1//===- ObjCARC.h - ObjC ARC Optimization --------------*- C++ -*-----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file defines common definitions/declarations used by the ObjC ARC
11/// Optimizer. ARC stands for Automatic Reference Counting and is a system for
12/// managing reference counts for objects in Objective C.
13///
14/// WARNING: This file knows about certain library functions. It recognizes them
15/// by name, and hardwires knowledge of their semantics.
16///
17/// WARNING: This file knows about how certain Objective-C library functions are
18/// used. Naive LLVM IR transformations which would otherwise be
19/// behavior-preserving may break these assumptions.
20///
21//===----------------------------------------------------------------------===//
22
23#ifndef LLVM_TRANSFORMS_SCALAR_OBJCARC_H
24#define LLVM_TRANSFORMS_SCALAR_OBJCARC_H
25
26#include "llvm/ADT/StringSwitch.h"
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Analysis/Passes.h"
29#include "llvm/Analysis/ValueTracking.h"
30#include "llvm/IR/CallSite.h"
31#include "llvm/IR/InstIterator.h"
32#include "llvm/IR/Module.h"
33#include "llvm/Pass.h"
34#include "llvm/Transforms/ObjCARC.h"
35#include "llvm/Transforms/Utils/Local.h"
36
37namespace llvm {
38class raw_ostream;
39}
40
41namespace llvm {
42namespace objcarc {
43
44/// \brief A handy option to enable/disable all ARC Optimizations.
45extern bool EnableARCOpts;
46
47/// \brief Test if the given module looks interesting to run ARC optimization
48/// on.
49static inline bool ModuleHasARC(const Module &M) {
50  return
51    M.getNamedValue("objc_retain") ||
52    M.getNamedValue("objc_release") ||
53    M.getNamedValue("objc_autorelease") ||
54    M.getNamedValue("objc_retainAutoreleasedReturnValue") ||
55    M.getNamedValue("objc_retainBlock") ||
56    M.getNamedValue("objc_autoreleaseReturnValue") ||
57    M.getNamedValue("objc_autoreleasePoolPush") ||
58    M.getNamedValue("objc_loadWeakRetained") ||
59    M.getNamedValue("objc_loadWeak") ||
60    M.getNamedValue("objc_destroyWeak") ||
61    M.getNamedValue("objc_storeWeak") ||
62    M.getNamedValue("objc_initWeak") ||
63    M.getNamedValue("objc_moveWeak") ||
64    M.getNamedValue("objc_copyWeak") ||
65    M.getNamedValue("objc_retainedObject") ||
66    M.getNamedValue("objc_unretainedObject") ||
67    M.getNamedValue("objc_unretainedPointer") ||
68    M.getNamedValue("clang.arc.use");
69}
70
71/// \enum InstructionClass
72/// \brief A simple classification for instructions.
73enum InstructionClass {
74  IC_Retain,              ///< objc_retain
75  IC_RetainRV,            ///< objc_retainAutoreleasedReturnValue
76  IC_RetainBlock,         ///< objc_retainBlock
77  IC_Release,             ///< objc_release
78  IC_Autorelease,         ///< objc_autorelease
79  IC_AutoreleaseRV,       ///< objc_autoreleaseReturnValue
80  IC_AutoreleasepoolPush, ///< objc_autoreleasePoolPush
81  IC_AutoreleasepoolPop,  ///< objc_autoreleasePoolPop
82  IC_NoopCast,            ///< objc_retainedObject, etc.
83  IC_FusedRetainAutorelease, ///< objc_retainAutorelease
84  IC_FusedRetainAutoreleaseRV, ///< objc_retainAutoreleaseReturnValue
85  IC_LoadWeakRetained,    ///< objc_loadWeakRetained (primitive)
86  IC_StoreWeak,           ///< objc_storeWeak (primitive)
87  IC_InitWeak,            ///< objc_initWeak (derived)
88  IC_LoadWeak,            ///< objc_loadWeak (derived)
89  IC_MoveWeak,            ///< objc_moveWeak (derived)
90  IC_CopyWeak,            ///< objc_copyWeak (derived)
91  IC_DestroyWeak,         ///< objc_destroyWeak (derived)
92  IC_StoreStrong,         ///< objc_storeStrong (derived)
93  IC_IntrinsicUser,       ///< clang.arc.use
94  IC_CallOrUser,          ///< could call objc_release and/or "use" pointers
95  IC_Call,                ///< could call objc_release
96  IC_User,                ///< could "use" a pointer
97  IC_None                 ///< anything else
98};
99
100raw_ostream &operator<<(raw_ostream &OS, const InstructionClass Class);
101
102/// \brief Test if the given class is a kind of user.
