MemorySanitizer.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
13/// The algorithm of the tool is similar to Memcheck
14/// (http://goo.gl/QKbem). We associate a few shadow bits with every
15/// byte of the application memory, poison the shadow of the malloc-ed
16/// or alloca-ed memory, load the shadow bits on every memory read,
17/// propagate the shadow bits through some of the arithmetic
18/// instruction (including MOV), store the shadow bits on every memory
19/// write, report a bug on some other instructions (e.g. JMP) if the
20/// associated shadow is poisoned.
21///
22/// But there are differences too. The first and the major one:
23/// compiler instrumentation instead of binary instrumentation. This
24/// gives us much better register allocation, possible compiler
25/// optimizations and a fast start-up. But this brings the major issue
26/// as well: msan needs to see all program events, including system
27/// calls and reads/writes in system libraries, so we either need to
28/// compile *everything* with msan or use a binary translation
29/// component (e.g. DynamoRIO) to instrument pre-built libraries.
30/// Another difference from Memcheck is that we use 8 shadow bits per
31/// byte of application memory and use a direct shadow mapping. This
32/// greatly simplifies the instrumentation code and avoids races on
33/// shadow updates (Memcheck is single-threaded so races are not a
34/// concern there. Memcheck uses 2 shadow bits per byte with a slow
35/// path storage that uses 8 bits per byte).
36///
37/// The default value of shadow is 0, which means "clean" (not poisoned).
38///
39/// Every module initializer should call __msan_init to ensure that the
40/// shadow memory is ready. On error, __msan_warning is called. Since
41/// parameters and return values may be passed via registers, we have a
42/// specialized thread-local shadow for return values
43/// (__msan_retval_tls) and parameters (__msan_param_tls).
44///
45///                           Origin tracking.
46///
47/// MemorySanitizer can track origins (allocation points) of all uninitialized
48/// values. This behavior is controlled with a flag (msan-track-origins) and is
49/// disabled by default.
50///
51/// Origins are 4-byte values created and interpreted by the runtime library.
52/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53/// of application memory. Propagation of origins is basically a bunch of
54/// "select" instructions that pick the origin of a dirty argument, if an
55/// instruction has one.
56///
57/// Every 4 aligned, consecutive bytes of application memory have one origin
58/// value associated with them. If these bytes contain uninitialized data
59/// coming from 2 different allocations, the last store wins. Because of this,
60/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
61/// practice.
62///
63/// Origins are meaningless for fully initialized values, so MemorySanitizer
64/// avoids storing origin to memory when a fully initialized value is stored.
65/// This way it avoids needless overwritting origin of the 4-byte region on
66/// a short (i.e. 1 byte) clean store, and it is also good for performance.
67///
68///                            Atomic handling.
69///
70/// Ideally, every atomic store of application value should update the
71/// corresponding shadow location in an atomic way. Unfortunately, atomic store
72/// of two disjoint locations can not be done without severe slowdown.
73///
74/// Therefore, we implement an approximation that may err on the safe side.
75/// In this implementation, every atomically accessed location in the program
76/// may only change from (partially) uninitialized to fully initialized, but
77/// not the other way around. We load the shadow _after_ the application load,
78/// and we store the shadow _before_ the app store. Also, we always store clean
79/// shadow (if the application store is atomic). This way, if the store-load
80/// pair constitutes a happens-before arc, shadow store and load are correctly
81/// ordered such that the load will get either the value that was stored, or
82/// some later value (which is always clean).
83///
84/// This does not work very well with Compare-And-Swap (CAS) and
85/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86/// must store the new shadow before the app operation, and load the shadow
87/// after the app operation. Computers don't work this way. Current
88/// implementation ignores the load aspect of CAS/RMW, always returning a clean
89/// value. It implements the store part as a simple atomic store by storing a
90/// clean shadow.
91
92//===----------------------------------------------------------------------===//
93
94#include "llvm/Transforms/Instrumentation.h"
95#include "llvm/ADT/DepthFirstIterator.h"
96#include "llvm/ADT/SmallString.h"
97#include "llvm/ADT/SmallVector.h"
98#include "llvm/ADT/StringExtras.h"
99#include "llvm/ADT/Triple.h"
100#include "llvm/IR/DataLayout.h"
101#include "llvm/IR/Function.h"
102#include "llvm/IR/IRBuilder.h"
103#include "llvm/IR/InlineAsm.h"
104#include "llvm/IR/InstVisitor.h"
105#include "llvm/IR/IntrinsicInst.h"
106#include "llvm/IR/LLVMContext.h"
107#include "llvm/IR/MDBuilder.h"
108#include "llvm/IR/Module.h"
109#include "llvm/IR/Type.h"
110#include "llvm/IR/ValueMap.h"
111#include "llvm/Support/CommandLine.h"
112#include "llvm/Support/Compiler.h"
113#include "llvm/Support/Debug.h"
114#include "llvm/Support/raw_ostream.h"
115#include "llvm/Transforms/Utils/BasicBlockUtils.h"
116#include "llvm/Transforms/Utils/Local.h"
117#include "llvm/Transforms/Utils/ModuleUtils.h"
118
119using namespace llvm;
120
121#define DEBUG_TYPE "msan"
122
123static const uint64_t kShadowMask32 = 1ULL << 31;
124static const uint64_t kShadowMask64 = 1ULL << 46;
125static const uint64_t kOriginOffset32 = 1ULL << 30;
126static const uint64_t kOriginOffset64 = 1ULL << 45;
127static const unsigned kMinOriginAlignment = 4;
128static const unsigned kShadowTLSAlignment = 8;
129
130// Accesses sizes are powers of two: 1, 2, 4, 8.
131static const size_t kNumberOfAccessSizes = 4;
132
133/// \brief Track origins of uninitialized values.
134///
135/// Adds a section to MemorySanitizer report that points to the allocation
136/// (stack or heap) the uninitialized bits came from originally.
137static cl::opt<int> ClTrackOrigins("msan-track-origins",
138       cl::desc("Track origins (allocation sites) of poisoned memory"),
139       cl::Hidden, cl::init(0));
140static cl::opt<bool> ClKeepGoing("msan-keep-going",
141       cl::desc("keep going after reporting a UMR"),
142       cl::Hidden, cl::init(false));
143static cl::opt<bool> ClPoisonStack("msan-poison-stack",
144       cl::desc("poison uninitialized stack variables"),
145       cl::Hidden, cl::init(true));
146static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
147       cl::desc("poison uninitialized stack variables with a call"),
148       cl::Hidden, cl::init(false));
149static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
150       cl::desc("poison uninitialized stack variables with the given patter"),
151       cl::Hidden, cl::init(0xff));
152static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
153       cl::desc("poison undef temps"),
154       cl::Hidden, cl::init(true));
155
156static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
157       cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
158       cl::Hidden, cl::init(true));
159
160static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
161       cl::desc("exact handling of relational integer ICmp"),
162       cl::Hidden, cl::init(false));
163
164// This flag controls whether we check the shadow of the address
165// operand of load or store. Such bugs are very rare, since load from
166// a garbage address typically results in SEGV, but still happen
167// (e.g. only lower bits of address are garbage, or the access happens
168// early at program startup where malloc-ed memory is more likely to
169// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
170static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
171       cl::desc("report accesses through a pointer which has poisoned shadow"),
172       cl::Hidden, cl::init(true));
173
174static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
175       cl::desc("print out instructions with default strict semantics"),
176       cl::Hidden, cl::init(false));
177
178static cl::opt<int> ClInstrumentationWithCallThreshold(
179    "msan-instrumentation-with-call-threshold",
180    cl::desc(
181        "If the function being instrumented requires more than "
182        "this number of checks and origin stores, use callbacks instead of "
183        "inline checks (-1 means never use callbacks)."),
184    cl::Hidden, cl::init(3500));
185
186// Experimental. Wraps all indirect calls in the instrumented code with
187// a call to the given function. This is needed to assist the dynamic
188// helper tool (MSanDR) to regain control on transition between instrumented and
189// non-instrumented code.
190static cl::opt<std::string> ClWrapIndirectCalls("msan-wrap-indirect-calls",
191       cl::desc("Wrap indirect calls with a given function"),
192       cl::Hidden);
193
194static cl::opt<bool> ClWrapIndirectCallsFast("msan-wrap-indirect-calls-fast",
195       cl::desc("Do not wrap indirect calls with target in the same module"),
196       cl::Hidden, cl::init(true));
197
198namespace {
199
200/// \brief An instrumentation pass implementing detection of uninitialized
201/// reads.
202///
203/// MemorySanitizer: instrument the code in module to find
204/// uninitialized reads.
205class MemorySanitizer : public FunctionPass {
206 public:
207  MemorySanitizer(int TrackOrigins = 0)
208      : FunctionPass(ID),
209        TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
210        DL(nullptr),
211        WarningFn(nullptr),
212        WrapIndirectCalls(!ClWrapIndirectCalls.empty()) {}
213  const char *getPassName() const override { return "MemorySanitizer"; }
214  bool runOnFunction(Function &F) override;
215  bool doInitialization(Module &M) override;
216  static char ID;  // Pass identification, replacement for typeid.
217
218 private:
219  void initializeCallbacks(Module &M);
220
221  /// \brief Track origins (allocation points) of uninitialized values.
222  int TrackOrigins;
223
224  const DataLayout *DL;
225  LLVMContext *C;
226  Type *IntptrTy;
227  Type *OriginTy;
228  /// \brief Thread-local shadow storage for function parameters.
229  GlobalVariable *ParamTLS;
230  /// \brief Thread-local origin storage for function parameters.
231  GlobalVariable *ParamOriginTLS;
232  /// \brief Thread-local shadow storage for function return value.
233  GlobalVariable *RetvalTLS;
234  /// \brief Thread-local origin storage for function return value.
235  GlobalVariable *RetvalOriginTLS;
236  /// \brief Thread-local shadow storage for in-register va_arg function
237  /// parameters (x86_64-specific).
238  GlobalVariable *VAArgTLS;
239  /// \brief Thread-local shadow storage for va_arg overflow area
240  /// (x86_64-specific).
241  GlobalVariable *VAArgOverflowSizeTLS;
242  /// \brief Thread-local space used to pass origin value to the UMR reporting
243  /// function.
244  GlobalVariable *OriginTLS;
245
246  GlobalVariable *MsandrModuleStart;
247  GlobalVariable *MsandrModuleEnd;
248
249  /// \brief The run-time callback to print a warning.
250  Value *WarningFn;
251  // These arrays are indexed by log2(AccessSize).
252  Value *MaybeWarningFn[kNumberOfAccessSizes];
253  Value *MaybeStoreOriginFn[kNumberOfAccessSizes];
254
255  /// \brief Run-time helper that generates a new origin value for a stack
256  /// allocation.
257  Value *MsanSetAllocaOrigin4Fn;
258  /// \brief Run-time helper that poisons stack on function entry.
259  Value *MsanPoisonStackFn;
260  /// \brief Run-time helper that records a store (or any event) of an
261  /// uninitialized value and returns an updated origin id encoding this info.
262  Value *MsanChainOriginFn;
263  /// \brief MSan runtime replacements for memmove, memcpy and memset.
264  Value *MemmoveFn, *MemcpyFn, *MemsetFn;
265
266  /// \brief Address mask used in application-to-shadow address calculation.
267  /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
268  uint64_t ShadowMask;
269  /// \brief Offset of the origin shadow from the "normal" shadow.
270  /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
271  uint64_t OriginOffset;
272  /// \brief Branch weights for error reporting.
273  MDNode *ColdCallWeights;
274  /// \brief Branch weights for origin store.
275  MDNode *OriginStoreWeights;
276  /// \brief An empty volatile inline asm that prevents callback merge.
277  InlineAsm *EmptyAsm;
278
279  bool WrapIndirectCalls;
280  /// \brief Run-time wrapper for indirect calls.
281  Value *IndirectCallWrapperFn;
282  // Argument and return type of IndirectCallWrapperFn: void (*f)(void).
283  Type *AnyFunctionPtrTy;
284
285  friend struct MemorySanitizerVisitor;
286  friend struct VarArgAMD64Helper;
287};
288}  // namespace
289
290char MemorySanitizer::ID = 0;
291INITIALIZE_PASS(MemorySanitizer, "msan",
292                "MemorySanitizer: detects uninitialized reads.",
293                false, false)
294
295FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) {
296  return new MemorySanitizer(TrackOrigins);
297}
298
299/// \brief Create a non-const global initialized with the given string.
300///
301/// Creates a writable global for Str so that we can pass it to the
302/// run-time lib. Runtime uses first 4 bytes of the string to store the
303/// frame ID, so the string needs to be mutable.
304static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
305                                                            StringRef Str) {
306  Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
307  return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
308                            GlobalValue::PrivateLinkage, StrConst, "");
309}
310
311
312/// \brief Insert extern declaration of runtime-provided functions and globals.
313void MemorySanitizer::initializeCallbacks(Module &M) {
314  // Only do this once.
315  if (WarningFn)
316    return;
317
318  IRBuilder<> IRB(*C);
319  // Create the callback.
320  // FIXME: this function should have "Cold" calling conv,
321  // which is not yet implemented.
