GVN.cpp revision 03f17da4dade799132a3224f194779d342a96722
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Value.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/PostOrderIterator.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/Analysis/ConstantFolding.h"
36#include "llvm/Analysis/Dominators.h"
37#include "llvm/Analysis/MemoryBuiltins.h"
38#include "llvm/Analysis/MemoryDependenceAnalysis.h"
39#include "llvm/Analysis/PHITransAddr.h"
40#include "llvm/Support/CFG.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/GetElementPtrTypeIterator.h"
45#include "llvm/Support/IRBuilder.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Transforms/Utils/Local.h"
50#include "llvm/Transforms/Utils/SSAUpdater.h"
51#include <cstdio>
52using namespace llvm;
53
54STATISTIC(NumGVNInstr,  "Number of instructions deleted");
55STATISTIC(NumGVNLoad,   "Number of loads deleted");
56STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
57STATISTIC(NumGVNBlocks, "Number of blocks merged");
58STATISTIC(NumPRELoad,   "Number of loads PRE'd");
59
60static cl::opt<bool> EnablePRE("enable-pre",
61                               cl::init(true), cl::Hidden);
62static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
63
64//===----------------------------------------------------------------------===//
65//                         ValueTable Class
66//===----------------------------------------------------------------------===//
67
68/// This class holds the mapping between values and value numbers.  It is used
69/// as an efficient mechanism to determine the expression-wise equivalence of
70/// two values.
71namespace {
72  struct Expression {
73    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
74                            UDIV, SDIV, FDIV, UREM, SREM,
75                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
76                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
77                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
78                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
79                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
80                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
81                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
82                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
83                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
84                            INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
85
86    ExpressionOpcode opcode;
87    const Type* type;
88    SmallVector<uint32_t, 4> varargs;
89    Value *function;
90
91    Expression() { }
92    Expression(ExpressionOpcode o) : opcode(o) { }
93
94    bool operator==(const Expression &other) const {
95      if (opcode != other.opcode)
96        return false;
97      else if (opcode == EMPTY || opcode == TOMBSTONE)
98        return true;
99      else if (type != other.type)
100        return false;
101      else if (function != other.function)
102        return false;
103      else {
104        if (varargs.size() != other.varargs.size())
105          return false;
106
107        for (size_t i = 0; i < varargs.size(); ++i)
108          if (varargs[i] != other.varargs[i])
109            return false;
110
111        return true;
112      }
113    }
114
115    bool operator!=(const Expression &other) const {
116      return !(*this == other);
117    }
118  };
119
120  class ValueTable {
121    private:
122      DenseMap<Value*, uint32_t> valueNumbering;
123      DenseMap<Expression, uint32_t> expressionNumbering;
124      AliasAnalysis* AA;
125      MemoryDependenceAnalysis* MD;
126      DominatorTree* DT;
127
128      uint32_t nextValueNumber;
129
130      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
131      Expression::ExpressionOpcode getOpcode(CmpInst* C);
132      Expression::ExpressionOpcode getOpcode(CastInst* C);
133      Expression create_expression(BinaryOperator* BO);
134      Expression create_expression(CmpInst* C);
135      Expression create_expression(ShuffleVectorInst* V);
136      Expression create_expression(ExtractElementInst* C);
137      Expression create_expression(InsertElementInst* V);
138      Expression create_expression(SelectInst* V);
139      Expression create_expression(CastInst* C);
140      Expression create_expression(GetElementPtrInst* G);
141      Expression create_expression(CallInst* C);
142      Expression create_expression(Constant* C);
143      Expression create_expression(ExtractValueInst* C);
144      Expression create_expression(InsertValueInst* C);
145
146      uint32_t lookup_or_add_call(CallInst* C);
147    public:
148      ValueTable() : nextValueNumber(1) { }
149      uint32_t lookup_or_add(Value *V);
150      uint32_t lookup(Value *V) const;
151      void add(Value *V, uint32_t num);
152      void clear();
153      void erase(Value *v);
154      unsigned size();
155      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
156      AliasAnalysis *getAliasAnalysis() const { return AA; }
157      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
158      void setDomTree(DominatorTree* D) { DT = D; }
159      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
160      void verifyRemoved(const Value *) const;
161  };
162}
163
164namespace llvm {
165template <> struct DenseMapInfo<Expression> {
166  static inline Expression getEmptyKey() {
167    return Expression(Expression::EMPTY);
168  }
169
170  static inline Expression getTombstoneKey() {
171    return Expression(Expression::TOMBSTONE);
172  }
173
174  static unsigned getHashValue(const Expression e) {
175    unsigned hash = e.opcode;
176
177    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
178            (unsigned)((uintptr_t)e.type >> 9));
179
180    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
181         E = e.varargs.end(); I != E; ++I)
182      hash = *I + hash * 37;
183
184    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
185            (unsigned)((uintptr_t)e.function >> 9)) +
186           hash * 37;
187
188    return hash;
189  }
190  static bool isEqual(const Expression &LHS, const Expression &RHS) {
191    return LHS == RHS;
192  }
193  static bool isPod() { return true; }
194};
195}
196
197//===----------------------------------------------------------------------===//
198//                     ValueTable Internal Functions
199//===----------------------------------------------------------------------===//
200Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
201  switch(BO->getOpcode()) {
202  default: // THIS SHOULD NEVER HAPPEN
203    llvm_unreachable("Binary operator with unknown opcode?");
204  case Instruction::Add:  return Expression::ADD;
205  case Instruction::FAdd: return Expression::FADD;
206  case Instruction::Sub:  return Expression::SUB;
207  case Instruction::FSub: return Expression::FSUB;
208  case Instruction::Mul:  return Expression::MUL;
209  case Instruction::FMul: return Expression::FMUL;
210  case Instruction::UDiv: return Expression::UDIV;
211  case Instruction::SDiv: return Expression::SDIV;
212  case Instruction::FDiv: return Expression::FDIV;
213  case Instruction::URem: return Expression::UREM;
214  case Instruction::SRem: return Expression::SREM;
215  case Instruction::FRem: return Expression::FREM;
216  case Instruction::Shl:  return Expression::SHL;
217  case Instruction::LShr: return Expression::LSHR;
218  case Instruction::AShr: return Expression::ASHR;
219  case Instruction::And:  return Expression::AND;
220  case Instruction::Or:   return Expression::OR;
221  case Instruction::Xor:  return Expression::XOR;
222  }
223}
224
225Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
226  if (isa<ICmpInst>(C)) {
227    switch (C->getPredicate()) {
228    default:  // THIS SHOULD NEVER HAPPEN
229      llvm_unreachable("Comparison with unknown predicate?");
230    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
231    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
232    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
233    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
234    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
235    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
236    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
237    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
238    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
239    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
240    }
241  } else {
242    switch (C->getPredicate()) {
243    default: // THIS SHOULD NEVER HAPPEN
244      llvm_unreachable("Comparison with unknown predicate?");
245    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
246    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
247    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
248    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
249    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
250    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
251    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
252    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
253    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
254    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
255    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
256    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
257    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
258    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
259    }
260  }
261}
262
263Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
264  switch(C->getOpcode()) {
265  default: // THIS SHOULD NEVER HAPPEN
266    llvm_unreachable("Cast operator with unknown opcode?");
267  case Instruction::Trunc:    return Expression::TRUNC;
268  case Instruction::ZExt:     return Expression::ZEXT;
269  case Instruction::SExt:     return Expression::SEXT;
270  case Instruction::FPToUI:   return Expression::FPTOUI;
271  case Instruction::FPToSI:   return Expression::FPTOSI;
272  case Instruction::UIToFP:   return Expression::UITOFP;
273  case Instruction::SIToFP:   return Expression::SITOFP;
274  case Instruction::FPTrunc:  return Expression::FPTRUNC;
275  case Instruction::FPExt:    return Expression::FPEXT;
276  case Instruction::PtrToInt: return Expression::PTRTOINT;
277  case Instruction::IntToPtr: return Expression::INTTOPTR;
278  case Instruction::BitCast:  return Expression::BITCAST;
279  }
280}
281
282Expression ValueTable::create_expression(CallInst* C) {
283  Expression e;
284
285  e.type = C->getType();
286  e.function = C->getCalledFunction();
287  e.opcode = Expression::CALL;
288
289  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
290       I != E; ++I)
291    e.varargs.push_back(lookup_or_add(*I));
292
293  return e;
294}
295
296Expression ValueTable::create_expression(BinaryOperator* BO) {
297  Expression e;
298  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
299  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
300  e.function = 0;
301  e.type = BO->getType();
302  e.opcode = getOpcode(BO);
303
304  return e;
305}
306
307Expression ValueTable::create_expression(CmpInst* C) {
308  Expression e;
309
310  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
311  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
312  e.function = 0;
313  e.type = C->getType();
314  e.opcode = getOpcode(C);
315
316  return e;
317}
318
319Expression ValueTable::create_expression(CastInst* C) {
320  Expression e;
321
322  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
323  e.function = 0;
324  e.type = C->getType();
325  e.opcode = getOpcode(C);
326
327  return e;
328}
329
330Expression ValueTable::create_expression(ShuffleVectorInst* S) {
331  Expression e;
332
333  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
334  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
335  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
336  e.function = 0;
337  e.type = S->getType();
338  e.opcode = Expression::SHUFFLE;
339
340  return e;
341}
342
343Expression ValueTable::create_expression(ExtractElementInst* E) {
344  Expression e;
345
346  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
347  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
348  e.function = 0;
349  e.type = E->getType();
350  e.opcode = Expression::EXTRACT;
351
352  return e;
353}
354
355Expression ValueTable::create_expression(InsertElementInst* I) {
356  Expression e;
357
358  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
359  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
360  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
361  e.function = 0;
362  e.type = I->getType();
363  e.opcode = Expression::INSERT;
364
365  return e;
366}
367
368Expression ValueTable::create_expression(SelectInst* I) {
369  Expression e;
370
371  e.varargs.push_back(lookup_or_add(I->getCondition()));
372  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
373  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
374  e.function = 0;
375  e.type = I->getType();
376  e.opcode = Expression::SELECT;
377
378  return e;
379}
380
381Expression ValueTable::create_expression(GetElementPtrInst* G) {
382  Expression e;
383
384  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
385  e.function = 0;
386  e.type = G->getType();
387  e.opcode = Expression::GEP;
388
389  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
390       I != E; ++I)
391    e.varargs.push_back(lookup_or_add(*I));
392
393  return e;
394}
395
396Expression ValueTable::create_expression(ExtractValueInst* E) {
397  Expression e;
398
399  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
400  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
401       II != IE; ++II)
402    e.varargs.push_back(*II);
403  e.function = 0;
404  e.type = E->getType();
405  e.opcode = Expression::EXTRACTVALUE;
406
407  return e;
408}
409
410Expression ValueTable::create_expression(InsertValueInst* E) {
411  Expression e;
412
413  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
414  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
415  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
416       II != IE; ++II)
417    e.varargs.push_back(*II);
418  e.function = 0;
419  e.type = E->getType();
420  e.opcode = Expression::INSERTVALUE;
421
422  return e;
423}
424
425//===----------------------------------------------------------------------===//
426//                     ValueTable External Functions
427//===----------------------------------------------------------------------===//
428
429/// add - Insert a value into the table with a specified value number.