103inline static bool IsUser(InstructionClass Class) {
104  return Class == IC_User ||
105         Class == IC_CallOrUser ||
106         Class == IC_IntrinsicUser;
107}
108
109/// \brief Test if the given class is objc_retain or equivalent.
110static inline bool IsRetain(InstructionClass Class) {
111  return Class == IC_Retain ||
112         Class == IC_RetainRV;
113}
114
115/// \brief Test if the given class is objc_autorelease or equivalent.
116static inline bool IsAutorelease(InstructionClass Class) {
117  return Class == IC_Autorelease ||
118         Class == IC_AutoreleaseRV;
119}
120
121/// \brief Test if the given class represents instructions which return their
122/// argument verbatim.
123static inline bool IsForwarding(InstructionClass Class) {
124  return Class == IC_Retain ||
125         Class == IC_RetainRV ||
126         Class == IC_Autorelease ||
127         Class == IC_AutoreleaseRV ||
128         Class == IC_NoopCast;
129}
130
131/// \brief Test if the given class represents instructions which do nothing if
132/// passed a null pointer.
133static inline bool IsNoopOnNull(InstructionClass Class) {
134  return Class == IC_Retain ||
135         Class == IC_RetainRV ||
136         Class == IC_Release ||
137         Class == IC_Autorelease ||
138         Class == IC_AutoreleaseRV ||
139         Class == IC_RetainBlock;
140}
141
142/// \brief Test if the given class represents instructions which are always safe
143/// to mark with the "tail" keyword.
144static inline bool IsAlwaysTail(InstructionClass Class) {
145  // IC_RetainBlock may be given a stack argument.
146  return Class == IC_Retain ||
147         Class == IC_RetainRV ||
148         Class == IC_AutoreleaseRV;
149}
150
151/// \brief Test if the given class represents instructions which are never safe
152/// to mark with the "tail" keyword.
153static inline bool IsNeverTail(InstructionClass Class) {
154  /// It is never safe to tail call objc_autorelease since by tail calling
155  /// objc_autorelease, we also tail call -[NSObject autorelease] which supports
156  /// fast autoreleasing causing our object to be potentially reclaimed from the
157  /// autorelease pool which violates the semantics of __autoreleasing types in
158  /// ARC.
159  return Class == IC_Autorelease;
160}
161
162/// \brief Test if the given class represents instructions which are always safe
163/// to mark with the nounwind attribute.
164static inline bool IsNoThrow(InstructionClass Class) {
165  // objc_retainBlock is not nounwind because it calls user copy constructors
166  // which could theoretically throw.
167  return Class == IC_Retain ||
168         Class == IC_RetainRV ||
169         Class == IC_Release ||
170         Class == IC_Autorelease ||
171         Class == IC_AutoreleaseRV ||
172         Class == IC_AutoreleasepoolPush ||
173         Class == IC_AutoreleasepoolPop;
174}
175
176/// Test whether the given instruction can autorelease any pointer or cause an
177/// autoreleasepool pop.
178static inline bool
179CanInterruptRV(InstructionClass Class) {
180  switch (Class) {
181  case IC_AutoreleasepoolPop:
182  case IC_CallOrUser:
183  case IC_Call:
184  case IC_Autorelease:
185  case IC_AutoreleaseRV:
186  case IC_FusedRetainAutorelease:
187  case IC_FusedRetainAutoreleaseRV:
188    return true;
189  default:
190    return false;
191  }
192}
193
194/// \brief Determine if F is one of the special known Functions.  If it isn't,
195/// return IC_CallOrUser.