322  StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
323                                        : "__msan_warning_noreturn";
324  WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
325
326  for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
327       AccessSizeIndex++) {
328    unsigned AccessSize = 1 << AccessSizeIndex;
329    std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
330    MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
331        FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
332        IRB.getInt32Ty(), NULL);
333
334    FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
335    MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
336        FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
337        IRB.getInt8PtrTy(), IRB.getInt32Ty(), NULL);
338  }
339
340  MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
341    "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
342    IRB.getInt8PtrTy(), IntptrTy, NULL);
343  MsanPoisonStackFn = M.getOrInsertFunction(
344    "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
345  MsanChainOriginFn = M.getOrInsertFunction(
346    "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), NULL);
347  MemmoveFn = M.getOrInsertFunction(
348    "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
349    IRB.getInt8PtrTy(), IntptrTy, NULL);
350  MemcpyFn = M.getOrInsertFunction(
351    "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
352    IntptrTy, NULL);
353  MemsetFn = M.getOrInsertFunction(
354    "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
355    IntptrTy, NULL);
356
357  // Create globals.
358  RetvalTLS = new GlobalVariable(
359    M, ArrayType::get(IRB.getInt64Ty(), 8), false,
360    GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr,
361    GlobalVariable::InitialExecTLSModel);
362  RetvalOriginTLS = new GlobalVariable(
363    M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr,
364    "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
365
366  ParamTLS = new GlobalVariable(
367    M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
368    GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr,
369    GlobalVariable::InitialExecTLSModel);
370  ParamOriginTLS = new GlobalVariable(
371    M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
372    nullptr, "__msan_param_origin_tls", nullptr,
373    GlobalVariable::InitialExecTLSModel);
374
375  VAArgTLS = new GlobalVariable(
376    M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
377    GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr,
378    GlobalVariable::InitialExecTLSModel);
379  VAArgOverflowSizeTLS = new GlobalVariable(
380    M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
381    "__msan_va_arg_overflow_size_tls", nullptr,
382    GlobalVariable::InitialExecTLSModel);
383  OriginTLS = new GlobalVariable(
384    M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
385    "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
386
387  // We insert an empty inline asm after __msan_report* to avoid callback merge.
388  EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
389                            StringRef(""), StringRef(""),
390                            /*hasSideEffects=*/true);
391
392  if (WrapIndirectCalls) {
393    AnyFunctionPtrTy =
394        PointerType::getUnqual(FunctionType::get(IRB.getVoidTy(), false));
395    IndirectCallWrapperFn = M.getOrInsertFunction(
396        ClWrapIndirectCalls, AnyFunctionPtrTy, AnyFunctionPtrTy, NULL);
397  }
398
399  if (WrapIndirectCalls && ClWrapIndirectCallsFast) {
400    MsandrModuleStart = new GlobalVariable(
401        M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
402        nullptr, "__executable_start");
403    MsandrModuleStart->setVisibility(GlobalVariable::HiddenVisibility);
404    MsandrModuleEnd = new GlobalVariable(
405        M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
406        nullptr, "_end");
407    MsandrModuleEnd->setVisibility(GlobalVariable::HiddenVisibility);
408  }
409}
410
411/// \brief Module-level initialization.
412///
413/// inserts a call to __msan_init to the module's constructor list.
414bool MemorySanitizer::doInitialization(Module &M) {
415  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
416  if (!DLP)
417    report_fatal_error("data layout missing");
418  DL = &DLP->getDataLayout();
419
420  C = &(M.getContext());
421  unsigned PtrSize = DL->getPointerSizeInBits(/* AddressSpace */0);
422  switch (PtrSize) {
423    case 64:
424      ShadowMask = kShadowMask64;
425      OriginOffset = kOriginOffset64;
426      break;
427    case 32:
428      ShadowMask = kShadowMask32;
429      OriginOffset = kOriginOffset32;
430      break;
431    default:
432      report_fatal_error("unsupported pointer size");
433      break;
434  }
435
436  IRBuilder<> IRB(*C);
437  IntptrTy = IRB.getIntPtrTy(DL);
438  OriginTy = IRB.getInt32Ty();
439
440  ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
441  OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
442
443  // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
444  appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
445                      "__msan_init", IRB.getVoidTy(), NULL)), 0);
446
447  if (TrackOrigins)
448    new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
449                       IRB.getInt32(TrackOrigins), "__msan_track_origins");
450
451  if (ClKeepGoing)
452    new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
453                       IRB.getInt32(ClKeepGoing), "__msan_keep_going");
454
455  return true;
456}
457
458namespace {
459
460/// \brief A helper class that handles instrumentation of VarArg
461/// functions on a particular platform.
462///
463/// Implementations are expected to insert the instrumentation
464/// necessary to propagate argument shadow through VarArg function
465/// calls. Visit* methods are called during an InstVisitor pass over
466/// the function, and should avoid creating new basic blocks. A new
467/// instance of this class is created for each instrumented function.
468struct VarArgHelper {
469  /// \brief Visit a CallSite.
470  virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
471
472  /// \brief Visit a va_start call.
473  virtual void visitVAStartInst(VAStartInst &I) = 0;
474
475  /// \brief Visit a va_copy call.
476  virtual void visitVACopyInst(VACopyInst &I) = 0;
477
478  /// \brief Finalize function instrumentation.
479  ///
480  /// This method is called after visiting all interesting (see above)
481  /// instructions in a function.
482  virtual void finalizeInstrumentation() = 0;
483
484  virtual ~VarArgHelper() {}
485};
486
487struct MemorySanitizerVisitor;
488
489VarArgHelper*
490CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
491                   MemorySanitizerVisitor &Visitor);
492
493unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
494  if (TypeSize <= 8) return 0;
495  return Log2_32_Ceil(TypeSize / 8);
496}
497
498/// This class does all the work for a given function. Store and Load
499/// instructions store and load corresponding shadow and origin
500/// values. Most instructions propagate shadow from arguments to their
501/// return values. Certain instructions (most importantly, BranchInst)
502/// test their argument shadow and print reports (with a runtime call) if it's
503/// non-zero.
504struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
505  Function &F;
506  MemorySanitizer &MS;
507  SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
508  ValueMap<Value*, Value*> ShadowMap, OriginMap;
509  std::unique_ptr<VarArgHelper> VAHelper;
510
511  // The following flags disable parts of MSan instrumentation based on
512  // blacklist contents and command-line options.
513  bool InsertChecks;
514  bool PropagateShadow;
515  bool PoisonStack;
516  bool PoisonUndef;
517  bool CheckReturnValue;
518
519  struct ShadowOriginAndInsertPoint {
520    Value *Shadow;
521    Value *Origin;
522    Instruction *OrigIns;
523    ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
524      : Shadow(S), Origin(O), OrigIns(I) { }
525  };
526  SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
527  SmallVector<Instruction*, 16> StoreList;
528  SmallVector<CallSite, 16> IndirectCallList;
529
530  MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
531      : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
532    bool SanitizeFunction = F.getAttributes().hasAttribute(
533        AttributeSet::FunctionIndex, Attribute::SanitizeMemory);
534    InsertChecks = SanitizeFunction;
535    PropagateShadow = SanitizeFunction;
536    PoisonStack = SanitizeFunction && ClPoisonStack;
537    PoisonUndef = SanitizeFunction && ClPoisonUndef;
538    // FIXME: Consider using SpecialCaseList to specify a list of functions that
539    // must always return fully initialized values. For now, we hardcode "main".
540    CheckReturnValue = SanitizeFunction && (F.getName() == "main");
541
542    DEBUG(if (!InsertChecks)
543          dbgs() << "MemorySanitizer is not inserting checks into '"
544                 << F.getName() << "'\n");
545  }
546
547  Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
548    if (MS.TrackOrigins <= 1) return V;
549    return IRB.CreateCall(MS.MsanChainOriginFn, V);
550  }
551
552  void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
553                   unsigned Alignment, bool AsCall) {
554    if (isa<StructType>(Shadow->getType())) {
555      IRB.CreateAlignedStore(updateOrigin(Origin, IRB), getOriginPtr(Addr, IRB),
556                             Alignment);
557    } else {
558      Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
559      // TODO(eugenis): handle non-zero constant shadow by inserting an
560      // unconditional check (can not simply fail compilation as this could
561      // be in the dead code).
562      if (isa<Constant>(ConvertedShadow)) return;
563      unsigned TypeSizeInBits =
564          MS.DL->getTypeSizeInBits(ConvertedShadow->getType());
565      unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
566      if (AsCall && SizeIndex < kNumberOfAccessSizes) {
567        Value *Fn = MS.MaybeStoreOriginFn[SizeIndex];
568        Value *ConvertedShadow2 = IRB.CreateZExt(
569            ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
570        IRB.CreateCall3(Fn, ConvertedShadow2,
571                        IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
572                        Origin);
573      } else {
574        Value *Cmp = IRB.CreateICmpNE(
575            ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
576        Instruction *CheckTerm = SplitBlockAndInsertIfThen(
577            Cmp, IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
578        IRBuilder<> IRBNew(CheckTerm);
579        IRBNew.CreateAlignedStore(updateOrigin(Origin, IRBNew),
580                                  getOriginPtr(Addr, IRBNew), Alignment);
581      }
582    }
583  }
584
585  void materializeStores(bool InstrumentWithCalls) {
586    for (auto Inst : StoreList) {
587      StoreInst &SI = *dyn_cast<StoreInst>(Inst);
588
589      IRBuilder<> IRB(&SI);
590      Value *Val = SI.getValueOperand();
591      Value *Addr = SI.getPointerOperand();
592      Value *Shadow = SI.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
593      Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
594
595      StoreInst *NewSI =
596          IRB.CreateAlignedStore(Shadow, ShadowPtr, SI.getAlignment());
597      DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
598      (void)NewSI;
599
600      if (ClCheckAccessAddress) insertShadowCheck(Addr, &SI);
601
602      if (SI.isAtomic()) SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
603
604      if (MS.TrackOrigins) {
605        unsigned Alignment = std::max(kMinOriginAlignment, SI.getAlignment());
606        storeOrigin(IRB, Addr, Shadow, getOrigin(Val), Alignment,
607                    InstrumentWithCalls);
608      }
609    }
610  }
611
612  void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
613                           bool AsCall) {
614    IRBuilder<> IRB(OrigIns);
615    DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n");
616    Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
617    DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n");
618    // See the comment in materializeStores().
619    if (isa<Constant>(ConvertedShadow)) return;
620    unsigned TypeSizeInBits =
621        MS.DL->getTypeSizeInBits(ConvertedShadow->getType());
622    unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
623    if (AsCall && SizeIndex < kNumberOfAccessSizes) {
624      Value *Fn = MS.MaybeWarningFn[SizeIndex];
625      Value *ConvertedShadow2 =
626          IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
627      IRB.CreateCall2(Fn, ConvertedShadow2, MS.TrackOrigins && Origin
628                                                ? Origin
629                                                : (Value *)IRB.getInt32(0));
630    } else {
631      Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
632                                    getCleanShadow(ConvertedShadow), "_mscmp");
633      Instruction *CheckTerm = SplitBlockAndInsertIfThen(
634          Cmp, OrigIns,
635          /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights);
636
637      IRB.SetInsertPoint(CheckTerm);
638      if (MS.TrackOrigins) {
639        IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
640                        MS.OriginTLS);
641      }
642      IRB.CreateCall(MS.WarningFn);
643      IRB.CreateCall(MS.EmptyAsm);
644      DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
645    }
646  }
647
648  void materializeChecks(bool InstrumentWithCalls) {
649    for (const auto &ShadowData : InstrumentationList) {
650      Instruction *OrigIns = ShadowData.OrigIns;
651      Value *Shadow = ShadowData.Shadow;
652      Value *Origin = ShadowData.Origin;
653      materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
654    }
655    DEBUG(dbgs() << "DONE:\n" << F);
656  }
657
658  void materializeIndirectCalls() {
659    for (auto &CS : IndirectCallList) {
660      Instruction *I = CS.getInstruction();
661      BasicBlock *B = I->getParent();
662      IRBuilder<> IRB(I);
663      Value *Fn0 = CS.getCalledValue();
664      Value *Fn = IRB.CreateBitCast(Fn0, MS.AnyFunctionPtrTy);
665
666      if (ClWrapIndirectCallsFast) {
667        // Check that call target is inside this module limits.
668        Value *Start =
669            IRB.CreateBitCast(MS.MsandrModuleStart, MS.AnyFunctionPtrTy);
670        Value *End = IRB.CreateBitCast(MS.MsandrModuleEnd, MS.AnyFunctionPtrTy);
671
672        Value *NotInThisModule = IRB.CreateOr(IRB.CreateICmpULT(Fn, Start),
673                                              IRB.CreateICmpUGE(Fn, End));
674
675        PHINode *NewFnPhi =
676            IRB.CreatePHI(Fn0->getType(), 2, "msandr.indirect_target");
677
678        Instruction *CheckTerm = SplitBlockAndInsertIfThen(
679            NotInThisModule, NewFnPhi,
680            /* Unreachable */ false, MS.ColdCallWeights);
681
682        IRB.SetInsertPoint(CheckTerm);
683        // Slow path: call wrapper function to possibly transform the call
684        // target.
