ADCE.cpp revision 27c694bacb40be5f727c469095d7a44fe05c3334
1//===- ADCE.cpp - Code to perform aggressive dead code elimination --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements "aggressive" dead code elimination.  ADCE is DCe where
11// values are assumed to be dead until proven otherwise.  This is similar to
12// SCCP, except applied to the liveness of values.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/Constant.h"
18#include "llvm/Instructions.h"
19#include "llvm/Type.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/PostDominators.h"
22#include "llvm/Support/CFG.h"
23#include "llvm/Transforms/Utils/BasicBlockUtils.h"
24#include "llvm/Transforms/Utils/Local.h"
25#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
26#include "Support/Debug.h"
27#include "Support/DepthFirstIterator.h"
28#include "Support/Statistic.h"
29#include "Support/STLExtras.h"
30#include <algorithm>
31using namespace llvm;
32
33namespace {
34  Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed");
35  Statistic<> NumInstRemoved ("adce", "Number of instructions removed");
36  Statistic<> NumCallRemoved ("adce", "Number of calls and invokes removed");
37
38//===----------------------------------------------------------------------===//
39// ADCE Class
40//
41// This class does all of the work of Aggressive Dead Code Elimination.
42// It's public interface consists of a constructor and a doADCE() method.
43//
44class ADCE : public FunctionPass {
45  Function *Func;                       // The function that we are working on
46  AliasAnalysis *AA;                    // Current AliasAnalysis object
47  std::vector<Instruction*> WorkList;   // Instructions that just became live
48  std::set<Instruction*>    LiveSet;    // The set of live instructions
49
50  //===--------------------------------------------------------------------===//
51  // The public interface for this class
52  //
53public:
54  // Execute the Aggressive Dead Code Elimination Algorithm
55  //
56  virtual bool runOnFunction(Function &F) {
57    Func = &F;
58    AA = &getAnalysis<AliasAnalysis>();
59    bool Changed = doADCE();
60    assert(WorkList.empty());
61    LiveSet.clear();
62    return Changed;
63  }
64  // getAnalysisUsage - We require post dominance frontiers (aka Control
65  // Dependence Graph)
66  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
67    // We require that all function nodes are unified, because otherwise code
68    // can be marked live that wouldn't necessarily be otherwise.
69    AU.addRequired<UnifyFunctionExitNodes>();
70    AU.addRequired<AliasAnalysis>();
71    AU.addRequired<PostDominatorTree>();
72    AU.addRequired<PostDominanceFrontier>();
73  }
74
75
76  //===--------------------------------------------------------------------===//
77  // The implementation of this class
78  //
79private:
80  // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
81  // true if the function was modified.
82  //
83  bool doADCE();
84
85  void markBlockAlive(BasicBlock *BB);
86
87
88  // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the
89  // instructions in the specified basic block, dropping references on
90  // instructions that are dead according to LiveSet.
91  bool dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB);
92
93  TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI);
94
95  inline void markInstructionLive(Instruction *I) {
96    if (LiveSet.count(I)) return;
97    DEBUG(std::cerr << "Insn Live: " << I);
98    LiveSet.insert(I);
99    WorkList.push_back(I);
100  }
101
102  inline void markTerminatorLive(const BasicBlock *BB) {
103    DEBUG(std::cerr << "Terminator Live: " << BB->getTerminator());
104    markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator()));
105  }
106};
107
108  RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination");
109} // End of anonymous namespace
110
111Pass *llvm::createAggressiveDCEPass() { return new ADCE(); }
112
113void ADCE::markBlockAlive(BasicBlock *BB) {
114  // Mark the basic block as being newly ALIVE... and mark all branches that
115  // this block is control dependent on as being alive also...
116  //
117  PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>();
118
119  PostDominanceFrontier::const_iterator It = CDG.find(BB);
120  if (It != CDG.end()) {
121    // Get the blocks that this node is control dependent on...
122    const PostDominanceFrontier::DomSetType &CDB = It->second;
123    for_each(CDB.begin(), CDB.end(),   // Mark all their terminators as live
124             bind_obj(this, &ADCE::markTerminatorLive));
125  }
126
127  // If this basic block is live, and it ends in an unconditional branch, then
128  // the branch is alive as well...
129  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
130    if (BI->isUnconditional())
131      markTerminatorLive(BB);
132}
133
134// dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the
135// instructions in the specified basic block, dropping references on
136// instructions that are dead according to LiveSet.
137bool ADCE::dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB) {
138  bool Changed = false;
139  for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; )
140    if (!LiveSet.count(I)) {              // Is this instruction alive?
141      I->dropAllReferences();             // Nope, drop references...
142      if (PHINode *PN = dyn_cast<PHINode>(I)) {
143        // We don't want to leave PHI nodes in the program that have
144        // #arguments != #predecessors, so we remove them now.
