GVN.cpp revision 06cb8ed00696eb14d1b831921452e50ec0568ea2
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/IRBuilder.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/LLVMContext.h"
24#include "llvm/Metadata.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/DepthFirstIterator.h"
27#include "llvm/ADT/Hashing.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Analysis/AliasAnalysis.h"
31#include "llvm/Analysis/ConstantFolding.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Analysis/InstructionSimplify.h"
34#include "llvm/Analysis/Loads.h"
35#include "llvm/Analysis/MemoryBuiltins.h"
36#include "llvm/Analysis/MemoryDependenceAnalysis.h"
37#include "llvm/Analysis/PHITransAddr.h"
38#include "llvm/Analysis/ValueTracking.h"
39#include "llvm/Assembly/Writer.h"
40#include "llvm/Support/Allocator.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/PatternMatch.h"
44#include "llvm/Target/TargetData.h"
45#include "llvm/Target/TargetLibraryInfo.h"
46#include "llvm/Transforms/Utils/BasicBlockUtils.h"
47#include "llvm/Transforms/Utils/SSAUpdater.h"
48using namespace llvm;
49using namespace PatternMatch;
50
51STATISTIC(NumGVNInstr,  "Number of instructions deleted");
52STATISTIC(NumGVNLoad,   "Number of loads deleted");
53STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
54STATISTIC(NumGVNBlocks, "Number of blocks merged");
55STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
56STATISTIC(NumGVNEqProp, "Number of equalities propagated");
57STATISTIC(NumPRELoad,   "Number of loads PRE'd");
58
59static cl::opt<bool> EnablePRE("enable-pre",
60                               cl::init(true), cl::Hidden);
61static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
62
63// Maximum allowed recursion depth.
64static cl::opt<uint32_t>
65MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
66                cl::desc("Max recurse depth (default = 1000)"));
67
68//===----------------------------------------------------------------------===//
69//                         ValueTable Class
70//===----------------------------------------------------------------------===//
71
72/// This class holds the mapping between values and value numbers.  It is used
73/// as an efficient mechanism to determine the expression-wise equivalence of
74/// two values.
75namespace {
76  struct Expression {
77    uint32_t opcode;
78    Type *type;
79    SmallVector<uint32_t, 4> varargs;
80
81    Expression(uint32_t o = ~2U) : opcode(o) { }
82
83    bool operator==(const Expression &other) const {
84      if (opcode != other.opcode)
85        return false;
86      if (opcode == ~0U || opcode == ~1U)
87        return true;
88      if (type != other.type)
89        return false;
90      if (varargs != other.varargs)
91        return false;
92      return true;
93    }
94
95    friend hash_code hash_value(const Expression &Value) {
96      return hash_combine(Value.opcode, Value.type,
97                          hash_combine_range(Value.varargs.begin(),
98                                             Value.varargs.end()));
99    }
100  };
101
102  class ValueTable {
103    DenseMap<Value*, uint32_t> valueNumbering;
104    DenseMap<Expression, uint32_t> expressionNumbering;
105    AliasAnalysis *AA;
106    MemoryDependenceAnalysis *MD;
107    DominatorTree *DT;
108
109    uint32_t nextValueNumber;
110
111    Expression create_expression(Instruction* I);
112    Expression create_cmp_expression(unsigned Opcode,
113                                     CmpInst::Predicate Predicate,
114                                     Value *LHS, Value *RHS);
115    Expression create_extractvalue_expression(ExtractValueInst* EI);
116    uint32_t lookup_or_add_call(CallInst* C);
117  public:
118    ValueTable() : nextValueNumber(1) { }
119    uint32_t lookup_or_add(Value *V);
120    uint32_t lookup(Value *V) const;
121    uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
122                               Value *LHS, Value *RHS);
123    void add(Value *V, uint32_t num);
124    void clear();
125    void erase(Value *v);
126    void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
127    AliasAnalysis *getAliasAnalysis() const { return AA; }
128    void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
129    void setDomTree(DominatorTree* D) { DT = D; }
130    uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
131    void verifyRemoved(const Value *) const;
132  };
133}
134
135namespace llvm {
136template <> struct DenseMapInfo<Expression> {
137  static inline Expression getEmptyKey() {
138    return ~0U;
139  }
140
141  static inline Expression getTombstoneKey() {
142    return ~1U;
143  }
144
145  static unsigned getHashValue(const Expression e) {
146    using llvm::hash_value;
147    return static_cast<unsigned>(hash_value(e));
148  }
149  static bool isEqual(const Expression &LHS, const Expression &RHS) {
150    return LHS == RHS;
151  }
152};
153
154}
155
156//===----------------------------------------------------------------------===//
157//                     ValueTable Internal Functions
158//===----------------------------------------------------------------------===//
159
160Expression ValueTable::create_expression(Instruction *I) {
161  Expression e;
162  e.type = I->getType();
163  e.opcode = I->getOpcode();
164  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
165       OI != OE; ++OI)
166    e.varargs.push_back(lookup_or_add(*OI));
167  if (I->isCommutative()) {
168    // Ensure that commutative instructions that only differ by a permutation
169    // of their operands get the same value number by sorting the operand value
170    // numbers.  Since all commutative instructions have two operands it is more
171    // efficient to sort by hand rather than using, say, std::sort.
172    assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
173    if (e.varargs[0] > e.varargs[1])
174      std::swap(e.varargs[0], e.varargs[1]);
175  }
176
177  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
178    // Sort the operand value numbers so x<y and y>x get the same value number.
179    CmpInst::Predicate Predicate = C->getPredicate();
180    if (e.varargs[0] > e.varargs[1]) {
181      std::swap(e.varargs[0], e.varargs[1]);
182      Predicate = CmpInst::getSwappedPredicate(Predicate);
183    }
184    e.opcode = (C->getOpcode() << 8) | Predicate;
185  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
186    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
187         II != IE; ++II)
188      e.varargs.push_back(*II);
189  }
190
191  return e;
192}
193
194Expression ValueTable::create_cmp_expression(unsigned Opcode,
195                                             CmpInst::Predicate Predicate,
196                                             Value *LHS, Value *RHS) {
197  assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
198         "Not a comparison!");
199  Expression e;
200  e.type = CmpInst::makeCmpResultType(LHS->getType());
201  e.varargs.push_back(lookup_or_add(LHS));
202  e.varargs.push_back(lookup_or_add(RHS));
203
204  // Sort the operand value numbers so x<y and y>x get the same value number.
205  if (e.varargs[0] > e.varargs[1]) {
206    std::swap(e.varargs[0], e.varargs[1]);
207    Predicate = CmpInst::getSwappedPredicate(Predicate);
208  }
209  e.opcode = (Opcode << 8) | Predicate;
210  return e;
211}
212
213Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
214  assert(EI != 0 && "Not an ExtractValueInst?");
215  Expression e;
216  e.type = EI->getType();
217  e.opcode = 0;
218
219  IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
220  if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
221    // EI might be an extract from one of our recognised intrinsics. If it
222    // is we'll synthesize a semantically equivalent expression instead on
223    // an extract value expression.
224    switch (I->getIntrinsicID()) {
225      case Intrinsic::sadd_with_overflow:
226      case Intrinsic::uadd_with_overflow:
227        e.opcode = Instruction::Add;
228        break;
229      case Intrinsic::ssub_with_overflow:
230      case Intrinsic::usub_with_overflow:
231        e.opcode = Instruction::Sub;
232        break;
233      case Intrinsic::smul_with_overflow:
234      case Intrinsic::umul_with_overflow:
235        e.opcode = Instruction::Mul;
236        break;
237      default:
238        break;
239    }
240
241    if (e.opcode != 0) {
242      // Intrinsic recognized. Grab its args to finish building the expression.
243      assert(I->getNumArgOperands() == 2 &&
244             "Expect two args for recognised intrinsics.");
245      e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
246      e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
247      return e;
248    }
249  }
250
251  // Not a recognised intrinsic. Fall back to producing an extract value
252  // expression.
253  e.opcode = EI->getOpcode();
254  for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
255       OI != OE; ++OI)
256    e.varargs.push_back(lookup_or_add(*OI));
257
258  for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
259         II != IE; ++II)
260    e.varargs.push_back(*II);
261
262  return e;
263}
264
265//===----------------------------------------------------------------------===//
266//                     ValueTable External Functions
267//===----------------------------------------------------------------------===//
268
269/// add - Insert a value into the table with a specified value number.
270void ValueTable::add(Value *V, uint32_t num) {
271  valueNumbering.insert(std::make_pair(V, num));
272}
273
274uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
275  if (AA->doesNotAccessMemory(C)) {
276    Expression exp = create_expression(C);
277    uint32_t& e = expressionNumbering[exp];
278    if (!e) e = nextValueNumber++;
279    valueNumbering[C] = e;
280    return e;
281  } else if (AA->onlyReadsMemory(C)) {
282    Expression exp = create_expression(C);
283    uint32_t& e = expressionNumbering[exp];
284    if (!e) {
285      e = nextValueNumber++;
286      valueNumbering[C] = e;
287      return e;
288    }
289    if (!MD) {
290      e = nextValueNumber++;
291      valueNumbering[C] = e;
292      return e;
293    }
294
295    MemDepResult local_dep = MD->getDependency(C);
296
297    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
298      valueNumbering[C] =  nextValueNumber;
299      return nextValueNumber++;
300    }
301
302    if (local_dep.isDef()) {
303      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
304
305      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
306        valueNumbering[C] = nextValueNumber;
307        return nextValueNumber++;
308      }
309
310      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
311        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
312        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
313        if (c_vn != cd_vn) {
314          valueNumbering[C] = nextValueNumber;
315          return nextValueNumber++;
316        }
317      }
318
319      uint32_t v = lookup_or_add(local_cdep);
320      valueNumbering[C] = v;
321      return v;
322    }
323
324    // Non-local case.
325    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
326      MD->getNonLocalCallDependency(CallSite(C));
327    // FIXME: Move the checking logic to MemDep!
328    CallInst* cdep = 0;
329
330    // Check to see if we have a single dominating call instruction that is
331    // identical to C.
332    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
333      const NonLocalDepEntry *I = &deps[i];
334      if (I->getResult().isNonLocal())
335        continue;
336
337      // We don't handle non-definitions.  If we already have a call, reject
338      // instruction dependencies.
339      if (!I->getResult().isDef() || cdep != 0) {
340        cdep = 0;
341        break;
342      }
343
344      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
345      // FIXME: All duplicated with non-local case.