685        Value *NewFn = IRB.CreateBitCast(
686            IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
687
688        NewFnPhi->addIncoming(Fn0, B);
689        NewFnPhi->addIncoming(NewFn, dyn_cast<Instruction>(NewFn)->getParent());
690        CS.setCalledFunction(NewFnPhi);
691      } else {
692        Value *NewFn = IRB.CreateBitCast(
693            IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
694        CS.setCalledFunction(NewFn);
695      }
696    }
697  }
698
699  /// \brief Add MemorySanitizer instrumentation to a function.
700  bool runOnFunction() {
701    MS.initializeCallbacks(*F.getParent());
702    if (!MS.DL) return false;
703
704    // In the presence of unreachable blocks, we may see Phi nodes with
705    // incoming nodes from such blocks. Since InstVisitor skips unreachable
706    // blocks, such nodes will not have any shadow value associated with them.
707    // It's easier to remove unreachable blocks than deal with missing shadow.
708    removeUnreachableBlocks(F);
709
710    // Iterate all BBs in depth-first order and create shadow instructions
711    // for all instructions (where applicable).
712    // For PHI nodes we create dummy shadow PHIs which will be finalized later.
713    for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
714      visit(*BB);
715
716
717    // Finalize PHI nodes.
718    for (PHINode *PN : ShadowPHINodes) {
719      PHINode *PNS = cast<PHINode>(getShadow(PN));
720      PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
721      size_t NumValues = PN->getNumIncomingValues();
722      for (size_t v = 0; v < NumValues; v++) {
723        PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
724        if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
725      }
726    }
727
728    VAHelper->finalizeInstrumentation();
729
730    bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
731                               InstrumentationList.size() + StoreList.size() >
732                                   (unsigned)ClInstrumentationWithCallThreshold;
733
734    // Delayed instrumentation of StoreInst.
735    // This may add new checks to be inserted later.
736    materializeStores(InstrumentWithCalls);
737
738    // Insert shadow value checks.
739    materializeChecks(InstrumentWithCalls);
740
741    // Wrap indirect calls.
742    materializeIndirectCalls();
743
744    return true;
745  }
746
747  /// \brief Compute the shadow type that corresponds to a given Value.
748  Type *getShadowTy(Value *V) {
749    return getShadowTy(V->getType());
750  }
751
752  /// \brief Compute the shadow type that corresponds to a given Type.
753  Type *getShadowTy(Type *OrigTy) {
754    if (!OrigTy->isSized()) {
755      return nullptr;
756    }
757    // For integer type, shadow is the same as the original type.
758    // This may return weird-sized types like i1.
759    if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
760      return IT;
761    if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
762      uint32_t EltSize = MS.DL->getTypeSizeInBits(VT->getElementType());
763      return VectorType::get(IntegerType::get(*MS.C, EltSize),
764                             VT->getNumElements());
765    }
766    if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
767      SmallVector<Type*, 4> Elements;
768      for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
769        Elements.push_back(getShadowTy(ST->getElementType(i)));
770      StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
771      DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
772      return Res;
773    }
774    uint32_t TypeSize = MS.DL->getTypeSizeInBits(OrigTy);
775    return IntegerType::get(*MS.C, TypeSize);
776  }
777
778  /// \brief Flatten a vector type.
779  Type *getShadowTyNoVec(Type *ty) {
780    if (VectorType *vt = dyn_cast<VectorType>(ty))
781      return IntegerType::get(*MS.C, vt->getBitWidth());
782    return ty;
783  }
784
785  /// \brief Convert a shadow value to it's flattened variant.
786  Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
787    Type *Ty = V->getType();
788    Type *NoVecTy = getShadowTyNoVec(Ty);
789    if (Ty == NoVecTy) return V;
790    return IRB.CreateBitCast(V, NoVecTy);
791  }
792
793  /// \brief Compute the shadow address that corresponds to a given application
794  /// address.
795  ///
796  /// Shadow = Addr & ~ShadowMask.
797  Value *getShadowPtr(Value *Addr, Type *ShadowTy,
798                      IRBuilder<> &IRB) {
799    Value *ShadowLong =
800      IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
801                    ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
802    return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
803  }
804
805  /// \brief Compute the origin address that corresponds to a given application
806  /// address.
807  ///
808  /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
809  Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
810    Value *ShadowLong =
811      IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
812                    ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
813    Value *Add =
814      IRB.CreateAdd(ShadowLong,
815                    ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
816    Value *SecondAnd =
817      IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
818    return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
819  }
820
821  /// \brief Compute the shadow address for a given function argument.
822  ///
823  /// Shadow = ParamTLS+ArgOffset.
824  Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
825                                 int ArgOffset) {
826    Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
827    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
828    return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
829                              "_msarg");
830  }
831
832  /// \brief Compute the origin address for a given function argument.
833  Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
834                                 int ArgOffset) {
835    if (!MS.TrackOrigins) return nullptr;
836    Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
837    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
838    return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
839                              "_msarg_o");
840  }
841
842  /// \brief Compute the shadow address for a retval.
843  Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
844    Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
845    return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
846                              "_msret");
847  }
848
849  /// \brief Compute the origin address for a retval.
850  Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
851    // We keep a single origin for the entire retval. Might be too optimistic.
852    return MS.RetvalOriginTLS;
853  }
854
855  /// \brief Set SV to be the shadow value for V.
856  void setShadow(Value *V, Value *SV) {
857    assert(!ShadowMap.count(V) && "Values may only have one shadow");
858    ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
859  }
860
861  /// \brief Set Origin to be the origin value for V.
862  void setOrigin(Value *V, Value *Origin) {
863    if (!MS.TrackOrigins) return;
864    assert(!OriginMap.count(V) && "Values may only have one origin");
865    DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
866    OriginMap[V] = Origin;
867  }
868
869  /// \brief Create a clean shadow value for a given value.
870  ///
871  /// Clean shadow (all zeroes) means all bits of the value are defined
872  /// (initialized).
873  Constant *getCleanShadow(Value *V) {
874    Type *ShadowTy = getShadowTy(V);
875    if (!ShadowTy)
876      return nullptr;
877    return Constant::getNullValue(ShadowTy);
878  }
879
880  /// \brief Create a dirty shadow of a given shadow type.
881  Constant *getPoisonedShadow(Type *ShadowTy) {
882    assert(ShadowTy);
883    if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
884      return Constant::getAllOnesValue(ShadowTy);
885    StructType *ST = cast<StructType>(ShadowTy);
886    SmallVector<Constant *, 4> Vals;
887    for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
888      Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
889    return ConstantStruct::get(ST, Vals);
890  }
891
892  /// \brief Create a dirty shadow for a given value.
893  Constant *getPoisonedShadow(Value *V) {
894    Type *ShadowTy = getShadowTy(V);
895    if (!ShadowTy)
896      return nullptr;
897    return getPoisonedShadow(ShadowTy);
898  }
899
900  /// \brief Create a clean (zero) origin.
901  Value *getCleanOrigin() {
902    return Constant::getNullValue(MS.OriginTy);
903  }
904
905  /// \brief Get the shadow value for a given Value.
906  ///
907  /// This function either returns the value set earlier with setShadow,
908  /// or extracts if from ParamTLS (for function arguments).
909  Value *getShadow(Value *V) {
910    if (!PropagateShadow) return getCleanShadow(V);
911    if (Instruction *I = dyn_cast<Instruction>(V)) {
912      // For instructions the shadow is already stored in the map.
913      Value *Shadow = ShadowMap[V];
914      if (!Shadow) {
915        DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
916        (void)I;
917        assert(Shadow && "No shadow for a value");
918      }
919      return Shadow;
920    }
921    if (UndefValue *U = dyn_cast<UndefValue>(V)) {
922      Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
923      DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
924      (void)U;
925      return AllOnes;
926    }
927    if (Argument *A = dyn_cast<Argument>(V)) {
928      // For arguments we compute the shadow on demand and store it in the map.
929      Value **ShadowPtr = &ShadowMap[V];
930      if (*ShadowPtr)
931        return *ShadowPtr;
932      Function *F = A->getParent();
933      IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
934      unsigned ArgOffset = 0;
935      for (auto &FArg : F->args()) {
936        if (!FArg.getType()->isSized()) {
937          DEBUG(dbgs() << "Arg is not sized\n");
938          continue;
939        }
940        unsigned Size = FArg.hasByValAttr()
941          ? MS.DL->getTypeAllocSize(FArg.getType()->getPointerElementType())
942          : MS.DL->getTypeAllocSize(FArg.getType());
943        if (A == &FArg) {
944          Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
945          if (FArg.hasByValAttr()) {
946            // ByVal pointer itself has clean shadow. We copy the actual
947            // argument shadow to the underlying memory.
948            // Figure out maximal valid memcpy alignment.
949            unsigned ArgAlign = FArg.getParamAlignment();
950            if (ArgAlign == 0) {
951              Type *EltType = A->getType()->getPointerElementType();
952              ArgAlign = MS.DL->getABITypeAlignment(EltType);
953            }
954            unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
955            Value *Cpy = EntryIRB.CreateMemCpy(
956                getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
957                CopyAlign);
958            DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
959            (void)Cpy;
960            *ShadowPtr = getCleanShadow(V);
961          } else {
962            *ShadowPtr = EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
963          }
964          DEBUG(dbgs() << "  ARG:    "  << FArg << " ==> " <<
965                **ShadowPtr << "\n");
966          if (MS.TrackOrigins) {
967            Value *OriginPtr =
968                getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
969            setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
970          }
971        }
972        ArgOffset += DataLayout::RoundUpAlignment(Size, kShadowTLSAlignment);
973      }
974      assert(*ShadowPtr && "Could not find shadow for an argument");
975      return *ShadowPtr;
976    }
977    // For everything else the shadow is zero.
978    return getCleanShadow(V);
979  }
980
981  /// \brief Get the shadow for i-th argument of the instruction I.
982  Value *getShadow(Instruction *I, int i) {
983    return getShadow(I->getOperand(i));
984  }
985
986  /// \brief Get the origin for a value.
987  Value *getOrigin(Value *V) {
988    if (!MS.TrackOrigins) return nullptr;
989    if (isa<Instruction>(V) || isa<Argument>(V)) {
990      Value *Origin = OriginMap[V];
991      if (!Origin) {
992        DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
993        Origin = getCleanOrigin();
994      }
995      return Origin;
996    }
997    return getCleanOrigin();
998  }
999
1000  /// \brief Get the origin for i-th argument of the instruction I.
1001  Value *getOrigin(Instruction *I, int i) {
1002    return getOrigin(I->getOperand(i));
1003  }
1004
1005  /// \brief Remember the place where a shadow check should be inserted.
1006  ///
1007  /// This location will be later instrumented with a check that will print a
1008  /// UMR warning in runtime if the shadow value is not 0.
1009  void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1010    assert(Shadow);
1011    if (!InsertChecks) return;
1012#ifndef NDEBUG
1013    Type *ShadowTy = Shadow->getType();
1014    assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
1015           "Can only insert checks for integer and vector shadow types");
1016#endif
1017    InstrumentationList.push_back(
1018        ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1019  }
1020
1021  /// \brief Remember the place where a shadow check should be inserted.
1022  ///
1023  /// This location will be later instrumented with a check that will print a
1024  /// UMR warning in runtime if the value is not fully defined.
1025  void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1026    assert(Val);
1027    Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1028    if (!Shadow) return;
1029    Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1030    insertShadowCheck(Shadow, Origin, OrigIns);
1031  }
1032
1033  AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1034    switch (a) {
1035      case NotAtomic:
1036        return NotAtomic;
1037      case Unordered:
1038      case Monotonic:
1039      case Release:
1040        return Release;
1041      case Acquire:
1042      case AcquireRelease:
1043        return AcquireRelease;
1044      case SequentiallyConsistent:
1045        return SequentiallyConsistent;
1046    }
1047    llvm_unreachable("Unknown ordering");
1048  }
1049
1050  AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1051    switch (a) {
1052      case NotAtomic:
1053        return NotAtomic;
1054      case Unordered:
1055      case Monotonic:
1056      case Acquire:
1057        return Acquire;
1058      case Release:
1059      case AcquireRelease:
1060        return AcquireRelease;
1061      case SequentiallyConsistent:
1062        return SequentiallyConsistent;
1063    }
1064    llvm_unreachable("Unknown ordering");
1065  }
1066
1067  // ------------------- Visitors.
1068
1069  /// \brief Instrument LoadInst
1070  ///
1071  /// Loads the corresponding shadow and (optionally) origin.
1072  /// Optionally, checks that the load address is fully defined.
