/memmove/memcpy
621bool AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
622  Value *Dst = MI->getDest();
623  MemTransferInst *MemTran = dyn_cast<MemTransferInst>(MI);
624  Value *Src = MemTran ? MemTran->getSource() : 0;
625  Value *Length = MI->getLength();
626
627  Constant *ConstLength = dyn_cast<Constant>(Length);
628  Instruction *InsertBefore = MI;
629  if (ConstLength) {
630    if (ConstLength->isNullValue()) return false;
631  } else {
632    // The size is not a constant so it could be zero -- check at run-time.
633    IRBuilder<> IRB(InsertBefore);
634
635    Value *Cmp = IRB.CreateICmpNE(Length,
636                                  Constant::getNullValue(Length->getType()));
637    InsertBefore = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
638  }
639
640  instrumentMemIntrinsicParam(MI, Dst, Length, InsertBefore, true);
641  if (Src)
642    instrumentMemIntrinsicParam(MI, Src, Length, InsertBefore, false);
643  return true;
644}
645
646// If I is an interesting memory access, return the PointerOperand
647// and set IsWrite. Otherwise return NULL.
648static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite) {
649  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
650    if (!ClInstrumentReads) return NULL;
651    *IsWrite = false;
652    return LI->getPointerOperand();
653  }
654  if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
655    if (!ClInstrumentWrites) return NULL;
656    *IsWrite = true;
657    return SI->getPointerOperand();
658  }
659  if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
660    if (!ClInstrumentAtomics) return NULL;
661    *IsWrite = true;
662    return RMW->getPointerOperand();
663  }
664  if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
665    if (!ClInstrumentAtomics) return NULL;
666    *IsWrite = true;
667    return XCHG->getPointerOperand();
668  }
669  return NULL;
670}
671
672bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
673  // If a global variable does not have dynamic initialization we don't
674  // have to instrument it.  However, if a global does not have initializer
675  // at all, we assume it has dynamic initializer (in other TU).
676  return G->hasInitializer() && !DynamicallyInitializedGlobals.Contains(G);
677}
678
679void AddressSanitizer::instrumentMop(Instruction *I) {
680  bool IsWrite = false;
681  Value *Addr = isInterestingMemoryAccess(I, &IsWrite);
682  assert(Addr);
683  if (ClOpt && ClOptGlobals) {
684    if (GlobalVariable *G = dyn_cast<GlobalVariable>(Addr)) {
685      // If initialization order checking is disabled, a simple access to a
686      // dynamically initialized global is always valid.
687      if (!CheckInitOrder || GlobalIsLinkerInitialized(G)) {
688        NumOptimizedAccessesToGlobalVar++;
689        return;
690      }
691    }
692    ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr);
693    if (CE && CE->isGEPWithNoNotionalOverIndexing()) {
694      if (GlobalVariable *G = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
695        if (CE->getOperand(1)->isNullValue() && GlobalIsLinkerInitialized(G)) {
696          NumOptimizedAccessesToGlobalArray++;
697          return;
698        }
699      }
700    }
701  }
702
703  Type *OrigPtrTy = Addr->getType();
704  Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
705
706  assert(OrigTy->isSized());
707  uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);
708
709  assert((TypeSize % 8) == 0);
710
711  if (IsWrite)
712    NumInstrumentedWrites++;
713  else
714    NumInstrumentedReads++;
715
716  // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check.
717  if (TypeSize == 8  || TypeSize == 16 ||
718      TypeSize == 32 || TypeSize == 64 || TypeSize == 128)
719    return instrumentAddress(I, I, Addr, TypeSize, IsWrite, 0);
720  // Instrument unusual size (but still multiple of 8).
721  // We can not do it with a single check, so we do 1-byte check for the first
722  // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
723  // to report the actual access size.
724  IRBuilder<> IRB(I);
725  Value *LastByte =  IRB.CreateIntToPtr(
726      IRB.CreateAdd(IRB.CreatePointerCast(Addr, IntptrTy),
727                    ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
728      OrigPtrTy);
729  Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
730  instrumentAddress(I, I, Addr, 8, IsWrite, Size);
731  instrumentAddress(I, I, LastByte, 8, IsWrite, Size);
732}
733
734// Validate the result of Module::getOrInsertFunction called for an interface
735// function of AddressSanitizer. If the instrumented module defines a function
736// with the same name, their prototypes must match, otherwise
737// getOrInsertFunction returns a bitcast.
738static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
739  if (isa<Function>(FuncOrBitcast)) return cast<Function>(FuncOrBitcast);
740  FuncOrBitcast->dump();
741  report_fatal_error("trying to redefine an AddressSanitizer "
742                     "interface function");
743}
744
745Instruction *AddressSanitizer::generateCrashCode(
746    Instruction *InsertBefore, Value *Addr,
747    bool IsWrite, size_t AccessSizeIndex, Value *SizeArgument) {
748  IRBuilder<> IRB(InsertBefore);
749  CallInst *Call = SizeArgument
750    ? IRB.CreateCall2(AsanErrorCallbackSized[IsWrite], Addr, SizeArgument)
751    : IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex], Addr);
752
753  // We don't do Call->setDoesNotReturn() because the BB already has
754  // UnreachableInst at the end.
755  // This EmptyAsm is required to avoid callback merge.
