EarlyCSE.cpp revision 10b883b13ff3ad44892758c7a57a435cdb379b45
1//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs a simple dominator tree walk that eliminates trivially
11// redundant instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "early-cse"
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/Instructions.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/Dominators.h"
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/Transforms/Utils/Local.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/RecyclingAllocator.h"
25#include "llvm/ADT/ScopedHashTable.h"
26#include "llvm/ADT/Statistic.h"
27using namespace llvm;
28
29STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
30STATISTIC(NumCSE,      "Number of instructions CSE'd");
31STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
32STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
33STATISTIC(NumDSE,      "Number of trivial dead stores removed");
34
35static unsigned getHash(const void *V) {
36  return DenseMapInfo<const void*>::getHashValue(V);
37}
38
39//===----------------------------------------------------------------------===//
40// SimpleValue
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// SimpleValue - Instances of this struct represent available values in the
45  /// scoped hash table.
46  struct SimpleValue {
47    Instruction *Inst;
48
49    SimpleValue(Instruction *I) : Inst(I) {
50      assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
51    }
52
53    bool isSentinel() const {
54      return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
55             Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
56    }
57
58    static bool canHandle(Instruction *Inst) {
59      return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
60             isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
61             isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
62             isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
63             isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
64    }
65  };
66}
67
68namespace llvm {
69// SimpleValue is POD.
70template<> struct isPodLike<SimpleValue> {
71  static const bool value = true;
72};
73
74template<> struct DenseMapInfo<SimpleValue> {
75  static inline SimpleValue getEmptyKey() {
76    return DenseMapInfo<Instruction*>::getEmptyKey();
77  }
78  static inline SimpleValue getTombstoneKey() {
79    return DenseMapInfo<Instruction*>::getTombstoneKey();
80  }
81  static unsigned getHashValue(SimpleValue Val);
82  static bool isEqual(SimpleValue LHS, SimpleValue RHS);
83};
84}
85
86unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
87  Instruction *Inst = Val.Inst;
88
89  // Hash in all of the operands as pointers.
90  unsigned Res = 0;
91  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
92    Res ^= getHash(Inst->getOperand(i)) << i;
93
94  if (CastInst *CI = dyn_cast<CastInst>(Inst))
95    Res ^= getHash(CI->getType());
96  else if (CmpInst *CI = dyn_cast<CmpInst>(Inst))
97    Res ^= CI->getPredicate();
98  else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) {
99    for (ExtractValueInst::idx_iterator I = EVI->idx_begin(),
100         E = EVI->idx_end(); I != E; ++I)
101      Res ^= *I;
102  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) {
103    for (InsertValueInst::idx_iterator I = IVI->idx_begin(),
104         E = IVI->idx_end(); I != E; ++I)
105      Res ^= *I;
106  } else {
107    // nothing extra to hash in.
108    assert((isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
109            isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
110            isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst)) &&
111           "Invalid/unknown instruction");
112  }
113
114  // Mix in the opcode.
115  return (Res << 1) ^ Inst->getOpcode();
116}
117
118bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
119  Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
120
121  if (LHS.isSentinel() || RHS.isSentinel())
122    return LHSI == RHSI;
123
124  if (LHSI->getOpcode() != RHSI->getOpcode()) return false;
125  return LHSI->isIdenticalTo(RHSI);
126}
127
128//===----------------------------------------------------------------------===//
129// CallValue
130//===----------------------------------------------------------------------===//
131
132namespace {
133  /// CallValue - Instances of this struct represent available call values in
134  /// the scoped hash table.
135  struct CallValue {
136    Instruction *Inst;
137
138    CallValue(Instruction *I) : Inst(I) {
139      assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
140    }
141
142    bool isSentinel() const {
143      return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
144             Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
145    }
146
147    static bool canHandle(Instruction *Inst) {
148      // Don't value number anything that returns void.