430void ValueTable::add(Value *V, uint32_t num) {
431  valueNumbering.insert(std::make_pair(V, num));
432}
433
434uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
435  if (AA->doesNotAccessMemory(C)) {
436    Expression exp = create_expression(C);
437    uint32_t& e = expressionNumbering[exp];
438    if (!e) e = nextValueNumber++;
439    valueNumbering[C] = e;
440    return e;
441  } else if (AA->onlyReadsMemory(C)) {
442    Expression exp = create_expression(C);
443    uint32_t& e = expressionNumbering[exp];
444    if (!e) {
445      e = nextValueNumber++;
446      valueNumbering[C] = e;
447      return e;
448    }
449    if (!MD) {
450      e = nextValueNumber++;
451      valueNumbering[C] = e;
452      return e;
453    }
454
455    MemDepResult local_dep = MD->getDependency(C);
456
457    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
458      valueNumbering[C] =  nextValueNumber;
459      return nextValueNumber++;
460    }
461
462    if (local_dep.isDef()) {
463      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
464
465      if (local_cdep->getNumOperands() != C->getNumOperands()) {
466        valueNumbering[C] = nextValueNumber;
467        return nextValueNumber++;
468      }
469
470      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
471        uint32_t c_vn = lookup_or_add(C->getOperand(i));
472        uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
473        if (c_vn != cd_vn) {
474          valueNumbering[C] = nextValueNumber;
475          return nextValueNumber++;
476        }
477      }
478
479      uint32_t v = lookup_or_add(local_cdep);
480      valueNumbering[C] = v;
481      return v;
482    }
483
484    // Non-local case.
485    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
486      MD->getNonLocalCallDependency(CallSite(C));
487    // FIXME: call/call dependencies for readonly calls should return def, not
488    // clobber!  Move the checking logic to MemDep!
489    CallInst* cdep = 0;
490
491    // Check to see if we have a single dominating call instruction that is
492    // identical to C.
493    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
494      const NonLocalDepEntry *I = &deps[i];
495      // Ignore non-local dependencies.
496      if (I->getResult().isNonLocal())
497        continue;
498
499      // We don't handle non-depedencies.  If we already have a call, reject
500      // instruction dependencies.
501      if (I->getResult().isClobber() || cdep != 0) {
502        cdep = 0;
503        break;
504      }
505
506      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
507      // FIXME: All duplicated with non-local case.
508      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
509        cdep = NonLocalDepCall;
510        continue;
511      }
512
513      cdep = 0;
514      break;
515    }
516
517    if (!cdep) {
518      valueNumbering[C] = nextValueNumber;
519      return nextValueNumber++;
520    }
521
522    if (cdep->getNumOperands() != C->getNumOperands()) {
523      valueNumbering[C] = nextValueNumber;
524      return nextValueNumber++;
525    }
526    for (unsigned i = 1; i < C->getNumOperands(); ++i) {
527      uint32_t c_vn = lookup_or_add(C->getOperand(i));
528      uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
529      if (c_vn != cd_vn) {
530        valueNumbering[C] = nextValueNumber;
531        return nextValueNumber++;
532      }
533    }
534
535    uint32_t v = lookup_or_add(cdep);
536    valueNumbering[C] = v;
537    return v;
538
539  } else {
540    valueNumbering[C] = nextValueNumber;
541    return nextValueNumber++;
542  }
543}
544
545/// lookup_or_add - Returns the value number for the specified value, assigning
546/// it a new number if it did not have one before.
547uint32_t ValueTable::lookup_or_add(Value *V) {
548  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
549  if (VI != valueNumbering.end())
550    return VI->second;
551
552  if (!isa<Instruction>(V)) {
553    valueNumbering[V] = nextValueNumber;
554    return nextValueNumber++;
555  }
556
557  Instruction* I = cast<Instruction>(V);
558  Expression exp;
559  switch (I->getOpcode()) {
560    case Instruction::Call:
561      return lookup_or_add_call(cast<CallInst>(I));
562    case Instruction::Add:
563    case Instruction::FAdd:
564    case Instruction::Sub:
565    case Instruction::FSub:
566    case Instruction::Mul:
567    case Instruction::FMul:
568    case Instruction::UDiv:
569    case Instruction::SDiv:
570    case Instruction::FDiv:
571    case Instruction::URem:
572    case Instruction::SRem:
573    case Instruction::FRem:
574    case Instruction::Shl:
575    case Instruction::LShr:
576    case Instruction::AShr:
577    case Instruction::And:
578    case Instruction::Or :
579    case Instruction::Xor:
580      exp = create_expression(cast<BinaryOperator>(I));
581      break;
582    case Instruction::ICmp:
583    case Instruction::FCmp:
584      exp = create_expression(cast<CmpInst>(I));
585      break;
586    case Instruction::Trunc:
587    case Instruction::ZExt:
588    case Instruction::SExt:
589    case Instruction::FPToUI:
590    case Instruction::FPToSI:
591    case Instruction::UIToFP:
592    case Instruction::SIToFP:
593    case Instruction::FPTrunc:
594    case Instruction::FPExt:
595    case Instruction::PtrToInt:
596    case Instruction::IntToPtr:
597    case Instruction::BitCast:
598      exp = create_expression(cast<CastInst>(I));
599      break;
600    case Instruction::Select:
601      exp = create_expression(cast<SelectInst>(I));
602      break;
603    case Instruction::ExtractElement:
604      exp = create_expression(cast<ExtractElementInst>(I));
605      break;
606    case Instruction::InsertElement:
607      exp = create_expression(cast<InsertElementInst>(I));
608      break;
609    case Instruction::ShuffleVector:
610      exp = create_expression(cast<ShuffleVectorInst>(I));
611      break;
612    case Instruction::ExtractValue:
613      exp = create_expression(cast<ExtractValueInst>(I));
614      break;
615    case Instruction::InsertValue:
616      exp = create_expression(cast<InsertValueInst>(I));
617      break;
618    case Instruction::GetElementPtr:
619      exp = create_expression(cast<GetElementPtrInst>(I));
620      break;
621    default:
622      valueNumbering[V] = nextValueNumber;
623      return nextValueNumber++;
624  }
625
626  uint32_t& e = expressionNumbering[exp];
627  if (!e) e = nextValueNumber++;
628  valueNumbering[V] = e;
629  return e;
630}
631
632/// lookup - Returns the value number of the specified value. Fails if
633/// the value has not yet been numbered.