346      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
347        cdep = NonLocalDepCall;
348        continue;
349      }
350
351      cdep = 0;
352      break;
353    }
354
355    if (!cdep) {
356      valueNumbering[C] = nextValueNumber;
357      return nextValueNumber++;
358    }
359
360    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
361      valueNumbering[C] = nextValueNumber;
362      return nextValueNumber++;
363    }
364    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
365      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
366      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
367      if (c_vn != cd_vn) {
368        valueNumbering[C] = nextValueNumber;
369        return nextValueNumber++;
370      }
371    }
372
373    uint32_t v = lookup_or_add(cdep);
374    valueNumbering[C] = v;
375    return v;
376
377  } else {
378    valueNumbering[C] = nextValueNumber;
379    return nextValueNumber++;
380  }
381}
382
383/// lookup_or_add - Returns the value number for the specified value, assigning
384/// it a new number if it did not have one before.
385uint32_t ValueTable::lookup_or_add(Value *V) {
386  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
387  if (VI != valueNumbering.end())
388    return VI->second;
389
390  if (!isa<Instruction>(V)) {
391    valueNumbering[V] = nextValueNumber;
392    return nextValueNumber++;
393  }
394
395  Instruction* I = cast<Instruction>(V);
396  Expression exp;
397  switch (I->getOpcode()) {
398    case Instruction::Call:
399      return lookup_or_add_call(cast<CallInst>(I));
400    case Instruction::Add:
401    case Instruction::FAdd:
402    case Instruction::Sub:
403    case Instruction::FSub:
404    case Instruction::Mul:
405    case Instruction::FMul:
406    case Instruction::UDiv:
407    case Instruction::SDiv:
408    case Instruction::FDiv:
409    case Instruction::URem:
410    case Instruction::SRem:
411    case Instruction::FRem:
412    case Instruction::Shl:
413    case Instruction::LShr:
414    case Instruction::AShr:
415    case Instruction::And:
416    case Instruction::Or :
417    case Instruction::Xor:
418    case Instruction::ICmp:
419    case Instruction::FCmp:
420    case Instruction::Trunc:
421    case Instruction::ZExt:
422    case Instruction::SExt:
423    case Instruction::FPToUI:
424    case Instruction::FPToSI:
425    case Instruction::UIToFP:
426    case Instruction::SIToFP:
427    case Instruction::FPTrunc:
428    case Instruction::FPExt:
429    case Instruction::PtrToInt:
430    case Instruction::IntToPtr:
431    case Instruction::BitCast:
432    case Instruction::Select:
433    case Instruction::ExtractElement:
434    case Instruction::InsertElement:
435    case Instruction::ShuffleVector:
436    case Instruction::InsertValue:
437    case Instruction::GetElementPtr:
438      exp = create_expression(I);
439      break;
440    case Instruction::ExtractValue:
441      exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
442      break;
443    default:
444      valueNumbering[V] = nextValueNumber;
445      return nextValueNumber++;
446  }
447
448  uint32_t& e = expressionNumbering[exp];
449  if (!e) e = nextValueNumber++;
450  valueNumbering[V] = e;
451  return e;
452}
453
454/// lookup - Returns the value number of the specified value. Fails if
455/// the value has not yet been numbered.
456uint32_t ValueTable::lookup(Value *V) const {
457  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
458  assert(VI != valueNumbering.end() && "Value not numbered?");
459  return VI->second;
460}
461
462/// lookup_or_add_cmp - Returns the value number of the given comparison,
463/// assigning it a new number if it did not have one before.  Useful when
464/// we deduced the result of a comparison, but don't immediately have an
465/// instruction realizing that comparison to hand.
466uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
467                                       CmpInst::Predicate Predicate,
468                                       Value *LHS, Value *RHS) {
469  Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
470  uint32_t& e = expressionNumbering[exp];
471  if (!e) e = nextValueNumber++;
472  return e;
473}
474
475/// clear - Remove all entries from the ValueTable.
476void ValueTable::clear() {
477  valueNumbering.clear();
478  expressionNumbering.clear();
479  nextValueNumber = 1;
480}
481
482/// erase - Remove a value from the value numbering.
483void ValueTable::erase(Value *V) {
484  valueNumbering.erase(V);
485}
486
487/// verifyRemoved - Verify that the value is removed from all internal data
488/// structures.
489void ValueTable::verifyRemoved(const Value *V) const {
490  for (DenseMap<Value*, uint32_t>::const_iterator
491         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
492    assert(I->first != V && "Inst still occurs in value numbering map!");
493  }
494}
495
496//===----------------------------------------------------------------------===//
497//                                GVN Pass
498//===----------------------------------------------------------------------===//
499
500namespace {
501
502  class GVN : public FunctionPass {
503    bool NoLoads;
504    MemoryDependenceAnalysis *MD;
505    DominatorTree *DT;
506    const TargetData *TD;
507    const TargetLibraryInfo *TLI;
508
509    ValueTable VN;
510
511    /// LeaderTable - A mapping from value numbers to lists of Value*'s that
512    /// have that value number.  Use findLeader to query it.
513    struct LeaderTableEntry {
514      Value *Val;
515      BasicBlock *BB;
516      LeaderTableEntry *Next;
517    };
518    DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
519    BumpPtrAllocator TableAllocator;
520
521    SmallVector<Instruction*, 8> InstrsToErase;
522  public:
523    static char ID; // Pass identification, replacement for typeid
524    explicit GVN(bool noloads = false)
525        : FunctionPass(ID), NoLoads(noloads), MD(0) {
526      initializeGVNPass(*PassRegistry::getPassRegistry());
527    }
528
529    bool runOnFunction(Function &F);
530
531    /// markInstructionForDeletion - This removes the specified instruction from
532    /// our various maps and marks it for deletion.
533    void markInstructionForDeletion(Instruction *I) {
534      VN.erase(I);
535      InstrsToErase.push_back(I);
536    }
537
538    const TargetData *getTargetData() const { return TD; }
539    DominatorTree &getDominatorTree() const { return *DT; }
540    AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
541    MemoryDependenceAnalysis &getMemDep() const { return *MD; }
542  private:
543    /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
544    /// its value number.
545    void addToLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
546      LeaderTableEntry &Curr = LeaderTable[N];
547      if (!Curr.Val) {
548        Curr.Val = V;
549        Curr.BB = BB;
550        return;
551      }
552
553      LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
554      Node->Val = V;
555      Node->BB = BB;
556      Node->Next = Curr.Next;
557      Curr.Next = Node;
558    }
559
560    /// removeFromLeaderTable - Scan the list of values corresponding to a given
561    /// value number, and remove the given instruction if encountered.
562    void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
563      LeaderTableEntry* Prev = 0;
564      LeaderTableEntry* Curr = &LeaderTable[N];
565
566      while (Curr->Val != I || Curr->BB != BB) {
567        Prev = Curr;
568        Curr = Curr->Next;
569      }
570
571      if (Prev) {
572        Prev->Next = Curr->Next;
573      } else {
574        if (!Curr->Next) {
575          Curr->Val = 0;
576          Curr->BB = 0;
577        } else {
578          LeaderTableEntry* Next = Curr->Next;
579          Curr->Val = Next->Val;
580          Curr->BB = Next->BB;
581          Curr->Next = Next->Next;
582        }
583      }
584    }
585
586    // List of critical edges to be split between iterations.
587    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
588
589    // This transformation requires dominator postdominator info
590    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
591      AU.addRequired<DominatorTree>();
592      AU.addRequired<TargetLibraryInfo>();
593      if (!NoLoads)
594        AU.addRequired<MemoryDependenceAnalysis>();
595      AU.addRequired<AliasAnalysis>();
596
597      AU.addPreserved<DominatorTree>();
598      AU.addPreserved<AliasAnalysis>();
599    }
600
601
602    // Helper fuctions
603    // FIXME: eliminate or document these better
604    bool processLoad(LoadInst *L);
605    bool processInstruction(Instruction *I);
606    bool processNonLocalLoad(LoadInst *L);
607    bool processBlock(BasicBlock *BB);
608    void dump(DenseMap<uint32_t, Value*> &d);
609    bool iterateOnFunction(Function &F);
610    bool performPRE(Function &F);
611    Value *findLeader(BasicBlock *BB, uint32_t num);
612    void cleanupGlobalSets();
613    void verifyRemoved(const Instruction *I) const;
614    bool splitCriticalEdges();
615    unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
616                                         BasicBlock *Root);
617    bool propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root);
618  };
619
620  char GVN::ID = 0;
621}
622
623// createGVNPass - The public interface to this file...
624FunctionPass *llvm::createGVNPass(bool NoLoads) {
625  return new GVN(NoLoads);
626}
627
628INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
629INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
630INITIALIZE_PASS_DEPENDENCY(DominatorTree)
631INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
632INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
633INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
634
635void GVN::dump(DenseMap<uint32_t, Value*>& d) {
636  errs() << "{\n";
637  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
638       E = d.end(); I != E; ++I) {
639      errs() << I->first << "\n";
640      I->second->dump();
641  }
642  errs() << "}\n";
643}
644
645/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
646/// we're analyzing is fully available in the specified block.  As we go, keep
647/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
648/// map is actually a tri-state map with the following values:
649///   0) we know the block *is not* fully available.
650///   1) we know the block *is* fully available.
651///   2) we do not know whether the block is fully available or not, but we are
652///      currently speculating that it will be.
653///   3) we are speculating for this block and have used that to speculate for
654///      other blocks.
655static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
656                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
657                            uint32_t RecurseDepth) {
658  if (RecurseDepth > MaxRecurseDepth)
659    return false;
660
661  // Optimistically assume that the block is fully available and check to see
662  // if we already know about this block in one lookup.
663  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
664    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
665
666  // If the entry already existed for this block, return the precomputed value.
667  if (!IV.second) {
668    // If this is a speculative "available" value, mark it as being used for
669    // speculation of other blocks.
670    if (IV.first->second == 2)
671      IV.first->second = 3;
672    return IV.first->second != 0;
673  }
674
675  // Otherwise, see if it is fully available in all predecessors.
676  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
677
678  // If this block has no predecessors, it isn't live-in here.
679  if (PI == PE)
680    goto SpeculationFailure;
681
682  for (; PI != PE; ++PI)
683    // If the value isn't fully available in one of our predecessors, then it
684    // isn't fully available in this block either.  Undo our previous
685    // optimistic assumption and bail out.
686    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
687      goto SpeculationFailure;
688
689  return true;
690
691// SpeculationFailure - If we get here, we found out that this is not, after
692// all, a fully-available block.  We have a problem if we speculated on this and
693// used the speculation to mark other blocks as available.