756  IRB.CreateCall(EmptyAsm);
757  return Call;
758}
759
760Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
761                                            Value *ShadowValue,
762                                            uint32_t TypeSize) {
763  size_t Granularity = 1 << Mapping.Scale;
764  // Addr & (Granularity - 1)
765  Value *LastAccessedByte = IRB.CreateAnd(
766      AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
767  // (Addr & (Granularity - 1)) + size - 1
768  if (TypeSize / 8 > 1)
769    LastAccessedByte = IRB.CreateAdd(
770        LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
771  // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
772  LastAccessedByte = IRB.CreateIntCast(
773      LastAccessedByte, ShadowValue->getType(), false);
774  // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
775  return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
776}
777
778void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
779                                         Instruction *InsertBefore,
780                                         Value *Addr, uint32_t TypeSize,
781                                         bool IsWrite, Value *SizeArgument) {
782  IRBuilder<> IRB(InsertBefore);
783  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
784
785  Type *ShadowTy  = IntegerType::get(
786      *C, std::max(8U, TypeSize >> Mapping.Scale));
787  Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
788  Value *ShadowPtr = memToShadow(AddrLong, IRB);
789  Value *CmpVal = Constant::getNullValue(ShadowTy);
790  Value *ShadowValue = IRB.CreateLoad(
791      IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
792
793  Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
794  size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
795  size_t Granularity = 1 << Mapping.Scale;
796  TerminatorInst *CrashTerm = 0;
797
798  if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
799    TerminatorInst *CheckTerm =
800        SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
801    assert(dyn_cast<BranchInst>(CheckTerm)->isUnconditional());
802    BasicBlock *NextBB = CheckTerm->getSuccessor(0);
803    IRB.SetInsertPoint(CheckTerm);
804    Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
805    BasicBlock *CrashBlock =
806        BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
807    CrashTerm = new UnreachableInst(*C, CrashBlock);
808    BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
809    ReplaceInstWithInst(CheckTerm, NewTerm);
810  } else {
811    CrashTerm = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), true);
812  }
813
814  Instruction *Crash = generateCrashCode(
815      CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument);
816  Crash->setDebugLoc(OrigIns->getDebugLoc());
817}
818
819void AddressSanitizerModule::createInitializerPoisonCalls(
820    Module &M, GlobalValue *ModuleName) {
821  // We do all of our poisoning and unpoisoning within _GLOBAL__I_a.
822  Function *GlobalInit = M.getFunction("_GLOBAL__I_a");
823  // If that function is not present, this TU contains no globals, or they have
824  // all been optimized away
825  if (!GlobalInit)
826    return;
827
828  // Set up the arguments to our poison/unpoison functions.
829  IRBuilder<> IRB(GlobalInit->begin()->getFirstInsertionPt());
830
831  // Add a call to poison all external globals before the given function starts.
832  Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
833  IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
834
835  // Add calls to unpoison all globals before each return instruction.
836  for (Function::iterator I = GlobalInit->begin(), E = GlobalInit->end();
837      I != E; ++I) {
838    if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) {
839      CallInst::Create(AsanUnpoisonGlobals, "", RI);
840    }
841  }
842}
843
844bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
845  Type *Ty = cast<PointerType>(G->getType())->getElementType();
846  DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
847
848  if (BL->isIn(*G)) return false;
849  if (!Ty->isSized()) return false;
850  if (!G->hasInitializer()) return false;
851  if (GlobalWasGeneratedByAsan(G)) return false;  // Our own global.
852  // Touch only those globals that will not be defined in other modules.
853  // Don't handle ODR type linkages since other modules may be built w/o asan.
854  if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
855      G->getLinkage() != GlobalVariable::PrivateLinkage &&
856      G->getLinkage() != GlobalVariable::InternalLinkage)
857    return false;
858  // Two problems with thread-locals:
859  //   - The address of the main thread's copy can't be computed at link-time.
860  //   - Need to poison all copies, not just the main thread's one.
861  if (G->isThreadLocal())
862    return false;
863  // For now, just ignore this Alloca if the alignment is large.
864  if (G->getAlignment() > RedzoneSize()) return false;
865
866  // Ignore all the globals with the names starting with "\01L_OBJC_".
867  // Many of those are put into the .cstring section. The linker compresses
868  // that section by removing the spare \0s after the string terminator, so
869  // our redzones get broken.
870  if ((G->getName().find("\01L_OBJC_") == 0) ||
871      (G->getName().find("\01l_OBJC_") == 0)) {
872    DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G);
873    return false;
874  }
875
876  if (G->hasSection()) {
877    StringRef Section(G->getSection());
878    // Ignore the globals from the __OBJC section. The ObjC runtime assumes
879    // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
880    // them.
881    if ((Section.find("__OBJC,") == 0) ||
882        (Section.find("__DATA, __objc_") == 0)) {
883      DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G);
884      return false;
885    }
886    // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
887    // Constant CFString instances are compiled in the following way:
888    //  -- the string buffer is emitted into
889    //     __TEXT,__cstring,cstring_literals
890    //  -- the constant NSConstantString structure referencing that buffer
891    //     is placed into __DATA,__cfstring
892    // Therefore there's no point in placing redzones into __DATA,__cfstring.
893    // Moreover, it causes the linker to crash on OS X 10.7
894    if (Section.find("__DATA,__cfstring") == 0) {
895      DEBUG(dbgs() << "Ignoring CFString: " << *G);
896      return false;
897    }
898  }
899
900  return true;
901}
902
903void AddressSanitizerModule::initializeCallbacks(Module &M) {
904  IRBuilder<> IRB(*C);
905  // Declare our poisoning and unpoisoning functions.
906  AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
907      kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, NULL));
908  AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
909  AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
910      kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL));
911  AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
912  // Declare functions that register/unregister globals.
913  AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
914      kAsanRegisterGlobalsName, IRB.getVoidTy(),
915      IntptrTy, IntptrTy, NULL));
916  AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
917  AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
918      kAsanUnregisterGlobalsName,
919      IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
920  AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
921}
922
923// This function replaces all global variables with new variables that have
924// trailing redzones. It also creates a function that poisons
925// redzones and inserts this function into llvm.global_ctors.