634uint32_t ValueTable::lookup(Value *V) const {
635  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
636  assert(VI != valueNumbering.end() && "Value not numbered?");
637  return VI->second;
638}
639
640/// clear - Remove all entries from the ValueTable
641void ValueTable::clear() {
642  valueNumbering.clear();
643  expressionNumbering.clear();
644  nextValueNumber = 1;
645}
646
647/// erase - Remove a value from the value numbering
648void ValueTable::erase(Value *V) {
649  valueNumbering.erase(V);
650}
651
652/// verifyRemoved - Verify that the value is removed from all internal data
653/// structures.
654void ValueTable::verifyRemoved(const Value *V) const {
655  for (DenseMap<Value*, uint32_t>::const_iterator
656         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
657    assert(I->first != V && "Inst still occurs in value numbering map!");
658  }
659}
660
661//===----------------------------------------------------------------------===//
662//                                GVN Pass
663//===----------------------------------------------------------------------===//
664
665namespace {
666  struct ValueNumberScope {
667    ValueNumberScope* parent;
668    DenseMap<uint32_t, Value*> table;
669
670    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
671  };
672}
673
674namespace {
675
676  class GVN : public FunctionPass {
677    bool runOnFunction(Function &F);
678  public:
679    static char ID; // Pass identification, replacement for typeid
680    explicit GVN(bool nopre = false, bool noloads = false)
681      : FunctionPass(&ID), NoPRE(nopre), NoLoads(noloads), MD(0) { }
682
683  private:
684    bool NoPRE;
685    bool NoLoads;
686    MemoryDependenceAnalysis *MD;
687    DominatorTree *DT;
688
689    ValueTable VN;
690    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
691
692    // This transformation requires dominator postdominator info
693    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
694      AU.addRequired<DominatorTree>();
695      if (!NoLoads)
696        AU.addRequired<MemoryDependenceAnalysis>();
697      AU.addRequired<AliasAnalysis>();
698
699      AU.addPreserved<DominatorTree>();
700      AU.addPreserved<AliasAnalysis>();
701    }
702
703    // Helper fuctions
704    // FIXME: eliminate or document these better
705    bool processLoad(LoadInst* L,
706                     SmallVectorImpl<Instruction*> &toErase);
707    bool processInstruction(Instruction *I,
708                            SmallVectorImpl<Instruction*> &toErase);
709    bool processNonLocalLoad(LoadInst* L,
710                             SmallVectorImpl<Instruction*> &toErase);
711    bool processBlock(BasicBlock *BB);
712    void dump(DenseMap<uint32_t, Value*>& d);
713    bool iterateOnFunction(Function &F);
714    Value *CollapsePhi(PHINode* p);
715    bool performPRE(Function& F);
716    Value *lookupNumber(BasicBlock *BB, uint32_t num);
717    void cleanupGlobalSets();
718    void verifyRemoved(const Instruction *I) const;
719  };
720
721  char GVN::ID = 0;
722}
723
724// createGVNPass - The public interface to this file...
725FunctionPass *llvm::createGVNPass(bool NoPRE, bool NoLoads) {
726  return new GVN(NoPRE, NoLoads);
727}
728
729static RegisterPass<GVN> X("gvn",
730                           "Global Value Numbering");
731
732void GVN::dump(DenseMap<uint32_t, Value*>& d) {
733  printf("{\n");
734  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
735       E = d.end(); I != E; ++I) {
736      printf("%d\n", I->first);
737      I->second->dump();
738  }
739  printf("}\n");
740}
741
742static bool isSafeReplacement(PHINode* p, Instruction *inst) {
743  if (!isa<PHINode>(inst))
744    return true;
745
746  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
747       UI != E; ++UI)
748    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
749      if (use_phi->getParent() == inst->getParent())
750        return false;
751
752  return true;
753}
754
755Value *GVN::CollapsePhi(PHINode *PN) {
756  Value *ConstVal = PN->hasConstantValue(DT);
757  if (!ConstVal) return 0;
758
759  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
760  if (!Inst)
761    return ConstVal;
762
763  if (DT->dominates(Inst, PN))
764    if (isSafeReplacement(PN, Inst))
765      return Inst;
766  return 0;
767}
768
769/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
770/// we're analyzing is fully available in the specified block.  As we go, keep
771/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
772/// map is actually a tri-state map with the following values:
773///   0) we know the block *is not* fully available.
774///   1) we know the block *is* fully available.
775///   2) we do not know whether the block is fully available or not, but we are
776///      currently speculating that it will be.
777///   3) we are speculating for this block and have used that to speculate for
778///      other blocks.
779static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
780                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
781  // Optimistically assume that the block is fully available and check to see
782  // if we already know about this block in one lookup.
783  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
784    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
785
786  // If the entry already existed for this block, return the precomputed value.
787  if (!IV.second) {
788    // If this is a speculative "available" value, mark it as being used for
789    // speculation of other blocks.
790    if (IV.first->second == 2)
791      IV.first->second = 3;
792    return IV.first->second != 0;
793  }
794
795  // Otherwise, see if it is fully available in all predecessors.
796  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
797
798  // If this block has no predecessors, it isn't live-in here.
799  if (PI == PE)
800    goto SpeculationFailure;
801
802  for (; PI != PE; ++PI)
803    // If the value isn't fully available in one of our predecessors, then it
804    // isn't fully available in this block either.  Undo our previous
805    // optimistic assumption and bail out.
806    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
807      goto SpeculationFailure;
808
809  return true;
810
811// SpeculationFailure - If we get here, we found out that this is not, after
812// all, a fully-available block.  We have a problem if we speculated on this and
813// used the speculation to mark other blocks as available.
814SpeculationFailure:
815  char &BBVal = FullyAvailableBlocks[BB];
816
817  // If we didn't speculate on this, just return with it set to false.
818  if (BBVal == 2) {
819    BBVal = 0;
820    return false;
821  }
822
823  // If we did speculate on this value, we could have blocks set to 1 that are
824  // incorrect.  Walk the (transitive) successors of this block and mark them as
825  // 0 if set to one.
826  SmallVector<BasicBlock*, 32> BBWorklist;
827  BBWorklist.push_back(BB);
828
829  while (!BBWorklist.empty()) {
830    BasicBlock *Entry = BBWorklist.pop_back_val();
831    // Note that this sets blocks to 0 (unavailable) if they happen to not
832    // already be in FullyAvailableBlocks.  This is safe.
833    char &EntryVal = FullyAvailableBlocks[Entry];
834    if (EntryVal == 0) continue;  // Already unavailable.
835
836    // Mark as unavailable.
837    EntryVal = 0;
838
839    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
840      BBWorklist.push_back(*I);
841  }
842
843  return false;
844}
845
846
847/// CanCoerceMustAliasedValueToLoad - Return true if
848/// CoerceAvailableValueToLoadType will succeed.
849static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
850                                            const Type *LoadTy,
851                                            const TargetData &TD) {
852  // If the loaded or stored value is an first class array or struct, don't try
853  // to transform them.  We need to be able to bitcast to integer.
854  if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy) ||
855      isa<StructType>(StoredVal->getType()) ||
856      isa<ArrayType>(StoredVal->getType()))
857    return false;
858
859  // The store has to be at least as big as the load.
860  if (TD.getTypeSizeInBits(StoredVal->getType()) <
861        TD.getTypeSizeInBits(LoadTy))
862    return false;
863
864  return true;
865}
866
867
868/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
869/// then a load from a must-aliased pointer of a different type, try to coerce
870/// the stored value.  LoadedTy is the type of the load we want to replace and
871/// InsertPt is the place to insert new instructions.
872///
873/// If we can't do it, return null.
874static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
875                                             const Type *LoadedTy,
876                                             Instruction *InsertPt,
877                                             const TargetData &TD) {
878  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
879    return 0;
880
881  const Type *StoredValTy = StoredVal->getType();
882
883  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
884  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
885
886  // If the store and reload are the same size, we can always reuse it.
887  if (StoreSize == LoadSize) {
888    if (isa<PointerType>(StoredValTy) && isa<PointerType>(LoadedTy)) {
889      // Pointer to Pointer -> use bitcast.
890      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
891    }
892
893    // Convert source pointers to integers, which can be bitcast.
894    if (isa<PointerType>(StoredValTy)) {
895      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
896      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
897    }
898
899    const Type *TypeToCastTo = LoadedTy;
900    if (isa<PointerType>(TypeToCastTo))
901      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
902
903    if (StoredValTy != TypeToCastTo)
904      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
905
906    // Cast to pointer if the load needs a pointer type.