694SpeculationFailure:
695  char &BBVal = FullyAvailableBlocks[BB];
696
697  // If we didn't speculate on this, just return with it set to false.
698  if (BBVal == 2) {
699    BBVal = 0;
700    return false;
701  }
702
703  // If we did speculate on this value, we could have blocks set to 1 that are
704  // incorrect.  Walk the (transitive) successors of this block and mark them as
705  // 0 if set to one.
706  SmallVector<BasicBlock*, 32> BBWorklist;
707  BBWorklist.push_back(BB);
708
709  do {
710    BasicBlock *Entry = BBWorklist.pop_back_val();
711    // Note that this sets blocks to 0 (unavailable) if they happen to not
712    // already be in FullyAvailableBlocks.  This is safe.
713    char &EntryVal = FullyAvailableBlocks[Entry];
714    if (EntryVal == 0) continue;  // Already unavailable.
715
716    // Mark as unavailable.
717    EntryVal = 0;
718
719    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
720      BBWorklist.push_back(*I);
721  } while (!BBWorklist.empty());
722
723  return false;
724}
725
726
727/// CanCoerceMustAliasedValueToLoad - Return true if
728/// CoerceAvailableValueToLoadType will succeed.
729static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
730                                            Type *LoadTy,
731                                            const TargetData &TD) {
732  // If the loaded or stored value is an first class array or struct, don't try
733  // to transform them.  We need to be able to bitcast to integer.
734  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
735      StoredVal->getType()->isStructTy() ||
736      StoredVal->getType()->isArrayTy())
737    return false;
738
739  // The store has to be at least as big as the load.
740  if (TD.getTypeSizeInBits(StoredVal->getType()) <
741        TD.getTypeSizeInBits(LoadTy))
742    return false;
743
744  return true;
745}
746
747
748/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
749/// then a load from a must-aliased pointer of a different type, try to coerce
750/// the stored value.  LoadedTy is the type of the load we want to replace and
751/// InsertPt is the place to insert new instructions.
752///
753/// If we can't do it, return null.
754static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
755                                             Type *LoadedTy,
756                                             Instruction *InsertPt,
757                                             const TargetData &TD) {
758  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
759    return 0;
760
761  // If this is already the right type, just return it.
762  Type *StoredValTy = StoredVal->getType();
763
764  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
765  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
766
767  // If the store and reload are the same size, we can always reuse it.
768  if (StoreSize == LoadSize) {
769    // Pointer to Pointer -> use bitcast.
770    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy())
771      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
772
773    // Convert source pointers to integers, which can be bitcast.
774    if (StoredValTy->isPointerTy()) {
775      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
776      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
777    }
778
779    Type *TypeToCastTo = LoadedTy;
780    if (TypeToCastTo->isPointerTy())
781      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
782
783    if (StoredValTy != TypeToCastTo)
784      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
785
786    // Cast to pointer if the load needs a pointer type.
787    if (LoadedTy->isPointerTy())
788      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
789
790    return StoredVal;
791  }
792
793  // If the loaded value is smaller than the available value, then we can
794  // extract out a piece from it.  If the available value is too small, then we
795  // can't do anything.
796  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
797
798  // Convert source pointers to integers, which can be manipulated.
799  if (StoredValTy->isPointerTy()) {
800    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
801    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
802  }
803
804  // Convert vectors and fp to integer, which can be manipulated.
805  if (!StoredValTy->isIntegerTy()) {
806    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
807    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
808  }
809
810  // If this is a big-endian system, we need to shift the value down to the low
811  // bits so that a truncate will work.
812  if (TD.isBigEndian()) {
813    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
814    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
815  }
816
817  // Truncate the integer to the right size now.
818  Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
819  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
820
821  if (LoadedTy == NewIntTy)
822    return StoredVal;
823
824  // If the result is a pointer, inttoptr.
825  if (LoadedTy->isPointerTy())
826    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
827
828  // Otherwise, bitcast.
829  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
830}
831
832/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
833/// memdep query of a load that ends up being a clobbering memory write (store,
834/// memset, memcpy, memmove).  This means that the write *may* provide bits used
835/// by the load but we can't be sure because the pointers don't mustalias.
836///
837/// Check this case to see if there is anything more we can do before we give
838/// up.  This returns -1 if we have to give up, or a byte number in the stored
839/// value of the piece that feeds the load.
840static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
841                                          Value *WritePtr,
842                                          uint64_t WriteSizeInBits,
843                                          const TargetData &TD) {
844  // If the loaded or stored value is a first class array or struct, don't try
845  // to transform them.  We need to be able to bitcast to integer.
846  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
847    return -1;
848
849  int64_t StoreOffset = 0, LoadOffset = 0;
850  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
851  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
852  if (StoreBase != LoadBase)
853    return -1;
854
855  // If the load and store are to the exact same address, they should have been
856  // a must alias.  AA must have gotten confused.
857  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
858  // to a load from the base of the memset.
859#if 0
860  if (LoadOffset == StoreOffset) {
861    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
862    << "Base       = " << *StoreBase << "\n"
863    << "Store Ptr  = " << *WritePtr << "\n"
864    << "Store Offs = " << StoreOffset << "\n"
865    << "Load Ptr   = " << *LoadPtr << "\n";
866    abort();
867  }
868#endif
869
870  // If the load and store don't overlap at all, the store doesn't provide
871  // anything to the load.  In this case, they really don't alias at all, AA
872  // must have gotten confused.
873  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
874
875  if ((WriteSizeInBits & 7) | (LoadSize & 7))
876    return -1;
877  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
878  LoadSize >>= 3;
879
880
881  bool isAAFailure = false;
882  if (StoreOffset < LoadOffset)
883    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
884  else
885    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
886
887  if (isAAFailure) {
888#if 0
889    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
890    << "Base       = " << *StoreBase << "\n"
891    << "Store Ptr  = " << *WritePtr << "\n"
892    << "Store Offs = " << StoreOffset << "\n"
893    << "Load Ptr   = " << *LoadPtr << "\n";
894    abort();
895#endif
896    return -1;
897  }
898
899  // If the Load isn't completely contained within the stored bits, we don't
900  // have all the bits to feed it.  We could do something crazy in the future
901  // (issue a smaller load then merge the bits in) but this seems unlikely to be
902  // valuable.
903  if (StoreOffset > LoadOffset ||
904      StoreOffset+StoreSize < LoadOffset+LoadSize)
905    return -1;
906
907  // Okay, we can do this transformation.  Return the number of bytes into the
908  // store that the load is.
909  return LoadOffset-StoreOffset;
910}
911
912/// AnalyzeLoadFromClobberingStore - This function is called when we have a
913/// memdep query of a load that ends up being a clobbering store.
914static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
915                                          StoreInst *DepSI,
916                                          const TargetData &TD) {
917  // Cannot handle reading from store of first-class aggregate yet.
918  if (DepSI->getValueOperand()->getType()->isStructTy() ||
919      DepSI->getValueOperand()->getType()->isArrayTy())
920    return -1;
921
922  Value *StorePtr = DepSI->getPointerOperand();
923  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
924  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
925                                        StorePtr, StoreSize, TD);
926}
927
928/// AnalyzeLoadFromClobberingLoad - This function is called when we have a
929/// memdep query of a load that ends up being clobbered by another load.  See if
930/// the other load can feed into the second load.
931static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
932                                         LoadInst *DepLI, const TargetData &TD){
933  // Cannot handle reading from store of first-class aggregate yet.
934  if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
935    return -1;
936
937  Value *DepPtr = DepLI->getPointerOperand();
938  uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
939  int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
940  if (R != -1) return R;
941
942  // If we have a load/load clobber an DepLI can be widened to cover this load,
943  // then we should widen it!
944  int64_t LoadOffs = 0;
945  const Value *LoadBase =
946    GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD);
947  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
948
949  unsigned Size = MemoryDependenceAnalysis::
950    getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
951  if (Size == 0) return -1;
952
953  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
954}
955
956
957
958static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
959                                            MemIntrinsic *MI,
960                                            const TargetData &TD) {
961  // If the mem operation is a non-constant size, we can't handle it.
962  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
963  if (SizeCst == 0) return -1;
964  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
965
966  // If this is memset, we just need to see if the offset is valid in the size
967  // of the memset..
968  if (MI->getIntrinsicID() == Intrinsic::memset)
969    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
970                                          MemSizeInBits, TD);
971
972  // If we have a memcpy/memmove, the only case we can handle is if this is a
973  // copy from constant memory.  In that case, we can read directly from the
974  // constant memory.
975  MemTransferInst *MTI = cast<MemTransferInst>(MI);
976
977  Constant *Src = dyn_cast<Constant>(MTI->getSource());
978  if (Src == 0) return -1;
979
980  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
981  if (GV == 0 || !GV->isConstant()) return -1;
982
983  // See if the access is within the bounds of the transfer.
984  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
985                                              MI->getDest(), MemSizeInBits, TD);
986  if (Offset == -1)
987    return Offset;
988
989  // Otherwise, see if we can constant fold a load from the constant with the
990  // offset applied as appropriate.
991  Src = ConstantExpr::getBitCast(Src,
992                                 llvm::Type::getInt8PtrTy(Src->getContext()));
993  Constant *OffsetCst =
994    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
995  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
996  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
997  if (ConstantFoldLoadFromConstPtr(Src, &TD))
998    return Offset;
999  return -1;
1000}
1001
1002
1003/// GetStoreValueForLoad - This function is called when we have a
1004/// memdep query of a load that ends up being a clobbering store.  This means
1005/// that the store provides bits used by the load but we the pointers don't
1006/// mustalias.  Check this case to see if there is anything more we can do
1007/// before we give up.
1008static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1009                                   Type *LoadTy,
1010                                   Instruction *InsertPt, const TargetData &TD){
1011  LLVMContext &Ctx = SrcVal->getType()->getContext();
1012
1013  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1014  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1015
1016  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1017
1018  // Compute which bits of the stored value are being used by the load.  Convert
1019  // to an integer type to start with.
1020  if (SrcVal->getType()->isPointerTy())
1021    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx));
1022  if (!SrcVal->getType()->isIntegerTy())
1023    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
1024
1025  // Shift the bits to the least significant depending on endianness.
1026  unsigned ShiftAmt;
1027  if (TD.isLittleEndian())
1028    ShiftAmt = Offset*8;
1029  else
1030    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1031
1032  if (ShiftAmt)
1033    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
1034
1035  if (LoadSize != StoreSize)
1036    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
1037
1038  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1039}
1040
1041/// GetLoadValueForLoad - This function is called when we have a
1042/// memdep query of a load that ends up being a clobbering load.  This means
1043/// that the load *may* provide bits used by the load but we can't be sure
1044/// because the pointers don't mustalias.  Check this case to see if there is
1045/// anything more we can do before we give up.