149      if (Inst->getType()->isVoidTy())
150        return false;
151
152      CallInst *CI = dyn_cast<CallInst>(Inst);
153      if (CI == 0 || !CI->onlyReadsMemory())
154        return false;
155      return true;
156    }
157  };
158}
159
160namespace llvm {
161  // CallValue is POD.
162  template<> struct isPodLike<CallValue> {
163    static const bool value = true;
164  };
165
166  template<> struct DenseMapInfo<CallValue> {
167    static inline CallValue getEmptyKey() {
168      return DenseMapInfo<Instruction*>::getEmptyKey();
169    }
170    static inline CallValue getTombstoneKey() {
171      return DenseMapInfo<Instruction*>::getTombstoneKey();
172    }
173    static unsigned getHashValue(CallValue Val);
174    static bool isEqual(CallValue LHS, CallValue RHS);
175  };
176}
177unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
178  Instruction *Inst = Val.Inst;
179  // Hash in all of the operands as pointers.
180  unsigned Res = 0;
181  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) {
182    assert(!Inst->getOperand(i)->getType()->isMetadataTy() &&
183           "Cannot value number calls with metadata operands");
184    Res ^= getHash(Inst->getOperand(i)) << i;
185  }
186
187  // Mix in the opcode.
188  return (Res << 1) ^ Inst->getOpcode();
189}
190
191bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
192  Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
193  if (LHS.isSentinel() || RHS.isSentinel())
194    return LHSI == RHSI;
195  return LHSI->isIdenticalTo(RHSI);
196}
197
198
199//===----------------------------------------------------------------------===//
200// EarlyCSE pass.
201//===----------------------------------------------------------------------===//
202
203namespace {
204
205/// EarlyCSE - This pass does a simple depth-first walk over the dominator
206/// tree, eliminating trivially redundant instructions and using instsimplify
207/// to canonicalize things as it goes.  It is intended to be fast and catch
208/// obvious cases so that instcombine and other passes are more effective.  It
209/// is expected that a later pass of GVN will catch the interesting/hard
210/// cases.
211class EarlyCSE : public FunctionPass {
212public:
213  const TargetData *TD;
214  DominatorTree *DT;
215  typedef RecyclingAllocator<BumpPtrAllocator,
216                      ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy;
217  typedef ScopedHashTable<SimpleValue, Value*, DenseMapInfo<SimpleValue>,
218                          AllocatorTy> ScopedHTType;
219
220  /// AvailableValues - This scoped hash table contains the current values of
221  /// all of our simple scalar expressions.  As we walk down the domtree, we
222  /// look to see if instructions are in this: if so, we replace them with what
223  /// we find, otherwise we insert them so that dominated values can succeed in
224  /// their lookup.
225  ScopedHTType *AvailableValues;
226
227  /// AvailableLoads - This scoped hash table contains the current values
228  /// of loads.  This allows us to get efficient access to dominating loads when
229  /// we have a fully redundant load.  In addition to the most recent load, we
230  /// keep track of a generation count of the read, which is compared against
231  /// the current generation count.  The current generation count is
232  /// incremented after every possibly writing memory operation, which ensures
233  /// that we only CSE loads with other loads that have no intervening store.
234  typedef RecyclingAllocator<BumpPtrAllocator,
235    ScopedHashTableVal<Value*, std::pair<Value*, unsigned> > > LoadMapAllocator;
236  typedef ScopedHashTable<Value*, std::pair<Value*, unsigned>,
237                          DenseMapInfo<Value*>, LoadMapAllocator> LoadHTType;
238  LoadHTType *AvailableLoads;
239
240  /// AvailableCalls - This scoped hash table contains the current values
241  /// of read-only call values.  It uses the same generation count as loads.
242  typedef ScopedHashTable<CallValue, std::pair<Value*, unsigned> > CallHTType;
243  CallHTType *AvailableCalls;
244
245  /// CurrentGeneration - This is the current generation of the memory value.