907    if (isa<PointerType>(LoadedTy))
908      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
909
910    return StoredVal;
911  }
912
913  // If the loaded value is smaller than the available value, then we can
914  // extract out a piece from it.  If the available value is too small, then we
915  // can't do anything.
916  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
917
918  // Convert source pointers to integers, which can be manipulated.
919  if (isa<PointerType>(StoredValTy)) {
920    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
921    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
922  }
923
924  // Convert vectors and fp to integer, which can be manipulated.
925  if (!isa<IntegerType>(StoredValTy)) {
926    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
927    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
928  }
929
930  // If this is a big-endian system, we need to shift the value down to the low
931  // bits so that a truncate will work.
932  if (TD.isBigEndian()) {
933    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
934    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
935  }
936
937  // Truncate the integer to the right size now.
938  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
939  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
940
941  if (LoadedTy == NewIntTy)
942    return StoredVal;
943
944  // If the result is a pointer, inttoptr.
945  if (isa<PointerType>(LoadedTy))
946    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
947
948  // Otherwise, bitcast.
949  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
950}
951
952/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
953/// be expressed as a base pointer plus a constant offset.  Return the base and
954/// offset to the caller.
955static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
956                                        const TargetData &TD) {
957  Operator *PtrOp = dyn_cast<Operator>(Ptr);
958  if (PtrOp == 0) return Ptr;
959
960  // Just look through bitcasts.
961  if (PtrOp->getOpcode() == Instruction::BitCast)
962    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
963
964  // If this is a GEP with constant indices, we can look through it.
965  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
966  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
967
968  gep_type_iterator GTI = gep_type_begin(GEP);
969  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
970       ++I, ++GTI) {
971    ConstantInt *OpC = cast<ConstantInt>(*I);
972    if (OpC->isZero()) continue;
973
974    // Handle a struct and array indices which add their offset to the pointer.
975    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
976      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
977    } else {
978      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
979      Offset += OpC->getSExtValue()*Size;
980    }
981  }
982
983  // Re-sign extend from the pointer size if needed to get overflow edge cases
984  // right.
985  unsigned PtrSize = TD.getPointerSizeInBits();
986  if (PtrSize < 64)
987    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
988
989  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
990}
991
992
993/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
994/// memdep query of a load that ends up being a clobbering memory write (store,
995/// memset, memcpy, memmove).  This means that the write *may* provide bits used
996/// by the load but we can't be sure because the pointers don't mustalias.
997///
998/// Check this case to see if there is anything more we can do before we give
999/// up.  This returns -1 if we have to give up, or a byte number in the stored
1000/// value of the piece that feeds the load.
1001static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
1002                                          Value *WritePtr,
1003                                          uint64_t WriteSizeInBits,
1004                                          const TargetData &TD) {
1005  // If the loaded or stored value is an first class array or struct, don't try
1006  // to transform them.  We need to be able to bitcast to integer.
1007  if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy))
1008    return -1;
1009
1010  int64_t StoreOffset = 0, LoadOffset = 0;
1011  Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD);
1012  Value *LoadBase =
1013    GetBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
1014  if (StoreBase != LoadBase)
1015    return -1;
1016
1017  // If the load and store are to the exact same address, they should have been
1018  // a must alias.  AA must have gotten confused.
1019  // FIXME: Study to see if/when this happens.
1020  if (LoadOffset == StoreOffset) {
1021#if 0
1022    errs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1023    << "Base       = " << *StoreBase << "\n"
1024    << "Store Ptr  = " << *WritePtr << "\n"
1025    << "Store Offs = " << StoreOffset << "\n"
1026    << "Load Ptr   = " << *LoadPtr << "\n"
1027    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
1028    abort();
1029#endif
1030    return -1;
1031  }
1032
1033  // If the load and store don't overlap at all, the store doesn't provide
1034  // anything to the load.  In this case, they really don't alias at all, AA
1035  // must have gotten confused.
1036  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1037  // remove this check, as it is duplicated with what we have below.
1038  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
1039
1040  if ((WriteSizeInBits & 7) | (LoadSize & 7))
1041    return -1;
1042  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
1043  LoadSize >>= 3;
1044
1045
1046  bool isAAFailure = false;
1047  if (StoreOffset < LoadOffset) {
1048    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1049  } else {
1050    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1051  }
1052  if (isAAFailure) {
1053#if 0
1054    errs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1055    << "Base       = " << *StoreBase << "\n"
1056    << "Store Ptr  = " << *WritePtr << "\n"
1057    << "Store Offs = " << StoreOffset << "\n"
1058    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
1059    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
1060    errs() << "'" << L->getParent()->getParent()->getName() << "'"
1061    << *L->getParent();
1062    abort();
1063#endif
1064    return -1;
1065  }
1066
1067  // If the Load isn't completely contained within the stored bits, we don't
1068  // have all the bits to feed it.  We could do something crazy in the future
1069  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1070  // valuable.
1071  if (StoreOffset > LoadOffset ||
1072      StoreOffset+StoreSize < LoadOffset+LoadSize)
1073    return -1;
1074
1075  // Okay, we can do this transformation.  Return the number of bytes into the
1076  // store that the load is.
1077  return LoadOffset-StoreOffset;
1078}
1079
1080/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1081/// memdep query of a load that ends up being a clobbering store.
1082static int AnalyzeLoadFromClobberingStore(LoadInst *L, StoreInst *DepSI,
1083                                          const TargetData &TD) {
1084  // Cannot handle reading from store of first-class aggregate yet.
1085  if (isa<StructType>(DepSI->getOperand(0)->getType()) ||
1086      isa<ArrayType>(DepSI->getOperand(0)->getType()))
1087    return -1;
1088
1089  Value *StorePtr = DepSI->getPointerOperand();
1090  uint64_t StoreSize = TD.getTypeSizeInBits(StorePtr->getType());
1091  return AnalyzeLoadFromClobberingWrite(L->getType(), L->getPointerOperand(),
1092                                        StorePtr, StoreSize, TD);
1093}
1094
1095static int AnalyzeLoadFromClobberingMemInst(LoadInst *L, MemIntrinsic *MI,
1096                                            const TargetData &TD) {
1097  // If the mem operation is a non-constant size, we can't handle it.
1098  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1099  if (SizeCst == 0) return -1;
1100  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1101
1102  // If this is memset, we just need to see if the offset is valid in the size
1103  // of the memset..
1104  if (MI->getIntrinsicID() == Intrinsic::memset)
1105    return AnalyzeLoadFromClobberingWrite(L->getType(), L->getPointerOperand(),
1106                                          MI->getDest(), MemSizeInBits, TD);
1107
1108  // If we have a memcpy/memmove, the only case we can handle is if this is a
1109  // copy from constant memory.  In that case, we can read directly from the
1110  // constant memory.
1111  MemTransferInst *MTI = cast<MemTransferInst>(MI);
1112
1113  Constant *Src = dyn_cast<Constant>(MTI->getSource());
1114  if (Src == 0) return -1;
1115
1116  GlobalVariable *GV = dyn_cast<GlobalVariable>(Src->getUnderlyingObject());
1117  if (GV == 0 || !GV->isConstant()) return -1;
1118
1119  // See if the access is within the bounds of the transfer.
1120  int Offset =
1121    AnalyzeLoadFromClobberingWrite(L->getType(), L->getPointerOperand(),
1122                                   MI->getDest(), MemSizeInBits, TD);
1123  if (Offset == -1)
1124    return Offset;
1125
1126  // Otherwise, see if we can constant fold a load from the constant with the
1127  // offset applied as appropriate.
1128  Src = ConstantExpr::getBitCast(Src,
1129                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1130  Constant *OffsetCst =
1131    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1132  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1133  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(L->getType()));
1134  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1135    return Offset;
1136  return -1;
1137}
1138
1139
1140/// GetStoreValueForLoad - This function is called when we have a
1141/// memdep query of a load that ends up being a clobbering store.  This means
1142/// that the store *may* provide bits used by the load but we can't be sure
1143/// because the pointers don't mustalias.  Check this case to see if there is
1144/// anything more we can do before we give up.
1145static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1146                                   const Type *LoadTy,
1147                                   Instruction *InsertPt, const TargetData &TD){
1148  LLVMContext &Ctx = SrcVal->getType()->getContext();
1149
1150  uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8;
1151  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1152
1153
1154  // Compute which bits of the stored value are being used by the load.  Convert
1155  // to an integer type to start with.
1156  if (isa<PointerType>(SrcVal->getType()))
1157    SrcVal = new PtrToIntInst(SrcVal, TD.getIntPtrType(Ctx), "tmp", InsertPt);
1158  if (!isa<IntegerType>(SrcVal->getType()))
1159    SrcVal = new BitCastInst(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1160                             "tmp", InsertPt);
1161
1162  // Shift the bits to the least significant depending on endianness.
