EarlyCSE.cpp revision 3574eca1b02600bac4e625297f4ecf745f4c4f32
1//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs a simple dominator tree walk that eliminates trivially
11// redundant instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "early-cse"
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/Instructions.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/Dominators.h"
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/DataLayout.h"
22#include "llvm/Target/TargetLibraryInfo.h"
23#include "llvm/Transforms/Utils/Local.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/RecyclingAllocator.h"
26#include "llvm/ADT/ScopedHashTable.h"
27#include "llvm/ADT/Statistic.h"
28#include <deque>
29using namespace llvm;
30
31STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
32STATISTIC(NumCSE,      "Number of instructions CSE'd");
33STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
34STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
35STATISTIC(NumDSE,      "Number of trivial dead stores removed");
36
37static unsigned getHash(const void *V) {
38  return DenseMapInfo<const void*>::getHashValue(V);
39}
40
41//===----------------------------------------------------------------------===//
42// SimpleValue
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// SimpleValue - Instances of this struct represent available values in the
47  /// scoped hash table.
48  struct SimpleValue {
49    Instruction *Inst;
50
51    SimpleValue(Instruction *I) : Inst(I) {
52      assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
53    }
54
55    bool isSentinel() const {
56      return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
57             Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
58    }
59
60    static bool canHandle(Instruction *Inst) {
61      // This can only handle non-void readnone functions.
62      if (CallInst *CI = dyn_cast<CallInst>(Inst))
63        return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
64      return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
65             isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
66             isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
67             isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
68             isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
69    }
70  };
71}
72
73namespace llvm {
74// SimpleValue is POD.
75template<> struct isPodLike<SimpleValue> {
76  static const bool value = true;
77};
78
79template<> struct DenseMapInfo<SimpleValue> {
80  static inline SimpleValue getEmptyKey() {
81    return DenseMapInfo<Instruction*>::getEmptyKey();
82  }
83  static inline SimpleValue getTombstoneKey() {
84    return DenseMapInfo<Instruction*>::getTombstoneKey();
85  }
86  static unsigned getHashValue(SimpleValue Val);
87  static bool isEqual(SimpleValue LHS, SimpleValue RHS);
88};
89}
90
91unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
92  Instruction *Inst = Val.Inst;
93
94  // Hash in all of the operands as pointers.
95  unsigned Res = 0;
96  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
97    Res ^= getHash(Inst->getOperand(i)) << (i & 0xF);
98
99  if (CastInst *CI = dyn_cast<CastInst>(Inst))
100    Res ^= getHash(CI->getType());
101  else if (CmpInst *CI = dyn_cast<CmpInst>(Inst))
102    Res ^= CI->getPredicate();
103  else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) {
104    for (ExtractValueInst::idx_iterator I = EVI->idx_begin(),
105         E = EVI->idx_end(); I != E; ++I)
106      Res ^= *I;
107  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) {
108    for (InsertValueInst::idx_iterator I = IVI->idx_begin(),
109         E = IVI->idx_end(); I != E; ++I)
110      Res ^= *I;
111  } else {
112    // nothing extra to hash in.
113    assert((isa<CallInst>(Inst) ||
114            isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
115            isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
116            isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst)) &&
117           "Invalid/unknown instruction");
118  }
119
120  // Mix in the opcode.
121  return (Res << 1) ^ Inst->getOpcode();
122}
123
124bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
125  Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
126
127  if (LHS.isSentinel() || RHS.isSentinel())
128    return LHSI == RHSI;
129
130  if (LHSI->getOpcode() != RHSI->getOpcode()) return false;
131  return LHSI->isIdenticalTo(RHSI);
132}
133
134//===----------------------------------------------------------------------===//
135// CallValue
136//===----------------------------------------------------------------------===//
137
138namespace {
139  /// CallValue - Instances of this struct represent available call values in
140  /// the scoped hash table.