1046static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
1047                                  Type *LoadTy, Instruction *InsertPt,
1048                                  GVN &gvn) {
1049  const TargetData &TD = *gvn.getTargetData();
1050  // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
1051  // widen SrcVal out to a larger load.
1052  unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
1053  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
1054  if (Offset+LoadSize > SrcValSize) {
1055    assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
1056    assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
1057    // If we have a load/load clobber an DepLI can be widened to cover this
1058    // load, then we should widen it to the next power of 2 size big enough!
1059    unsigned NewLoadSize = Offset+LoadSize;
1060    if (!isPowerOf2_32(NewLoadSize))
1061      NewLoadSize = NextPowerOf2(NewLoadSize);
1062
1063    Value *PtrVal = SrcVal->getPointerOperand();
1064
1065    // Insert the new load after the old load.  This ensures that subsequent
1066    // memdep queries will find the new load.  We can't easily remove the old
1067    // load completely because it is already in the value numbering table.
1068    IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
1069    Type *DestPTy =
1070      IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1071    DestPTy = PointerType::get(DestPTy,
1072                       cast<PointerType>(PtrVal->getType())->getAddressSpace());
1073    Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1074    PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1075    LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1076    NewLoad->takeName(SrcVal);
1077    NewLoad->setAlignment(SrcVal->getAlignment());
1078
1079    DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1080    DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1081
1082    // Replace uses of the original load with the wider load.  On a big endian
1083    // system, we need to shift down to get the relevant bits.
1084    Value *RV = NewLoad;
1085    if (TD.isBigEndian())
1086      RV = Builder.CreateLShr(RV,
1087                    NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1088    RV = Builder.CreateTrunc(RV, SrcVal->getType());
1089    SrcVal->replaceAllUsesWith(RV);
1090
1091    // We would like to use gvn.markInstructionForDeletion here, but we can't
1092    // because the load is already memoized into the leader map table that GVN
1093    // tracks.  It is potentially possible to remove the load from the table,
1094    // but then there all of the operations based on it would need to be
1095    // rehashed.  Just leave the dead load around.
1096    gvn.getMemDep().removeInstruction(SrcVal);
1097    SrcVal = NewLoad;
1098  }
1099
1100  return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
1101}
1102
1103
1104/// GetMemInstValueForLoad - This function is called when we have a
1105/// memdep query of a load that ends up being a clobbering mem intrinsic.
1106static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1107                                     Type *LoadTy, Instruction *InsertPt,
1108                                     const TargetData &TD){
1109  LLVMContext &Ctx = LoadTy->getContext();
1110  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1111
1112  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1113
1114  // We know that this method is only called when the mem transfer fully
1115  // provides the bits for the load.
1116  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1117    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1118    // independently of what the offset is.
1119    Value *Val = MSI->getValue();
1120    if (LoadSize != 1)
1121      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1122
1123    Value *OneElt = Val;
1124
1125    // Splat the value out to the right number of bits.
1126    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1127      // If we can double the number of bytes set, do it.
1128      if (NumBytesSet*2 <= LoadSize) {
1129        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1130        Val = Builder.CreateOr(Val, ShVal);
1131        NumBytesSet <<= 1;
1132        continue;
1133      }
1134
1135      // Otherwise insert one byte at a time.
1136      Value *ShVal = Builder.CreateShl(Val, 1*8);
1137      Val = Builder.CreateOr(OneElt, ShVal);
1138      ++NumBytesSet;
1139    }
1140
1141    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1142  }
1143
1144  // Otherwise, this is a memcpy/memmove from a constant global.
1145  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1146  Constant *Src = cast<Constant>(MTI->getSource());
1147
1148  // Otherwise, see if we can constant fold a load from the constant with the
1149  // offset applied as appropriate.
1150  Src = ConstantExpr::getBitCast(Src,
1151                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1152  Constant *OffsetCst =
1153  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1154  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1155  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1156  return ConstantFoldLoadFromConstPtr(Src, &TD);
1157}
1158
1159namespace {
1160
1161struct AvailableValueInBlock {
1162  /// BB - The basic block in question.
1163  BasicBlock *BB;
1164  enum ValType {
1165    SimpleVal,  // A simple offsetted value that is accessed.
1166    LoadVal,    // A value produced by a load.
1167    MemIntrin   // A memory intrinsic which is loaded from.
1168  };
1169
1170  /// V - The value that is live out of the block.
1171  PointerIntPair<Value *, 2, ValType> Val;
1172
1173  /// Offset - The byte offset in Val that is interesting for the load query.
1174  unsigned Offset;
1175
1176  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1177                                   unsigned Offset = 0) {
1178    AvailableValueInBlock Res;
1179    Res.BB = BB;
1180    Res.Val.setPointer(V);
1181    Res.Val.setInt(SimpleVal);
1182    Res.Offset = Offset;
1183    return Res;
1184  }
1185
1186  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1187                                     unsigned Offset = 0) {
1188    AvailableValueInBlock Res;
1189    Res.BB = BB;
1190    Res.Val.setPointer(MI);
1191    Res.Val.setInt(MemIntrin);
1192    Res.Offset = Offset;
1193    return Res;
1194  }
1195
1196  static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
1197                                       unsigned Offset = 0) {
1198    AvailableValueInBlock Res;
1199    Res.BB = BB;
1200    Res.Val.setPointer(LI);
1201    Res.Val.setInt(LoadVal);
1202    Res.Offset = Offset;
1203    return Res;
1204  }
1205
1206  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1207  bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
1208  bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
1209
1210  Value *getSimpleValue() const {
1211    assert(isSimpleValue() && "Wrong accessor");
1212    return Val.getPointer();
1213  }
1214
1215  LoadInst *getCoercedLoadValue() const {
1216    assert(isCoercedLoadValue() && "Wrong accessor");
1217    return cast<LoadInst>(Val.getPointer());
1218  }
1219
1220  MemIntrinsic *getMemIntrinValue() const {
1221    assert(isMemIntrinValue() && "Wrong accessor");
1222    return cast<MemIntrinsic>(Val.getPointer());
1223  }
1224
1225  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1226  /// defined here to the specified type.  This handles various coercion cases.
1227  Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
1228    Value *Res;
1229    if (isSimpleValue()) {
1230      Res = getSimpleValue();
1231      if (Res->getType() != LoadTy) {
1232        const TargetData *TD = gvn.getTargetData();
1233        assert(TD && "Need target data to handle type mismatch case");
1234        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1235                                   *TD);
1236
1237        DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1238                     << *getSimpleValue() << '\n'
1239                     << *Res << '\n' << "\n\n\n");
1240      }
1241    } else if (isCoercedLoadValue()) {
1242      LoadInst *Load = getCoercedLoadValue();
1243      if (Load->getType() == LoadTy && Offset == 0) {
1244        Res = Load;
1245      } else {
1246        Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1247                                  gvn);
1248
1249        DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
1250                     << *getCoercedLoadValue() << '\n'
1251                     << *Res << '\n' << "\n\n\n");
1252      }
1253    } else {
1254      const TargetData *TD = gvn.getTargetData();
1255      assert(TD && "Need target data to handle type mismatch case");
1256      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1257                                   LoadTy, BB->getTerminator(), *TD);
1258      DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1259                   << "  " << *getMemIntrinValue() << '\n'
1260                   << *Res << '\n' << "\n\n\n");
1261    }
1262    return Res;
1263  }
1264};
1265
1266} // end anonymous namespace
1267
1268/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1269/// construct SSA form, allowing us to eliminate LI.  This returns the value
1270/// that should be used at LI's definition site.
1271static Value *ConstructSSAForLoadSet(LoadInst *LI,
1272                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1273                                     GVN &gvn) {
1274  // Check for the fully redundant, dominating load case.  In this case, we can
1275  // just use the dominating value directly.
1276  if (ValuesPerBlock.size() == 1 &&
1277      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1278                                               LI->getParent()))
1279    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1280
1281  // Otherwise, we have to construct SSA form.
1282  SmallVector<PHINode*, 8> NewPHIs;
1283  SSAUpdater SSAUpdate(&NewPHIs);
1284  SSAUpdate.Initialize(LI->getType(), LI->getName());
1285
1286  Type *LoadTy = LI->getType();
1287
1288  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1289    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1290    BasicBlock *BB = AV.BB;
1291
1292    if (SSAUpdate.HasValueForBlock(BB))
1293      continue;
1294
1295    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1296  }
1297
1298  // Perform PHI construction.
1299  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1300
1301  // If new PHI nodes were created, notify alias analysis.
1302  if (V->getType()->isPointerTy()) {
1303    AliasAnalysis *AA = gvn.getAliasAnalysis();
1304
1305    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1306      AA->copyValue(LI, NewPHIs[i]);
1307
1308    // Now that we've copied information to the new PHIs, scan through
1309    // them again and inform alias analysis that we've added potentially
1310    // escaping uses to any values that are operands to these PHIs.
1311    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1312      PHINode *P = NewPHIs[i];
1313      for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
1314        unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
1315        AA->addEscapingUse(P->getOperandUse(jj));
1316      }
1317    }
1318  }
1319
1320  return V;
1321}
1322
1323static bool isLifetimeStart(const Instruction *Inst) {
1324  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1325    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1326  return false;
1327}
1328
1329/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1330/// non-local by performing PHI construction.
1331bool GVN::processNonLocalLoad(LoadInst *LI) {
1332  // Find the non-local dependencies of the load.
1333  SmallVector<NonLocalDepResult, 64> Deps;
1334  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1335  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1336  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1337  //             << Deps.size() << *LI << '\n');
1338
1339  // If we had to process more than one hundred blocks to find the
1340  // dependencies, this load isn't worth worrying about.  Optimizing
1341  // it will be too expensive.
1342  unsigned NumDeps = Deps.size();
1343  if (NumDeps > 100)
1344    return false;
1345
1346  // If we had a phi translation failure, we'll have a single entry which is a
1347  // clobber in the current block.  Reject this early.
1348  if (NumDeps == 1 &&
1349      !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1350    DEBUG(
1351      dbgs() << "GVN: non-local load ";
1352      WriteAsOperand(dbgs(), LI);
1353      dbgs() << " has unknown dependencies\n";
1354    );
1355    return false;
1356  }
1357
1358  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1359  // where we have a value available in repl, also keep track of whether we see
1360  // dependencies that produce an unknown value for the load (such as a call
1361  // that could potentially clobber the load).