246  unsigned CurrentGeneration;
247
248  static char ID;
249  explicit EarlyCSE() : FunctionPass(ID) {
250    initializeEarlyCSEPass(*PassRegistry::getPassRegistry());
251  }
252
253  bool runOnFunction(Function &F);
254
255private:
256
257  bool processNode(DomTreeNode *Node);
258
259  // This transformation requires dominator postdominator info
260  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
261    AU.addRequired<DominatorTree>();
262    AU.setPreservesCFG();
263  }
264};
265}
266
267char EarlyCSE::ID = 0;
268
269// createEarlyCSEPass - The public interface to this file.
270FunctionPass *llvm::createEarlyCSEPass() {
271  return new EarlyCSE();
272}
273
274INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false)
275INITIALIZE_PASS_DEPENDENCY(DominatorTree)
276INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false)
277
278bool EarlyCSE::processNode(DomTreeNode *Node) {
279  // Define a scope in the scoped hash table.  When we are done processing this
280  // domtree node and recurse back up to our parent domtree node, this will pop
281  // off all the values we install.
282  ScopedHTType::ScopeTy Scope(*AvailableValues);
283
284  // Define a scope for the load values so that anything we add will get
285  // popped when we recurse back up to our parent domtree node.
286  LoadHTType::ScopeTy LoadScope(*AvailableLoads);
287
288  // Define a scope for the call values so that anything we add will get
289  // popped when we recurse back up to our parent domtree node.
290  CallHTType::ScopeTy CallScope(*AvailableCalls);
291
292  BasicBlock *BB = Node->getBlock();
293
294  // If this block has a single predecessor, then the predecessor is the parent
295  // of the domtree node and all of the live out memory values are still current
296  // in this block.  If this block has multiple predecessors, then they could
297  // have invalidated the live-out memory values of our parent value.  For now,
298  // just be conservative and invalidate memory if this block has multiple
299  // predecessors.
300  if (BB->getSinglePredecessor() == 0)
301    ++CurrentGeneration;
302
303  /// LastStore - Keep track of the last non-volatile store that we saw... for
304  /// as long as there in no instruction that reads memory.  If we see a store
305  /// to the same location, we delete the dead store.  This zaps trivial dead
306  /// stores which can occur in bitfield code among other things.
307  StoreInst *LastStore = 0;
308
309  bool Changed = false;
310
311  // See if any instructions in the block can be eliminated.  If so, do it.  If
312  // not, add them to AvailableValues.
313  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
314    Instruction *Inst = I++;
315
316    // Dead instructions should just be removed.
317    if (isInstructionTriviallyDead(Inst)) {
318      DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
319      Inst->eraseFromParent();
320      Changed = true;
321      ++NumSimplify;
322      continue;
323    }
324
325    // If the instruction can be simplified (e.g. X+0 = X) then replace it with
326    // its simpler value.
327    if (Value *V = SimplifyInstruction(Inst, TD, DT)) {
328      DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << "  to: " << *V << '\n');
329      Inst->replaceAllUsesWith(V);
330      Inst->eraseFromParent();
331      Changed = true;
332      ++NumSimplify;
333      continue;
334    }
335
336    // If this is a simple instruction that we can value number, process it.
337    if (SimpleValue::canHandle(Inst)) {
338      // See if the instruction has an available value.  If so, use it.
339      if (Value *V = AvailableValues->lookup(Inst)) {
340        DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << "  to: " << *V << '\n');
341        Inst->replaceAllUsesWith(V);
342        Inst->eraseFromParent();
343        Changed = true;
344        ++NumCSE;
345        continue;
346      }
347
348      // Otherwise, just remember that this value is available.
349      AvailableValues->insert(Inst, Inst);
350      continue;
351    }
352
353    // If this is a non-volatile load, process it.
354    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
355      // Ignore volatile loads.
