EarlyCSE.cpp revision a60a8b0eb773eabb3ad83e610e737efda525a0da
1//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs a simple dominator tree walk that eliminates trivially
11// redundant instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "early-cse"
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/Instructions.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/Dominators.h"
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/Transforms/Utils/Local.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/RecyclingAllocator.h"
25#include "llvm/ADT/ScopedHashTable.h"
26#include "llvm/ADT/Statistic.h"
27using namespace llvm;
28
29STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
30STATISTIC(NumCSE,      "Number of instructions CSE'd");
31STATISTIC(NumCSEMem,   "Number of load and call instructions CSE'd");
32
33static unsigned getHash(const void *V) {
34  return DenseMapInfo<const void*>::getHashValue(V);
35}
36
37//===----------------------------------------------------------------------===//
38// SimpleValue
39//===----------------------------------------------------------------------===//
40
41namespace {
42  /// SimpleValue - Instances of this struct represent available values in the
43  /// scoped hash table.
44  struct SimpleValue {
45    Instruction *Inst;
46
47    SimpleValue(Instruction *I) : Inst(I) {
48      assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
49    }
50
51    bool isSentinel() const {
52      return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
53             Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
54    }
55
56    static bool canHandle(Instruction *Inst) {
57      return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
58             isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
59             isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
60             isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
61             isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
62    }
63  };
64}
65
66namespace llvm {
67// SimpleValue is POD.
68template<> struct isPodLike<SimpleValue> {
69  static const bool value = true;
70};
71
72template<> struct DenseMapInfo<SimpleValue> {
73  static inline SimpleValue getEmptyKey() {
74    return DenseMapInfo<Instruction*>::getEmptyKey();
75  }
76  static inline SimpleValue getTombstoneKey() {
77    return DenseMapInfo<Instruction*>::getTombstoneKey();
78  }
79  static unsigned getHashValue(SimpleValue Val);
80  static bool isEqual(SimpleValue LHS, SimpleValue RHS);
81};
82}
83
84unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
85  Instruction *Inst = Val.Inst;
86
87  // Hash in all of the operands as pointers.
88  unsigned Res = 0;
89  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
90    Res ^= getHash(Inst->getOperand(i)) << i;
91
92  if (CastInst *CI = dyn_cast<CastInst>(Inst))
93    Res ^= getHash(CI->getType());
94  else if (CmpInst *CI = dyn_cast<CmpInst>(Inst))
95    Res ^= CI->getPredicate();
96  else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) {
97    for (ExtractValueInst::idx_iterator I = EVI->idx_begin(),
98         E = EVI->idx_end(); I != E; ++I)
99      Res ^= *I;
100  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) {
101    for (InsertValueInst::idx_iterator I = IVI->idx_begin(),
102         E = IVI->idx_end(); I != E; ++I)
103      Res ^= *I;
104  } else {
105    // nothing extra to hash in.
106    assert((isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
107            isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
108            isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst)) &&
109           "Invalid/unknown instruction");
110  }
111
112  // Mix in the opcode.
113  return (Res << 1) ^ Inst->getOpcode();
114}
115
116bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
117  Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
118
119  if (LHS.isSentinel() || RHS.isSentinel())
120    return LHSI == RHSI;
121
122  if (LHSI->getOpcode() != RHSI->getOpcode()) return false;
123  return LHSI->isIdenticalTo(RHSI);
124}
125
126//===----------------------------------------------------------------------===//
127// MemoryValue
128//===----------------------------------------------------------------------===//
129
130namespace {
131  /// MemoryValue - Instances of this struct represent available load and call
132  /// values in the scoped hash table.
133  struct MemoryValue {
134    Instruction *Inst;
135
136    MemoryValue(Instruction *I) : Inst(I) {
137      assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
138    }
139
140    bool isSentinel() const {
141      return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
142             Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
143    }
144
145    static bool canHandle(Instruction *Inst) {
146      if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
147        return !LI->isVolatile();
148      if (CallInst *CI = dyn_cast<CallInst>(Inst))
149        return CI->onlyReadsMemory();
150      return false;
151    }
152  };
153}
154
155namespace llvm {
156  // MemoryValue is POD.