926bool AddressSanitizerModule::runOnModule(Module &M) {
927  if (!ClGlobals) return false;
928  TD = getAnalysisIfAvailable<DataLayout>();
929  if (!TD)
930    return false;
931  BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
932  if (BL->isIn(M)) return false;
933  C = &(M.getContext());
934  int LongSize = TD->getPointerSizeInBits();
935  IntptrTy = Type::getIntNTy(*C, LongSize);
936  Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow);
937  initializeCallbacks(M);
938  DynamicallyInitializedGlobals.Init(M);
939
940  SmallVector<GlobalVariable *, 16> GlobalsToChange;
941
942  for (Module::GlobalListType::iterator G = M.global_begin(),
943       E = M.global_end(); G != E; ++G) {
944    if (ShouldInstrumentGlobal(G))
945      GlobalsToChange.push_back(G);
946  }
947
948  size_t n = GlobalsToChange.size();
949  if (n == 0) return false;
950
951  // A global is described by a structure
952  //   size_t beg;
953  //   size_t size;
954  //   size_t size_with_redzone;
955  //   const char *name;
956  //   const char *module_name;
957  //   size_t has_dynamic_init;
958  // We initialize an array of such structures and pass it to a run-time call.
959  StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy,
960                                               IntptrTy, IntptrTy,
961                                               IntptrTy, IntptrTy, NULL);
962  SmallVector<Constant *, 16> Initializers(n);
963
964  Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
965  assert(CtorFunc);
966  IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
967
968  bool HasDynamicallyInitializedGlobals = false;
969
970  GlobalVariable *ModuleName = createPrivateGlobalForString(
971      M, M.getModuleIdentifier());
972  // We shouldn't merge same module names, as this string serves as unique
973  // module ID in runtime.
974  ModuleName->setUnnamedAddr(false);
975
976  for (size_t i = 0; i < n; i++) {
977    static const uint64_t kMaxGlobalRedzone = 1 << 18;
978    GlobalVariable *G = GlobalsToChange[i];
979    PointerType *PtrTy = cast<PointerType>(G->getType());
980    Type *Ty = PtrTy->getElementType();
981    uint64_t SizeInBytes = TD->getTypeAllocSize(Ty);
982    uint64_t MinRZ = RedzoneSize();
983    // MinRZ <= RZ <= kMaxGlobalRedzone
984    // and trying to make RZ to be ~ 1/4 of SizeInBytes.
985    uint64_t RZ = std::max(MinRZ,
986                         std::min(kMaxGlobalRedzone,
987                                  (SizeInBytes / MinRZ / 4) * MinRZ));
988    uint64_t RightRedzoneSize = RZ;
989    // Round up to MinRZ
990    if (SizeInBytes % MinRZ)
991      RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
992    assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
993    Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
994    // Determine whether this global should be poisoned in initialization.
995    bool GlobalHasDynamicInitializer =
996        DynamicallyInitializedGlobals.Contains(G);
997    // Don't check initialization order if this global is blacklisted.
998    GlobalHasDynamicInitializer &= !BL->isIn(*G, "init");
999
1000    StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL);
1001    Constant *NewInitializer = ConstantStruct::get(
1002        NewTy, G->getInitializer(),
1003        Constant::getNullValue(RightRedZoneTy), NULL);
1004
1005    GlobalVariable *Name = createPrivateGlobalForString(M, G->getName());
1006
1007    // Create a new global variable with enough space for a redzone.
1008    GlobalValue::LinkageTypes Linkage = G->getLinkage();
1009    if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
1010      Linkage = GlobalValue::InternalLinkage;
1011    GlobalVariable *NewGlobal = new GlobalVariable(
1012        M, NewTy, G->isConstant(), Linkage,
1013        NewInitializer, "", G, G->getThreadLocalMode());
1014    NewGlobal->copyAttributesFrom(G);
1015    NewGlobal->setAlignment(MinRZ);
1016
1017    Value *Indices2[2];
1018    Indices2[0] = IRB.getInt32(0);
1019    Indices2[1] = IRB.getInt32(0);
1020
1021    G->replaceAllUsesWith(
1022        ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true));
1023    NewGlobal->takeName(G);
1024    G->eraseFromParent();
1025
1026    Initializers[i] = ConstantStruct::get(
1027        GlobalStructTy,
1028        ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
1029        ConstantInt::get(IntptrTy, SizeInBytes),
1030        ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
1031        ConstantExpr::getPointerCast(Name, IntptrTy),
1032        ConstantExpr::getPointerCast(ModuleName, IntptrTy),
1033        ConstantInt::get(IntptrTy, GlobalHasDynamicInitializer),
1034        NULL);
1035
1036    // Populate the first and last globals declared in this TU.
1037    if (CheckInitOrder && GlobalHasDynamicInitializer)
1038      HasDynamicallyInitializedGlobals = true;
1039
1040    DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
1041  }
1042
1043  ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
1044  GlobalVariable *AllGlobals = new GlobalVariable(
1045      M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
1046      ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
1047
1048  // Create calls for poisoning before initializers run and unpoisoning after.
1049  if (CheckInitOrder && HasDynamicallyInitializedGlobals)
1050    createInitializerPoisonCalls(M, ModuleName);
1051  IRB.CreateCall2(AsanRegisterGlobals,
1052                  IRB.CreatePointerCast(AllGlobals, IntptrTy),
1053                  ConstantInt::get(IntptrTy, n));
1054
1055  // We also need to unregister globals at the end, e.g. when a shared library
1056  // gets closed.