1073  void visitLoadInst(LoadInst &I) {
1074    assert(I.getType()->isSized() && "Load type must have size");
1075    IRBuilder<> IRB(I.getNextNode());
1076    Type *ShadowTy = getShadowTy(&I);
1077    Value *Addr = I.getPointerOperand();
1078    if (PropagateShadow) {
1079      Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1080      setShadow(&I,
1081                IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
1082    } else {
1083      setShadow(&I, getCleanShadow(&I));
1084    }
1085
1086    if (ClCheckAccessAddress)
1087      insertShadowCheck(I.getPointerOperand(), &I);
1088
1089    if (I.isAtomic())
1090      I.setOrdering(addAcquireOrdering(I.getOrdering()));
1091
1092    if (MS.TrackOrigins) {
1093      if (PropagateShadow) {
1094        unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
1095        setOrigin(&I,
1096                  IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
1097      } else {
1098        setOrigin(&I, getCleanOrigin());
1099      }
1100    }
1101  }
1102
1103  /// \brief Instrument StoreInst
1104  ///
1105  /// Stores the corresponding shadow and (optionally) origin.
1106  /// Optionally, checks that the store address is fully defined.
1107  void visitStoreInst(StoreInst &I) {
1108    StoreList.push_back(&I);
1109  }
1110
1111  void handleCASOrRMW(Instruction &I) {
1112    assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1113
1114    IRBuilder<> IRB(&I);
1115    Value *Addr = I.getOperand(0);
1116    Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
1117
1118    if (ClCheckAccessAddress)
1119      insertShadowCheck(Addr, &I);
1120
1121    // Only test the conditional argument of cmpxchg instruction.
1122    // The other argument can potentially be uninitialized, but we can not
1123    // detect this situation reliably without possible false positives.
1124    if (isa<AtomicCmpXchgInst>(I))
1125      insertShadowCheck(I.getOperand(1), &I);
1126
1127    IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1128
1129    setShadow(&I, getCleanShadow(&I));
1130  }
1131
1132  void visitAtomicRMWInst(AtomicRMWInst &I) {
1133    handleCASOrRMW(I);
1134    I.setOrdering(addReleaseOrdering(I.getOrdering()));
1135  }
1136
1137  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1138    handleCASOrRMW(I);
1139    I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
1140  }
1141
1142  // Vector manipulation.
1143  void visitExtractElementInst(ExtractElementInst &I) {
1144    insertShadowCheck(I.getOperand(1), &I);
1145    IRBuilder<> IRB(&I);
1146    setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1147              "_msprop"));
1148    setOrigin(&I, getOrigin(&I, 0));
1149  }
1150
1151  void visitInsertElementInst(InsertElementInst &I) {
1152    insertShadowCheck(I.getOperand(2), &I);
1153    IRBuilder<> IRB(&I);
1154    setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1155              I.getOperand(2), "_msprop"));
1156    setOriginForNaryOp(I);
1157  }
1158
1159  void visitShuffleVectorInst(ShuffleVectorInst &I) {
1160    insertShadowCheck(I.getOperand(2), &I);
1161    IRBuilder<> IRB(&I);
1162    setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1163              I.getOperand(2), "_msprop"));
1164    setOriginForNaryOp(I);
1165  }
1166
1167  // Casts.
1168  void visitSExtInst(SExtInst &I) {
1169    IRBuilder<> IRB(&I);
1170    setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1171    setOrigin(&I, getOrigin(&I, 0));
1172  }
1173
1174  void visitZExtInst(ZExtInst &I) {
1175    IRBuilder<> IRB(&I);
1176    setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1177    setOrigin(&I, getOrigin(&I, 0));
1178  }
1179
1180  void visitTruncInst(TruncInst &I) {
1181    IRBuilder<> IRB(&I);
1182    setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1183    setOrigin(&I, getOrigin(&I, 0));
1184  }
1185
1186  void visitBitCastInst(BitCastInst &I) {
1187    IRBuilder<> IRB(&I);
1188    setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1189    setOrigin(&I, getOrigin(&I, 0));
1190  }
1191
1192  void visitPtrToIntInst(PtrToIntInst &I) {
1193    IRBuilder<> IRB(&I);
1194    setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1195             "_msprop_ptrtoint"));
1196    setOrigin(&I, getOrigin(&I, 0));
1197  }
1198
1199  void visitIntToPtrInst(IntToPtrInst &I) {
1200    IRBuilder<> IRB(&I);
1201    setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1202             "_msprop_inttoptr"));
1203    setOrigin(&I, getOrigin(&I, 0));
1204  }
1205
1206  void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1207  void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1208  void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1209  void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1210  void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1211  void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1212
1213  /// \brief Propagate shadow for bitwise AND.
1214  ///
1215  /// This code is exact, i.e. if, for example, a bit in the left argument
1216  /// is defined and 0, then neither the value not definedness of the
1217  /// corresponding bit in B don't affect the resulting shadow.
1218  void visitAnd(BinaryOperator &I) {
1219    IRBuilder<> IRB(&I);
1220    //  "And" of 0 and a poisoned value results in unpoisoned value.
1221    //  1&1 => 1;     0&1 => 0;     p&1 => p;
1222    //  1&0 => 0;     0&0 => 0;     p&0 => 0;
1223    //  1&p => p;     0&p => 0;     p&p => p;
1224    //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1225    Value *S1 = getShadow(&I, 0);
1226    Value *S2 = getShadow(&I, 1);
1227    Value *V1 = I.getOperand(0);
1228    Value *V2 = I.getOperand(1);
1229    if (V1->getType() != S1->getType()) {
1230      V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1231      V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1232    }
1233    Value *S1S2 = IRB.CreateAnd(S1, S2);
1234    Value *V1S2 = IRB.CreateAnd(V1, S2);
1235    Value *S1V2 = IRB.CreateAnd(S1, V2);
1236    setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1237    setOriginForNaryOp(I);
1238  }
1239
1240  void visitOr(BinaryOperator &I) {
1241    IRBuilder<> IRB(&I);
1242    //  "Or" of 1 and a poisoned value results in unpoisoned value.
1243    //  1|1 => 1;     0|1 => 1;     p|1 => 1;
1244    //  1|0 => 1;     0|0 => 0;     p|0 => p;
1245    //  1|p => 1;     0|p => p;     p|p => p;
1246    //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1247    Value *S1 = getShadow(&I, 0);
1248    Value *S2 = getShadow(&I, 1);
1249    Value *V1 = IRB.CreateNot(I.getOperand(0));
1250    Value *V2 = IRB.CreateNot(I.getOperand(1));
1251    if (V1->getType() != S1->getType()) {
1252      V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1253      V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1254    }
1255    Value *S1S2 = IRB.CreateAnd(S1, S2);
1256    Value *V1S2 = IRB.CreateAnd(V1, S2);
1257    Value *S1V2 = IRB.CreateAnd(S1, V2);
1258    setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1259    setOriginForNaryOp(I);
1260  }
1261
1262  /// \brief Default propagation of shadow and/or origin.
1263  ///
1264  /// This class implements the general case of shadow propagation, used in all
1265  /// cases where we don't know and/or don't care about what the operation
1266  /// actually does. It converts all input shadow values to a common type
1267  /// (extending or truncating as necessary), and bitwise OR's them.
1268  ///
1269  /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1270  /// fully initialized), and less prone to false positives.
1271  ///
1272  /// This class also implements the general case of origin propagation. For a
1273  /// Nary operation, result origin is set to the origin of an argument that is
1274  /// not entirely initialized. If there is more than one such arguments, the
1275  /// rightmost of them is picked. It does not matter which one is picked if all
1276  /// arguments are initialized.
1277  template <bool CombineShadow>
1278  class Combiner {
1279    Value *Shadow;
1280    Value *Origin;
1281    IRBuilder<> &IRB;
1282    MemorySanitizerVisitor *MSV;
1283
1284  public:
1285    Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
1286      Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {}
1287
1288    /// \brief Add a pair of shadow and origin values to the mix.
1289    Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1290      if (CombineShadow) {
1291        assert(OpShadow);
1292        if (!Shadow)
1293          Shadow = OpShadow;
1294        else {
1295          OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1296          Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1297        }
1298      }
1299
1300      if (MSV->MS.TrackOrigins) {
1301        assert(OpOrigin);
1302        if (!Origin) {
1303          Origin = OpOrigin;
1304        } else {
1305          Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
1306          // No point in adding something that might result in 0 origin value.
1307          if (!ConstOrigin || !ConstOrigin->isNullValue()) {
1308            Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1309            Value *Cond =
1310                IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
1311            Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1312          }
1313        }
1314      }
1315      return *this;
1316    }
1317
1318    /// \brief Add an application value to the mix.
1319    Combiner &Add(Value *V) {
1320      Value *OpShadow = MSV->getShadow(V);
1321      Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
1322      return Add(OpShadow, OpOrigin);
1323    }
1324
1325    /// \brief Set the current combined values as the given instruction's shadow
1326    /// and origin.
1327    void Done(Instruction *I) {
1328      if (CombineShadow) {
1329        assert(Shadow);
1330        Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1331        MSV->setShadow(I, Shadow);
1332      }
1333      if (MSV->MS.TrackOrigins) {
1334        assert(Origin);
1335        MSV->setOrigin(I, Origin);
1336      }
1337    }
1338  };
1339
1340  typedef Combiner<true> ShadowAndOriginCombiner;
1341  typedef Combiner<false> OriginCombiner;
1342
1343  /// \brief Propagate origin for arbitrary operation.
1344  void setOriginForNaryOp(Instruction &I) {
1345    if (!MS.TrackOrigins) return;
1346    IRBuilder<> IRB(&I);
1347    OriginCombiner OC(this, IRB);
1348    for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1349      OC.Add(OI->get());
1350    OC.Done(&I);
1351  }
1352
1353  size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
1354    assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1355           "Vector of pointers is not a valid shadow type");
1356    return Ty->isVectorTy() ?
1357      Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1358      Ty->getPrimitiveSizeInBits();
1359  }
1360
1361  /// \brief Cast between two shadow types, extending or truncating as
1362  /// necessary.
1363  Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
1364                          bool Signed = false) {
1365    Type *srcTy = V->getType();
1366    if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
1367      return IRB.CreateIntCast(V, dstTy, Signed);
1368    if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1369        dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
1370      return IRB.CreateIntCast(V, dstTy, Signed);
1371    size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1372    size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1373    Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1374    Value *V2 =
1375      IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
1376    return IRB.CreateBitCast(V2, dstTy);
1377    // TODO: handle struct types.
1378  }
1379
1380  /// \brief Cast an application value to the type of its own shadow.
1381  Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
1382    Type *ShadowTy = getShadowTy(V);
1383    if (V->getType() == ShadowTy)
1384      return V;
1385    if (V->getType()->isPtrOrPtrVectorTy())
1386      return IRB.CreatePtrToInt(V, ShadowTy);
1387    else
1388      return IRB.CreateBitCast(V, ShadowTy);
1389  }
1390
1391  /// \brief Propagate shadow for arbitrary operation.
1392  void handleShadowOr(Instruction &I) {
1393    IRBuilder<> IRB(&I);
1394    ShadowAndOriginCombiner SC(this, IRB);
1395    for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1396      SC.Add(OI->get());
1397    SC.Done(&I);
1398  }
1399
1400  // \brief Handle multiplication by constant.
1401  //
1402  // Handle a special case of multiplication by constant that may have one or
1403  // more zeros in the lower bits. This makes corresponding number of lower bits
1404  // of the result zero as well. We model it by shifting the other operand
1405  // shadow left by the required number of bits. Effectively, we transform
1406  // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
1407  // We use multiplication by 2**N instead of shift to cover the case of
1408  // multiplication by 0, which may occur in some elements of a vector operand.
1409  void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
1410                           Value *OtherArg) {
1411    Constant *ShadowMul;
1412    Type *Ty = ConstArg->getType();
1413    if (Ty->isVectorTy()) {
1414      unsigned NumElements = Ty->getVectorNumElements();
1415      Type *EltTy = Ty->getSequentialElementType();
1416      SmallVector<Constant *, 16> Elements;
1417      for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
1418        ConstantInt *Elt =
1419            dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx));
1420        APInt V = Elt->getValue();
1421        APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1422        Elements.push_back(ConstantInt::get(EltTy, V2));
1423      }
1424      ShadowMul = ConstantVector::get(Elements);
1425    } else {
1426      ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg);
1427      APInt V = Elt->getValue();
1428      APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1429      ShadowMul = ConstantInt::get(Elt->getType(), V2);
1430    }
1431
1432    IRBuilder<> IRB(&I);
1433    setShadow(&I,
1434              IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
1435    setOrigin(&I, getOrigin(OtherArg));
1436  }
1437
1438  void visitMul(BinaryOperator &I) {
1439    Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1440    Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1441    if (constOp0 && !constOp1)
1442      handleMulByConstant(I, constOp0, I.getOperand(1));
1443    else if (constOp1 && !constOp0)
1444      handleMulByConstant(I, constOp1, I.getOperand(0));
1445    else
1446      handleShadowOr(I);
1447  }
1448
1449  void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
1450  void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
1451  void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
1452  void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
1453  void visitSub(BinaryOperator &I) { handleShadowOr(I); }
1454  void visitXor(BinaryOperator &I) { handleShadowOr(I); }
1455
1456  void handleDiv(Instruction &I) {
1457    IRBuilder<> IRB(&I);
1458    // Strict on the second argument.