1163  unsigned ShiftAmt;
1164  if (TD.isLittleEndian())
1165    ShiftAmt = Offset*8;
1166  else
1167    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1168
1169  if (ShiftAmt)
1170    SrcVal = BinaryOperator::CreateLShr(SrcVal,
1171                ConstantInt::get(SrcVal->getType(), ShiftAmt), "tmp", InsertPt);
1172
1173  if (LoadSize != StoreSize)
1174    SrcVal = new TruncInst(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1175                           "tmp", InsertPt);
1176
1177  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1178}
1179
1180/// GetMemInstValueForLoad - This function is called when we have a
1181/// memdep query of a load that ends up being a clobbering mem intrinsic.
1182static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1183                                     const Type *LoadTy, Instruction *InsertPt,
1184                                     const TargetData &TD){
1185  LLVMContext &Ctx = LoadTy->getContext();
1186  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1187
1188  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1189
1190  // We know that this method is only called when the mem transfer fully
1191  // provides the bits for the load.
1192  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1193    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1194    // independently of what the offset is.
1195    Value *Val = MSI->getValue();
1196    if (LoadSize != 1)
1197      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1198
1199    Value *OneElt = Val;
1200
1201    // Splat the value out to the right number of bits.
1202    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1203      // If we can double the number of bytes set, do it.
1204      if (NumBytesSet*2 <= LoadSize) {
1205        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1206        Val = Builder.CreateOr(Val, ShVal);
1207        NumBytesSet <<= 1;
1208        continue;
1209      }
1210
1211      // Otherwise insert one byte at a time.
1212      Value *ShVal = Builder.CreateShl(Val, 1*8);
1213      Val = Builder.CreateOr(OneElt, ShVal);
1214      ++NumBytesSet;
1215    }
1216
1217    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1218  }
1219
1220  // Otherwise, this is a memcpy/memmove from a constant global.
1221  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1222  Constant *Src = cast<Constant>(MTI->getSource());
1223
1224  // Otherwise, see if we can constant fold a load from the constant with the
1225  // offset applied as appropriate.
1226  Src = ConstantExpr::getBitCast(Src,
1227                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1228  Constant *OffsetCst =
1229  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1230  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1231  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1232  return ConstantFoldLoadFromConstPtr(Src, &TD);
1233}
1234
1235
1236
1237struct AvailableValueInBlock {
1238  /// BB - The basic block in question.
1239  BasicBlock *BB;
1240  enum ValType {
1241    SimpleVal,  // A simple offsetted value that is accessed.
1242    MemIntrin   // A memory intrinsic which is loaded from.
1243  };
1244
1245  /// V - The value that is live out of the block.
1246  PointerIntPair<Value *, 1, ValType> Val;
1247
1248  /// Offset - The byte offset in Val that is interesting for the load query.
1249  unsigned Offset;
1250
1251  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1252                                   unsigned Offset = 0) {
1253    AvailableValueInBlock Res;
1254    Res.BB = BB;
1255    Res.Val.setPointer(V);
1256    Res.Val.setInt(SimpleVal);
1257    Res.Offset = Offset;
1258    return Res;
1259  }
1260
1261  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1262                                     unsigned Offset = 0) {
1263    AvailableValueInBlock Res;
1264    Res.BB = BB;
1265    Res.Val.setPointer(MI);
1266    Res.Val.setInt(MemIntrin);
1267    Res.Offset = Offset;
1268    return Res;
1269  }
1270
1271  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1272  Value *getSimpleValue() const {
1273    assert(isSimpleValue() && "Wrong accessor");
1274    return Val.getPointer();
1275  }
1276
1277  MemIntrinsic *getMemIntrinValue() const {
1278    assert(!isSimpleValue() && "Wrong accessor");
1279    return cast<MemIntrinsic>(Val.getPointer());
1280  }
1281};
1282
1283/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1284/// construct SSA form, allowing us to eliminate LI.  This returns the value
1285/// that should be used at LI's definition site.
1286static Value *ConstructSSAForLoadSet(LoadInst *LI,
1287                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1288                                     const TargetData *TD,
1289                                     AliasAnalysis *AA) {
1290  SmallVector<PHINode*, 8> NewPHIs;
1291  SSAUpdater SSAUpdate(&NewPHIs);
1292  SSAUpdate.Initialize(LI);
1293
1294  const Type *LoadTy = LI->getType();
1295
1296  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1297    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1298    BasicBlock *BB = AV.BB;
1299
1300    if (SSAUpdate.HasValueForBlock(BB))
1301      continue;
1302
1303    unsigned Offset = AV.Offset;
1304
1305    Value *AvailableVal;
1306    if (AV.isSimpleValue()) {
1307      AvailableVal = AV.getSimpleValue();
1308      if (AvailableVal->getType() != LoadTy) {
1309        assert(TD && "Need target data to handle type mismatch case");
1310        AvailableVal = GetStoreValueForLoad(AvailableVal, Offset, LoadTy,
1311                                            BB->getTerminator(), *TD);
1312
1313        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1314              << *AV.getSimpleValue() << '\n'
1315              << *AvailableVal << '\n' << "\n\n\n");
1316      }
1317    } else {
1318      AvailableVal = GetMemInstValueForLoad(AV.getMemIntrinValue(), Offset,
1319                                            LoadTy, BB->getTerminator(), *TD);
1320      DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1321            << "  " << *AV.getMemIntrinValue() << '\n'
1322            << *AvailableVal << '\n' << "\n\n\n");
1323    }
1324    SSAUpdate.AddAvailableValue(BB, AvailableVal);
1325  }
1326
1327  // Perform PHI construction.
1328  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1329
1330  // If new PHI nodes were created, notify alias analysis.
1331  if (isa<PointerType>(V->getType()))
1332    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1333      AA->copyValue(LI, NewPHIs[i]);
1334
1335  return V;
1336}
1337
1338static bool isLifetimeStart(Instruction *Inst) {
1339  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1340    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1341  return false;
1342}
1343
1344/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1345/// non-local by performing PHI construction.
1346bool GVN::processNonLocalLoad(LoadInst *LI,
1347                              SmallVectorImpl<Instruction*> &toErase) {
1348  // Find the non-local dependencies of the load.
1349  SmallVector<NonLocalDepEntry, 64> Deps;
1350  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1351                                   Deps);
1352  //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
1353  //             << Deps.size() << *LI << '\n');
1354
1355  // If we had to process more than one hundred blocks to find the
1356  // dependencies, this load isn't worth worrying about.  Optimizing
1357  // it will be too expensive.
1358  if (Deps.size() > 100)
1359    return false;
1360
1361  // If we had a phi translation failure, we'll have a single entry which is a
1362  // clobber in the current block.  Reject this early.
1363  if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
1364    DEBUG(
1365      errs() << "GVN: non-local load ";
1366      WriteAsOperand(errs(), LI);
1367      errs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
1368    );
1369    return false;
1370  }
1371
1372  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1373  // where we have a value available in repl, also keep track of whether we see
1374  // dependencies that produce an unknown value for the load (such as a call
1375  // that could potentially clobber the load).
1376  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1377  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1378
1379  const TargetData *TD = 0;
1380
1381  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1382    BasicBlock *DepBB = Deps[i].getBB();
1383    MemDepResult DepInfo = Deps[i].getResult();
1384
1385    if (DepInfo.isClobber()) {
1386      // If the dependence is to a store that writes to a superset of the bits
1387      // read by the load, we can extract the bits we need for the load from the
1388      // stored value.
1389      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1390        if (TD == 0)
1391          TD = getAnalysisIfAvailable<TargetData>();
1392        if (TD) {
1393          int Offset = AnalyzeLoadFromClobberingStore(LI, DepSI, *TD);
1394          if (Offset != -1) {
1395            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1396                                                           DepSI->getOperand(0),
1397                                                                Offset));
1398            continue;
1399          }
1400        }
1401      }
1402
1403      // If the clobbering value is a memset/memcpy/memmove, see if we can
1404      // forward a value on from it.
1405      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1406        if (TD == 0)
1407          TD = getAnalysisIfAvailable<TargetData>();
1408        if (TD) {
1409          int Offset = AnalyzeLoadFromClobberingMemInst(LI, DepMI, *TD);
1410          if (Offset != -1) {
1411            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1412                                                                  Offset));
1413            continue;
1414          }
1415        }
1416      }
1417
1418      UnavailableBlocks.push_back(DepBB);
1419      continue;
1420    }
1421
1422    Instruction *DepInst = DepInfo.getInst();
1423
1424    // Loading the allocation -> undef.
1425    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1426        // Loading immediately after lifetime begin -> undef.
1427        isLifetimeStart(DepInst)) {
1428      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1429                                             UndefValue::get(LI->getType())));
1430      continue;
1431    }
1432
1433    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1434      // Reject loads and stores that are to the same address but are of
1435      // different types if we have to.