145        //
146        PN->replaceAllUsesWith(Constant::getNullValue(PN->getType()));
147
148        // Delete the instruction...
149        ++I;
150        BB->getInstList().erase(PN);
151        Changed = true;
152        ++NumInstRemoved;
153      } else {
154        ++I;
155      }
156    } else {
157      ++I;
158    }
159  return Changed;
160}
161
162
163/// convertToUnconditionalBranch - Transform this conditional terminator
164/// instruction into an unconditional branch because we don't care which of the
165/// successors it goes to.  This eliminate a use of the condition as well.
166///
167TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) {
168  BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI);
169  BasicBlock *BB = TI->getParent();
170
171  // Remove entries from PHI nodes to avoid confusing ourself later...
172  for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
173    TI->getSuccessor(i)->removePredecessor(BB);
174
175  // Delete the old branch itself...
176  BB->getInstList().erase(TI);
177  return NB;
178}
179
180
181// doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
182// true if the function was modified.
183//
184bool ADCE::doADCE() {
185  bool MadeChanges = false;
186
187  // Iterate over all of the instructions in the function, eliminating trivially
188  // dead instructions, and marking instructions live that are known to be
189  // needed.  Perform the walk in depth first order so that we avoid marking any
190  // instructions live in basic blocks that are unreachable.  These blocks will
191  // be eliminated later, along with the instructions inside.
192  //
193  for (df_iterator<Function*> BBI = df_begin(Func), BBE = df_end(Func);
194       BBI != BBE; ++BBI) {
195    BasicBlock *BB = *BBI;
196    for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) {
197      Instruction *I = II++;
198      if (CallInst *CI = dyn_cast<CallInst>(I)) {
199        Function *F = CI->getCalledFunction();
200        if (F && AA->onlyReadsMemory(F)) {
201          if (CI->use_empty()) {
202            BB->getInstList().erase(CI);
203            ++NumCallRemoved;
204          }
205        } else {
206          markInstructionLive(I);
207        }
208      } else if (InvokeInst *II = dyn_cast<InvokeInst>(I)) {
209        Function *F = II->getCalledFunction();
210        if (F && AA->onlyReadsMemory(F)) {
211          // The function cannot unwind.  Convert it to a call with a branch
212          // after it to the normal destination.
213          std::vector<Value*> Args(II->op_begin()+1, II->op_end());
214          std::string Name = II->getName(); II->setName("");
215          Instruction *NewCall = new CallInst(F, Args, Name, II);
216          II->replaceAllUsesWith(NewCall);
217          new BranchInst(II->getNormalDest(), II);
218          BB->getInstList().erase(II);
219
220          if (NewCall->use_empty()) {
221            BB->getInstList().erase(NewCall);
222            ++NumCallRemoved;
223          }
224        } else {
225          markInstructionLive(I);
226        }
227      } else if (I->mayWriteToMemory() || isa<ReturnInst>(I) ||
228                 isa<UnwindInst>(I)) {
229	markInstructionLive(I);
230      } else if (isInstructionTriviallyDead(I)) {
231        // Remove the instruction from it's basic block...
232        BB->getInstList().erase(I);
233        ++NumInstRemoved;
234      }
235    }
236  }
237
238  // Check to ensure we have an exit node for this CFG.  If we don't, we won't
239  // have any post-dominance information, thus we cannot perform our
240  // transformations safely.
241  //
242  PostDominatorTree &DT = getAnalysis<PostDominatorTree>();
243  if (DT[&Func->getEntryBlock()] == 0) {
244    WorkList.clear();
245    return MadeChanges;
246  }
247
248  // Scan the function marking blocks without post-dominance information as
249  // live.  Blocks without post-dominance information occur when there is an
250  // infinite loop in the program.  Because the infinite loop could contain a
251  // function which unwinds, exits or has side-effects, we don't want to delete
252  // the infinite loop or those blocks leading up to it.
253  for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
254    if (DT[I] == 0)
255      for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI)
256        markInstructionLive((*PI)->getTerminator());
257
258
259
260  DEBUG(std::cerr << "Processing work list\n");
261
262  // AliveBlocks - Set of basic blocks that we know have instructions that are
263  // alive in them...
264  //
265  std::set<BasicBlock*> AliveBlocks;
266
267  // Process the work list of instructions that just became live... if they
268  // became live, then that means that all of their operands are necessary as
269  // well... make them live as well.
270  //
271  while (!WorkList.empty()) {
272    Instruction *I = WorkList.back(); // Get an instruction that became live...
273    WorkList.pop_back();
274
275    BasicBlock *BB = I->getParent();
276    if (!AliveBlocks.count(BB)) {     // Basic block not alive yet...