1459    insertShadowCheck(I.getOperand(1), &I);
1460    setShadow(&I, getShadow(&I, 0));
1461    setOrigin(&I, getOrigin(&I, 0));
1462  }
1463
1464  void visitUDiv(BinaryOperator &I) { handleDiv(I); }
1465  void visitSDiv(BinaryOperator &I) { handleDiv(I); }
1466  void visitFDiv(BinaryOperator &I) { handleDiv(I); }
1467  void visitURem(BinaryOperator &I) { handleDiv(I); }
1468  void visitSRem(BinaryOperator &I) { handleDiv(I); }
1469  void visitFRem(BinaryOperator &I) { handleDiv(I); }
1470
1471  /// \brief Instrument == and != comparisons.
1472  ///
1473  /// Sometimes the comparison result is known even if some of the bits of the
1474  /// arguments are not.
1475  void handleEqualityComparison(ICmpInst &I) {
1476    IRBuilder<> IRB(&I);
1477    Value *A = I.getOperand(0);
1478    Value *B = I.getOperand(1);
1479    Value *Sa = getShadow(A);
1480    Value *Sb = getShadow(B);
1481
1482    // Get rid of pointers and vectors of pointers.
1483    // For ints (and vectors of ints), types of A and Sa match,
1484    // and this is a no-op.
1485    A = IRB.CreatePointerCast(A, Sa->getType());
1486    B = IRB.CreatePointerCast(B, Sb->getType());
1487
1488    // A == B  <==>  (C = A^B) == 0
1489    // A != B  <==>  (C = A^B) != 0
1490    // Sc = Sa | Sb
1491    Value *C = IRB.CreateXor(A, B);
1492    Value *Sc = IRB.CreateOr(Sa, Sb);
1493    // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1494    // Result is defined if one of the following is true
1495    // * there is a defined 1 bit in C
1496    // * C is fully defined
1497    // Si = !(C & ~Sc) && Sc
1498    Value *Zero = Constant::getNullValue(Sc->getType());
1499    Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1500    Value *Si =
1501      IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1502                    IRB.CreateICmpEQ(
1503                      IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1504    Si->setName("_msprop_icmp");
1505    setShadow(&I, Si);
1506    setOriginForNaryOp(I);
1507  }
1508
1509  /// \brief Build the lowest possible value of V, taking into account V's
1510  ///        uninitialized bits.
1511  Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1512                                bool isSigned) {
1513    if (isSigned) {
1514      // Split shadow into sign bit and other bits.
1515      Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1516      Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1517      // Maximise the undefined shadow bit, minimize other undefined bits.
1518      return
1519        IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1520    } else {
1521      // Minimize undefined bits.
1522      return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1523    }
1524  }
1525
1526  /// \brief Build the highest possible value of V, taking into account V's
1527  ///        uninitialized bits.
1528  Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1529                                bool isSigned) {
1530    if (isSigned) {
1531      // Split shadow into sign bit and other bits.
1532      Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1533      Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1534      // Minimise the undefined shadow bit, maximise other undefined bits.
1535      return
1536        IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1537    } else {
1538      // Maximize undefined bits.
1539      return IRB.CreateOr(A, Sa);
1540    }
1541  }
1542
1543  /// \brief Instrument relational comparisons.
1544  ///
1545  /// This function does exact shadow propagation for all relational
1546  /// comparisons of integers, pointers and vectors of those.
1547  /// FIXME: output seems suboptimal when one of the operands is a constant
1548  void handleRelationalComparisonExact(ICmpInst &I) {
1549    IRBuilder<> IRB(&I);
1550    Value *A = I.getOperand(0);
1551    Value *B = I.getOperand(1);
1552    Value *Sa = getShadow(A);
1553    Value *Sb = getShadow(B);
1554
1555    // Get rid of pointers and vectors of pointers.
1556    // For ints (and vectors of ints), types of A and Sa match,
1557    // and this is a no-op.
1558    A = IRB.CreatePointerCast(A, Sa->getType());
1559    B = IRB.CreatePointerCast(B, Sb->getType());
1560
1561    // Let [a0, a1] be the interval of possible values of A, taking into account
1562    // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1563    // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
1564    bool IsSigned = I.isSigned();
1565    Value *S1 = IRB.CreateICmp(I.getPredicate(),
1566                               getLowestPossibleValue(IRB, A, Sa, IsSigned),
1567                               getHighestPossibleValue(IRB, B, Sb, IsSigned));
1568    Value *S2 = IRB.CreateICmp(I.getPredicate(),
1569                               getHighestPossibleValue(IRB, A, Sa, IsSigned),
1570                               getLowestPossibleValue(IRB, B, Sb, IsSigned));
1571    Value *Si = IRB.CreateXor(S1, S2);
1572    setShadow(&I, Si);
1573    setOriginForNaryOp(I);
1574  }
1575
1576  /// \brief Instrument signed relational comparisons.
1577  ///
1578  /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
1579  /// propagating the highest bit of the shadow. Everything else is delegated
1580  /// to handleShadowOr().
1581  void handleSignedRelationalComparison(ICmpInst &I) {
1582    Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1583    Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1584    Value* op = nullptr;
1585    CmpInst::Predicate pre = I.getPredicate();
1586    if (constOp0 && constOp0->isNullValue() &&
1587        (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1588      op = I.getOperand(1);
1589    } else if (constOp1 && constOp1->isNullValue() &&
1590               (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1591      op = I.getOperand(0);
1592    }
1593    if (op) {
1594      IRBuilder<> IRB(&I);
1595      Value* Shadow =
1596        IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1597      setShadow(&I, Shadow);
1598      setOrigin(&I, getOrigin(op));
1599    } else {
1600      handleShadowOr(I);
1601    }
1602  }
1603
1604  void visitICmpInst(ICmpInst &I) {
1605    if (!ClHandleICmp) {
1606      handleShadowOr(I);
1607      return;
1608    }
1609    if (I.isEquality()) {
1610      handleEqualityComparison(I);
1611      return;
1612    }
1613
1614    assert(I.isRelational());
1615    if (ClHandleICmpExact) {
1616      handleRelationalComparisonExact(I);
1617      return;
1618    }
1619    if (I.isSigned()) {
1620      handleSignedRelationalComparison(I);
1621      return;
1622    }
1623
1624    assert(I.isUnsigned());
1625    if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
1626      handleRelationalComparisonExact(I);
1627      return;
1628    }
1629
1630    handleShadowOr(I);
1631  }
1632
1633  void visitFCmpInst(FCmpInst &I) {
1634    handleShadowOr(I);
1635  }
1636
1637  void handleShift(BinaryOperator &I) {
1638    IRBuilder<> IRB(&I);
1639    // If any of the S2 bits are poisoned, the whole thing is poisoned.
1640    // Otherwise perform the same shift on S1.
1641    Value *S1 = getShadow(&I, 0);
1642    Value *S2 = getShadow(&I, 1);
1643    Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1644                                   S2->getType());
1645    Value *V2 = I.getOperand(1);
1646    Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1647    setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1648    setOriginForNaryOp(I);
1649  }
1650
1651  void visitShl(BinaryOperator &I) { handleShift(I); }
1652  void visitAShr(BinaryOperator &I) { handleShift(I); }
1653  void visitLShr(BinaryOperator &I) { handleShift(I); }
1654
1655  /// \brief Instrument llvm.memmove
1656  ///
1657  /// At this point we don't know if llvm.memmove will be inlined or not.
1658  /// If we don't instrument it and it gets inlined,
1659  /// our interceptor will not kick in and we will lose the memmove.
1660  /// If we instrument the call here, but it does not get inlined,
1661  /// we will memove the shadow twice: which is bad in case
1662  /// of overlapping regions. So, we simply lower the intrinsic to a call.
1663  ///
1664  /// Similar situation exists for memcpy and memset.
1665  void visitMemMoveInst(MemMoveInst &I) {
1666    IRBuilder<> IRB(&I);
1667    IRB.CreateCall3(
1668      MS.MemmoveFn,
1669      IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1670      IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1671      IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1672    I.eraseFromParent();
1673  }
1674
1675  // Similar to memmove: avoid copying shadow twice.
1676  // This is somewhat unfortunate as it may slowdown small constant memcpys.
1677  // FIXME: consider doing manual inline for small constant sizes and proper
1678  // alignment.
1679  void visitMemCpyInst(MemCpyInst &I) {
1680    IRBuilder<> IRB(&I);
1681    IRB.CreateCall3(
1682      MS.MemcpyFn,
1683      IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1684      IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1685      IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1686    I.eraseFromParent();
1687  }
1688
1689  // Same as memcpy.
1690  void visitMemSetInst(MemSetInst &I) {
1691    IRBuilder<> IRB(&I);
1692    IRB.CreateCall3(
1693      MS.MemsetFn,
1694      IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1695      IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1696      IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1697    I.eraseFromParent();
1698  }
1699
1700  void visitVAStartInst(VAStartInst &I) {
1701    VAHelper->visitVAStartInst(I);
1702  }
1703
1704  void visitVACopyInst(VACopyInst &I) {
1705    VAHelper->visitVACopyInst(I);
1706  }
1707
1708  enum IntrinsicKind {
1709    IK_DoesNotAccessMemory,
1710    IK_OnlyReadsMemory,
1711    IK_WritesMemory
1712  };
1713
1714  static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
1715    const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
1716    const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
1717    const int OnlyReadsMemory = IK_OnlyReadsMemory;
1718    const int OnlyAccessesArgumentPointees = IK_WritesMemory;
1719    const int UnknownModRefBehavior = IK_WritesMemory;
1720#define GET_INTRINSIC_MODREF_BEHAVIOR
1721#define ModRefBehavior IntrinsicKind
1722#include "llvm/IR/Intrinsics.gen"
1723#undef ModRefBehavior
1724#undef GET_INTRINSIC_MODREF_BEHAVIOR
1725  }
1726
1727  /// \brief Handle vector store-like intrinsics.
1728  ///
1729  /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1730  /// has 1 pointer argument and 1 vector argument, returns void.
1731  bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1732    IRBuilder<> IRB(&I);
1733    Value* Addr = I.getArgOperand(0);
1734    Value *Shadow = getShadow(&I, 1);
1735    Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1736
1737    // We don't know the pointer alignment (could be unaligned SSE store!).
1738    // Have to assume to worst case.
1739    IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1740
1741    if (ClCheckAccessAddress)
1742      insertShadowCheck(Addr, &I);
1743
1744    // FIXME: use ClStoreCleanOrigin
1745    // FIXME: factor out common code from materializeStores
1746    if (MS.TrackOrigins)
1747      IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
1748    return true;
1749  }
1750
1751  /// \brief Handle vector load-like intrinsics.
1752  ///
1753  /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1754  /// has 1 pointer argument, returns a vector.
1755  bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1756    IRBuilder<> IRB(&I);
1757    Value *Addr = I.getArgOperand(0);
1758
1759    Type *ShadowTy = getShadowTy(&I);
1760    if (PropagateShadow) {
1761      Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1762      // We don't know the pointer alignment (could be unaligned SSE load!).
1763      // Have to assume to worst case.
1764      setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1765    } else {
1766      setShadow(&I, getCleanShadow(&I));
1767    }
1768
1769    if (ClCheckAccessAddress)
1770      insertShadowCheck(Addr, &I);
1771
1772    if (MS.TrackOrigins) {
1773      if (PropagateShadow)
1774        setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
1775      else
1776        setOrigin(&I, getCleanOrigin());
1777    }
1778    return true;
1779  }
1780
1781  /// \brief Handle (SIMD arithmetic)-like intrinsics.
1782  ///
1783  /// Instrument intrinsics with any number of arguments of the same type,
1784  /// equal to the return type. The type should be simple (no aggregates or
1785  /// pointers; vectors are fine).
1786  /// Caller guarantees that this intrinsic does not access memory.
1787  bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1788    Type *RetTy = I.getType();
1789    if (!(RetTy->isIntOrIntVectorTy() ||
1790          RetTy->isFPOrFPVectorTy() ||
1791          RetTy->isX86_MMXTy()))
1792      return false;
1793
1794    unsigned NumArgOperands = I.getNumArgOperands();
1795
1796    for (unsigned i = 0; i < NumArgOperands; ++i) {
1797      Type *Ty = I.getArgOperand(i)->getType();
1798      if (Ty != RetTy)
1799        return false;
1800    }
1801
1802    IRBuilder<> IRB(&I);
1803    ShadowAndOriginCombiner SC(this, IRB);
1804    for (unsigned i = 0; i < NumArgOperands; ++i)
1805      SC.Add(I.getArgOperand(i));
1806    SC.Done(&I);
1807
1808    return true;
1809  }
1810
1811  /// \brief Heuristically instrument unknown intrinsics.
1812  ///
1813  /// The main purpose of this code is to do something reasonable with all
1814  /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
1815  /// We recognize several classes of intrinsics by their argument types and
1816  /// ModRefBehaviour and apply special intrumentation when we are reasonably
1817  /// sure that we know what the intrinsic does.
1818  ///
1819  /// We special-case intrinsics where this approach fails. See llvm.bswap
1820  /// handling as an example of that.