141  struct CallValue {
142    Instruction *Inst;
143
144    CallValue(Instruction *I) : Inst(I) {
145      assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
146    }
147
148    bool isSentinel() const {
149      return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
150             Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
151    }
152
153    static bool canHandle(Instruction *Inst) {
154      // Don't value number anything that returns void.
155      if (Inst->getType()->isVoidTy())
156        return false;
157
158      CallInst *CI = dyn_cast<CallInst>(Inst);
159      if (CI == 0 || !CI->onlyReadsMemory())
160        return false;
161      return true;
162    }
163  };
164}
165
166namespace llvm {
167  // CallValue is POD.
168  template<> struct isPodLike<CallValue> {
169    static const bool value = true;
170  };
171
172  template<> struct DenseMapInfo<CallValue> {
173    static inline CallValue getEmptyKey() {
174      return DenseMapInfo<Instruction*>::getEmptyKey();
175    }
176    static inline CallValue getTombstoneKey() {
177      return DenseMapInfo<Instruction*>::getTombstoneKey();
178    }
179    static unsigned getHashValue(CallValue Val);
180    static bool isEqual(CallValue LHS, CallValue RHS);
181  };
182}
183unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
184  Instruction *Inst = Val.Inst;
185  // Hash in all of the operands as pointers.
186  unsigned Res = 0;
187  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) {
188    assert(!Inst->getOperand(i)->getType()->isMetadataTy() &&
189           "Cannot value number calls with metadata operands");
190    Res ^= getHash(Inst->getOperand(i)) << (i & 0xF);
191  }
192
193  // Mix in the opcode.
194  return (Res << 1) ^ Inst->getOpcode();
195}
196
197bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
198  Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
199  if (LHS.isSentinel() || RHS.isSentinel())
200    return LHSI == RHSI;
201  return LHSI->isIdenticalTo(RHSI);
202}
203
204
205//===----------------------------------------------------------------------===//
206// EarlyCSE pass.
207//===----------------------------------------------------------------------===//
208
209namespace {
210
211/// EarlyCSE - This pass does a simple depth-first walk over the dominator
212/// tree, eliminating trivially redundant instructions and using instsimplify
213/// to canonicalize things as it goes.  It is intended to be fast and catch
214/// obvious cases so that instcombine and other passes are more effective.  It
215/// is expected that a later pass of GVN will catch the interesting/hard
216/// cases.
217class EarlyCSE : public FunctionPass {
218public:
219  const DataLayout *TD;
220  const TargetLibraryInfo *TLI;
221  DominatorTree *DT;
222  typedef RecyclingAllocator<BumpPtrAllocator,
223                      ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy;
224  typedef ScopedHashTable<SimpleValue, Value*, DenseMapInfo<SimpleValue>,
225                          AllocatorTy> ScopedHTType;
226
227  /// AvailableValues - This scoped hash table contains the current values of
228  /// all of our simple scalar expressions.  As we walk down the domtree, we
229  /// look to see if instructions are in this: if so, we replace them with what
230  /// we find, otherwise we insert them so that dominated values can succeed in
231  /// their lookup.
232  ScopedHTType *AvailableValues;
233
234  /// AvailableLoads - This scoped hash table contains the current values
235  /// of loads.  This allows us to get efficient access to dominating loads when
236  /// we have a fully redundant load.  In addition to the most recent load, we
237  /// keep track of a generation count of the read, which is compared against
238  /// the current generation count.  The current generation count is
239  /// incremented after every possibly writing memory operation, which ensures
240  /// that we only CSE loads with other loads that have no intervening store.
241  typedef RecyclingAllocator<BumpPtrAllocator,
242    ScopedHashTableVal<Value*, std::pair<Value*, unsigned> > > LoadMapAllocator;
243  typedef ScopedHashTable<Value*, std::pair<Value*, unsigned>,
244                          DenseMapInfo<Value*>, LoadMapAllocator> LoadHTType;
245  LoadHTType *AvailableLoads;
246
247  /// AvailableCalls - This scoped hash table contains the current values
248  /// of read-only call values.  It uses the same generation count as loads.