1362  SmallVector<AvailableValueInBlock, 64> ValuesPerBlock;
1363  SmallVector<BasicBlock*, 64> UnavailableBlocks;
1364
1365  for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1366    BasicBlock *DepBB = Deps[i].getBB();
1367    MemDepResult DepInfo = Deps[i].getResult();
1368
1369    if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1370      UnavailableBlocks.push_back(DepBB);
1371      continue;
1372    }
1373
1374    if (DepInfo.isClobber()) {
1375      // The address being loaded in this non-local block may not be the same as
1376      // the pointer operand of the load if PHI translation occurs.  Make sure
1377      // to consider the right address.
1378      Value *Address = Deps[i].getAddress();
1379
1380      // If the dependence is to a store that writes to a superset of the bits
1381      // read by the load, we can extract the bits we need for the load from the
1382      // stored value.
1383      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1384        if (TD && Address) {
1385          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1386                                                      DepSI, *TD);
1387          if (Offset != -1) {
1388            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1389                                                       DepSI->getValueOperand(),
1390                                                                Offset));
1391            continue;
1392          }
1393        }
1394      }
1395
1396      // Check to see if we have something like this:
1397      //    load i32* P
1398      //    load i8* (P+1)
1399      // if we have this, replace the later with an extraction from the former.
1400      if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1401        // If this is a clobber and L is the first instruction in its block, then
1402        // we have the first instruction in the entry block.
1403        if (DepLI != LI && Address && TD) {
1404          int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
1405                                                     LI->getPointerOperand(),
1406                                                     DepLI, *TD);
1407
1408          if (Offset != -1) {
1409            ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1410                                                                    Offset));
1411            continue;
1412          }
1413        }
1414      }
1415
1416      // If the clobbering value is a memset/memcpy/memmove, see if we can
1417      // forward a value on from it.
1418      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1419        if (TD && Address) {
1420          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1421                                                        DepMI, *TD);
1422          if (Offset != -1) {
1423            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1424                                                                  Offset));
1425            continue;
1426          }
1427        }
1428      }
1429
1430      UnavailableBlocks.push_back(DepBB);
1431      continue;
1432    }
1433
1434    // DepInfo.isDef() here
1435
1436    Instruction *DepInst = DepInfo.getInst();
1437
1438    // Loading the allocation -> undef.
1439    if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst) ||
1440        // Loading immediately after lifetime begin -> undef.
1441        isLifetimeStart(DepInst)) {
1442      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1443                                             UndefValue::get(LI->getType())));
1444      continue;
1445    }
1446
1447    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1448      // Reject loads and stores that are to the same address but are of
1449      // different types if we have to.
1450      if (S->getValueOperand()->getType() != LI->getType()) {
1451        // If the stored value is larger or equal to the loaded value, we can
1452        // reuse it.
1453        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1454                                                        LI->getType(), *TD)) {
1455          UnavailableBlocks.push_back(DepBB);
1456          continue;
1457        }
1458      }
1459
1460      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1461                                                         S->getValueOperand()));
1462      continue;
1463    }
1464
1465    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1466      // If the types mismatch and we can't handle it, reject reuse of the load.
1467      if (LD->getType() != LI->getType()) {
1468        // If the stored value is larger or equal to the loaded value, we can
1469        // reuse it.
1470        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1471          UnavailableBlocks.push_back(DepBB);
1472          continue;
1473        }
1474      }
1475      ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1476      continue;
1477    }
1478
1479    UnavailableBlocks.push_back(DepBB);
1480    continue;
1481  }
1482
1483  // If we have no predecessors that produce a known value for this load, exit
1484  // early.
1485  if (ValuesPerBlock.empty()) return false;
1486
1487  // If all of the instructions we depend on produce a known value for this
1488  // load, then it is fully redundant and we can use PHI insertion to compute
1489  // its value.  Insert PHIs and remove the fully redundant value now.
1490  if (UnavailableBlocks.empty()) {
1491    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1492
1493    // Perform PHI construction.
1494    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1495    LI->replaceAllUsesWith(V);
1496
1497    if (isa<PHINode>(V))
1498      V->takeName(LI);
1499    if (V->getType()->isPointerTy())
1500      MD->invalidateCachedPointerInfo(V);
1501    markInstructionForDeletion(LI);
1502    ++NumGVNLoad;
1503    return true;
1504  }
1505
1506  if (!EnablePRE || !EnableLoadPRE)
1507    return false;
1508
1509  // Okay, we have *some* definitions of the value.  This means that the value
1510  // is available in some of our (transitive) predecessors.  Lets think about
1511  // doing PRE of this load.  This will involve inserting a new load into the
1512  // predecessor when it's not available.  We could do this in general, but
1513  // prefer to not increase code size.  As such, we only do this when we know
1514  // that we only have to insert *one* load (which means we're basically moving
1515  // the load, not inserting a new one).
1516
1517  SmallPtrSet<BasicBlock *, 4> Blockers;
1518  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1519    Blockers.insert(UnavailableBlocks[i]);
1520
1521  // Let's find the first basic block with more than one predecessor.  Walk
1522  // backwards through predecessors if needed.
1523  BasicBlock *LoadBB = LI->getParent();
1524  BasicBlock *TmpBB = LoadBB;
1525
1526  bool isSinglePred = false;
1527  bool allSingleSucc = true;
1528  while (TmpBB->getSinglePredecessor()) {
1529    isSinglePred = true;
1530    TmpBB = TmpBB->getSinglePredecessor();
1531    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1532      return false;
1533    if (Blockers.count(TmpBB))
1534      return false;
1535
1536    // If any of these blocks has more than one successor (i.e. if the edge we
1537    // just traversed was critical), then there are other paths through this
1538    // block along which the load may not be anticipated.  Hoisting the load
1539    // above this block would be adding the load to execution paths along
1540    // which it was not previously executed.
1541    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1542      return false;
1543  }
1544
1545  assert(TmpBB);
1546  LoadBB = TmpBB;
1547
1548  // FIXME: It is extremely unclear what this loop is doing, other than
1549  // artificially restricting loadpre.
1550  if (isSinglePred) {
1551    bool isHot = false;
1552    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1553      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1554      if (AV.isSimpleValue())
1555        // "Hot" Instruction is in some loop (because it dominates its dep.
1556        // instruction).
1557        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1558          if (DT->dominates(LI, I)) {
1559            isHot = true;
1560            break;
1561          }
1562    }
1563
1564    // We are interested only in "hot" instructions. We don't want to do any
1565    // mis-optimizations here.
1566    if (!isHot)
1567      return false;
1568  }
1569
1570  // Check to see how many predecessors have the loaded value fully
1571  // available.
1572  DenseMap<BasicBlock*, Value*> PredLoads;
1573  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1574  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1575    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1576  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1577    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1578
1579  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1580  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1581       PI != E; ++PI) {
1582    BasicBlock *Pred = *PI;
1583    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1584      continue;
1585    }
1586    PredLoads[Pred] = 0;
1587
1588    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1589      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1590        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1591              << Pred->getName() << "': " << *LI << '\n');
1592        return false;
1593      }
1594
1595      if (LoadBB->isLandingPad()) {
1596        DEBUG(dbgs()
1597              << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
1598              << Pred->getName() << "': " << *LI << '\n');
1599        return false;
1600      }
1601
1602      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1603      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1604    }
1605  }
1606
1607  if (!NeedToSplit.empty()) {
1608    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1609    return false;
1610  }
1611
1612  // Decide whether PRE is profitable for this load.
1613  unsigned NumUnavailablePreds = PredLoads.size();
1614  assert(NumUnavailablePreds != 0 &&
1615         "Fully available value should be eliminated above!");
1616
1617  // If this load is unavailable in multiple predecessors, reject it.
1618  // FIXME: If we could restructure the CFG, we could make a common pred with
1619  // all the preds that don't have an available LI and insert a new load into
1620  // that one block.
1621  if (NumUnavailablePreds != 1)
1622      return false;
1623
1624  // Check if the load can safely be moved to all the unavailable predecessors.
1625  bool CanDoPRE = true;
1626  SmallVector<Instruction*, 8> NewInsts;
1627  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1628         E = PredLoads.end(); I != E; ++I) {
1629    BasicBlock *UnavailablePred = I->first;
1630
1631    // Do PHI translation to get its value in the predecessor if necessary.  The
1632    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1633
1634    // If all preds have a single successor, then we know it is safe to insert
1635    // the load on the pred (?!?), so we can insert code to materialize the
1636    // pointer if it is not available.
1637    PHITransAddr Address(LI->getPointerOperand(), TD);
1638    Value *LoadPtr = 0;
1639    if (allSingleSucc) {
1640      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1641                                                  *DT, NewInsts);
1642    } else {
1643      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1644      LoadPtr = Address.getAddr();
1645    }
1646
1647    // If we couldn't find or insert a computation of this phi translated value,
1648    // we fail PRE.
1649    if (LoadPtr == 0) {
1650      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1651            << *LI->getPointerOperand() << "\n");
1652      CanDoPRE = false;
1653      break;
1654    }
1655
1656    // Make sure it is valid to move this load here.  We have to watch out for:
1657    //  @1 = getelementptr (i8* p, ...
1658    //  test p and branch if == 0
1659    //  load @1
1660    // It is valid to have the getelementptr before the test, even if p can
1661    // be 0, as getelementptr only does address arithmetic.
1662    // If we are not pushing the value through any multiple-successor blocks
1663    // we do not have this case.  Otherwise, check that the load is safe to
1664    // put anywhere; this can be improved, but should be conservatively safe.
1665    if (!allSingleSucc &&
1666        // FIXME: REEVALUTE THIS.
1667        !isSafeToLoadUnconditionally(LoadPtr,
1668                                     UnavailablePred->getTerminator(),
1669                                     LI->getAlignment(), TD)) {
1670      CanDoPRE = false;
1671      break;
1672    }
1673
1674    I->second = LoadPtr;
1675  }
1676
1677  if (!CanDoPRE) {
1678    while (!NewInsts.empty()) {
1679      Instruction *I = NewInsts.pop_back_val();
1680      if (MD) MD->removeInstruction(I);
1681      I->eraseFromParent();
1682    }
1683    return false;
1684  }
1685
1686  // Okay, we can eliminate this load by inserting a reload in the predecessor
1687  // and using PHI construction to get the value in the other predecessors, do
1688  // it.
1689  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1690  DEBUG(if (!NewInsts.empty())
1691          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1692                 << *NewInsts.back() << '\n');
1693
1694  // Assign value numbers to the new instructions.