1821  bool handleUnknownIntrinsic(IntrinsicInst &I) {
1822    unsigned NumArgOperands = I.getNumArgOperands();
1823    if (NumArgOperands == 0)
1824      return false;
1825
1826    Intrinsic::ID iid = I.getIntrinsicID();
1827    IntrinsicKind IK = getIntrinsicKind(iid);
1828    bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
1829    bool WritesMemory = IK == IK_WritesMemory;
1830    assert(!(OnlyReadsMemory && WritesMemory));
1831
1832    if (NumArgOperands == 2 &&
1833        I.getArgOperand(0)->getType()->isPointerTy() &&
1834        I.getArgOperand(1)->getType()->isVectorTy() &&
1835        I.getType()->isVoidTy() &&
1836        WritesMemory) {
1837      // This looks like a vector store.
1838      return handleVectorStoreIntrinsic(I);
1839    }
1840
1841    if (NumArgOperands == 1 &&
1842        I.getArgOperand(0)->getType()->isPointerTy() &&
1843        I.getType()->isVectorTy() &&
1844        OnlyReadsMemory) {
1845      // This looks like a vector load.
1846      return handleVectorLoadIntrinsic(I);
1847    }
1848
1849    if (!OnlyReadsMemory && !WritesMemory)
1850      if (maybeHandleSimpleNomemIntrinsic(I))
1851        return true;
1852
1853    // FIXME: detect and handle SSE maskstore/maskload
1854    return false;
1855  }
1856
1857  void handleBswap(IntrinsicInst &I) {
1858    IRBuilder<> IRB(&I);
1859    Value *Op = I.getArgOperand(0);
1860    Type *OpType = Op->getType();
1861    Function *BswapFunc = Intrinsic::getDeclaration(
1862      F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
1863    setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1864    setOrigin(&I, getOrigin(Op));
1865  }
1866
1867  // \brief Instrument vector convert instrinsic.
1868  //
1869  // This function instruments intrinsics like cvtsi2ss:
1870  // %Out = int_xxx_cvtyyy(%ConvertOp)
1871  // or
1872  // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
1873  // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
1874  // number \p Out elements, and (if has 2 arguments) copies the rest of the
1875  // elements from \p CopyOp.
1876  // In most cases conversion involves floating-point value which may trigger a
1877  // hardware exception when not fully initialized. For this reason we require
1878  // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
1879  // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
1880  // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
1881  // return a fully initialized value.
1882  void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
1883    IRBuilder<> IRB(&I);
1884    Value *CopyOp, *ConvertOp;
1885
1886    switch (I.getNumArgOperands()) {
1887    case 2:
1888      CopyOp = I.getArgOperand(0);
1889      ConvertOp = I.getArgOperand(1);
1890      break;
1891    case 1:
1892      ConvertOp = I.getArgOperand(0);
1893      CopyOp = nullptr;
1894      break;
1895    default:
1896      llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
1897    }
1898
1899    // The first *NumUsedElements* elements of ConvertOp are converted to the
1900    // same number of output elements. The rest of the output is copied from
1901    // CopyOp, or (if not available) filled with zeroes.
1902    // Combine shadow for elements of ConvertOp that are used in this operation,
1903    // and insert a check.
1904    // FIXME: consider propagating shadow of ConvertOp, at least in the case of
1905    // int->any conversion.
1906    Value *ConvertShadow = getShadow(ConvertOp);
1907    Value *AggShadow = nullptr;
1908    if (ConvertOp->getType()->isVectorTy()) {
1909      AggShadow = IRB.CreateExtractElement(
1910          ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
1911      for (int i = 1; i < NumUsedElements; ++i) {
1912        Value *MoreShadow = IRB.CreateExtractElement(
1913            ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
1914        AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
1915      }
1916    } else {
1917      AggShadow = ConvertShadow;
1918    }
1919    assert(AggShadow->getType()->isIntegerTy());
1920    insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
1921
1922    // Build result shadow by zero-filling parts of CopyOp shadow that come from
1923    // ConvertOp.
1924    if (CopyOp) {
1925      assert(CopyOp->getType() == I.getType());
1926      assert(CopyOp->getType()->isVectorTy());
1927      Value *ResultShadow = getShadow(CopyOp);
1928      Type *EltTy = ResultShadow->getType()->getVectorElementType();
1929      for (int i = 0; i < NumUsedElements; ++i) {
1930        ResultShadow = IRB.CreateInsertElement(
1931            ResultShadow, ConstantInt::getNullValue(EltTy),
1932            ConstantInt::get(IRB.getInt32Ty(), i));
1933      }
1934      setShadow(&I, ResultShadow);
1935      setOrigin(&I, getOrigin(CopyOp));
1936    } else {
1937      setShadow(&I, getCleanShadow(&I));
1938    }
1939  }
1940
1941  // Given a scalar or vector, extract lower 64 bits (or less), and return all
1942  // zeroes if it is zero, and all ones otherwise.
1943  Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
1944    if (S->getType()->isVectorTy())
1945      S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
1946    assert(S->getType()->getPrimitiveSizeInBits() <= 64);
1947    Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
1948    return CreateShadowCast(IRB, S2, T, /* Signed */ true);
1949  }
1950
1951  Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
1952    Type *T = S->getType();
1953    assert(T->isVectorTy());
1954    Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
1955    return IRB.CreateSExt(S2, T);
1956  }
1957
1958  // \brief Instrument vector shift instrinsic.
1959  //
1960  // This function instruments intrinsics like int_x86_avx2_psll_w.
1961  // Intrinsic shifts %In by %ShiftSize bits.
1962  // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
1963  // size, and the rest is ignored. Behavior is defined even if shift size is
1964  // greater than register (or field) width.
1965  void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
1966    assert(I.getNumArgOperands() == 2);
1967    IRBuilder<> IRB(&I);
1968    // If any of the S2 bits are poisoned, the whole thing is poisoned.
1969    // Otherwise perform the same shift on S1.
1970    Value *S1 = getShadow(&I, 0);
1971    Value *S2 = getShadow(&I, 1);
1972    Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
1973                             : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
1974    Value *V1 = I.getOperand(0);
1975    Value *V2 = I.getOperand(1);
1976    Value *Shift = IRB.CreateCall2(I.getCalledValue(),
1977                                   IRB.CreateBitCast(S1, V1->getType()), V2);
1978    Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
1979    setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1980    setOriginForNaryOp(I);
1981  }
1982
1983  // \brief Get an X86_MMX-sized vector type.
1984  Type *getMMXVectorTy(unsigned EltSizeInBits) {
1985    const unsigned X86_MMXSizeInBits = 64;
1986    return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
1987                           X86_MMXSizeInBits / EltSizeInBits);
1988  }
1989
1990  // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack
1991  // intrinsic.
1992  Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
1993    switch (id) {
1994      case llvm::Intrinsic::x86_sse2_packsswb_128:
1995      case llvm::Intrinsic::x86_sse2_packuswb_128:
1996        return llvm::Intrinsic::x86_sse2_packsswb_128;
1997
1998      case llvm::Intrinsic::x86_sse2_packssdw_128:
1999      case llvm::Intrinsic::x86_sse41_packusdw:
2000        return llvm::Intrinsic::x86_sse2_packssdw_128;
2001
2002      case llvm::Intrinsic::x86_avx2_packsswb:
2003      case llvm::Intrinsic::x86_avx2_packuswb:
2004        return llvm::Intrinsic::x86_avx2_packsswb;
2005
2006      case llvm::Intrinsic::x86_avx2_packssdw:
2007      case llvm::Intrinsic::x86_avx2_packusdw:
2008        return llvm::Intrinsic::x86_avx2_packssdw;
2009
2010      case llvm::Intrinsic::x86_mmx_packsswb:
2011      case llvm::Intrinsic::x86_mmx_packuswb:
2012        return llvm::Intrinsic::x86_mmx_packsswb;
2013
2014      case llvm::Intrinsic::x86_mmx_packssdw:
2015        return llvm::Intrinsic::x86_mmx_packssdw;
2016      default:
2017        llvm_unreachable("unexpected intrinsic id");
2018    }
2019  }
2020
2021  // \brief Instrument vector pack instrinsic.
2022  //
2023  // This function instruments intrinsics like x86_mmx_packsswb, that
2024  // packs elements of 2 input vectors into half as many bits with saturation.
2025  // Shadow is propagated with the signed variant of the same intrinsic applied
2026  // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
2027  // EltSizeInBits is used only for x86mmx arguments.
2028  void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
2029    assert(I.getNumArgOperands() == 2);
2030    bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2031    IRBuilder<> IRB(&I);
2032    Value *S1 = getShadow(&I, 0);
2033    Value *S2 = getShadow(&I, 1);
2034    assert(isX86_MMX || S1->getType()->isVectorTy());
2035
2036    // SExt and ICmpNE below must apply to individual elements of input vectors.
2037    // In case of x86mmx arguments, cast them to appropriate vector types and
2038    // back.
2039    Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
2040    if (isX86_MMX) {
2041      S1 = IRB.CreateBitCast(S1, T);
2042      S2 = IRB.CreateBitCast(S2, T);
2043    }
2044    Value *S1_ext = IRB.CreateSExt(
2045        IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T);
2046    Value *S2_ext = IRB.CreateSExt(
2047        IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T);
2048    if (isX86_MMX) {
2049      Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
2050      S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
2051      S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
2052    }
2053
2054    Function *ShadowFn = Intrinsic::getDeclaration(
2055        F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
2056
2057    Value *S = IRB.CreateCall2(ShadowFn, S1_ext, S2_ext, "_msprop_vector_pack");
2058    if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
2059    setShadow(&I, S);
2060    setOriginForNaryOp(I);
2061  }
2062
2063  // \brief Instrument sum-of-absolute-differencies intrinsic.
2064  void handleVectorSadIntrinsic(IntrinsicInst &I) {
2065    const unsigned SignificantBitsPerResultElement = 16;
2066    bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2067    Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
2068    unsigned ZeroBitsPerResultElement =
2069        ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
2070
2071    IRBuilder<> IRB(&I);
2072    Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2073    S = IRB.CreateBitCast(S, ResTy);
2074    S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2075                       ResTy);
2076    S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
2077    S = IRB.CreateBitCast(S, getShadowTy(&I));
2078    setShadow(&I, S);
2079    setOriginForNaryOp(I);
2080  }
2081
2082  // \brief Instrument multiply-add intrinsic.