249  typedef ScopedHashTable<CallValue, std::pair<Value*, unsigned> > CallHTType;
250  CallHTType *AvailableCalls;
251
252  /// CurrentGeneration - This is the current generation of the memory value.
253  unsigned CurrentGeneration;
254
255  static char ID;
256  explicit EarlyCSE() : FunctionPass(ID) {
257    initializeEarlyCSEPass(*PassRegistry::getPassRegistry());
258  }
259
260  bool runOnFunction(Function &F);
261
262private:
263
264  // NodeScope - almost a POD, but needs to call the constructors for the
265  // scoped hash tables so that a new scope gets pushed on. These are RAII so
266  // that the scope gets popped when the NodeScope is destroyed.
267  class NodeScope {
268   public:
269    NodeScope(ScopedHTType *availableValues,
270              LoadHTType *availableLoads,
271              CallHTType *availableCalls) :
272        Scope(*availableValues),
273        LoadScope(*availableLoads),
274        CallScope(*availableCalls) {}
275
276   private:
277    NodeScope(const NodeScope&) LLVM_DELETED_FUNCTION;
278    void operator=(const NodeScope&) LLVM_DELETED_FUNCTION;
279
280    ScopedHTType::ScopeTy Scope;
281    LoadHTType::ScopeTy LoadScope;
282    CallHTType::ScopeTy CallScope;
283  };
284
285  // StackNode - contains all the needed information to create a stack for
286  // doing a depth first tranversal of the tree. This includes scopes for
287  // values, loads, and calls as well as the generation. There is a child
288  // iterator so that the children do not need to be store spearately.
289  class StackNode {
290   public:
291    StackNode(ScopedHTType *availableValues,
292              LoadHTType *availableLoads,
293              CallHTType *availableCalls,
294              unsigned cg, DomTreeNode *n,
295              DomTreeNode::iterator child, DomTreeNode::iterator end) :
296        CurrentGeneration(cg), ChildGeneration(cg), Node(n),
297        ChildIter(child), EndIter(end),
298        Scopes(availableValues, availableLoads, availableCalls),
299        Processed(false) {}
300
301    // Accessors.
302    unsigned currentGeneration() { return CurrentGeneration; }
303    unsigned childGeneration() { return ChildGeneration; }
304    void childGeneration(unsigned generation) { ChildGeneration = generation; }
305    DomTreeNode *node() { return Node; }
306    DomTreeNode::iterator childIter() { return ChildIter; }
307    DomTreeNode *nextChild() {
308      DomTreeNode *child = *ChildIter;
309      ++ChildIter;
310      return child;
311    }
312    DomTreeNode::iterator end() { return EndIter; }
313    bool isProcessed() { return Processed; }
314    void process() { Processed = true; }
315
316   private:
317    StackNode(const StackNode&) LLVM_DELETED_FUNCTION;
318    void operator=(const StackNode&) LLVM_DELETED_FUNCTION;
319
320    // Members.
321    unsigned CurrentGeneration;
322    unsigned ChildGeneration;
323    DomTreeNode *Node;
324    DomTreeNode::iterator ChildIter;
325    DomTreeNode::iterator EndIter;
326    NodeScope Scopes;
327    bool Processed;
328  };
329
330  bool processNode(DomTreeNode *Node);
331
332  // This transformation requires dominator postdominator info
333  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
334    AU.addRequired<DominatorTree>();
335    AU.addRequired<TargetLibraryInfo>();
336    AU.setPreservesCFG();
337  }
338};
339}
340
341char EarlyCSE::ID = 0;
342
343// createEarlyCSEPass - The public interface to this file.