1057  Function *AsanDtorFunction = Function::Create(
1058      FunctionType::get(Type::getVoidTy(*C), false),
1059      GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
1060  BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
1061  IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
1062  IRB_Dtor.CreateCall2(AsanUnregisterGlobals,
1063                       IRB.CreatePointerCast(AllGlobals, IntptrTy),
1064                       ConstantInt::get(IntptrTy, n));
1065  appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndCtorPriority);
1066
1067  DEBUG(dbgs() << M);
1068  return true;
1069}
1070
1071void AddressSanitizer::initializeCallbacks(Module &M) {
1072  IRBuilder<> IRB(*C);
1073  // Create __asan_report* callbacks.
1074  for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
1075    for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
1076         AccessSizeIndex++) {
1077      // IsWrite and TypeSize are encoded in the function name.
1078      std::string FunctionName = std::string(kAsanReportErrorTemplate) +
1079          (AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex);
1080      // If we are merging crash callbacks, they have two parameters.
1081      AsanErrorCallback[AccessIsWrite][AccessSizeIndex] =
1082          checkInterfaceFunction(M.getOrInsertFunction(
1083              FunctionName, IRB.getVoidTy(), IntptrTy, NULL));
1084    }
1085  }
1086  AsanErrorCallbackSized[0] = checkInterfaceFunction(M.getOrInsertFunction(
1087              kAsanReportLoadN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
1088  AsanErrorCallbackSized[1] = checkInterfaceFunction(M.getOrInsertFunction(
1089              kAsanReportStoreN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
1090
1091  AsanHandleNoReturnFunc = checkInterfaceFunction(M.getOrInsertFunction(
1092      kAsanHandleNoReturnName, IRB.getVoidTy(), NULL));
1093  AsanCovFunction = checkInterfaceFunction(M.getOrInsertFunction(
1094      kAsanCovName, IRB.getVoidTy(), IntptrTy, NULL));
1095  // We insert an empty inline asm after __asan_report* to avoid callback merge.
1096  EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
1097                            StringRef(""), StringRef(""),
1098                            /*hasSideEffects=*/true);
1099}
1100
1101void AddressSanitizer::emitShadowMapping(Module &M, IRBuilder<> &IRB) const {
1102  // Tell the values of mapping offset and scale to the run-time.
1103  GlobalValue *asan_mapping_offset =
1104      new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
1105                     ConstantInt::get(IntptrTy, Mapping.Offset),
1106                     kAsanMappingOffsetName);
1107  // Read the global, otherwise it may be optimized away.
1108  IRB.CreateLoad(asan_mapping_offset, true);
1109
1110  GlobalValue *asan_mapping_scale =
1111      new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
1112                         ConstantInt::get(IntptrTy, Mapping.Scale),
1113                         kAsanMappingScaleName);
1114  // Read the global, otherwise it may be optimized away.
1115  IRB.CreateLoad(asan_mapping_scale, true);
1116}
1117
1118// virtual
1119bool AddressSanitizer::doInitialization(Module &M) {
1120  // Initialize the private fields. No one has accessed them before.
1121  TD = getAnalysisIfAvailable<DataLayout>();
1122
1123  if (!TD)
1124    return false;
1125  BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
1126  DynamicallyInitializedGlobals.Init(M);
1127
1128  C = &(M.getContext());
1129  LongSize = TD->getPointerSizeInBits();
1130  IntptrTy = Type::getIntNTy(*C, LongSize);
1131
1132  AsanCtorFunction = Function::Create(
1133      FunctionType::get(Type::getVoidTy(*C), false),
1134      GlobalValue::InternalLinkage, kAsanModuleCtorName, &M);
1135  BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction);
1136  // call __asan_init in the module ctor.
1137  IRBuilder<> IRB(ReturnInst::Create(*C, AsanCtorBB));
1138  AsanInitFunction = checkInterfaceFunction(
1139      M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL));
1140  AsanInitFunction->setLinkage(Function::ExternalLinkage);
1141  IRB.CreateCall(AsanInitFunction);
1142
1143  Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow);
1144  emitShadowMapping(M, IRB);
1145
1146  appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndCtorPriority);
1147  return true;
1148}
1149
1150bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
1151  // For each NSObject descendant having a +load method, this method is invoked
1152  // by the ObjC runtime before any of the static constructors is called.
1153  // Therefore we need to instrument such methods with a call to __asan_init
1154  // at the beginning in order to initialize our runtime before any access to
1155  // the shadow memory.
1156  // We cannot just ignore these methods, because they may call other
1157  // instrumented functions.
1158  if (F.getName().find(" load]") != std::string::npos) {
1159    IRBuilder<> IRB(F.begin()->begin());
1160    IRB.CreateCall(AsanInitFunction);
1161    return true;
1162  }
1163  return false;
1164}
1165
1166// Poor man's coverage that works with ASan.
1167// We create a Guard boolean variable with the same linkage
1168// as the function and inject this code into the entry block:
1169// if (*Guard) {
1170//    __sanitizer_cov(&F);
1171//    *Guard = 1;
1172// }
1173// The accesses to Guard are atomic. The rest of the logic is
1174// in __sanitizer_cov (it's fine to call it more than once).
1175//
1176// This coverage implementation provides very limited data:
1177// it only tells if a given function was ever executed.
1178// No counters, no per-basic-block or per-edge data.
1179// But for many use cases this is what we need and the added slowdown
1180// is negligible. This simple implementation will probably be obsoleted
1181// by the upcoming Clang-based coverage implementation.
1182// By having it here and now we hope to
1183//  a) get the functionality to users earlier and
1184//  b) collect usage statistics to help improve Clang coverage design.