2083  void handleVectorPmaddIntrinsic(IntrinsicInst &I,
2084                                  unsigned EltSizeInBits = 0) {
2085    bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2086    Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
2087    IRBuilder<> IRB(&I);
2088    Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2089    S = IRB.CreateBitCast(S, ResTy);
2090    S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2091                       ResTy);
2092    S = IRB.CreateBitCast(S, getShadowTy(&I));
2093    setShadow(&I, S);
2094    setOriginForNaryOp(I);
2095  }
2096
2097  void visitIntrinsicInst(IntrinsicInst &I) {
2098    switch (I.getIntrinsicID()) {
2099    case llvm::Intrinsic::bswap:
2100      handleBswap(I);
2101      break;
2102    case llvm::Intrinsic::x86_avx512_cvtsd2usi64:
2103    case llvm::Intrinsic::x86_avx512_cvtsd2usi:
2104    case llvm::Intrinsic::x86_avx512_cvtss2usi64:
2105    case llvm::Intrinsic::x86_avx512_cvtss2usi:
2106    case llvm::Intrinsic::x86_avx512_cvttss2usi64:
2107    case llvm::Intrinsic::x86_avx512_cvttss2usi:
2108    case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
2109    case llvm::Intrinsic::x86_avx512_cvttsd2usi:
2110    case llvm::Intrinsic::x86_avx512_cvtusi2sd:
2111    case llvm::Intrinsic::x86_avx512_cvtusi2ss:
2112    case llvm::Intrinsic::x86_avx512_cvtusi642sd:
2113    case llvm::Intrinsic::x86_avx512_cvtusi642ss:
2114    case llvm::Intrinsic::x86_sse2_cvtsd2si64:
2115    case llvm::Intrinsic::x86_sse2_cvtsd2si:
2116    case llvm::Intrinsic::x86_sse2_cvtsd2ss:
2117    case llvm::Intrinsic::x86_sse2_cvtsi2sd:
2118    case llvm::Intrinsic::x86_sse2_cvtsi642sd:
2119    case llvm::Intrinsic::x86_sse2_cvtss2sd:
2120    case llvm::Intrinsic::x86_sse2_cvttsd2si64:
2121    case llvm::Intrinsic::x86_sse2_cvttsd2si:
2122    case llvm::Intrinsic::x86_sse_cvtsi2ss:
2123    case llvm::Intrinsic::x86_sse_cvtsi642ss:
2124    case llvm::Intrinsic::x86_sse_cvtss2si64:
2125    case llvm::Intrinsic::x86_sse_cvtss2si:
2126    case llvm::Intrinsic::x86_sse_cvttss2si64:
2127    case llvm::Intrinsic::x86_sse_cvttss2si:
2128      handleVectorConvertIntrinsic(I, 1);
2129      break;
2130    case llvm::Intrinsic::x86_sse2_cvtdq2pd:
2131    case llvm::Intrinsic::x86_sse2_cvtps2pd:
2132    case llvm::Intrinsic::x86_sse_cvtps2pi:
2133    case llvm::Intrinsic::x86_sse_cvttps2pi:
2134      handleVectorConvertIntrinsic(I, 2);
2135      break;
2136    case llvm::Intrinsic::x86_avx512_psll_dq:
2137    case llvm::Intrinsic::x86_avx512_psrl_dq:
2138    case llvm::Intrinsic::x86_avx2_psll_w:
2139    case llvm::Intrinsic::x86_avx2_psll_d:
2140    case llvm::Intrinsic::x86_avx2_psll_q:
2141    case llvm::Intrinsic::x86_avx2_pslli_w:
2142    case llvm::Intrinsic::x86_avx2_pslli_d:
2143    case llvm::Intrinsic::x86_avx2_pslli_q:
2144    case llvm::Intrinsic::x86_avx2_psll_dq:
2145    case llvm::Intrinsic::x86_avx2_psrl_w:
2146    case llvm::Intrinsic::x86_avx2_psrl_d:
2147    case llvm::Intrinsic::x86_avx2_psrl_q:
2148    case llvm::Intrinsic::x86_avx2_psra_w:
2149    case llvm::Intrinsic::x86_avx2_psra_d:
2150    case llvm::Intrinsic::x86_avx2_psrli_w:
2151    case llvm::Intrinsic::x86_avx2_psrli_d:
2152    case llvm::Intrinsic::x86_avx2_psrli_q:
2153    case llvm::Intrinsic::x86_avx2_psrai_w:
2154    case llvm::Intrinsic::x86_avx2_psrai_d:
2155    case llvm::Intrinsic::x86_avx2_psrl_dq:
2156    case llvm::Intrinsic::x86_sse2_psll_w:
2157    case llvm::Intrinsic::x86_sse2_psll_d:
2158    case llvm::Intrinsic::x86_sse2_psll_q:
2159    case llvm::Intrinsic::x86_sse2_pslli_w:
2160    case llvm::Intrinsic::x86_sse2_pslli_d:
2161    case llvm::Intrinsic::x86_sse2_pslli_q:
2162    case llvm::Intrinsic::x86_sse2_psll_dq:
2163    case llvm::Intrinsic::x86_sse2_psrl_w:
2164    case llvm::Intrinsic::x86_sse2_psrl_d:
2165    case llvm::Intrinsic::x86_sse2_psrl_q:
2166    case llvm::Intrinsic::x86_sse2_psra_w:
2167    case llvm::Intrinsic::x86_sse2_psra_d:
2168    case llvm::Intrinsic::x86_sse2_psrli_w:
2169    case llvm::Intrinsic::x86_sse2_psrli_d:
2170    case llvm::Intrinsic::x86_sse2_psrli_q:
2171    case llvm::Intrinsic::x86_sse2_psrai_w:
2172    case llvm::Intrinsic::x86_sse2_psrai_d:
2173    case llvm::Intrinsic::x86_sse2_psrl_dq:
2174    case llvm::Intrinsic::x86_mmx_psll_w:
2175    case llvm::Intrinsic::x86_mmx_psll_d:
2176    case llvm::Intrinsic::x86_mmx_psll_q:
2177    case llvm::Intrinsic::x86_mmx_pslli_w:
2178    case llvm::Intrinsic::x86_mmx_pslli_d:
2179    case llvm::Intrinsic::x86_mmx_pslli_q:
2180    case llvm::Intrinsic::x86_mmx_psrl_w:
2181    case llvm::Intrinsic::x86_mmx_psrl_d:
2182    case llvm::Intrinsic::x86_mmx_psrl_q:
2183    case llvm::Intrinsic::x86_mmx_psra_w:
2184    case llvm::Intrinsic::x86_mmx_psra_d:
2185    case llvm::Intrinsic::x86_mmx_psrli_w:
2186    case llvm::Intrinsic::x86_mmx_psrli_d:
2187    case llvm::Intrinsic::x86_mmx_psrli_q:
2188    case llvm::Intrinsic::x86_mmx_psrai_w:
2189    case llvm::Intrinsic::x86_mmx_psrai_d:
2190      handleVectorShiftIntrinsic(I, /* Variable */ false);
2191      break;
2192    case llvm::Intrinsic::x86_avx2_psllv_d:
2193    case llvm::Intrinsic::x86_avx2_psllv_d_256:
2194    case llvm::Intrinsic::x86_avx2_psllv_q:
2195    case llvm::Intrinsic::x86_avx2_psllv_q_256:
2196    case llvm::Intrinsic::x86_avx2_psrlv_d:
2197    case llvm::Intrinsic::x86_avx2_psrlv_d_256:
2198    case llvm::Intrinsic::x86_avx2_psrlv_q:
2199    case llvm::Intrinsic::x86_avx2_psrlv_q_256:
2200    case llvm::Intrinsic::x86_avx2_psrav_d:
2201    case llvm::Intrinsic::x86_avx2_psrav_d_256:
2202      handleVectorShiftIntrinsic(I, /* Variable */ true);
2203      break;
2204
2205    // Byte shifts are not implemented.
2206    // case llvm::Intrinsic::x86_avx512_psll_dq_bs:
2207    // case llvm::Intrinsic::x86_avx512_psrl_dq_bs:
2208    // case llvm::Intrinsic::x86_avx2_psll_dq_bs:
2209    // case llvm::Intrinsic::x86_avx2_psrl_dq_bs:
2210    // case llvm::Intrinsic::x86_sse2_psll_dq_bs:
2211    // case llvm::Intrinsic::x86_sse2_psrl_dq_bs:
2212
2213    case llvm::Intrinsic::x86_sse2_packsswb_128:
2214    case llvm::Intrinsic::x86_sse2_packssdw_128:
2215    case llvm::Intrinsic::x86_sse2_packuswb_128:
2216    case llvm::Intrinsic::x86_sse41_packusdw:
2217    case llvm::Intrinsic::x86_avx2_packsswb:
2218    case llvm::Intrinsic::x86_avx2_packssdw:
2219    case llvm::Intrinsic::x86_avx2_packuswb:
2220    case llvm::Intrinsic::x86_avx2_packusdw:
2221      handleVectorPackIntrinsic(I);
2222      break;
2223
2224    case llvm::Intrinsic::x86_mmx_packsswb:
2225    case llvm::Intrinsic::x86_mmx_packuswb:
2226      handleVectorPackIntrinsic(I, 16);
2227      break;
2228
2229    case llvm::Intrinsic::x86_mmx_packssdw:
2230      handleVectorPackIntrinsic(I, 32);
2231      break;
2232
2233    case llvm::Intrinsic::x86_mmx_psad_bw:
2234    case llvm::Intrinsic::x86_sse2_psad_bw:
2235    case llvm::Intrinsic::x86_avx2_psad_bw:
2236      handleVectorSadIntrinsic(I);
2237      break;
2238
2239    case llvm::Intrinsic::x86_sse2_pmadd_wd:
2240    case llvm::Intrinsic::x86_avx2_pmadd_wd:
2241    case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128:
2242    case llvm::Intrinsic::x86_avx2_pmadd_ub_sw:
2243      handleVectorPmaddIntrinsic(I);
2244      break;
2245
2246    case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw:
2247      handleVectorPmaddIntrinsic(I, 8);
2248      break;
2249
2250    case llvm::Intrinsic::x86_mmx_pmadd_wd:
2251      handleVectorPmaddIntrinsic(I, 16);
2252      break;
2253
2254    default:
2255      if (!handleUnknownIntrinsic(I))
2256        visitInstruction(I);
2257      break;
2258    }
2259  }
2260
2261  void visitCallSite(CallSite CS) {
2262    Instruction &I = *CS.getInstruction();
2263    assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
2264    if (CS.isCall()) {
2265      CallInst *Call = cast<CallInst>(&I);
2266
2267      // For inline asm, do the usual thing: check argument shadow and mark all
2268      // outputs as clean. Note that any side effects of the inline asm that are
2269      // not immediately visible in its constraints are not handled.
2270      if (Call->isInlineAsm()) {
2271        visitInstruction(I);
2272        return;
2273      }
2274
2275      assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
2276
2277      // We are going to insert code that relies on the fact that the callee
2278      // will become a non-readonly function after it is instrumented by us. To
2279      // prevent this code from being optimized out, mark that function
2280      // non-readonly in advance.
2281      if (Function *Func = Call->getCalledFunction()) {
2282        // Clear out readonly/readnone attributes.
2283        AttrBuilder B;
2284        B.addAttribute(Attribute::ReadOnly)
2285          .addAttribute(Attribute::ReadNone);
2286        Func->removeAttributes(AttributeSet::FunctionIndex,
2287                               AttributeSet::get(Func->getContext(),
2288                                                 AttributeSet::FunctionIndex,
2289                                                 B));
2290      }
2291    }
2292    IRBuilder<> IRB(&I);
2293
2294    if (MS.WrapIndirectCalls && !CS.getCalledFunction())
2295      IndirectCallList.push_back(CS);
2296
2297    unsigned ArgOffset = 0;
2298    DEBUG(dbgs() << "  CallSite: " << I << "\n");
2299    for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2300         ArgIt != End; ++ArgIt) {
2301      Value *A = *ArgIt;
2302      unsigned i = ArgIt - CS.arg_begin();
2303      if (!A->getType()->isSized()) {
2304        DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
2305        continue;
2306      }
2307      unsigned Size = 0;
2308      Value *Store = nullptr;
2309      // Compute the Shadow for arg even if it is ByVal, because
2310      // in that case getShadow() will copy the actual arg shadow to
2311      // __msan_param_tls.
2312      Value *ArgShadow = getShadow(A);
2313      Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
2314      DEBUG(dbgs() << "  Arg#" << i << ": " << *A <<
2315            " Shadow: " << *ArgShadow << "\n");
2316      if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
2317        assert(A->getType()->isPointerTy() &&
2318               "ByVal argument is not a pointer!");
2319        Size = MS.DL->getTypeAllocSize(A->getType()->getPointerElementType());
2320        unsigned Alignment = CS.getParamAlignment(i + 1);
2321        Store = IRB.CreateMemCpy(ArgShadowBase,
2322                                 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
2323                                 Size, Alignment);
2324      } else {
2325        Size = MS.DL->getTypeAllocSize(A->getType());
2326        Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
2327                                       kShadowTLSAlignment);
2328      }
2329      if (MS.TrackOrigins)
2330        IRB.CreateStore(getOrigin(A),
2331                        getOriginPtrForArgument(A, IRB, ArgOffset));
2332      (void)Store;
2333      assert(Size != 0 && Store != nullptr);
2334      DEBUG(dbgs() << "  Param:" << *Store << "\n");
2335      ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
2336    }
2337    DEBUG(dbgs() << "  done with call args\n");
2338
2339    FunctionType *FT =
2340      cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
2341    if (FT->isVarArg()) {
2342      VAHelper->visitCallSite(CS, IRB);
2343    }
2344
2345    // Now, get the shadow for the RetVal.
2346    if (!I.getType()->isSized()) return;
2347    IRBuilder<> IRBBefore(&I);
2348    // Until we have full dynamic coverage, make sure the retval shadow is 0.
2349    Value *Base = getShadowPtrForRetval(&I, IRBBefore);
2350    IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
2351    Instruction *NextInsn = nullptr;
2352    if (CS.isCall()) {
2353      NextInsn = I.getNextNode();
2354    } else {
2355      BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
2356      if (!NormalDest->getSinglePredecessor()) {
2357        // FIXME: this case is tricky, so we are just conservative here.
2358        // Perhaps we need to split the edge between this BB and NormalDest,
2359        // but a naive attempt to use SplitEdge leads to a crash.
2360        setShadow(&I, getCleanShadow(&I));
2361        setOrigin(&I, getCleanOrigin());
2362        return;
2363      }
2364      NextInsn = NormalDest->getFirstInsertionPt();
2365      assert(NextInsn &&
2366             "Could not find insertion point for retval shadow load");
2367    }
2368    IRBuilder<> IRBAfter(NextInsn);
2369    Value *RetvalShadow =
2370      IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
2371                                 kShadowTLSAlignment, "_msret");
2372    setShadow(&I, RetvalShadow);
2373    if (MS.TrackOrigins)
2374      setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
2375  }
2376
2377  void visitReturnInst(ReturnInst &I) {
2378    IRBuilder<> IRB(&I);
2379    Value *RetVal = I.getReturnValue();
2380    if (!RetVal) return;
2381    Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
2382    if (CheckReturnValue) {
2383      insertShadowCheck(RetVal, &I);
2384      Value *Shadow = getCleanShadow(RetVal);
2385      IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2386    } else {
2387      Value *Shadow = getShadow(RetVal);
2388      IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2389      // FIXME: make it conditional if ClStoreCleanOrigin==0
2390      if (MS.TrackOrigins)
2391        IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
2392    }
2393  }
2394
2395  void visitPHINode(PHINode &I) {
2396    IRBuilder<> IRB(&I);
2397    if (!PropagateShadow) {
2398      setShadow(&I, getCleanShadow(&I));
2399      return;
2400    }
2401
2402    ShadowPHINodes.push_back(&I);
2403    setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
2404                                "_msphi_s"));
2405    if (MS.TrackOrigins)
2406      setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
2407                                  "_msphi_o"));
2408  }
2409
2410  void visitAllocaInst(AllocaInst &I) {
2411    setShadow(&I, getCleanShadow(&I));
2412    IRBuilder<> IRB(I.getNextNode());
2413    uint64_t Size = MS.DL->getTypeAllocSize(I.getAllocatedType());
2414    if (PoisonStack && ClPoisonStackWithCall) {
2415      IRB.CreateCall2(MS.MsanPoisonStackFn,
2416                      IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2417                      ConstantInt::get(MS.IntptrTy, Size));
2418    } else {
2419      Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
2420      Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
2421      IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
2422    }
2423
2424    if (PoisonStack && MS.TrackOrigins) {
2425      setOrigin(&I, getCleanOrigin());
2426      SmallString<2048> StackDescriptionStorage;
2427      raw_svector_ostream StackDescription(StackDescriptionStorage);
2428      // We create a string with a description of the stack allocation and
2429      // pass it into __msan_set_alloca_origin.