1695  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1696    // FIXME: We really _ought_ to insert these value numbers into their
1697    // parent's availability map.  However, in doing so, we risk getting into
1698    // ordering issues.  If a block hasn't been processed yet, we would be
1699    // marking a value as AVAIL-IN, which isn't what we intend.
1700    VN.lookup_or_add(NewInsts[i]);
1701  }
1702
1703  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1704         E = PredLoads.end(); I != E; ++I) {
1705    BasicBlock *UnavailablePred = I->first;
1706    Value *LoadPtr = I->second;
1707
1708    Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1709                                        LI->getAlignment(),
1710                                        UnavailablePred->getTerminator());
1711
1712    // Transfer the old load's TBAA tag to the new load.
1713    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1714      NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1715
1716    // Transfer DebugLoc.
1717    NewLoad->setDebugLoc(LI->getDebugLoc());
1718
1719    // Add the newly created load.
1720    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1721                                                        NewLoad));
1722    MD->invalidateCachedPointerInfo(LoadPtr);
1723    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1724  }
1725
1726  // Perform PHI construction.
1727  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1728  LI->replaceAllUsesWith(V);
1729  if (isa<PHINode>(V))
1730    V->takeName(LI);
1731  if (V->getType()->isPointerTy())
1732    MD->invalidateCachedPointerInfo(V);
1733  markInstructionForDeletion(LI);
1734  ++NumPRELoad;
1735  return true;
1736}
1737
1738static void patchReplacementInstruction(Value *Repl, Instruction *I) {
1739  // Patch the replacement so that it is not more restrictive than the value
1740  // being replaced.
1741  BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
1742  BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
1743  if (Op && ReplOp && isa<OverflowingBinaryOperator>(Op) &&
1744      isa<OverflowingBinaryOperator>(ReplOp)) {
1745    if (ReplOp->hasNoSignedWrap() && !Op->hasNoSignedWrap())
1746      ReplOp->setHasNoSignedWrap(false);
1747    if (ReplOp->hasNoUnsignedWrap() && !Op->hasNoUnsignedWrap())
1748      ReplOp->setHasNoUnsignedWrap(false);
1749  }
1750  if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
1751    SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
1752    ReplInst->getAllMetadataOtherThanDebugLoc(Metadata);
1753    for (int i = 0, n = Metadata.size(); i < n; ++i) {
1754      unsigned Kind = Metadata[i].first;
1755      MDNode *IMD = I->getMetadata(Kind);
1756      MDNode *ReplMD = Metadata[i].second;
1757      switch(Kind) {
1758      default:
1759        ReplInst->setMetadata(Kind, NULL); // Remove unknown metadata
1760        break;
1761      case LLVMContext::MD_dbg:
1762        llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1763      case LLVMContext::MD_tbaa:
1764        ReplInst->setMetadata(Kind, MDNode::getMostGenericTBAA(IMD, ReplMD));
1765        break;
1766      case LLVMContext::MD_range:
1767        ReplInst->setMetadata(Kind, MDNode::getMostGenericRange(IMD, ReplMD));
1768        break;
1769      case LLVMContext::MD_prof:
1770        llvm_unreachable("MD_prof in a non terminator instruction");
1771        break;
1772      case LLVMContext::MD_fpmath:
1773        ReplInst->setMetadata(Kind, MDNode::getMostGenericFPMath(IMD, ReplMD));
1774        break;
1775      }
1776    }
1777  }
1778}
1779
1780static void patchAndReplaceAllUsesWith(Value *Repl, Instruction *I) {
1781  patchReplacementInstruction(Repl, I);
1782  I->replaceAllUsesWith(Repl);
1783}
1784
1785/// processLoad - Attempt to eliminate a load, first by eliminating it
1786/// locally, and then attempting non-local elimination if that fails.
1787bool GVN::processLoad(LoadInst *L) {
1788  if (!MD)
1789    return false;
1790
1791  if (!L->isSimple())
1792    return false;
1793
1794  if (L->use_empty()) {
1795    markInstructionForDeletion(L);
1796    return true;
1797  }
1798
1799  // ... to a pointer that has been loaded from before...
1800  MemDepResult Dep = MD->getDependency(L);
1801
1802  // If we have a clobber and target data is around, see if this is a clobber
1803  // that we can fix up through code synthesis.
1804  if (Dep.isClobber() && TD) {
1805    // Check to see if we have something like this:
1806    //   store i32 123, i32* %P
1807    //   %A = bitcast i32* %P to i8*
1808    //   %B = gep i8* %A, i32 1
1809    //   %C = load i8* %B
1810    //
1811    // We could do that by recognizing if the clobber instructions are obviously
1812    // a common base + constant offset, and if the previous store (or memset)
1813    // completely covers this load.  This sort of thing can happen in bitfield
1814    // access code.
1815    Value *AvailVal = 0;
1816    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1817      int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1818                                                  L->getPointerOperand(),
1819                                                  DepSI, *TD);
1820      if (Offset != -1)
1821        AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1822                                        L->getType(), L, *TD);
1823    }
1824
1825    // Check to see if we have something like this:
1826    //    load i32* P
1827    //    load i8* (P+1)
1828    // if we have this, replace the later with an extraction from the former.
1829    if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1830      // If this is a clobber and L is the first instruction in its block, then
1831      // we have the first instruction in the entry block.
1832      if (DepLI == L)
1833        return false;
1834
1835      int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1836                                                 L->getPointerOperand(),
1837                                                 DepLI, *TD);
1838      if (Offset != -1)
1839        AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1840    }
1841
1842    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1843    // a value on from it.
1844    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1845      int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1846                                                    L->getPointerOperand(),
1847                                                    DepMI, *TD);
1848      if (Offset != -1)
1849        AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
1850    }
1851
1852    if (AvailVal) {
1853      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1854            << *AvailVal << '\n' << *L << "\n\n\n");
1855
1856      // Replace the load!
1857      L->replaceAllUsesWith(AvailVal);
1858      if (AvailVal->getType()->isPointerTy())
1859        MD->invalidateCachedPointerInfo(AvailVal);
1860      markInstructionForDeletion(L);
1861      ++NumGVNLoad;
1862      return true;
1863    }
1864  }
1865
1866  // If the value isn't available, don't do anything!
1867  if (Dep.isClobber()) {
1868    DEBUG(
1869      // fast print dep, using operator<< on instruction is too slow.
1870      dbgs() << "GVN: load ";
1871      WriteAsOperand(dbgs(), L);
1872      Instruction *I = Dep.getInst();
1873      dbgs() << " is clobbered by " << *I << '\n';
1874    );
1875    return false;
1876  }
1877
1878  // If it is defined in another block, try harder.
1879  if (Dep.isNonLocal())
1880    return processNonLocalLoad(L);
1881
1882  if (!Dep.isDef()) {
1883    DEBUG(
1884      // fast print dep, using operator<< on instruction is too slow.
1885      dbgs() << "GVN: load ";
1886      WriteAsOperand(dbgs(), L);
1887      dbgs() << " has unknown dependence\n";
1888    );
1889    return false;
1890  }
1891
1892  Instruction *DepInst = Dep.getInst();
1893  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1894    Value *StoredVal = DepSI->getValueOperand();
1895
1896    // The store and load are to a must-aliased pointer, but they may not
1897    // actually have the same type.  See if we know how to reuse the stored
1898    // value (depending on its type).
1899    if (StoredVal->getType() != L->getType()) {
1900      if (TD) {
1901        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1902                                                   L, *TD);
1903        if (StoredVal == 0)
1904          return false;
1905
1906        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1907                     << '\n' << *L << "\n\n\n");
1908      }
1909      else
1910        return false;
1911    }
1912
1913    // Remove it!
1914    L->replaceAllUsesWith(StoredVal);
1915    if (StoredVal->getType()->isPointerTy())
1916      MD->invalidateCachedPointerInfo(StoredVal);
1917    markInstructionForDeletion(L);
1918    ++NumGVNLoad;
1919    return true;
1920  }
1921
1922  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1923    Value *AvailableVal = DepLI;
1924
1925    // The loads are of a must-aliased pointer, but they may not actually have
1926    // the same type.  See if we know how to reuse the previously loaded value
1927    // (depending on its type).
1928    if (DepLI->getType() != L->getType()) {
1929      if (TD) {
1930        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1931                                                      L, *TD);
1932        if (AvailableVal == 0)
1933          return false;
1934
1935        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1936                     << "\n" << *L << "\n\n\n");
1937      }
1938      else
1939        return false;
1940    }
1941
1942    // Remove it!
1943    patchAndReplaceAllUsesWith(AvailableVal, L);
1944    if (DepLI->getType()->isPointerTy())
1945      MD->invalidateCachedPointerInfo(DepLI);
1946    markInstructionForDeletion(L);
1947    ++NumGVNLoad;
1948    return true;
1949  }
1950
1951  // If this load really doesn't depend on anything, then we must be loading an
1952  // undef value.  This can happen when loading for a fresh allocation with no
1953  // intervening stores, for example.
1954  if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst)) {
1955    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1956    markInstructionForDeletion(L);
1957    ++NumGVNLoad;
1958    return true;
1959  }
1960
1961  // If this load occurs either right after a lifetime begin,
1962  // then the loaded value is undefined.
1963  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1964    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1965      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1966      markInstructionForDeletion(L);
1967      ++NumGVNLoad;
1968      return true;
1969    }
1970  }
1971
1972  return false;
1973}
1974
1975// findLeader - In order to find a leader for a given value number at a
1976// specific basic block, we first obtain the list of all Values for that number,
1977// and then scan the list to find one whose block dominates the block in
1978// question.  This is fast because dominator tree queries consist of only
1979// a few comparisons of DFS numbers.
1980Value *GVN::findLeader(BasicBlock *BB, uint32_t num) {
1981  LeaderTableEntry Vals = LeaderTable[num];
1982  if (!Vals.Val) return 0;
1983
1984  Value *Val = 0;
1985  if (DT->dominates(Vals.BB, BB)) {
1986    Val = Vals.Val;
1987    if (isa<Constant>(Val)) return Val;
1988  }
1989
1990  LeaderTableEntry* Next = Vals.Next;
1991  while (Next) {
1992    if (DT->dominates(Next->BB, BB)) {
1993      if (isa<Constant>(Next->Val)) return Next->Val;
1994      if (!Val) Val = Next->Val;
1995    }
1996
1997    Next = Next->Next;
1998  }
1999
2000  return Val;
2001}
2002
2003/// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
2004/// use is dominated by the given basic block.  Returns the number of uses that
2005/// were replaced.