1185bool AddressSanitizer::InjectCoverage(Function &F) {
1186  if (!ClCoverage) return false;
1187  IRBuilder<> IRB(F.getEntryBlock().getFirstInsertionPt());
1188  Type *Int8Ty = IRB.getInt8Ty();
1189  GlobalVariable *Guard = new GlobalVariable(
1190      *F.getParent(), Int8Ty, false, F.getLinkage(),
1191      Constant::getNullValue(Int8Ty), "__asan_gen_cov_" + F.getName());
1192  LoadInst *Load = IRB.CreateLoad(Guard);
1193  Load->setAtomic(Monotonic);
1194  Load->setAlignment(1);
1195  Value *Cmp = IRB.CreateICmpEQ(Constant::getNullValue(Int8Ty), Load);
1196  Instruction *Ins = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
1197  IRB.SetInsertPoint(Ins);
1198  // We pass &F to __sanitizer_cov. We could avoid this and rely on
1199  // GET_CALLER_PC, but having the PC of the first instruction is just nice.
1200  IRB.CreateCall(AsanCovFunction, IRB.CreatePointerCast(&F, IntptrTy));
1201  StoreInst *Store = IRB.CreateStore(ConstantInt::get(Int8Ty, 1), Guard);
1202  Store->setAtomic(Monotonic);
1203  Store->setAlignment(1);
1204  return true;
1205}
1206
1207bool AddressSanitizer::runOnFunction(Function &F) {
1208  if (BL->isIn(F)) return false;
1209  if (&F == AsanCtorFunction) return false;
1210  if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
1211  DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
1212  initializeCallbacks(*F.getParent());
1213
1214  // If needed, insert __asan_init before checking for SanitizeAddress attr.
1215  maybeInsertAsanInitAtFunctionEntry(F);
1216
1217  if (!F.hasFnAttribute(Attribute::SanitizeAddress))
1218    return false;
1219
1220  if (!ClDebugFunc.empty() && ClDebugFunc != F.getName())
1221    return false;
1222
1223  // We want to instrument every address only once per basic block (unless there
1224  // are calls between uses).
1225  SmallSet<Value*, 16> TempsToInstrument;
1226  SmallVector<Instruction*, 16> ToInstrument;
1227  SmallVector<Instruction*, 8> NoReturnCalls;
1228  int NumAllocas = 0;
1229  bool IsWrite;
1230
1231  // Fill the set of memory operations to instrument.
1232  for (Function::iterator FI = F.begin(), FE = F.end();
1233       FI != FE; ++FI) {
1234    TempsToInstrument.clear();
1235    int NumInsnsPerBB = 0;
1236    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1237         BI != BE; ++BI) {
1238      if (LooksLikeCodeInBug11395(BI)) return false;
1239      if (Value *Addr = isInterestingMemoryAccess(BI, &IsWrite)) {
1240        if (ClOpt && ClOptSameTemp) {
1241          if (!TempsToInstrument.insert(Addr))
1242            continue;  // We've seen this temp in the current BB.
1243        }
1244      } else if (isa<MemIntrinsic>(BI) && ClMemIntrin) {
1245        // ok, take it.
1246      } else {
1247        if (isa<AllocaInst>(BI))
1248          NumAllocas++;
1249        CallSite CS(BI);
1250        if (CS) {
1251          // A call inside BB.
1252          TempsToInstrument.clear();
1253          if (CS.doesNotReturn())
1254            NoReturnCalls.push_back(CS.getInstruction());
1255        }
1256        continue;
1257      }
1258      ToInstrument.push_back(BI);
1259      NumInsnsPerBB++;
1260      if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB)
1261        break;
1262    }
1263  }
1264
1265  Function *UninstrumentedDuplicate = 0;
1266  bool LikelyToInstrument =
1267      !NoReturnCalls.empty() || !ToInstrument.empty() || (NumAllocas > 0);
1268  if (ClKeepUninstrumented && LikelyToInstrument) {
1269    ValueToValueMapTy VMap;
1270    UninstrumentedDuplicate = CloneFunction(&F, VMap, false);
1271    UninstrumentedDuplicate->removeFnAttr(Attribute::SanitizeAddress);
1272    UninstrumentedDuplicate->setName("NOASAN_" + F.getName());
1273    F.getParent()->getFunctionList().push_back(UninstrumentedDuplicate);
1274  }
1275
1276  // Instrument.
1277  int NumInstrumented = 0;
1278  for (size_t i = 0, n = ToInstrument.size(); i != n; i++) {
1279    Instruction *Inst = ToInstrument[i];
1280    if (ClDebugMin < 0 || ClDebugMax < 0 ||
1281        (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
1282      if (isInterestingMemoryAccess(Inst, &IsWrite))
1283        instrumentMop(Inst);
1284      else
1285        instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
1286    }
1287    NumInstrumented++;
1288  }
1289
1290  FunctionStackPoisoner FSP(F, *this);
1291  bool ChangedStack = FSP.runOnFunction();
1292
1293  // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
1294  // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
1295  for (size_t i = 0, n = NoReturnCalls.size(); i != n; i++) {
1296    Instruction *CI = NoReturnCalls[i];
1297    IRBuilder<> IRB(CI);
1298    IRB.CreateCall(AsanHandleNoReturnFunc);
1299  }
1300
1301  bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();
1302
1303  if (InjectCoverage(F))
1304    res = true;
1305
1306  DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n");
1307
1308  if (ClKeepUninstrumented) {
1309    if (!res) {
1310      // No instrumentation is done, no need for the duplicate.
1311      if (UninstrumentedDuplicate)
1312        UninstrumentedDuplicate->eraseFromParent();
1313    } else {
1314      // The function was instrumented. We must have the duplicate.