277      AliveBlocks.insert(BB);         // Block is now ALIVE!
278      markBlockAlive(BB);             // Make it so now!
279    }
280
281    // PHI nodes are a special case, because the incoming values are actually
282    // defined in the predecessor nodes of this block, meaning that the PHI
283    // makes the predecessors alive.
284    //
285    if (PHINode *PN = dyn_cast<PHINode>(I))
286      for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
287        if (!AliveBlocks.count(*PI)) {
288          AliveBlocks.insert(BB);         // Block is now ALIVE!
289          markBlockAlive(*PI);
290        }
291
292    // Loop over all of the operands of the live instruction, making sure that
293    // they are known to be alive as well...
294    //
295    for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op)
296      if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op)))
297	markInstructionLive(Operand);
298  }
299
300  DEBUG(
301    std::cerr << "Current Function: X = Live\n";
302    for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){
303      std::cerr << I->getName() << ":\t"
304                << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n");
305      for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){
306        if (LiveSet.count(BI)) std::cerr << "X ";
307        std::cerr << *BI;
308      }
309    });
310
311  // Find the first postdominator of the entry node that is alive.  Make it the
312  // new entry node...
313  //
314  if (AliveBlocks.size() == Func->size()) {  // No dead blocks?
315    for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) {
316      // Loop over all of the instructions in the function, telling dead
317      // instructions to drop their references.  This is so that the next sweep
318      // over the program can safely delete dead instructions without other dead
319      // instructions still referring to them.
320      //
321      dropReferencesOfDeadInstructionsInLiveBlock(I);
322
323      // Check to make sure the terminator instruction is live.  If it isn't,
324      // this means that the condition that it branches on (we know it is not an
325      // unconditional branch), is not needed to make the decision of where to
326      // go to, because all outgoing edges go to the same place.  We must remove
327      // the use of the condition (because it's probably dead), so we convert
328      // the terminator to a conditional branch.
329      //
330      TerminatorInst *TI = I->getTerminator();
331      if (!LiveSet.count(TI))
332        convertToUnconditionalBranch(TI);
333    }
334
335  } else {                                   // If there are some blocks dead...
336    // If the entry node is dead, insert a new entry node to eliminate the entry
337    // node as a special case.
338    //
339    if (!AliveBlocks.count(&Func->front())) {
340      BasicBlock *NewEntry = new BasicBlock();
341      new BranchInst(&Func->front(), NewEntry);
342      Func->getBasicBlockList().push_front(NewEntry);
343      AliveBlocks.insert(NewEntry);    // This block is always alive!
344      LiveSet.insert(NewEntry->getTerminator());  // The branch is live
345    }
346
347    // Loop over all of the alive blocks in the function.  If any successor
348    // blocks are not alive, we adjust the outgoing branches to branch to the
349    // first live postdominator of the live block, adjusting any PHI nodes in
350    // the block to reflect this.
351    //
352    for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
353      if (AliveBlocks.count(I)) {
354        BasicBlock *BB = I;
355        TerminatorInst *TI = BB->getTerminator();
356
357        // If the terminator instruction is alive, but the block it is contained
358        // in IS alive, this means that this terminator is a conditional branch
359        // on a condition that doesn't matter.  Make it an unconditional branch
360        // to ONE of the successors.  This has the side effect of dropping a use
361        // of the conditional value, which may also be dead.
362        if (!LiveSet.count(TI))
363          TI = convertToUnconditionalBranch(TI);
364
365        // Loop over all of the successors, looking for ones that are not alive.
366        // We cannot save the number of successors in the terminator instruction
367        // here because we may remove them if we don't have a postdominator...
368        //
369        for (unsigned i = 0; i != TI->getNumSuccessors(); ++i)
370          if (!AliveBlocks.count(TI->getSuccessor(i))) {
371            // Scan up the postdominator tree, looking for the first
372            // postdominator that is alive, and the last postdominator that is
373            // dead...
374            //
375            PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)];
376
377            // There is a special case here... if there IS no post-dominator for
378            // the block we have no owhere to point our branch to.  Instead,
379            // convert it to a return.  This can only happen if the code
380            // branched into an infinite loop.  Note that this may not be
381            // desirable, because we _are_ altering the behavior of the code.
382            // This is a well known drawback of ADCE, so in the future if we
383            // choose to revisit the decision, this is where it should be.
384            //
385            if (LastNode == 0) {        // No postdominator!
386              // Call RemoveSuccessor to transmogrify the terminator instruction
387              // to not contain the outgoing branch, or to create a new
388              // terminator if the form fundamentally changes (i.e.,
389              // unconditional branch to return).  Note that this will change a
390              // branch into an infinite loop into a return instruction!