196InstructionClass GetFunctionClass(const Function *F);
197
198/// \brief Determine which objc runtime call instruction class V belongs to.
199///
200/// This is similar to GetInstructionClass except that it only detects objc
201/// runtime calls. This allows it to be faster.
202///
203static inline InstructionClass GetBasicInstructionClass(const Value *V) {
204  if (const CallInst *CI = dyn_cast<CallInst>(V)) {
205    if (const Function *F = CI->getCalledFunction())
206      return GetFunctionClass(F);
207    // Otherwise, be conservative.
208    return IC_CallOrUser;
209  }
210
211  // Otherwise, be conservative.
212  return isa<InvokeInst>(V) ? IC_CallOrUser : IC_User;
213}
214
215/// \brief Determine what kind of construct V is.
216InstructionClass GetInstructionClass(const Value *V);
217
218/// \brief This is a wrapper around getUnderlyingObject which also knows how to
219/// look through objc_retain and objc_autorelease calls, which we know to return
220/// their argument verbatim.
221static inline const Value *GetUnderlyingObjCPtr(const Value *V) {
222  for (;;) {
223    V = GetUnderlyingObject(V);
224    if (!IsForwarding(GetBasicInstructionClass(V)))
225      break;
226    V = cast<CallInst>(V)->getArgOperand(0);
227  }
228
229  return V;
230}
231
232/// \brief This is a wrapper around Value::stripPointerCasts which also knows
233/// how to look through objc_retain and objc_autorelease calls, which we know to
234/// return their argument verbatim.
235static inline const Value *StripPointerCastsAndObjCCalls(const Value *V) {
236  for (;;) {
237    V = V->stripPointerCasts();
238    if (!IsForwarding(GetBasicInstructionClass(V)))
239      break;
240    V = cast<CallInst>(V)->getArgOperand(0);
241  }
242  return V;
243}
244
245/// \brief This is a wrapper around Value::stripPointerCasts which also knows
246/// how to look through objc_retain and objc_autorelease calls, which we know to
247/// return their argument verbatim.
248static inline Value *StripPointerCastsAndObjCCalls(Value *V) {
249  for (;;) {
250    V = V->stripPointerCasts();
251    if (!IsForwarding(GetBasicInstructionClass(V)))
252      break;
253    V = cast<CallInst>(V)->getArgOperand(0);
254  }
255  return V;
256}
257
258/// \brief Assuming the given instruction is one of the special calls such as
259/// objc_retain or objc_release, return the argument value, stripped of no-op
260/// casts and forwarding calls.
261static inline Value *GetObjCArg(Value *Inst) {
262  return StripPointerCastsAndObjCCalls(cast<CallInst>(Inst)->getArgOperand(0));
263}
264
265static inline bool IsNullOrUndef(const Value *V) {
266  return isa<ConstantPointerNull>(V) || isa<UndefValue>(V);
267}
268
269static inline bool IsNoopInstruction(const Instruction *I) {
270  return isa<BitCastInst>(I) ||
271    (isa<GetElementPtrInst>(I) &&
272     cast<GetElementPtrInst>(I)->hasAllZeroIndices());
273}
274
275
276/// \brief Erase the given instruction.
277///
278/// Many ObjC calls return their argument verbatim,
279/// so if it's such a call and the return value has users, replace them with the
280/// argument value.
281///
282static inline void EraseInstruction(Instruction *CI) {
283  Value *OldArg = cast<CallInst>(CI)->getArgOperand(0);
284
285  bool Unused = CI->use_empty();
286
287  if (!Unused) {
288    // Replace the return value with the argument.
289    assert((IsForwarding(GetBasicInstructionClass(CI)) ||
290            (IsNoopOnNull(GetBasicInstructionClass(CI)) &&
291             isa<ConstantPointerNull>(OldArg))) &&
292           "Can't delete non-forwarding instruction with users!");
293    CI->replaceAllUsesWith(OldArg);
294  }
295
296  CI->eraseFromParent();
297
298  if (Unused)
299    RecursivelyDeleteTriviallyDeadInstructions(OldArg);
300}
301
302/// \brief Test whether the given value is possible a retainable object pointer.