2006unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
2007                                          BasicBlock *Root) {
2008  unsigned Count = 0;
2009  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2010       UI != UE; ) {
2011    Use &U = (UI++).getUse();
2012
2013    // If From occurs as a phi node operand then the use implicitly lives in the
2014    // corresponding incoming block.  Otherwise it is the block containing the
2015    // user that must be dominated by Root.
2016    BasicBlock *UsingBlock;
2017    if (PHINode *PN = dyn_cast<PHINode>(U.getUser()))
2018      UsingBlock = PN->getIncomingBlock(U);
2019    else
2020      UsingBlock = cast<Instruction>(U.getUser())->getParent();
2021
2022    if (DT->dominates(Root, UsingBlock)) {
2023      U.set(To);
2024      ++Count;
2025    }
2026  }
2027  return Count;
2028}
2029
2030/// propagateEquality - The given values are known to be equal in every block
2031/// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
2032/// 'RHS' everywhere in the scope.  Returns whether a change was made.
2033bool GVN::propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root) {
2034  SmallVector<std::pair<Value*, Value*>, 4> Worklist;
2035  Worklist.push_back(std::make_pair(LHS, RHS));
2036  bool Changed = false;
2037
2038  while (!Worklist.empty()) {
2039    std::pair<Value*, Value*> Item = Worklist.pop_back_val();
2040    LHS = Item.first; RHS = Item.second;
2041
2042    if (LHS == RHS) continue;
2043    assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
2044
2045    // Don't try to propagate equalities between constants.
2046    if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue;
2047
2048    // Prefer a constant on the right-hand side, or an Argument if no constants.
2049    if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2050      std::swap(LHS, RHS);
2051    assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
2052
2053    // If there is no obvious reason to prefer the left-hand side over the right-
2054    // hand side, ensure the longest lived term is on the right-hand side, so the
2055    // shortest lived term will be replaced by the longest lived.  This tends to
2056    // expose more simplifications.
2057    uint32_t LVN = VN.lookup_or_add(LHS);
2058    if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2059        (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2060      // Move the 'oldest' value to the right-hand side, using the value number as
2061      // a proxy for age.
2062      uint32_t RVN = VN.lookup_or_add(RHS);
2063      if (LVN < RVN) {
2064        std::swap(LHS, RHS);
2065        LVN = RVN;
2066      }
2067    }
2068    assert((!isa<Instruction>(RHS) ||
2069            DT->properlyDominates(cast<Instruction>(RHS)->getParent(), Root)) &&
2070           "Instruction doesn't dominate scope!");
2071
2072    // If value numbering later sees that an instruction in the scope is equal
2073    // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
2074    // the invariant that instructions only occur in the leader table for their
2075    // own value number (this is used by removeFromLeaderTable), do not do this
2076    // if RHS is an instruction (if an instruction in the scope is morphed into
2077    // LHS then it will be turned into RHS by the next GVN iteration anyway, so
2078    // using the leader table is about compiling faster, not optimizing better).
2079    if (!isa<Instruction>(RHS))
2080      addToLeaderTable(LVN, RHS, Root);
2081
2082    // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
2083    // LHS always has at least one use that is not dominated by Root, this will
2084    // never do anything if LHS has only one use.
2085    if (!LHS->hasOneUse()) {
2086      unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
2087      Changed |= NumReplacements > 0;
2088      NumGVNEqProp += NumReplacements;
2089    }
2090
2091    // Now try to deduce additional equalities from this one.  For example, if the
2092    // known equality was "(A != B)" == "false" then it follows that A and B are
2093    // equal in the scope.  Only boolean equalities with an explicit true or false
2094    // RHS are currently supported.
2095    if (!RHS->getType()->isIntegerTy(1))
2096      // Not a boolean equality - bail out.
2097      continue;
2098    ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2099    if (!CI)
2100      // RHS neither 'true' nor 'false' - bail out.
2101      continue;
2102    // Whether RHS equals 'true'.  Otherwise it equals 'false'.
2103    bool isKnownTrue = CI->isAllOnesValue();
2104    bool isKnownFalse = !isKnownTrue;
2105
2106    // If "A && B" is known true then both A and B are known true.  If "A || B"
2107    // is known false then both A and B are known false.
2108    Value *A, *B;
2109    if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
2110        (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
2111      Worklist.push_back(std::make_pair(A, RHS));
2112      Worklist.push_back(std::make_pair(B, RHS));
2113      continue;
2114    }
2115
2116    // If we are propagating an equality like "(A == B)" == "true" then also
2117    // propagate the equality A == B.  When propagating a comparison such as
2118    // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2119    if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
2120      Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2121
2122      // If "A == B" is known true, or "A != B" is known false, then replace
2123      // A with B everywhere in the scope.
2124      if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
2125          (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
2126        Worklist.push_back(std::make_pair(Op0, Op1));
2127
2128      // If "A >= B" is known true, replace "A < B" with false everywhere.
2129      CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2130      Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2131      // Since we don't have the instruction "A < B" immediately to hand, work out
2132      // the value number that it would have and use that to find an appropriate
2133      // instruction (if any).
2134      uint32_t NextNum = VN.getNextUnusedValueNumber();
2135      uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2136      // If the number we were assigned was brand new then there is no point in
2137      // looking for an instruction realizing it: there cannot be one!
2138      if (Num < NextNum) {
2139        Value *NotCmp = findLeader(Root, Num);
2140        if (NotCmp && isa<Instruction>(NotCmp)) {
2141          unsigned NumReplacements =
2142            replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
2143          Changed |= NumReplacements > 0;
2144          NumGVNEqProp += NumReplacements;
2145        }
2146      }
2147      // Ensure that any instruction in scope that gets the "A < B" value number
2148      // is replaced with false.
2149      addToLeaderTable(Num, NotVal, Root);
2150
2151      continue;
2152    }
2153  }
2154
2155  return Changed;
2156}
2157
2158/// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
2159/// true if every path from the entry block to 'Dst' passes via this edge.  In
2160/// particular 'Dst' must not be reachable via another edge from 'Src'.
2161static bool isOnlyReachableViaThisEdge(BasicBlock *Src, BasicBlock *Dst,
2162                                       DominatorTree *DT) {
2163  // While in theory it is interesting to consider the case in which Dst has
2164  // more than one predecessor, because Dst might be part of a loop which is
2165  // only reachable from Src, in practice it is pointless since at the time
2166  // GVN runs all such loops have preheaders, which means that Dst will have
2167  // been changed to have only one predecessor, namely Src.
2168  BasicBlock *Pred = Dst->getSinglePredecessor();
2169  assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
2170  (void)Src;
2171  return Pred != 0;
2172}
2173
2174/// processInstruction - When calculating availability, handle an instruction
2175/// by inserting it into the appropriate sets
2176bool GVN::processInstruction(Instruction *I) {
2177  // Ignore dbg info intrinsics.
2178  if (isa<DbgInfoIntrinsic>(I))
2179    return false;
2180
2181  // If the instruction can be easily simplified then do so now in preference
2182  // to value numbering it.  Value numbering often exposes redundancies, for
2183  // example if it determines that %y is equal to %x then the instruction
2184  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2185  if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
2186    I->replaceAllUsesWith(V);
2187    if (MD && V->getType()->isPointerTy())
2188      MD->invalidateCachedPointerInfo(V);
2189    markInstructionForDeletion(I);
2190    ++NumGVNSimpl;
2191    return true;
2192  }
2193
2194  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2195    if (processLoad(LI))
2196      return true;
2197
2198    unsigned Num = VN.lookup_or_add(LI);
2199    addToLeaderTable(Num, LI, LI->getParent());
2200    return false;
2201  }
2202
2203  // For conditional branches, we can perform simple conditional propagation on
2204  // the condition value itself.
2205  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2206    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
2207      return false;
2208
2209    Value *BranchCond = BI->getCondition();
2210
2211    BasicBlock *TrueSucc = BI->getSuccessor(0);
2212    BasicBlock *FalseSucc = BI->getSuccessor(1);
2213    BasicBlock *Parent = BI->getParent();
2214    bool Changed = false;
2215
2216    if (isOnlyReachableViaThisEdge(Parent, TrueSucc, DT))
2217      Changed |= propagateEquality(BranchCond,
2218                                   ConstantInt::getTrue(TrueSucc->getContext()),
2219                                   TrueSucc);
2220
2221    if (isOnlyReachableViaThisEdge(Parent, FalseSucc, DT))
2222      Changed |= propagateEquality(BranchCond,
2223                                   ConstantInt::getFalse(FalseSucc->getContext()),
2224                                   FalseSucc);
2225
2226    return Changed;
2227  }
2228
2229  // For switches, propagate the case values into the case destinations.
2230  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2231    Value *SwitchCond = SI->getCondition();
2232    BasicBlock *Parent = SI->getParent();
2233    bool Changed = false;
2234    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2235         i != e; ++i) {
2236      BasicBlock *Dst = i.getCaseSuccessor();
2237      if (isOnlyReachableViaThisEdge(Parent, Dst, DT))
2238        Changed |= propagateEquality(SwitchCond, i.getCaseValue(), Dst);
2239    }
2240    return Changed;
2241  }
2242
2243  // Instructions with void type don't return a value, so there's
2244  // no point in trying to find redundancies in them.
2245  if (I->getType()->isVoidTy()) return false;
2246
2247  uint32_t NextNum = VN.getNextUnusedValueNumber();
2248  unsigned Num = VN.lookup_or_add(I);
2249
2250  // Allocations are always uniquely numbered, so we can save time and memory
2251  // by fast failing them.
2252  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
2253    addToLeaderTable(Num, I, I->getParent());
2254    return false;
2255  }
2256
2257  // If the number we were assigned was a brand new VN, then we don't
2258  // need to do a lookup to see if the number already exists
2259  // somewhere in the domtree: it can't!
2260  if (Num >= NextNum) {
2261    addToLeaderTable(Num, I, I->getParent());
2262    return false;
2263  }
2264
2265  // Perform fast-path value-number based elimination of values inherited from
2266  // dominators.
2267  Value *repl = findLeader(I->getParent(), Num);
2268  if (repl == 0) {
2269    // Failure, just remember this instance for future use.
2270    addToLeaderTable(Num, I, I->getParent());
2271    return false;
2272  }
2273
2274  // Remove it!
2275  patchAndReplaceAllUsesWith(repl, I);
2276  if (MD && repl->getType()->isPointerTy())
2277    MD->invalidateCachedPointerInfo(repl);
2278  markInstructionForDeletion(I);
2279  return true;
2280}
2281
2282/// runOnFunction - This is the main transformation entry point for a function.