391              //
392              RemoveSuccessor(TI, i);
393
394              // RemoveSuccessor may replace TI... make sure we have a fresh
395              // pointer... and e variable.
396              //
397              TI = BB->getTerminator();
398
399              // Rescan this successor...
400              --i;
401            } else {
402              PostDominatorTree::Node *NextNode = LastNode->getIDom();
403
404              while (!AliveBlocks.count(NextNode->getBlock())) {
405                LastNode = NextNode;
406                NextNode = NextNode->getIDom();
407              }
408
409              // Get the basic blocks that we need...
410              BasicBlock *LastDead = LastNode->getBlock();
411              BasicBlock *NextAlive = NextNode->getBlock();
412
413              // Make the conditional branch now go to the next alive block...
414              TI->getSuccessor(i)->removePredecessor(BB);
415              TI->setSuccessor(i, NextAlive);
416
417              // If there are PHI nodes in NextAlive, we need to add entries to
418              // the PHI nodes for the new incoming edge.  The incoming values
419              // should be identical to the incoming values for LastDead.
420              //
421              for (BasicBlock::iterator II = NextAlive->begin();
422                   PHINode *PN = dyn_cast<PHINode>(II); ++II)
423                if (LiveSet.count(PN)) {  // Only modify live phi nodes
424                  // Get the incoming value for LastDead...
425                  int OldIdx = PN->getBasicBlockIndex(LastDead);
426                  assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!");
427                  Value *InVal = PN->getIncomingValue(OldIdx);
428
429                  // Add an incoming value for BB now...
430                  PN->addIncoming(InVal, BB);
431                }
432            }
433          }
434
435        // Now loop over all of the instructions in the basic block, telling
436        // dead instructions to drop their references.  This is so that the next
437        // sweep over the program can safely delete dead instructions without
438        // other dead instructions still referring to them.
439        //
440        dropReferencesOfDeadInstructionsInLiveBlock(BB);
441      }
442  }
443
444  // We make changes if there are any dead blocks in the function...
445  if (unsigned NumDeadBlocks = Func->size() - AliveBlocks.size()) {
446    MadeChanges = true;
447    NumBlockRemoved += NumDeadBlocks;
448  }
449
450  // Loop over all of the basic blocks in the function, removing control flow
451  // edges to live blocks (also eliminating any entries in PHI functions in
452  // referenced blocks).
453  //
454  for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
455    if (!AliveBlocks.count(BB)) {
456      // Remove all outgoing edges from this basic block and convert the
457      // terminator into a return instruction.
458      std::vector<BasicBlock*> Succs(succ_begin(BB), succ_end(BB));
459
460      if (!Succs.empty()) {
461        // Loop over all of the successors, removing this block from PHI node
462        // entries that might be in the block...
463        while (!Succs.empty()) {
464          Succs.back()->removePredecessor(BB);
465          Succs.pop_back();
466        }
467
468        // Delete the old terminator instruction...
469        const Type *TermTy = BB->getTerminator()->getType();
470        if (TermTy != Type::VoidTy)
471          BB->getTerminator()->replaceAllUsesWith(
472                               Constant::getNullValue(TermTy));
473        BB->getInstList().pop_back();
474        const Type *RetTy = Func->getReturnType();
475        new ReturnInst(RetTy != Type::VoidTy ?
476                       Constant::getNullValue(RetTy) : 0, BB);
477      }
478    }
479
480
481  // Loop over all of the basic blocks in the function, dropping references of
482  // the dead basic blocks.  We must do this after the previous step to avoid
483  // dropping references to PHIs which still have entries...
484  //
485  for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
486    if (!AliveBlocks.count(BB))
487      BB->dropAllReferences();
488
489  // Now loop through all of the blocks and delete the dead ones.  We can safely
490  // do this now because we know that there are no references to dead blocks
491  // (because they have dropped all of their references...  we also remove dead
492  // instructions from alive blocks.
493  //
494  for (Function::iterator BI = Func->begin(); BI != Func->end(); )
495    if (!AliveBlocks.count(BI)) {                // Delete dead blocks...
496      BI = Func->getBasicBlockList().erase(BI);
497    } else {                                     // Scan alive blocks...
498      for (BasicBlock::iterator II = BI->begin(); II != --BI->end(); )
499        if (!LiveSet.count(II)) {             // Is this instruction alive?
500          // Nope... remove the instruction from it's basic block...
501          if (isa<CallInst>(II))
502            ++NumCallRemoved;
503          else
504            ++NumInstRemoved;
505          II = BI->getInstList().erase(II);
506          MadeChanges = true;
507        } else {
508          ++II;
509        }
510
511      ++BI;                                           // Increment iterator...
512    }
513
514  return MadeChanges;
515}
516