344FunctionPass *llvm::createEarlyCSEPass() {
345  return new EarlyCSE();
346}
347
348INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false)
349INITIALIZE_PASS_DEPENDENCY(DominatorTree)
350INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
351INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false)
352
353bool EarlyCSE::processNode(DomTreeNode *Node) {
354  BasicBlock *BB = Node->getBlock();
355
356  // If this block has a single predecessor, then the predecessor is the parent
357  // of the domtree node and all of the live out memory values are still current
358  // in this block.  If this block has multiple predecessors, then they could
359  // have invalidated the live-out memory values of our parent value.  For now,
360  // just be conservative and invalidate memory if this block has multiple
361  // predecessors.
362  if (BB->getSinglePredecessor() == 0)
363    ++CurrentGeneration;
364
365  /// LastStore - Keep track of the last non-volatile store that we saw... for
366  /// as long as there in no instruction that reads memory.  If we see a store
367  /// to the same location, we delete the dead store.  This zaps trivial dead
368  /// stores which can occur in bitfield code among other things.
369  StoreInst *LastStore = 0;
370
371  bool Changed = false;
372
373  // See if any instructions in the block can be eliminated.  If so, do it.  If
374  // not, add them to AvailableValues.
375  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
376    Instruction *Inst = I++;
377
378    // Dead instructions should just be removed.
379    if (isInstructionTriviallyDead(Inst, TLI)) {
380      DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
381      Inst->eraseFromParent();
382      Changed = true;
383      ++NumSimplify;
384      continue;
385    }
386
387    // If the instruction can be simplified (e.g. X+0 = X) then replace it with
388    // its simpler value.
389    if (Value *V = SimplifyInstruction(Inst, TD, TLI, DT)) {
390      DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << "  to: " << *V << '\n');
391      Inst->replaceAllUsesWith(V);
392      Inst->eraseFromParent();
393      Changed = true;
394      ++NumSimplify;
395      continue;
396    }
397
398    // If this is a simple instruction that we can value number, process it.
399    if (SimpleValue::canHandle(Inst)) {
400      // See if the instruction has an available value.  If so, use it.
401      if (Value *V = AvailableValues->lookup(Inst)) {
402        DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << "  to: " << *V << '\n');
403        Inst->replaceAllUsesWith(V);
404        Inst->eraseFromParent();
405        Changed = true;
406        ++NumCSE;
407        continue;
408      }
409
410      // Otherwise, just remember that this value is available.
411      AvailableValues->insert(Inst, Inst);
412      continue;
413    }
414
415    // If this is a non-volatile load, process it.
416    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
417      // Ignore volatile loads.
418      if (!LI->isSimple()) {
419        LastStore = 0;
420        continue;
421      }
422
423      // If we have an available version of this load, and if it is the right
424      // generation, replace this instruction.
425      std::pair<Value*, unsigned> InVal =
426        AvailableLoads->lookup(Inst->getOperand(0));
427      if (InVal.first != 0 && InVal.second == CurrentGeneration) {
428        DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst << "  to: "
429              << *InVal.first << '\n');
430        if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
431        Inst->eraseFromParent();
432        Changed = true;
433        ++NumCSELoad;
434        continue;
435      }
436
437      // Otherwise, remember that we have this instruction.
438      AvailableLoads->insert(Inst->getOperand(0),
439                          std::pair<Value*, unsigned>(Inst, CurrentGeneration));
440      LastStore = 0;
441      continue;
442    }
443
444    // If this instruction may read from memory, forget LastStore.
445    if (Inst->mayReadFromMemory())
446      LastStore = 0;
447
448    // If this is a read-only call, process it.
449    if (CallValue::canHandle(Inst)) {
450      // If we have an available version of this call, and if it is the right
451      // generation, replace this instruction.
452      std::pair<Value*, unsigned> InVal = AvailableCalls->lookup(Inst);
453      if (InVal.first != 0 && InVal.second == CurrentGeneration) {
454        DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst << "  to: "
455                     << *InVal.first << '\n');
456        if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
457        Inst->eraseFromParent();
458        Changed = true;
459        ++NumCSECall;
460        continue;
461      }
462
463      // Otherwise, remember that we have this instruction.