2430      // It will be printed by the run-time if stack-originated UMR is found.
2431      // The first 4 bytes of the string are set to '----' and will be replaced
2432      // by __msan_va_arg_overflow_size_tls at the first call.
2433      StackDescription << "----" << I.getName() << "@" << F.getName();
2434      Value *Descr =
2435          createPrivateNonConstGlobalForString(*F.getParent(),
2436                                               StackDescription.str());
2437
2438      IRB.CreateCall4(MS.MsanSetAllocaOrigin4Fn,
2439                      IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2440                      ConstantInt::get(MS.IntptrTy, Size),
2441                      IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
2442                      IRB.CreatePointerCast(&F, MS.IntptrTy));
2443    }
2444  }
2445
2446  void visitSelectInst(SelectInst& I) {
2447    IRBuilder<> IRB(&I);
2448    // a = select b, c, d
2449    Value *B = I.getCondition();
2450    Value *C = I.getTrueValue();
2451    Value *D = I.getFalseValue();
2452    Value *Sb = getShadow(B);
2453    Value *Sc = getShadow(C);
2454    Value *Sd = getShadow(D);
2455
2456    // Result shadow if condition shadow is 0.
2457    Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
2458    Value *Sa1;
2459    if (I.getType()->isAggregateType()) {
2460      // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
2461      // an extra "select". This results in much more compact IR.
2462      // Sa = select Sb, poisoned, (select b, Sc, Sd)
2463      Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
2464    } else {
2465      // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
2466      // If Sb (condition is poisoned), look for bits in c and d that are equal
2467      // and both unpoisoned.
2468      // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
2469
2470      // Cast arguments to shadow-compatible type.
2471      C = CreateAppToShadowCast(IRB, C);
2472      D = CreateAppToShadowCast(IRB, D);
2473
2474      // Result shadow if condition shadow is 1.
2475      Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd));
2476    }
2477    Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
2478    setShadow(&I, Sa);
2479    if (MS.TrackOrigins) {
2480      // Origins are always i32, so any vector conditions must be flattened.
2481      // FIXME: consider tracking vector origins for app vectors?
2482      if (B->getType()->isVectorTy()) {
2483        Type *FlatTy = getShadowTyNoVec(B->getType());
2484        B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
2485                                ConstantInt::getNullValue(FlatTy));
2486        Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
2487                                      ConstantInt::getNullValue(FlatTy));
2488      }
2489      // a = select b, c, d
2490      // Oa = Sb ? Ob : (b ? Oc : Od)
2491      setOrigin(&I, IRB.CreateSelect(
2492                        Sb, getOrigin(I.getCondition()),
2493                        IRB.CreateSelect(B, getOrigin(C), getOrigin(D))));
2494    }
2495  }
2496
2497  void visitLandingPadInst(LandingPadInst &I) {
2498    // Do nothing.
2499    // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
2500    setShadow(&I, getCleanShadow(&I));
2501    setOrigin(&I, getCleanOrigin());
2502  }
2503
2504  void visitGetElementPtrInst(GetElementPtrInst &I) {
2505    handleShadowOr(I);
2506  }
2507
2508  void visitExtractValueInst(ExtractValueInst &I) {
2509    IRBuilder<> IRB(&I);
2510    Value *Agg = I.getAggregateOperand();
2511    DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
2512    Value *AggShadow = getShadow(Agg);
2513    DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
2514    Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2515    DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
2516    setShadow(&I, ResShadow);
2517    setOriginForNaryOp(I);
2518  }
2519
2520  void visitInsertValueInst(InsertValueInst &I) {
2521    IRBuilder<> IRB(&I);
2522    DEBUG(dbgs() << "InsertValue:  " << I << "\n");
2523    Value *AggShadow = getShadow(I.getAggregateOperand());
2524    Value *InsShadow = getShadow(I.getInsertedValueOperand());
2525    DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
2526    DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
2527    Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2528    DEBUG(dbgs() << "   Res:        " << *Res << "\n");
2529    setShadow(&I, Res);
2530    setOriginForNaryOp(I);
2531  }
2532
2533  void dumpInst(Instruction &I) {
2534    if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2535      errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
2536    } else {
2537      errs() << "ZZZ " << I.getOpcodeName() << "\n";
2538    }
2539    errs() << "QQQ " << I << "\n";
2540  }
2541
2542  void visitResumeInst(ResumeInst &I) {
2543    DEBUG(dbgs() << "Resume: " << I << "\n");
2544    // Nothing to do here.
2545  }
2546
2547  void visitInstruction(Instruction &I) {
2548    // Everything else: stop propagating and check for poisoned shadow.
2549    if (ClDumpStrictInstructions)
2550      dumpInst(I);
2551    DEBUG(dbgs() << "DEFAULT: " << I << "\n");
2552    for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
2553      insertShadowCheck(I.getOperand(i), &I);
2554    setShadow(&I, getCleanShadow(&I));
2555    setOrigin(&I, getCleanOrigin());
2556  }
2557};
2558
2559/// \brief AMD64-specific implementation of VarArgHelper.
2560struct VarArgAMD64Helper : public VarArgHelper {
2561  // An unfortunate workaround for asymmetric lowering of va_arg stuff.
2562  // See a comment in visitCallSite for more details.
2563  static const unsigned AMD64GpEndOffset = 48;  // AMD64 ABI Draft 0.99.6 p3.5.7
2564  static const unsigned AMD64FpEndOffset = 176;
2565
2566  Function &F;
2567  MemorySanitizer &MS;
2568  MemorySanitizerVisitor &MSV;
2569  Value *VAArgTLSCopy;
2570  Value *VAArgOverflowSize;
2571
2572  SmallVector<CallInst*, 16> VAStartInstrumentationList;
2573
2574  VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
2575                    MemorySanitizerVisitor &MSV)
2576    : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
2577      VAArgOverflowSize(nullptr) {}
2578
2579  enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
2580
2581  ArgKind classifyArgument(Value* arg) {
2582    // A very rough approximation of X86_64 argument classification rules.
2583    Type *T = arg->getType();
2584    if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
2585      return AK_FloatingPoint;
2586    if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
2587      return AK_GeneralPurpose;
2588    if (T->isPointerTy())
2589      return AK_GeneralPurpose;
2590    return AK_Memory;
2591  }
2592
2593  // For VarArg functions, store the argument shadow in an ABI-specific format
2594  // that corresponds to va_list layout.
2595  // We do this because Clang lowers va_arg in the frontend, and this pass
2596  // only sees the low level code that deals with va_list internals.
2597  // A much easier alternative (provided that Clang emits va_arg instructions)
2598  // would have been to associate each live instance of va_list with a copy of
2599  // MSanParamTLS, and extract shadow on va_arg() call in the argument list
2600  // order.
2601  void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
2602    unsigned GpOffset = 0;
2603    unsigned FpOffset = AMD64GpEndOffset;
2604    unsigned OverflowOffset = AMD64FpEndOffset;
2605    for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2606         ArgIt != End; ++ArgIt) {
2607      Value *A = *ArgIt;
2608      unsigned ArgNo = CS.getArgumentNo(ArgIt);
2609      bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
2610      if (IsByVal) {
2611        // ByVal arguments always go to the overflow area.
2612        assert(A->getType()->isPointerTy());
2613        Type *RealTy = A->getType()->getPointerElementType();
2614        uint64_t ArgSize = MS.DL->getTypeAllocSize(RealTy);
2615        Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
2616        OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
2617        IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
2618                         ArgSize, kShadowTLSAlignment);
2619      } else {
2620        ArgKind AK = classifyArgument(A);
2621        if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
2622          AK = AK_Memory;
2623        if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
2624          AK = AK_Memory;
2625        Value *Base;
2626        switch (AK) {
2627          case AK_GeneralPurpose:
2628            Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
2629            GpOffset += 8;
2630            break;
2631          case AK_FloatingPoint:
2632            Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
2633            FpOffset += 16;
2634            break;
2635          case AK_Memory:
2636            uint64_t ArgSize = MS.DL->getTypeAllocSize(A->getType());
2637            Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
2638            OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
2639        }
2640        IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
2641      }
2642    }
2643    Constant *OverflowSize =
2644      ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
2645    IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
2646  }
2647
2648  /// \brief Compute the shadow address for a given va_arg.
2649  Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
2650                                   int ArgOffset) {
2651    Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
2652    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
2653    return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
2654                              "_msarg");
2655  }
2656
2657  void visitVAStartInst(VAStartInst &I) override {
2658    IRBuilder<> IRB(&I);
2659    VAStartInstrumentationList.push_back(&I);
2660    Value *VAListTag = I.getArgOperand(0);
2661    Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2662
2663    // Unpoison the whole __va_list_tag.
2664    // FIXME: magic ABI constants.
2665    IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
2666                     /* size */24, /* alignment */8, false);
2667  }
2668
2669  void visitVACopyInst(VACopyInst &I) override {
2670    IRBuilder<> IRB(&I);
2671    Value *VAListTag = I.getArgOperand(0);
2672    Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2673
2674    // Unpoison the whole __va_list_tag.
2675    // FIXME: magic ABI constants.
2676    IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
2677                     /* size */24, /* alignment */8, false);
2678  }
2679
2680  void finalizeInstrumentation() override {
2681    assert(!VAArgOverflowSize && !VAArgTLSCopy &&
2682           "finalizeInstrumentation called twice");
2683    if (!VAStartInstrumentationList.empty()) {
2684      // If there is a va_start in this function, make a backup copy of
2685      // va_arg_tls somewhere in the function entry block.
2686      IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
2687      VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
2688      Value *CopySize =
2689        IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
2690                      VAArgOverflowSize);
2691      VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
2692      IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
2693    }
2694
2695    // Instrument va_start.
2696    // Copy va_list shadow from the backup copy of the TLS contents.
2697    for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
2698      CallInst *OrigInst = VAStartInstrumentationList[i];
2699      IRBuilder<> IRB(OrigInst->getNextNode());
2700      Value *VAListTag = OrigInst->getArgOperand(0);
2701
2702      Value *RegSaveAreaPtrPtr =
2703        IRB.CreateIntToPtr(
2704          IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2705                        ConstantInt::get(MS.IntptrTy, 16)),
2706          Type::getInt64PtrTy(*MS.C));
2707      Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
2708      Value *RegSaveAreaShadowPtr =
2709        MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
2710      IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
2711                       AMD64FpEndOffset, 16);
2712
2713      Value *OverflowArgAreaPtrPtr =
2714        IRB.CreateIntToPtr(
2715          IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2716                        ConstantInt::get(MS.IntptrTy, 8)),
2717          Type::getInt64PtrTy(*MS.C));
2718      Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
2719      Value *OverflowArgAreaShadowPtr =
2720        MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
2721      Value *SrcPtr = IRB.CreateConstGEP1_32(VAArgTLSCopy, AMD64FpEndOffset);
2722      IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
2723    }
2724  }
2725};
2726
2727/// \brief A no-op implementation of VarArgHelper.
2728struct VarArgNoOpHelper : public VarArgHelper {
2729  VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
2730                   MemorySanitizerVisitor &MSV) {}
2731
2732  void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
2733
2734  void visitVAStartInst(VAStartInst &I) override {}
2735
2736  void visitVACopyInst(VACopyInst &I) override {}
2737
2738  void finalizeInstrumentation() override {}
2739};
2740
2741VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
2742                                 MemorySanitizerVisitor &Visitor) {
2743  // VarArg handling is only implemented on AMD64. False positives are possible
2744  // on other platforms.
2745  llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
2746  if (TargetTriple.getArch() == llvm::Triple::x86_64)
2747    return new VarArgAMD64Helper(Func, Msan, Visitor);
2748  else
2749    return new VarArgNoOpHelper(Func, Msan, Visitor);
2750}
2751
2752}  // namespace
2753
2754bool MemorySanitizer::runOnFunction(Function &F) {
2755  MemorySanitizerVisitor Visitor(F, *this);
2756
2757  // Clear out readonly/readnone attributes.
2758  AttrBuilder B;
2759  B.addAttribute(Attribute::ReadOnly)
2760    .addAttribute(Attribute::ReadNone);
2761  F.removeAttributes(AttributeSet::FunctionIndex,
2762                     AttributeSet::get(F.getContext(),
2763                                       AttributeSet::FunctionIndex, B));
2764
2765  return Visitor.runOnFunction();
2766}
2767