356      if (LI->isVolatile()) {
357        LastStore = 0;
358        continue;
359      }
360
361      // If we have an available version of this load, and if it is the right
362      // generation, replace this instruction.
363      std::pair<Value*, unsigned> InVal =
364        AvailableLoads->lookup(Inst->getOperand(0));
365      if (InVal.first != 0 && InVal.second == CurrentGeneration) {
366        DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst << "  to: "
367              << *InVal.first << '\n');
368        if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
369        Inst->eraseFromParent();
370        Changed = true;
371        ++NumCSELoad;
372        continue;
373      }
374
375      // Otherwise, remember that we have this instruction.
376      AvailableLoads->insert(Inst->getOperand(0),
377                          std::pair<Value*, unsigned>(Inst, CurrentGeneration));
378      LastStore = 0;
379      continue;
380    }
381
382    // If this instruction may read from memory, forget LastStore.
383    if (Inst->mayReadFromMemory())
384      LastStore = 0;
385
386    // If this is a read-only call, process it.
387    if (CallValue::canHandle(Inst)) {
388      // If we have an available version of this call, and if it is the right
389      // generation, replace this instruction.
390      std::pair<Value*, unsigned> InVal = AvailableCalls->lookup(Inst);
391      if (InVal.first != 0 && InVal.second == CurrentGeneration) {
392        DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst << "  to: "
393                     << *InVal.first << '\n');
394        if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
395        Inst->eraseFromParent();
396        Changed = true;
397        ++NumCSECall;
398        continue;
399      }
400
401      // Otherwise, remember that we have this instruction.
402      AvailableCalls->insert(Inst,
403                         std::pair<Value*, unsigned>(Inst, CurrentGeneration));
404      continue;
405    }
406
407    // Okay, this isn't something we can CSE at all.  Check to see if it is
408    // something that could modify memory.  If so, our available memory values
409    // cannot be used so bump the generation count.
410    if (Inst->mayWriteToMemory()) {
411      ++CurrentGeneration;
412
413      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
414        // We do a trivial form of DSE if there are two stores to the same
415        // location with no intervening loads.  Delete the earlier store.
416        if (LastStore &&
417            LastStore->getPointerOperand() == SI->getPointerOperand()) {
418          DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore << "  due to: "
419                       << *Inst << '\n');
420          LastStore->eraseFromParent();
421          Changed = true;
422          ++NumDSE;
423          LastStore = 0;
424          continue;
425        }
426
427        // Okay, we just invalidated anything we knew about loaded values.  Try
428        // to salvage *something* by remembering that the stored value is a live
429        // version of the pointer.  It is safe to forward from volatile stores
430        // to non-volatile loads, so we don't have to check for volatility of
431        // the store.
432        AvailableLoads->insert(SI->getPointerOperand(),
433         std::pair<Value*, unsigned>(SI->getValueOperand(), CurrentGeneration));
434
435        // Remember that this was the last store we saw for DSE.
436        if (!SI->isVolatile())
437          LastStore = SI;
438      }
439    }
440  }
441
442  unsigned LiveOutGeneration = CurrentGeneration;
443  for (DomTreeNode::iterator I = Node->begin(), E = Node->end(); I != E; ++I) {
444    Changed |= processNode(*I);
445    // Pop any generation changes off the stack from the recursive walk.
446    CurrentGeneration = LiveOutGeneration;
447  }
448  return Changed;
449}
450
451
452bool EarlyCSE::runOnFunction(Function &F) {
453  TD = getAnalysisIfAvailable<TargetData>();
454  DT = &getAnalysis<DominatorTree>();
455
456  // Tables that the pass uses when walking the domtree.
457  ScopedHTType AVTable;
458  AvailableValues = &AVTable;
459  LoadHTType LoadTable;
460  AvailableLoads = &LoadTable;
461  CallHTType CallTable;
462  AvailableCalls = &CallTable;
463
464  CurrentGeneration = 0;
465  return processNode(DT->getRootNode());
466}
467