1436      if (S->getOperand(0)->getType() != LI->getType()) {
1437        if (TD == 0)
1438          TD = getAnalysisIfAvailable<TargetData>();
1439
1440        // If the stored value is larger or equal to the loaded value, we can
1441        // reuse it.
1442        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1443                                                        LI->getType(), *TD)) {
1444          UnavailableBlocks.push_back(DepBB);
1445          continue;
1446        }
1447      }
1448
1449      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1450                                                          S->getOperand(0)));
1451      continue;
1452    }
1453
1454    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1455      // If the types mismatch and we can't handle it, reject reuse of the load.
1456      if (LD->getType() != LI->getType()) {
1457        if (TD == 0)
1458          TD = getAnalysisIfAvailable<TargetData>();
1459
1460        // If the stored value is larger or equal to the loaded value, we can
1461        // reuse it.
1462        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1463          UnavailableBlocks.push_back(DepBB);
1464          continue;
1465        }
1466      }
1467      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1468      continue;
1469    }
1470
1471    UnavailableBlocks.push_back(DepBB);
1472    continue;
1473  }
1474
1475  // If we have no predecessors that produce a known value for this load, exit
1476  // early.
1477  if (ValuesPerBlock.empty()) return false;
1478
1479  // If all of the instructions we depend on produce a known value for this
1480  // load, then it is fully redundant and we can use PHI insertion to compute
1481  // its value.  Insert PHIs and remove the fully redundant value now.
1482  if (UnavailableBlocks.empty()) {
1483    DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1484
1485    // Perform PHI construction.
1486    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
1487                                      VN.getAliasAnalysis());
1488    LI->replaceAllUsesWith(V);
1489
1490    if (isa<PHINode>(V))
1491      V->takeName(LI);
1492    if (isa<PointerType>(V->getType()))
1493      MD->invalidateCachedPointerInfo(V);
1494    toErase.push_back(LI);
1495    NumGVNLoad++;
1496    return true;
1497  }
1498
1499  if (!EnablePRE || !EnableLoadPRE)
1500    return false;
1501
1502  // Okay, we have *some* definitions of the value.  This means that the value
1503  // is available in some of our (transitive) predecessors.  Lets think about
1504  // doing PRE of this load.  This will involve inserting a new load into the
1505  // predecessor when it's not available.  We could do this in general, but
1506  // prefer to not increase code size.  As such, we only do this when we know
1507  // that we only have to insert *one* load (which means we're basically moving
1508  // the load, not inserting a new one).
1509
1510  SmallPtrSet<BasicBlock *, 4> Blockers;
1511  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1512    Blockers.insert(UnavailableBlocks[i]);
1513
1514  // Lets find first basic block with more than one predecessor.  Walk backwards
1515  // through predecessors if needed.
1516  BasicBlock *LoadBB = LI->getParent();
1517  BasicBlock *TmpBB = LoadBB;
1518
1519  bool isSinglePred = false;
1520  bool allSingleSucc = true;
1521  while (TmpBB->getSinglePredecessor()) {
1522    isSinglePred = true;
1523    TmpBB = TmpBB->getSinglePredecessor();
1524    if (!TmpBB) // If haven't found any, bail now.
1525      return false;
1526    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1527      return false;
1528    if (Blockers.count(TmpBB))
1529      return false;
1530    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1531      allSingleSucc = false;
1532  }
1533
1534  assert(TmpBB);
1535  LoadBB = TmpBB;
1536
1537  // If we have a repl set with LI itself in it, this means we have a loop where
1538  // at least one of the values is LI.  Since this means that we won't be able
1539  // to eliminate LI even if we insert uses in the other predecessors, we will
1540  // end up increasing code size.  Reject this by scanning for LI.
1541  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1542    if (ValuesPerBlock[i].isSimpleValue() &&
1543        ValuesPerBlock[i].getSimpleValue() == LI)
1544      return false;
1545
1546  // FIXME: It is extremely unclear what this loop is doing, other than
1547  // artificially restricting loadpre.
1548  if (isSinglePred) {
1549    bool isHot = false;
1550    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1551      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1552      if (AV.isSimpleValue())
1553        // "Hot" Instruction is in some loop (because it dominates its dep.
1554        // instruction).
1555        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1556          if (DT->dominates(LI, I)) {
1557            isHot = true;
1558            break;
1559          }
1560    }
1561
1562    // We are interested only in "hot" instructions. We don't want to do any
1563    // mis-optimizations here.
1564    if (!isHot)
1565      return false;
1566  }
1567
1568  // Okay, we have some hope :).  Check to see if the loaded value is fully
1569  // available in all but one predecessor.
1570  // FIXME: If we could restructure the CFG, we could make a common pred with
1571  // all the preds that don't have an available LI and insert a new load into
1572  // that one block.
1573  BasicBlock *UnavailablePred = 0;
1574
1575  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1576  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1577    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1578  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1579    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1580
1581  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1582       PI != E; ++PI) {
1583    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1584      continue;
1585
1586    // If this load is not available in multiple predecessors, reject it.
1587    if (UnavailablePred && UnavailablePred != *PI)
1588      return false;
1589    UnavailablePred = *PI;
1590  }
1591
1592  assert(UnavailablePred != 0 &&
1593         "Fully available value should be eliminated above!");
1594
1595  // We don't currently handle critical edges :(
1596  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1597    DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1598                 << UnavailablePred->getName() << "': " << *LI << '\n');
1599    return false;
1600  }
1601
1602  // Do PHI translation to get its value in the predecessor if necessary.  The
1603  // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1604  //
1605  SmallVector<Instruction*, 8> NewInsts;
1606
1607  // If all preds have a single successor, then we know it is safe to insert the
1608  // load on the pred (?!?), so we can insert code to materialize the pointer if
1609  // it is not available.
1610  PHITransAddr Address(LI->getOperand(0), TD);
1611  Value *LoadPtr = 0;
1612  if (allSingleSucc) {
1613    LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1614                                                *DT, NewInsts);
1615  } else {
1616    Address.PHITranslateValue(LoadBB, UnavailablePred);
1617    LoadPtr = Address.getAddr();
1618
1619    // Make sure the value is live in the predecessor.
1620    if (Instruction *Inst = dyn_cast_or_null<Instruction>(LoadPtr))
1621      if (!DT->dominates(Inst->getParent(), UnavailablePred))
1622        LoadPtr = 0;
1623  }
1624
1625  // If we couldn't find or insert a computation of this phi translated value,
1626  // we fail PRE.
1627  if (LoadPtr == 0) {
1628    assert(NewInsts.empty() && "Shouldn't insert insts on failure");
1629    DEBUG(errs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1630                 << *LI->getOperand(0) << "\n");
1631    return false;
1632  }
1633
1634  // Assign value numbers to these new instructions.
1635  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1636    // FIXME: We really _ought_ to insert these value numbers into their
1637    // parent's availability map.  However, in doing so, we risk getting into
1638    // ordering issues.  If a block hasn't been processed yet, we would be
1639    // marking a value as AVAIL-IN, which isn't what we intend.
1640    VN.lookup_or_add(NewInsts[i]);
1641  }
1642
1643  // Make sure it is valid to move this load here.  We have to watch out for:
1644  //  @1 = getelementptr (i8* p, ...
1645  //  test p and branch if == 0
1646  //  load @1
1647  // It is valid to have the getelementptr before the test, even if p can be 0,
1648  // as getelementptr only does address arithmetic.
1649  // If we are not pushing the value through any multiple-successor blocks
1650  // we do not have this case.  Otherwise, check that the load is safe to
1651  // put anywhere; this can be improved, but should be conservatively safe.
1652  if (!allSingleSucc &&
1653      // FIXME: REEVALUTE THIS.
1654      !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator())) {
1655    assert(NewInsts.empty() && "Should not have inserted instructions");
1656    return false;
1657  }
1658
1659  // Okay, we can eliminate this load by inserting a reload in the predecessor
1660  // and using PHI construction to get the value in the other predecessors, do
1661  // it.
1662  DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1663  DEBUG(if (!NewInsts.empty())
1664          errs() << "INSERTED " << NewInsts.size() << " INSTS: "
1665                 << *NewInsts.back() << '\n');
1666
1667  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1668                                LI->getAlignment(),
1669                                UnavailablePred->getTerminator());
1670
1671  // Add the newly created load.
1672  ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,NewLoad));
1673
1674  // Perform PHI construction.
1675  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
1676                                    VN.getAliasAnalysis());
1677  LI->replaceAllUsesWith(V);
1678  if (isa<PHINode>(V))
1679    V->takeName(LI);
1680  if (isa<PointerType>(V->getType()))
1681    MD->invalidateCachedPointerInfo(V);
1682  toErase.push_back(LI);
1683  NumPRELoad++;
1684  return true;
1685}
1686
1687/// processLoad - Attempt to eliminate a load, first by eliminating it
1688/// locally, and then attempting non-local elimination if that fails.