464      AvailableCalls->insert(Inst,
465                         std::pair<Value*, unsigned>(Inst, CurrentGeneration));
466      continue;
467    }
468
469    // Okay, this isn't something we can CSE at all.  Check to see if it is
470    // something that could modify memory.  If so, our available memory values
471    // cannot be used so bump the generation count.
472    if (Inst->mayWriteToMemory()) {
473      ++CurrentGeneration;
474
475      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
476        // We do a trivial form of DSE if there are two stores to the same
477        // location with no intervening loads.  Delete the earlier store.
478        if (LastStore &&
479            LastStore->getPointerOperand() == SI->getPointerOperand()) {
480          DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore << "  due to: "
481                       << *Inst << '\n');
482          LastStore->eraseFromParent();
483          Changed = true;
484          ++NumDSE;
485          LastStore = 0;
486          continue;
487        }
488
489        // Okay, we just invalidated anything we knew about loaded values.  Try
490        // to salvage *something* by remembering that the stored value is a live
491        // version of the pointer.  It is safe to forward from volatile stores
492        // to non-volatile loads, so we don't have to check for volatility of
493        // the store.
494        AvailableLoads->insert(SI->getPointerOperand(),
495         std::pair<Value*, unsigned>(SI->getValueOperand(), CurrentGeneration));
496
497        // Remember that this was the last store we saw for DSE.
498        if (SI->isSimple())
499          LastStore = SI;
500      }
501    }
502  }
503
504  return Changed;
505}
506
507
508bool EarlyCSE::runOnFunction(Function &F) {
509  std::deque<StackNode *> nodesToProcess;
510
511  TD = getAnalysisIfAvailable<DataLayout>();
512  TLI = &getAnalysis<TargetLibraryInfo>();
513  DT = &getAnalysis<DominatorTree>();
514
515  // Tables that the pass uses when walking the domtree.
516  ScopedHTType AVTable;
517  AvailableValues = &AVTable;
518  LoadHTType LoadTable;
519  AvailableLoads = &LoadTable;
520  CallHTType CallTable;
521  AvailableCalls = &CallTable;
522
523  CurrentGeneration = 0;
524  bool Changed = false;
525
526  // Process the root node.
527  nodesToProcess.push_front(
528      new StackNode(AvailableValues, AvailableLoads, AvailableCalls,
529                    CurrentGeneration, DT->getRootNode(),
530                    DT->getRootNode()->begin(),
531                    DT->getRootNode()->end()));
532
533  // Save the current generation.
534  unsigned LiveOutGeneration = CurrentGeneration;
535
536  // Process the stack.
537  while (!nodesToProcess.empty()) {
538    // Grab the first item off the stack. Set the current generation, remove
539    // the node from the stack, and process it.
540    StackNode *NodeToProcess = nodesToProcess.front();
541
542    // Initialize class members.
543    CurrentGeneration = NodeToProcess->currentGeneration();
544
545    // Check if the node needs to be processed.
546    if (!NodeToProcess->isProcessed()) {
547      // Process the node.
548      Changed |= processNode(NodeToProcess->node());
549      NodeToProcess->childGeneration(CurrentGeneration);
550      NodeToProcess->process();
551    } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
552      // Push the next child onto the stack.
553      DomTreeNode *child = NodeToProcess->nextChild();
554      nodesToProcess.push_front(
555          new StackNode(AvailableValues,
556                        AvailableLoads,
557                        AvailableCalls,
558                        NodeToProcess->childGeneration(), child,
559                        child->begin(), child->end()));
560    } else {
561      // It has been processed, and there are no more children to process,
562      // so delete it and pop it off the stack.
563      delete NodeToProcess;
564      nodesToProcess.pop_front();
565    }
566  } // while (!nodes...)
567
568  // Reset the current generation.
569  CurrentGeneration = LiveOutGeneration;
570
571  return Changed;
572}
573