1315      assert(UninstrumentedDuplicate);
1316      UninstrumentedDuplicate->setSection("NOASAN");
1317      assert(!F.hasSection());
1318      F.setSection("ASAN");
1319    }
1320  }
1321
1322  return res;
1323}
1324
1325static uint64_t ValueForPoison(uint64_t PoisonByte, size_t ShadowRedzoneSize) {
1326  if (ShadowRedzoneSize == 1) return PoisonByte;
1327  if (ShadowRedzoneSize == 2) return (PoisonByte << 8) + PoisonByte;
1328  if (ShadowRedzoneSize == 4)
1329    return (PoisonByte << 24) + (PoisonByte << 16) +
1330        (PoisonByte << 8) + (PoisonByte);
1331  llvm_unreachable("ShadowRedzoneSize is either 1, 2 or 4");
1332}
1333
1334static void PoisonShadowPartialRightRedzone(uint8_t *Shadow,
1335                                            size_t Size,
1336                                            size_t RZSize,
1337                                            size_t ShadowGranularity,
1338                                            uint8_t Magic) {
1339  for (size_t i = 0; i < RZSize;
1340       i+= ShadowGranularity, Shadow++) {
1341    if (i + ShadowGranularity <= Size) {
1342      *Shadow = 0;  // fully addressable
1343    } else if (i >= Size) {
1344      *Shadow = Magic;  // unaddressable
1345    } else {
1346      *Shadow = Size - i;  // first Size-i bytes are addressable
1347    }
1348  }
1349}
1350
1351// Workaround for bug 11395: we don't want to instrument stack in functions
1352// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
1353// FIXME: remove once the bug 11395 is fixed.
1354bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
1355  if (LongSize != 32) return false;
1356  CallInst *CI = dyn_cast<CallInst>(I);
1357  if (!CI || !CI->isInlineAsm()) return false;
1358  if (CI->getNumArgOperands() <= 5) return false;
1359  // We have inline assembly with quite a few arguments.
1360  return true;
1361}
1362
1363void FunctionStackPoisoner::initializeCallbacks(Module &M) {
1364  IRBuilder<> IRB(*C);
1365  for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
1366    std::string Suffix = itostr(i);
1367    AsanStackMallocFunc[i] = checkInterfaceFunction(
1368        M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy,
1369                              IntptrTy, IntptrTy, NULL));
1370    AsanStackFreeFunc[i] = checkInterfaceFunction(M.getOrInsertFunction(
1371        kAsanStackFreeNameTemplate + Suffix, IRB.getVoidTy(), IntptrTy,
1372        IntptrTy, IntptrTy, NULL));
1373  }
1374  AsanPoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
1375      kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
1376  AsanUnpoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
1377      kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
1378}
1379
1380void FunctionStackPoisoner::poisonRedZones(
1381  const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> &IRB, Value *ShadowBase,
1382  bool DoPoison) {
1383  size_t ShadowRZSize = RedzoneSize() >> Mapping.Scale;
1384  assert(ShadowRZSize >= 1 && ShadowRZSize <= 4);
1385  Type *RZTy = Type::getIntNTy(*C, ShadowRZSize * 8);
1386  Type *RZPtrTy = PointerType::get(RZTy, 0);
1387
1388  Value *PoisonLeft  = ConstantInt::get(RZTy,
1389    ValueForPoison(DoPoison ? kAsanStackLeftRedzoneMagic : 0LL, ShadowRZSize));
1390  Value *PoisonMid   = ConstantInt::get(RZTy,
1391    ValueForPoison(DoPoison ? kAsanStackMidRedzoneMagic : 0LL, ShadowRZSize));
1392  Value *PoisonRight = ConstantInt::get(RZTy,
1393    ValueForPoison(DoPoison ? kAsanStackRightRedzoneMagic : 0LL, ShadowRZSize));
1394
1395  // poison the first red zone.
1396  IRB.CreateStore(PoisonLeft, IRB.CreateIntToPtr(ShadowBase, RZPtrTy));
1397
1398  // poison all other red zones.
1399  uint64_t Pos = RedzoneSize();
1400  for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
1401    AllocaInst *AI = AllocaVec[i];
1402    uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
1403    uint64_t AlignedSize = getAlignedAllocaSize(AI);
1404    assert(AlignedSize - SizeInBytes < RedzoneSize());
1405    Value *Ptr = NULL;
1406
1407    Pos += AlignedSize;
1408
1409    assert(ShadowBase->getType() == IntptrTy);
1410    if (SizeInBytes < AlignedSize) {
1411      // Poison the partial redzone at right
1412      Ptr = IRB.CreateAdd(
1413          ShadowBase, ConstantInt::get(IntptrTy,
1414                                       (Pos >> Mapping.Scale) - ShadowRZSize));
1415      size_t AddressableBytes = RedzoneSize() - (AlignedSize - SizeInBytes);
1416      uint32_t Poison = 0;
1417      if (DoPoison) {
1418        PoisonShadowPartialRightRedzone((uint8_t*)&Poison, AddressableBytes,
1419                                        RedzoneSize(),
1420                                        1ULL << Mapping.Scale,
1421                                        kAsanStackPartialRedzoneMagic);
1422        Poison =
1423            ASan.TD->isLittleEndian()
1424                ? support::endian::byte_swap<uint32_t, support::little>(Poison)
1425                : support::endian::byte_swap<uint32_t, support::big>(Poison);
1426      }
1427      Value *PartialPoison = ConstantInt::get(RZTy, Poison);
1428      IRB.CreateStore(PartialPoison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
1429    }
1430
1431    // Poison the full redzone at right.