1689bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1690  if (!MD)
1691    return false;
1692
1693  if (L->isVolatile())
1694    return false;
1695
1696  // ... to a pointer that has been loaded from before...
1697  MemDepResult Dep = MD->getDependency(L);
1698
1699  // If the value isn't available, don't do anything!
1700  if (Dep.isClobber()) {
1701    // Check to see if we have something like this:
1702    //   store i32 123, i32* %P
1703    //   %A = bitcast i32* %P to i8*
1704    //   %B = gep i8* %A, i32 1
1705    //   %C = load i8* %B
1706    //
1707    // We could do that by recognizing if the clobber instructions are obviously
1708    // a common base + constant offset, and if the previous store (or memset)
1709    // completely covers this load.  This sort of thing can happen in bitfield
1710    // access code.
1711    Value *AvailVal = 0;
1712    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1713      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1714        int Offset = AnalyzeLoadFromClobberingStore(L, DepSI, *TD);
1715        if (Offset != -1)
1716          AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1717                                          L->getType(), L, *TD);
1718      }
1719
1720    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1721    // a value on from it.
1722    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1723      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1724        int Offset = AnalyzeLoadFromClobberingMemInst(L, DepMI, *TD);
1725        if (Offset != -1)
1726          AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
1727      }
1728    }
1729
1730    if (AvailVal) {
1731      DEBUG(errs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1732            << *AvailVal << '\n' << *L << "\n\n\n");
1733
1734      // Replace the load!
1735      L->replaceAllUsesWith(AvailVal);
1736      if (isa<PointerType>(AvailVal->getType()))
1737        MD->invalidateCachedPointerInfo(AvailVal);
1738      toErase.push_back(L);
1739      NumGVNLoad++;
1740      return true;
1741    }
1742
1743    DEBUG(
1744      // fast print dep, using operator<< on instruction would be too slow
1745      errs() << "GVN: load ";
1746      WriteAsOperand(errs(), L);
1747      Instruction *I = Dep.getInst();
1748      errs() << " is clobbered by " << *I << '\n';
1749    );
1750    return false;
1751  }
1752
1753  // If it is defined in another block, try harder.
1754  if (Dep.isNonLocal())
1755    return processNonLocalLoad(L, toErase);
1756
1757  Instruction *DepInst = Dep.getInst();
1758  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1759    Value *StoredVal = DepSI->getOperand(0);
1760
1761    // The store and load are to a must-aliased pointer, but they may not
1762    // actually have the same type.  See if we know how to reuse the stored
1763    // value (depending on its type).
1764    const TargetData *TD = 0;
1765    if (StoredVal->getType() != L->getType()) {
1766      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1767        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1768                                                   L, *TD);
1769        if (StoredVal == 0)
1770          return false;
1771
1772        DEBUG(errs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1773                     << '\n' << *L << "\n\n\n");
1774      }
1775      else
1776        return false;
1777    }
1778
1779    // Remove it!
1780    L->replaceAllUsesWith(StoredVal);
1781    if (isa<PointerType>(StoredVal->getType()))
1782      MD->invalidateCachedPointerInfo(StoredVal);
1783    toErase.push_back(L);
1784    NumGVNLoad++;
1785    return true;
1786  }
1787
1788  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1789    Value *AvailableVal = DepLI;
1790
1791    // The loads are of a must-aliased pointer, but they may not actually have
1792    // the same type.  See if we know how to reuse the previously loaded value
1793    // (depending on its type).
1794    const TargetData *TD = 0;
1795    if (DepLI->getType() != L->getType()) {
1796      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1797        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1798        if (AvailableVal == 0)
1799          return false;
1800
1801        DEBUG(errs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1802                     << "\n" << *L << "\n\n\n");
1803      }
1804      else
1805        return false;
1806    }
1807
1808    // Remove it!
1809    L->replaceAllUsesWith(AvailableVal);
1810    if (isa<PointerType>(DepLI->getType()))
1811      MD->invalidateCachedPointerInfo(DepLI);
1812    toErase.push_back(L);
1813    NumGVNLoad++;
1814    return true;
1815  }
1816
1817  // If this load really doesn't depend on anything, then we must be loading an
1818  // undef value.  This can happen when loading for a fresh allocation with no
1819  // intervening stores, for example.
1820  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1821    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1822    toErase.push_back(L);
1823    NumGVNLoad++;
1824    return true;
1825  }
1826
1827  // If this load occurs either right after a lifetime begin,
1828  // then the loaded value is undefined.
1829  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1830    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1831      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1832      toErase.push_back(L);
1833      NumGVNLoad++;
1834      return true;
1835    }
1836  }
1837
1838  return false;
1839}
1840
1841Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1842  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1843  if (I == localAvail.end())
1844    return 0;
1845
1846  ValueNumberScope *Locals = I->second;
1847  while (Locals) {
1848    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1849    if (I != Locals->table.end())
1850      return I->second;
1851    Locals = Locals->parent;
1852  }
1853
1854  return 0;
1855}
1856
1857
1858/// processInstruction - When calculating availability, handle an instruction
1859/// by inserting it into the appropriate sets
1860bool GVN::processInstruction(Instruction *I,
1861                             SmallVectorImpl<Instruction*> &toErase) {
1862  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1863    bool Changed = processLoad(LI, toErase);
1864
1865    if (!Changed) {
1866      unsigned Num = VN.lookup_or_add(LI);
1867      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1868    }
1869
1870    return Changed;
1871  }
1872
1873  uint32_t NextNum = VN.getNextUnusedValueNumber();
1874  unsigned Num = VN.lookup_or_add(I);
1875
1876  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1877    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1878
1879    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1880      return false;
1881
1882    Value *BranchCond = BI->getCondition();
1883    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1884
1885    BasicBlock *TrueSucc = BI->getSuccessor(0);
1886    BasicBlock *FalseSucc = BI->getSuccessor(1);
1887
1888    if (TrueSucc->getSinglePredecessor())
1889      localAvail[TrueSucc]->table[CondVN] =
1890        ConstantInt::getTrue(TrueSucc->getContext());
1891    if (FalseSucc->getSinglePredecessor())
1892      localAvail[FalseSucc]->table[CondVN] =
1893        ConstantInt::getFalse(TrueSucc->getContext());
1894
1895    return false;
1896
1897  // Allocations are always uniquely numbered, so we can save time and memory
1898  // by fast failing them.
1899  } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
1900    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1901    return false;
1902  }
1903
1904  // Collapse PHI nodes
1905  if (PHINode* p = dyn_cast<PHINode>(I)) {
1906    Value *constVal = CollapsePhi(p);
1907
1908    if (constVal) {
1909      p->replaceAllUsesWith(constVal);
1910      if (MD && isa<PointerType>(constVal->getType()))
1911        MD->invalidateCachedPointerInfo(constVal);
1912      VN.erase(p);
1913
1914      toErase.push_back(p);
1915    } else {
1916      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1917    }
1918
1919  // If the number we were assigned was a brand new VN, then we don't
1920  // need to do a lookup to see if the number already exists
1921  // somewhere in the domtree: it can't!
1922  } else if (Num == NextNum) {
1923    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1924
1925  // Perform fast-path value-number based elimination of values inherited from
1926  // dominators.
1927  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1928    // Remove it!
1929    VN.erase(I);
1930    I->replaceAllUsesWith(repl);
1931    if (MD && isa<PointerType>(repl->getType()))
1932      MD->invalidateCachedPointerInfo(repl);
1933    toErase.push_back(I);
1934    return true;
1935
1936  } else {
1937    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1938  }
1939
1940  return false;
1941}
1942
1943/// runOnFunction - This is the main transformation entry point for a function.
1944bool GVN::runOnFunction(Function& F) {
1945  if (!NoLoads)
1946    MD = &getAnalysis<MemoryDependenceAnalysis>();
1947  DT = &getAnalysis<DominatorTree>();
1948  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1949  VN.setMemDep(MD);
1950  VN.setDomTree(DT);
1951
1952  bool Changed = false;
1953  bool ShouldContinue = true;
1954
1955  // Merge unconditional branches, allowing PRE to catch more
1956  // optimization opportunities.
1957  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1958    BasicBlock *BB = FI;
1959    ++FI;
1960    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1961    if (removedBlock) NumGVNBlocks++;
1962
1963    Changed |= removedBlock;
1964  }
1965
1966  unsigned Iteration = 0;
1967
1968  while (ShouldContinue) {
1969    DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
1970    ShouldContinue = iterateOnFunction(F);
1971    Changed |= ShouldContinue;
1972    ++Iteration;
1973  }
1974
1975  if (EnablePRE) {
1976    bool PREChanged = true;
1977    while (PREChanged) {
1978      PREChanged = performPRE(F);
1979      Changed |= PREChanged;
1980    }
1981  }
1982  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1983  // computations into blocks where they become fully redundant.  Note that
1984  // we can't do this until PRE's critical edge splitting updates memdep.