157  template<> struct isPodLike<MemoryValue> {
158    static const bool value = true;
159  };
160
161  template<> struct DenseMapInfo<MemoryValue> {
162    static inline MemoryValue getEmptyKey() {
163      return DenseMapInfo<Instruction*>::getEmptyKey();
164    }
165    static inline MemoryValue getTombstoneKey() {
166      return DenseMapInfo<Instruction*>::getTombstoneKey();
167    }
168    static unsigned getHashValue(MemoryValue Val);
169    static bool isEqual(MemoryValue LHS, MemoryValue RHS);
170  };
171}
172unsigned DenseMapInfo<MemoryValue>::getHashValue(MemoryValue Val) {
173  Instruction *Inst = Val.Inst;
174  // Hash in all of the operands as pointers.
175  unsigned Res = 0;
176  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
177    Res ^= getHash(Inst->getOperand(i)) << i;
178  // Mix in the opcode.
179  return (Res << 1) ^ Inst->getOpcode();
180}
181
182bool DenseMapInfo<MemoryValue>::isEqual(MemoryValue LHS, MemoryValue RHS) {
183  Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
184
185  if (LHS.isSentinel() || RHS.isSentinel())
186    return LHSI == RHSI;
187
188  if (LHSI->getOpcode() != RHSI->getOpcode()) return false;
189  return LHSI->isIdenticalTo(RHSI);
190}
191
192
193//===----------------------------------------------------------------------===//
194// EarlyCSE pass.
195//===----------------------------------------------------------------------===//
196
197namespace {
198
199/// EarlyCSE - This pass does a simple depth-first walk over the dominator
200/// tree, eliminating trivially redundant instructions and using instsimplify
201/// to canonicalize things as it goes.  It is intended to be fast and catch
202/// obvious cases so that instcombine and other passes are more effective.  It
203/// is expected that a later pass of GVN will catch the interesting/hard
204/// cases.
205class EarlyCSE : public FunctionPass {
206public:
207  const TargetData *TD;
208  DominatorTree *DT;
209  typedef RecyclingAllocator<BumpPtrAllocator,
210                      ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy;
211  typedef ScopedHashTable<SimpleValue, Value*, DenseMapInfo<SimpleValue>,
212                          AllocatorTy> ScopedHTType;
213
214  /// AvailableValues - This scoped hash table contains the current values of
215  /// all of our simple scalar expressions.  As we walk down the domtree, we
216  /// look to see if instructions are in this: if so, we replace them with what
217  /// we find, otherwise we insert them so that dominated values can succeed in
218  /// their lookup.
219  ScopedHTType *AvailableValues;
220
221  typedef ScopedHashTable<MemoryValue, std::pair<Value*, unsigned> > MemHTType;
222  /// AvailableMemValues - This scoped hash table contains the current values of
223  /// loads and other read-only memory values.  This allows us to get efficient
224  /// access to dominating loads we we find a fully redundant load.  In addition
225  /// to the most recent load, we keep track of a generation count of the read,
226  /// which is compared against the current generation count.  The current
227  /// generation count is  incremented after every possibly writing memory
228  /// operation, which ensures that we only CSE loads with other loads that have
229  /// no intervening store.
230  MemHTType *AvailableMemValues;
231
232  /// CurrentGeneration - This is the current generation of the memory value.
233  unsigned CurrentGeneration;
234
235  static char ID;
236  explicit EarlyCSE() : FunctionPass(ID) {
237    initializeEarlyCSEPass(*PassRegistry::getPassRegistry());
238  }
239
240  bool runOnFunction(Function &F);
241
242private:
243
244  bool processNode(DomTreeNode *Node);
245
246  // This transformation requires dominator postdominator info
247  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
248    AU.addRequired<DominatorTree>();
249    AU.setPreservesCFG();
250  }
251};
252}
253
254char EarlyCSE::ID = 0;
255
256// createEarlyCSEPass - The public interface to this file.
257FunctionPass *llvm::createEarlyCSEPass() {
258  return new EarlyCSE();
259}
260
261INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false)
262INITIALIZE_PASS_DEPENDENCY(DominatorTree)
263INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false)
264
265bool EarlyCSE::processNode(DomTreeNode *Node) {
266  // Define a scope in the scoped hash table.  When we are done processing this
267  // domtree node and recurse back up to our parent domtree node, this will pop
268  // off all the values we install.