303static inline bool IsPotentialRetainableObjPtr(const Value *Op) {
304  // Pointers to static or stack storage are not valid retainable object
305  // pointers.
306  if (isa<Constant>(Op) || isa<AllocaInst>(Op))
307    return false;
308  // Special arguments can not be a valid retainable object pointer.
309  if (const Argument *Arg = dyn_cast<Argument>(Op))
310    if (Arg->hasByValAttr() ||
311        Arg->hasInAllocaAttr() ||
312        Arg->hasNestAttr() ||
313        Arg->hasStructRetAttr())
314      return false;
315  // Only consider values with pointer types.
316  //
317  // It seemes intuitive to exclude function pointer types as well, since
318  // functions are never retainable object pointers, however clang occasionally
319  // bitcasts retainable object pointers to function-pointer type temporarily.
320  PointerType *Ty = dyn_cast<PointerType>(Op->getType());
321  if (!Ty)
322    return false;
323  // Conservatively assume anything else is a potential retainable object
324  // pointer.
325  return true;
326}
327
328static inline bool IsPotentialRetainableObjPtr(const Value *Op,
329                                               AliasAnalysis &AA) {
330  // First make the rudimentary check.
331  if (!IsPotentialRetainableObjPtr(Op))
332    return false;
333
334  // Objects in constant memory are not reference-counted.
335  if (AA.pointsToConstantMemory(Op))
336    return false;
337
338  // Pointers in constant memory are not pointing to reference-counted objects.
339  if (const LoadInst *LI = dyn_cast<LoadInst>(Op))
340    if (AA.pointsToConstantMemory(LI->getPointerOperand()))
341      return false;
342
343  // Otherwise assume the worst.
344  return true;
345}
346
347/// \brief Helper for GetInstructionClass. Determines what kind of construct CS
348/// is.
349static inline InstructionClass GetCallSiteClass(ImmutableCallSite CS) {
350  for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
351       I != E; ++I)
352    if (IsPotentialRetainableObjPtr(*I))
353      return CS.onlyReadsMemory() ? IC_User : IC_CallOrUser;
354
355  return CS.onlyReadsMemory() ? IC_None : IC_Call;
356}
357
358/// \brief Return true if this value refers to a distinct and identifiable
359/// object.
360///
361/// This is similar to AliasAnalysis's isIdentifiedObject, except that it uses
362/// special knowledge of ObjC conventions.
363static inline bool IsObjCIdentifiedObject(const Value *V) {
364  // Assume that call results and arguments have their own "provenance".
365  // Constants (including GlobalVariables) and Allocas are never
366  // reference-counted.
367  if (isa<CallInst>(V) || isa<InvokeInst>(V) ||
368      isa<Argument>(V) || isa<Constant>(V) ||
369      isa<AllocaInst>(V))
370    return true;
371
372  if (const LoadInst *LI = dyn_cast<LoadInst>(V)) {
373    const Value *Pointer =
374      StripPointerCastsAndObjCCalls(LI->getPointerOperand());
375    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Pointer)) {
376      // A constant pointer can't be pointing to an object on the heap. It may
377      // be reference-counted, but it won't be deleted.
378      if (GV->isConstant())
379        return true;
380      StringRef Name = GV->getName();
381      // These special variables are known to hold values which are not
382      // reference-counted pointers.
383      if (Name.startswith("\01L_OBJC_SELECTOR_REFERENCES_") ||
384          Name.startswith("\01L_OBJC_CLASSLIST_REFERENCES_") ||
385          Name.startswith("\01L_OBJC_CLASSLIST_SUP_REFS_$_") ||
386          Name.startswith("\01L_OBJC_METH_VAR_NAME_") ||
387          Name.startswith("\01l_objc_msgSend_fixup_"))
388        return true;
389    }
390  }
391
392  return false;
393}
394
395} // end namespace objcarc
396} // end namespace llvm
397
398#endif // LLVM_TRANSFORMS_SCALAR_OBJCARC_H
399