1985  // Actually, when this happens, we should just fully integrate PRE into GVN.
1986
1987  cleanupGlobalSets();
1988
1989  return Changed;
1990}
1991
1992
1993bool GVN::processBlock(BasicBlock *BB) {
1994  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1995  // incrementing BI before processing an instruction).
1996  SmallVector<Instruction*, 8> toErase;
1997  bool ChangedFunction = false;
1998
1999  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2000       BI != BE;) {
2001    ChangedFunction |= processInstruction(BI, toErase);
2002    if (toErase.empty()) {
2003      ++BI;
2004      continue;
2005    }
2006
2007    // If we need some instructions deleted, do it now.
2008    NumGVNInstr += toErase.size();
2009
2010    // Avoid iterator invalidation.
2011    bool AtStart = BI == BB->begin();
2012    if (!AtStart)
2013      --BI;
2014
2015    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
2016         E = toErase.end(); I != E; ++I) {
2017      DEBUG(errs() << "GVN removed: " << **I << '\n');
2018      if (MD) MD->removeInstruction(*I);
2019      (*I)->eraseFromParent();
2020      DEBUG(verifyRemoved(*I));
2021    }
2022    toErase.clear();
2023
2024    if (AtStart)
2025      BI = BB->begin();
2026    else
2027      ++BI;
2028  }
2029
2030  return ChangedFunction;
2031}
2032
2033/// performPRE - Perform a purely local form of PRE that looks for diamond
2034/// control flow patterns and attempts to perform simple PRE at the join point.
2035bool GVN::performPRE(Function &F) {
2036  bool Changed = false;
2037  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
2038  DenseMap<BasicBlock*, Value*> predMap;
2039  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2040       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2041    BasicBlock *CurrentBlock = *DI;
2042
2043    // Nothing to PRE in the entry block.
2044    if (CurrentBlock == &F.getEntryBlock()) continue;
2045
2046    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2047         BE = CurrentBlock->end(); BI != BE; ) {
2048      Instruction *CurInst = BI++;
2049
2050      if (isa<AllocaInst>(CurInst) ||
2051          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2052          CurInst->getType()->isVoidTy() ||
2053          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2054          isa<DbgInfoIntrinsic>(CurInst))
2055        continue;
2056
2057      uint32_t ValNo = VN.lookup(CurInst);
2058
2059      // Look for the predecessors for PRE opportunities.  We're
2060      // only trying to solve the basic diamond case, where
2061      // a value is computed in the successor and one predecessor,
2062      // but not the other.  We also explicitly disallow cases
2063      // where the successor is its own predecessor, because they're
2064      // more complicated to get right.
2065      unsigned NumWith = 0;
2066      unsigned NumWithout = 0;
2067      BasicBlock *PREPred = 0;
2068      predMap.clear();
2069
2070      for (pred_iterator PI = pred_begin(CurrentBlock),
2071           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2072        // We're not interested in PRE where the block is its
2073        // own predecessor, on in blocks with predecessors
2074        // that are not reachable.
2075        if (*PI == CurrentBlock) {
2076          NumWithout = 2;
2077          break;
2078        } else if (!localAvail.count(*PI))  {
2079          NumWithout = 2;
2080          break;
2081        }
2082
2083        DenseMap<uint32_t, Value*>::iterator predV =
2084                                            localAvail[*PI]->table.find(ValNo);
2085        if (predV == localAvail[*PI]->table.end()) {
2086          PREPred = *PI;
2087          NumWithout++;
2088        } else if (predV->second == CurInst) {
2089          NumWithout = 2;
2090        } else {
2091          predMap[*PI] = predV->second;
2092          NumWith++;
2093        }
2094      }
2095
2096      // Don't do PRE when it might increase code size, i.e. when
2097      // we would need to insert instructions in more than one pred.
2098      if (NumWithout != 1 || NumWith == 0)
2099        continue;
2100
2101      // Don't do PRE across indirect branch.
2102      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2103        continue;
2104
2105      // We can't do PRE safely on a critical edge, so instead we schedule
2106      // the edge to be split and perform the PRE the next time we iterate
2107      // on the function.
2108      unsigned SuccNum = 0;
2109      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
2110           i != e; ++i)
2111        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
2112          SuccNum = i;
2113          break;
2114        }
2115
2116      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2117        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2118        continue;
2119      }
2120
2121      // Instantiate the expression the in predecessor that lacked it.
2122      // Because we are going top-down through the block, all value numbers
2123      // will be available in the predecessor by the time we need them.  Any
2124      // that weren't original present will have been instantiated earlier
2125      // in this loop.
2126      Instruction *PREInstr = CurInst->clone();
2127      bool success = true;
2128      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2129        Value *Op = PREInstr->getOperand(i);
2130        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2131          continue;
2132
2133        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
2134          PREInstr->setOperand(i, V);
2135        } else {
2136          success = false;
2137          break;
2138        }
2139      }
2140
2141      // Fail out if we encounter an operand that is not available in
2142      // the PRE predecessor.  This is typically because of loads which
2143      // are not value numbered precisely.
2144      if (!success) {
2145        delete PREInstr;
2146        DEBUG(verifyRemoved(PREInstr));
2147        continue;
2148      }
2149
2150      PREInstr->insertBefore(PREPred->getTerminator());
2151      PREInstr->setName(CurInst->getName() + ".pre");
2152      predMap[PREPred] = PREInstr;
2153      VN.add(PREInstr, ValNo);
2154      NumGVNPRE++;
2155
2156      // Update the availability map to include the new instruction.
2157      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
2158
2159      // Create a PHI to make the value available in this block.
2160      PHINode* Phi = PHINode::Create(CurInst->getType(),
2161                                     CurInst->getName() + ".pre-phi",
2162                                     CurrentBlock->begin());
2163      for (pred_iterator PI = pred_begin(CurrentBlock),
2164           PE = pred_end(CurrentBlock); PI != PE; ++PI)
2165        Phi->addIncoming(predMap[*PI], *PI);
2166
2167      VN.add(Phi, ValNo);
2168      localAvail[CurrentBlock]->table[ValNo] = Phi;
2169
2170      CurInst->replaceAllUsesWith(Phi);
2171      if (MD && isa<PointerType>(Phi->getType()))
2172        MD->invalidateCachedPointerInfo(Phi);
2173      VN.erase(CurInst);
2174
2175      DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
2176      if (MD) MD->removeInstruction(CurInst);
2177      CurInst->eraseFromParent();
2178      DEBUG(verifyRemoved(CurInst));
2179      Changed = true;
2180    }
2181  }
2182
2183  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
2184       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
2185    SplitCriticalEdge(I->first, I->second, this);
2186
2187  return Changed || toSplit.size();
2188}
2189
2190/// iterateOnFunction - Executes one iteration of GVN
2191bool GVN::iterateOnFunction(Function &F) {
2192  cleanupGlobalSets();
2193
2194  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2195       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
2196    if (DI->getIDom())
2197      localAvail[DI->getBlock()] =
2198                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
2199    else
2200      localAvail[DI->getBlock()] = new ValueNumberScope(0);
2201  }
2202
2203  // Top-down walk of the dominator tree
2204  bool Changed = false;
2205#if 0
2206  // Needed for value numbering with phi construction to work.
2207  ReversePostOrderTraversal<Function*> RPOT(&F);
2208  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2209       RE = RPOT.end(); RI != RE; ++RI)
2210    Changed |= processBlock(*RI);
2211#else
2212  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2213       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2214    Changed |= processBlock(DI->getBlock());
2215#endif
2216
2217  return Changed;
2218}
2219
2220void GVN::cleanupGlobalSets() {
2221  VN.clear();
2222
2223  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2224       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
2225    delete I->second;
2226  localAvail.clear();
2227}
2228
2229/// verifyRemoved - Verify that the specified instruction does not occur in our
2230/// internal data structures.
2231void GVN::verifyRemoved(const Instruction *Inst) const {
2232  VN.verifyRemoved(Inst);
2233
2234  // Walk through the value number scope to make sure the instruction isn't
2235  // ferreted away in it.
2236  for (DenseMap<BasicBlock*, ValueNumberScope*>::const_iterator
2237         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2238    const ValueNumberScope *VNS = I->second;
2239
2240    while (VNS) {
2241      for (DenseMap<uint32_t, Value*>::const_iterator
2242             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2243        assert(II->second != Inst && "Inst still in value numbering scope!");
2244      }
2245
2246      VNS = VNS->parent;
2247    }
2248  }
2249}
2250