269  ScopedHTType::ScopeTy Scope(*AvailableValues);
270
271  // Define a scope for the memory values so that anything we add will get
272  // popped when we recurse back up to our parent domtree node.
273  MemHTType::ScopeTy MemScope(*AvailableMemValues);
274
275  BasicBlock *BB = Node->getBlock();
276
277  // If this block has a single predecessor, then the predecessor is the parent
278  // of the domtree node and all of the live out memory values are still current
279  // in this block.  If this block has multiple predecessors, then they could
280  // have invalidated the live-out memory values of our parent value.  For now,
281  // just be conservative and invalidate memory if this block has multiple
282  // predecessors.
283  if (BB->getSinglePredecessor() == 0)
284    ++CurrentGeneration;
285
286  bool Changed = false;
287
288  // See if any instructions in the block can be eliminated.  If so, do it.  If
289  // not, add them to AvailableValues.
290  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
291    Instruction *Inst = I++;
292
293    // Dead instructions should just be removed.
294    if (isInstructionTriviallyDead(Inst)) {
295      DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
296      Inst->eraseFromParent();
297      Changed = true;
298      ++NumSimplify;
299      continue;
300    }
301
302    // If the instruction can be simplified (e.g. X+0 = X) then replace it with
303    // its simpler value.
304    if (Value *V = SimplifyInstruction(Inst, TD, DT)) {
305      DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << "  to: " << *V << '\n');
306      Inst->replaceAllUsesWith(V);
307      Inst->eraseFromParent();
308      Changed = true;
309      ++NumSimplify;
310      continue;
311    }
312
313    // If this is a simple instruction that we can value number, process it.
314    if (SimpleValue::canHandle(Inst)) {
315      // See if the instruction has an available value.  If so, use it.
316      if (Value *V = AvailableValues->lookup(Inst)) {
317        DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << "  to: " << *V << '\n');
318        Inst->replaceAllUsesWith(V);
319        Inst->eraseFromParent();
320        Changed = true;
321        ++NumCSE;
322        continue;
323      }
324
325      // Otherwise, just remember that this value is available.
326      AvailableValues->insert(Inst, Inst);
327      continue;
328    }
329
330    // If this is a read-only memory value, process it.
331    if (MemoryValue::canHandle(Inst)) {
332      // If we have an available version of this value, and if it is the right
333      // generation, replace this instruction.
334      std::pair<Value*, unsigned> InVal = AvailableMemValues->lookup(Inst);
335      if (InVal.first != 0 && InVal.second == CurrentGeneration) {
336        DEBUG(dbgs() << "EarlyCSE CSE MEM: " << *Inst << "  to: "
337                     << *InVal.first << '\n');
338        if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
339        Inst->eraseFromParent();
340        Changed = true;
341        ++NumCSEMem;
342        continue;
343      }
344
345      // Otherwise, remember that we have this instruction.
346      AvailableMemValues->insert(Inst,
347                         std::pair<Value*, unsigned>(Inst, CurrentGeneration));
348      continue;
349    }
350
351    // Okay, this isn't something we can CSE at all.  Check to see if it is
352    // something that could modify memory.  If so, our available memory values
353    // cannot be used so bump the generation count.
354    if (Inst->mayWriteToMemory())
355      ++CurrentGeneration;
356  }
357
358  unsigned LiveOutGeneration = CurrentGeneration;
359  for (DomTreeNode::iterator I = Node->begin(), E = Node->end(); I != E; ++I) {
360    Changed |= processNode(*I);
361    // Pop any generation changes off the stack from the recursive walk.
362    CurrentGeneration = LiveOutGeneration;
363  }
364  return Changed;
365}
366
367
368bool EarlyCSE::runOnFunction(Function &F) {
369  TD = getAnalysisIfAvailable<TargetData>();
370  DT = &getAnalysis<DominatorTree>();
371  ScopedHTType AVTable;
372  AvailableValues = &AVTable;
373
374  MemHTType MemTable;
375  AvailableMemValues = &MemTable;
376
377  CurrentGeneration = 0;
378  return processNode(DT->getRootNode());
379}
380