1432    Ptr = IRB.CreateAdd(ShadowBase,
1433                        ConstantInt::get(IntptrTy, Pos >> Mapping.Scale));
1434    bool LastAlloca = (i == AllocaVec.size() - 1);
1435    Value *Poison = LastAlloca ? PoisonRight : PoisonMid;
1436    IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
1437
1438    Pos += RedzoneSize();
1439  }
1440}
1441
1442// Fake stack allocator (asan_fake_stack.h) has 11 size classes
1443// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
1444static int StackMallocSizeClass(uint64_t LocalStackSize) {
1445  assert(LocalStackSize <= kMaxStackMallocSize);
1446  uint64_t MaxSize = kMinStackMallocSize;
1447  for (int i = 0; ; i++, MaxSize *= 2)
1448    if (LocalStackSize <= MaxSize)
1449      return i;
1450  llvm_unreachable("impossible LocalStackSize");
1451}
1452
1453// Set Size bytes starting from ShadowBase to kAsanStackAfterReturnMagic.
1454// We can not use MemSet intrinsic because it may end up calling the actual
1455// memset. Size is a multiple of 8.
1456// Currently this generates 8-byte stores on x86_64; it may be better to
1457// generate wider stores.
1458void FunctionStackPoisoner::SetShadowToStackAfterReturnInlined(
1459    IRBuilder<> &IRB, Value *ShadowBase, int Size) {
1460  assert(!(Size % 8));
1461  assert(kAsanStackAfterReturnMagic == 0xf5);
1462  for (int i = 0; i < Size; i += 8) {
1463    Value *p = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
1464    IRB.CreateStore(ConstantInt::get(IRB.getInt64Ty(), 0xf5f5f5f5f5f5f5f5ULL),
1465                    IRB.CreateIntToPtr(p, IRB.getInt64Ty()->getPointerTo()));
1466  }
1467}
1468
1469void FunctionStackPoisoner::poisonStack() {
1470  uint64_t LocalStackSize = TotalStackSize +
1471                            (AllocaVec.size() + 1) * RedzoneSize();
1472
1473  bool DoStackMalloc = ASan.CheckUseAfterReturn
1474      && LocalStackSize <= kMaxStackMallocSize;
1475  int StackMallocIdx = -1;
1476
1477  assert(AllocaVec.size() > 0);
1478  Instruction *InsBefore = AllocaVec[0];
1479  IRBuilder<> IRB(InsBefore);
1480
1481
1482  Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize);
1483  AllocaInst *MyAlloca =
1484      new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore);
1485  if (ClRealignStack && StackAlignment < RedzoneSize())
1486    StackAlignment = RedzoneSize();
1487  MyAlloca->setAlignment(StackAlignment);
1488  assert(MyAlloca->isStaticAlloca());
1489  Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy);
1490  Value *LocalStackBase = OrigStackBase;
1491
1492  if (DoStackMalloc) {
1493    // LocalStackBase = OrigStackBase
1494    // if (__asan_option_detect_stack_use_after_return)
1495    //   LocalStackBase = __asan_stack_malloc_N(LocalStackBase, OrigStackBase);
1496    StackMallocIdx = StackMallocSizeClass(LocalStackSize);
1497    assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
1498    Constant *OptionDetectUAR = F.getParent()->getOrInsertGlobal(
1499        kAsanOptionDetectUAR, IRB.getInt32Ty());
1500    Value *Cmp = IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUAR),
1501                                  Constant::getNullValue(IRB.getInt32Ty()));
1502    Instruction *Term =
1503        SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
1504    BasicBlock *CmpBlock = cast<Instruction>(Cmp)->getParent();
1505    IRBuilder<> IRBIf(Term);
1506    LocalStackBase = IRBIf.CreateCall2(
1507        AsanStackMallocFunc[StackMallocIdx],
1508        ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase);
1509    BasicBlock *SetBlock = cast<Instruction>(LocalStackBase)->getParent();
1510    IRB.SetInsertPoint(InsBefore);
1511    PHINode *Phi = IRB.CreatePHI(IntptrTy, 2);
1512    Phi->addIncoming(OrigStackBase, CmpBlock);
1513    Phi->addIncoming(LocalStackBase, SetBlock);
1514    LocalStackBase = Phi;
1515  }
1516
1517  // This string will be parsed by the run-time (DescribeAddressIfStack).
1518  SmallString<2048> StackDescriptionStorage;
1519  raw_svector_ostream StackDescription(StackDescriptionStorage);
1520  StackDescription << AllocaVec.size() << " ";
1521
1522  // Insert poison calls for lifetime intrinsics for alloca.
1523  bool HavePoisonedAllocas = false;
1524  for (size_t i = 0, n = AllocaPoisonCallVec.size(); i < n; i++) {
1525    const AllocaPoisonCall &APC = AllocaPoisonCallVec[i];
1526    IntrinsicInst *II = APC.InsBefore;
1527    AllocaInst *AI = findAllocaForValue(II->getArgOperand(1));
1528    assert(AI);
1529    IRBuilder<> IRB(II);
1530    poisonAlloca(AI, APC.Size, IRB, APC.DoPoison);
1531    HavePoisonedAllocas |= APC.DoPoison;
1532  }
1533
1534  uint64_t Pos = RedzoneSize();
1535  // Replace Alloca instructions with base+offset.
1536  for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
1537    AllocaInst *AI = AllocaVec[i];
1538    uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
1539    StringRef Name = AI->getName();
1540    StackDescription << Pos << " " << SizeInBytes << " "
1541                     << Name.size() << " " << Name << " ";
1542    uint64_t AlignedSize = getAlignedAllocaSize(AI);
1543    assert((AlignedSize % RedzoneSize()) == 0);
1544    Value *NewAllocaPtr = IRB.CreateIntToPtr(
1545            IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Pos)),
1546            AI->getType());
1547    replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB);
1548    AI->replaceAllUsesWith(NewAllocaPtr);
1549    Pos += AlignedSize + RedzoneSize();
1550  }
1551  assert(Pos == LocalStackSize);
1552
1553  // The left-most redzone has enough space for at least 4 pointers.