2283bool GVN::runOnFunction(Function& F) {
2284  if (!NoLoads)
2285    MD = &getAnalysis<MemoryDependenceAnalysis>();
2286  DT = &getAnalysis<DominatorTree>();
2287  TD = getAnalysisIfAvailable<TargetData>();
2288  TLI = &getAnalysis<TargetLibraryInfo>();
2289  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2290  VN.setMemDep(MD);
2291  VN.setDomTree(DT);
2292
2293  bool Changed = false;
2294  bool ShouldContinue = true;
2295
2296  // Merge unconditional branches, allowing PRE to catch more
2297  // optimization opportunities.
2298  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2299    BasicBlock *BB = FI++;
2300
2301    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2302    if (removedBlock) ++NumGVNBlocks;
2303
2304    Changed |= removedBlock;
2305  }
2306
2307  unsigned Iteration = 0;
2308  while (ShouldContinue) {
2309    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2310    ShouldContinue = iterateOnFunction(F);
2311    if (splitCriticalEdges())
2312      ShouldContinue = true;
2313    Changed |= ShouldContinue;
2314    ++Iteration;
2315  }
2316
2317  if (EnablePRE) {
2318    bool PREChanged = true;
2319    while (PREChanged) {
2320      PREChanged = performPRE(F);
2321      Changed |= PREChanged;
2322    }
2323  }
2324  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2325  // computations into blocks where they become fully redundant.  Note that
2326  // we can't do this until PRE's critical edge splitting updates memdep.
2327  // Actually, when this happens, we should just fully integrate PRE into GVN.
2328
2329  cleanupGlobalSets();
2330
2331  return Changed;
2332}
2333
2334
2335bool GVN::processBlock(BasicBlock *BB) {
2336  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2337  // (and incrementing BI before processing an instruction).
2338  assert(InstrsToErase.empty() &&
2339         "We expect InstrsToErase to be empty across iterations");
2340  bool ChangedFunction = false;
2341
2342  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2343       BI != BE;) {
2344    ChangedFunction |= processInstruction(BI);
2345    if (InstrsToErase.empty()) {
2346      ++BI;
2347      continue;
2348    }
2349
2350    // If we need some instructions deleted, do it now.
2351    NumGVNInstr += InstrsToErase.size();
2352
2353    // Avoid iterator invalidation.
2354    bool AtStart = BI == BB->begin();
2355    if (!AtStart)
2356      --BI;
2357
2358    for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
2359         E = InstrsToErase.end(); I != E; ++I) {
2360      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2361      if (MD) MD->removeInstruction(*I);
2362      (*I)->eraseFromParent();
2363      DEBUG(verifyRemoved(*I));
2364    }
2365    InstrsToErase.clear();
2366
2367    if (AtStart)
2368      BI = BB->begin();
2369    else
2370      ++BI;
2371  }
2372
2373  return ChangedFunction;
2374}
2375
2376/// performPRE - Perform a purely local form of PRE that looks for diamond
2377/// control flow patterns and attempts to perform simple PRE at the join point.
2378bool GVN::performPRE(Function &F) {
2379  bool Changed = false;
2380  DenseMap<BasicBlock*, Value*> predMap;
2381  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2382       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2383    BasicBlock *CurrentBlock = *DI;
2384
2385    // Nothing to PRE in the entry block.
2386    if (CurrentBlock == &F.getEntryBlock()) continue;
2387
2388    // Don't perform PRE on a landing pad.
2389    if (CurrentBlock->isLandingPad()) continue;
2390
2391    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2392         BE = CurrentBlock->end(); BI != BE; ) {
2393      Instruction *CurInst = BI++;
2394
2395      if (isa<AllocaInst>(CurInst) ||
2396          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2397          CurInst->getType()->isVoidTy() ||
2398          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2399          isa<DbgInfoIntrinsic>(CurInst))
2400        continue;
2401
2402      // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2403      // sinking the compare again, and it would force the code generator to
2404      // move the i1 from processor flags or predicate registers into a general
2405      // purpose register.
2406      if (isa<CmpInst>(CurInst))
2407        continue;
2408
2409      // We don't currently value number ANY inline asm calls.
2410      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2411        if (CallI->isInlineAsm())
2412          continue;
2413
2414      uint32_t ValNo = VN.lookup(CurInst);
2415
2416      // Look for the predecessors for PRE opportunities.  We're
2417      // only trying to solve the basic diamond case, where
2418      // a value is computed in the successor and one predecessor,
2419      // but not the other.  We also explicitly disallow cases
2420      // where the successor is its own predecessor, because they're
2421      // more complicated to get right.
2422      unsigned NumWith = 0;
2423      unsigned NumWithout = 0;
2424      BasicBlock *PREPred = 0;
2425      predMap.clear();
2426
2427      for (pred_iterator PI = pred_begin(CurrentBlock),
2428           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2429        BasicBlock *P = *PI;
2430        // We're not interested in PRE where the block is its
2431        // own predecessor, or in blocks with predecessors
2432        // that are not reachable.
2433        if (P == CurrentBlock) {
2434          NumWithout = 2;
2435          break;
2436        } else if (!DT->dominates(&F.getEntryBlock(), P))  {
2437          NumWithout = 2;
2438          break;
2439        }
2440
2441        Value* predV = findLeader(P, ValNo);
2442        if (predV == 0) {
2443          PREPred = P;
2444          ++NumWithout;
2445        } else if (predV == CurInst) {
2446          NumWithout = 2;
2447        } else {
2448          predMap[P] = predV;
2449          ++NumWith;
2450        }
2451      }
2452
2453      // Don't do PRE when it might increase code size, i.e. when
2454      // we would need to insert instructions in more than one pred.
2455      if (NumWithout != 1 || NumWith == 0)
2456        continue;
2457
2458      // Don't do PRE across indirect branch.
2459      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2460        continue;
2461
2462      // We can't do PRE safely on a critical edge, so instead we schedule
2463      // the edge to be split and perform the PRE the next time we iterate
2464      // on the function.
2465      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2466      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2467        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2468        continue;
2469      }
2470
2471      // Instantiate the expression in the predecessor that lacked it.
2472      // Because we are going top-down through the block, all value numbers
2473      // will be available in the predecessor by the time we need them.  Any
2474      // that weren't originally present will have been instantiated earlier
2475      // in this loop.
2476      Instruction *PREInstr = CurInst->clone();
2477      bool success = true;
2478      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2479        Value *Op = PREInstr->getOperand(i);
2480        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2481          continue;
2482
2483        if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2484          PREInstr->setOperand(i, V);
2485        } else {
2486          success = false;
2487          break;
2488        }
2489      }
2490
2491      // Fail out if we encounter an operand that is not available in
2492      // the PRE predecessor.  This is typically because of loads which
2493      // are not value numbered precisely.
2494      if (!success) {
2495        delete PREInstr;
2496        DEBUG(verifyRemoved(PREInstr));
2497        continue;
2498      }
2499
2500      PREInstr->insertBefore(PREPred->getTerminator());
2501      PREInstr->setName(CurInst->getName() + ".pre");
2502      PREInstr->setDebugLoc(CurInst->getDebugLoc());
2503      predMap[PREPred] = PREInstr;
2504      VN.add(PREInstr, ValNo);
2505      ++NumGVNPRE;
2506
2507      // Update the availability map to include the new instruction.
2508      addToLeaderTable(ValNo, PREInstr, PREPred);
2509
2510      // Create a PHI to make the value available in this block.
2511      pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
2512      PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE),
2513                                     CurInst->getName() + ".pre-phi",
2514                                     CurrentBlock->begin());
2515      for (pred_iterator PI = PB; PI != PE; ++PI) {
2516        BasicBlock *P = *PI;
2517        Phi->addIncoming(predMap[P], P);
2518      }
2519
2520      VN.add(Phi, ValNo);
2521      addToLeaderTable(ValNo, Phi, CurrentBlock);
2522      Phi->setDebugLoc(CurInst->getDebugLoc());
2523      CurInst->replaceAllUsesWith(Phi);
2524      if (Phi->getType()->isPointerTy()) {
2525        // Because we have added a PHI-use of the pointer value, it has now
2526        // "escaped" from alias analysis' perspective.  We need to inform
2527        // AA of this.
2528        for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
2529             ++ii) {
2530          unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
2531          VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
2532        }
2533
2534        if (MD)
2535          MD->invalidateCachedPointerInfo(Phi);
2536      }
2537      VN.erase(CurInst);
2538      removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2539
2540      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2541      if (MD) MD->removeInstruction(CurInst);
2542      CurInst->eraseFromParent();
2543      DEBUG(verifyRemoved(CurInst));
2544      Changed = true;
2545    }
2546  }
2547
2548  if (splitCriticalEdges())
2549    Changed = true;
2550
2551  return Changed;
2552}
2553
2554/// splitCriticalEdges - Split critical edges found during the previous
2555/// iteration that may enable further optimization.
2556bool GVN::splitCriticalEdges() {
2557  if (toSplit.empty())
2558    return false;
2559  do {
2560    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2561    SplitCriticalEdge(Edge.first, Edge.second, this);
2562  } while (!toSplit.empty());
2563  if (MD) MD->invalidateCachedPredecessors();
2564  return true;
2565}
2566
2567/// iterateOnFunction - Executes one iteration of GVN
2568bool GVN::iterateOnFunction(Function &F) {
2569  cleanupGlobalSets();
2570
2571  // Top-down walk of the dominator tree
2572  bool Changed = false;
2573#if 0
2574  // Needed for value numbering with phi construction to work.
2575  ReversePostOrderTraversal<Function*> RPOT(&F);
2576  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2577       RE = RPOT.end(); RI != RE; ++RI)
2578    Changed |= processBlock(*RI);
2579#else
2580  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2581       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2582    Changed |= processBlock(DI->getBlock());
2583#endif
2584
2585  return Changed;
2586}
2587
2588void GVN::cleanupGlobalSets() {
2589  VN.clear();
2590  LeaderTable.clear();
2591  TableAllocator.Reset();
2592}
2593
2594/// verifyRemoved - Verify that the specified instruction does not occur in our
2595/// internal data structures.
2596void GVN::verifyRemoved(const Instruction *Inst) const {
2597  VN.verifyRemoved(Inst);
2598
2599  // Walk through the value number scope to make sure the instruction isn't
2600  // ferreted away in it.
2601  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2602       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2603    const LeaderTableEntry *Node = &I->second;
2604    assert(Node->Val != Inst && "Inst still in value numbering scope!");
2605
2606    while (Node->Next) {
2607      Node = Node->Next;
2608      assert(Node->Val != Inst && "Inst still in value numbering scope!");
2609    }
2610  }
2611}
2612