1554  // Write the Magic value to redzone[0].
1555  Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
1556  IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
1557                  BasePlus0);
1558  // Write the frame description constant to redzone[1].
1559  Value *BasePlus1 = IRB.CreateIntToPtr(
1560    IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, ASan.LongSize/8)),
1561    IntptrPtrTy);
1562  GlobalVariable *StackDescriptionGlobal =
1563      createPrivateGlobalForString(*F.getParent(), StackDescription.str());
1564  Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal,
1565                                             IntptrTy);
1566  IRB.CreateStore(Description, BasePlus1);
1567  // Write the PC to redzone[2].
1568  Value *BasePlus2 = IRB.CreateIntToPtr(
1569    IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy,
1570                                                   2 * ASan.LongSize/8)),
1571    IntptrPtrTy);
1572  IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
1573
1574  // Poison the stack redzones at the entry.
1575  Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
1576  poisonRedZones(AllocaVec, IRB, ShadowBase, true);
1577
1578  // Unpoison the stack before all ret instructions.
1579  for (size_t i = 0, n = RetVec.size(); i < n; i++) {
1580    Instruction *Ret = RetVec[i];
1581    IRBuilder<> IRBRet(Ret);
1582    // Mark the current frame as retired.
1583    IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
1584                       BasePlus0);
1585    // Unpoison the stack.
1586    poisonRedZones(AllocaVec, IRBRet, ShadowBase, false);
1587    if (DoStackMalloc) {
1588      assert(StackMallocIdx >= 0);
1589      // In use-after-return mode, mark the whole stack frame unaddressable.
1590      if (StackMallocIdx <= 4) {
1591        // For small sizes inline the whole thing:
1592        // if LocalStackBase != OrigStackBase:
1593        //     memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
1594        //     **SavedFlagPtr(LocalStackBase) = 0
1595        // FIXME: if LocalStackBase != OrigStackBase don't call poisonRedZones.
1596        Value *Cmp = IRBRet.CreateICmpNE(LocalStackBase, OrigStackBase);
1597        TerminatorInst *PoisonTerm =
1598            SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
1599        IRBuilder<> IRBPoison(PoisonTerm);
1600        int ClassSize = kMinStackMallocSize << StackMallocIdx;
1601        SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase,
1602                                           ClassSize >> Mapping.Scale);
1603        Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
1604            LocalStackBase,
1605            ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
1606        Value *SavedFlagPtr = IRBPoison.CreateLoad(
1607            IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
1608        IRBPoison.CreateStore(
1609            Constant::getNullValue(IRBPoison.getInt8Ty()),
1610            IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
1611      } else {
1612        // For larger frames call __asan_stack_free_*.
1613        IRBRet.CreateCall3(AsanStackFreeFunc[StackMallocIdx], LocalStackBase,
1614                           ConstantInt::get(IntptrTy, LocalStackSize),
1615                           OrigStackBase);
1616      }
1617    } else if (HavePoisonedAllocas) {
1618      // If we poisoned some allocas in llvm.lifetime analysis,
1619      // unpoison whole stack frame now.
1620      assert(LocalStackBase == OrigStackBase);
1621      poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false);
1622    }
1623  }
1624
1625  // We are done. Remove the old unused alloca instructions.
1626  for (size_t i = 0, n = AllocaVec.size(); i < n; i++)
1627    AllocaVec[i]->eraseFromParent();
1628}
1629
1630void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
1631                                         IRBuilder<> &IRB, bool DoPoison) {
1632  // For now just insert the call to ASan runtime.
1633  Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
1634  Value *SizeArg = ConstantInt::get(IntptrTy, Size);
1635  IRB.CreateCall2(DoPoison ? AsanPoisonStackMemoryFunc
1636                           : AsanUnpoisonStackMemoryFunc,
1637                  AddrArg, SizeArg);
1638}
1639
1640// Handling llvm.lifetime intrinsics for a given %alloca:
1641// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
1642// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
1643//     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
1644//     could be poisoned by previous llvm.lifetime.end instruction, as the
1645//     variable may go in and out of scope several times, e.g. in loops).
1646// (3) if we poisoned at least one %alloca in a function,
1647//     unpoison the whole stack frame at function exit.
1648
1649AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
1650  if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
1651    // We're intested only in allocas we can handle.
1652    return isInterestingAlloca(*AI) ? AI : 0;
1653  // See if we've already calculated (or started to calculate) alloca for a
1654  // given value.
1655  AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
1656  if (I != AllocaForValue.end())
1657    return I->second;
1658  // Store 0 while we're calculating alloca for value V to avoid
1659  // infinite recursion if the value references itself.
1660  AllocaForValue[V] = 0;
1661  AllocaInst *Res = 0;
1662  if (CastInst *CI = dyn_cast<CastInst>(V))
1663    Res = findAllocaForValue(CI->getOperand(0));
1664  else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1665    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1666      Value *IncValue = PN->getIncomingValue(i);
1667      // Allow self-referencing phi-nodes.
1668      if (IncValue == PN) continue;
1669      AllocaInst *IncValueAI = findAllocaForValue(IncValue);
1670      // AI for incoming values should exist and should all be equal.
1671      if (IncValueAI == 0 || (Res != 0 && IncValueAI != Res))
1672        return 0;
1673      Res = IncValueAI;
1674    }
1675  }
1676  if (Res != 0)
1677    AllocaForValue[V] = Res;
1678  return Res;
1679}
1680