GVN.cpp revision 0a14be0693c8563055aedaed47c5773154327caf
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Operator.h"
28#include "llvm/Value.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/DepthFirstIterator.h"
31#include "llvm/ADT/PostOrderIterator.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/ConstantFolding.h"
37#include "llvm/Analysis/Dominators.h"
38#include "llvm/Analysis/Loads.h"
39#include "llvm/Analysis/MemoryBuiltins.h"
40#include "llvm/Analysis/MemoryDependenceAnalysis.h"
41#include "llvm/Analysis/PHITransAddr.h"
42#include "llvm/Support/CFG.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/GetElementPtrTypeIterator.h"
47#include "llvm/Support/IRBuilder.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetData.h"
50#include "llvm/Transforms/Utils/BasicBlockUtils.h"
51#include "llvm/Transforms/Utils/Local.h"
52#include "llvm/Transforms/Utils/SSAUpdater.h"
53using namespace llvm;
54
55STATISTIC(NumGVNInstr,  "Number of instructions deleted");
56STATISTIC(NumGVNLoad,   "Number of loads deleted");
57STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
58STATISTIC(NumGVNBlocks, "Number of blocks merged");
59STATISTIC(NumPRELoad,   "Number of loads PRE'd");
60
61static cl::opt<bool> EnablePRE("enable-pre",
62                               cl::init(true), cl::Hidden);
63static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
64static cl::opt<bool> EnableFullLoadPRE("enable-full-load-pre", cl::init(false));
65
66//===----------------------------------------------------------------------===//
67//                         ValueTable Class
68//===----------------------------------------------------------------------===//
69
70/// This class holds the mapping between values and value numbers.  It is used
71/// as an efficient mechanism to determine the expression-wise equivalence of
72/// two values.
73namespace {
74  struct Expression {
75    enum ExpressionOpcode {
76      ADD = Instruction::Add,
77      FADD = Instruction::FAdd,
78      SUB = Instruction::Sub,
79      FSUB = Instruction::FSub,
80      MUL = Instruction::Mul,
81      FMUL = Instruction::FMul,
82      UDIV = Instruction::UDiv,
83      SDIV = Instruction::SDiv,
84      FDIV = Instruction::FDiv,
85      UREM = Instruction::URem,
86      SREM = Instruction::SRem,
87      FREM = Instruction::FRem,
88      SHL = Instruction::Shl,
89      LSHR = Instruction::LShr,
90      ASHR = Instruction::AShr,
91      AND = Instruction::And,
92      OR = Instruction::Or,
93      XOR = Instruction::Xor,
94      TRUNC = Instruction::Trunc,
95      ZEXT = Instruction::ZExt,
96      SEXT = Instruction::SExt,
97      FPTOUI = Instruction::FPToUI,
98      FPTOSI = Instruction::FPToSI,
99      UITOFP = Instruction::UIToFP,
100      SITOFP = Instruction::SIToFP,
101      FPTRUNC = Instruction::FPTrunc,
102      FPEXT = Instruction::FPExt,
103      PTRTOINT = Instruction::PtrToInt,
104      INTTOPTR = Instruction::IntToPtr,
105      BITCAST = Instruction::BitCast,
106      ICMPEQ, ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
107      ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
108      FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
109      FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
110      FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
111      SHUFFLE, SELECT, GEP, CALL, CONSTANT,
112      INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
113
114    ExpressionOpcode opcode;
115    const Type* type;
116    SmallVector<uint32_t, 4> varargs;
117    Value *function;
118
119    Expression() { }
120    Expression(ExpressionOpcode o) : opcode(o) { }
121
122    bool operator==(const Expression &other) const {
123      if (opcode != other.opcode)
124        return false;
125      else if (opcode == EMPTY || opcode == TOMBSTONE)
126        return true;
127      else if (type != other.type)
128        return false;
129      else if (function != other.function)
130        return false;
131      else {
132        if (varargs.size() != other.varargs.size())
133          return false;
134
135        for (size_t i = 0; i < varargs.size(); ++i)
136          if (varargs[i] != other.varargs[i])
137            return false;
138
139        return true;
140      }
141    }
142
143    bool operator!=(const Expression &other) const {
144      return !(*this == other);
145    }
146  };
147
148  class ValueTable {
149    private:
150      DenseMap<Value*, uint32_t> valueNumbering;
151      DenseMap<Expression, uint32_t> expressionNumbering;
152      AliasAnalysis* AA;
153      MemoryDependenceAnalysis* MD;
154      DominatorTree* DT;
155
156      uint32_t nextValueNumber;
157
158      Expression::ExpressionOpcode getOpcode(CmpInst* C);
159      Expression create_expression(BinaryOperator* BO);
160      Expression create_expression(CmpInst* C);
161      Expression create_expression(ShuffleVectorInst* V);
162      Expression create_expression(ExtractElementInst* C);
163      Expression create_expression(InsertElementInst* V);
164      Expression create_expression(SelectInst* V);
165      Expression create_expression(CastInst* C);
166      Expression create_expression(GetElementPtrInst* G);
167      Expression create_expression(CallInst* C);
168      Expression create_expression(Constant* C);
169      Expression create_expression(ExtractValueInst* C);
170      Expression create_expression(InsertValueInst* C);
171
172      uint32_t lookup_or_add_call(CallInst* C);
173    public:
174      ValueTable() : nextValueNumber(1) { }
175      uint32_t lookup_or_add(Value *V);
176      uint32_t lookup(Value *V) const;
177      void add(Value *V, uint32_t num);
178      void clear();
179      void erase(Value *v);
180      unsigned size();
181      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
182      AliasAnalysis *getAliasAnalysis() const { return AA; }
183      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
184      void setDomTree(DominatorTree* D) { DT = D; }
185      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
186      void verifyRemoved(const Value *) const;
187  };
188}
189
190namespace llvm {
191template <> struct DenseMapInfo<Expression> {
192  static inline Expression getEmptyKey() {
193    return Expression(Expression::EMPTY);
194  }
195
196  static inline Expression getTombstoneKey() {
197    return Expression(Expression::TOMBSTONE);
198  }
199
200  static unsigned getHashValue(const Expression e) {
201    unsigned hash = e.opcode;
202
203    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
204            (unsigned)((uintptr_t)e.type >> 9));
205
206    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
207         E = e.varargs.end(); I != E; ++I)
208      hash = *I + hash * 37;
209
210    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
211            (unsigned)((uintptr_t)e.function >> 9)) +
212           hash * 37;
213
214    return hash;
215  }
216  static bool isEqual(const Expression &LHS, const Expression &RHS) {
217    return LHS == RHS;
218  }
219};
220
221template <>
222struct isPodLike<Expression> { static const bool value = true; };
223
224}
225
226//===----------------------------------------------------------------------===//
227//                     ValueTable Internal Functions
228//===----------------------------------------------------------------------===//
229
230Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
231  if (isa<ICmpInst>(C)) {
232    switch (C->getPredicate()) {
233    default:  // THIS SHOULD NEVER HAPPEN
234      llvm_unreachable("Comparison with unknown predicate?");
235    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
236    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
237    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
238    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
239    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
240    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
241    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
242    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
243    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
244    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
245    }
246  } else {
247    switch (C->getPredicate()) {
248    default: // THIS SHOULD NEVER HAPPEN
249      llvm_unreachable("Comparison with unknown predicate?");
250    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
251    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
252    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
253    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
254    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
255    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
256    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
257    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
258    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
259    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
260    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
261    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
262    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
263    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
264    }
265  }
266}
267
268Expression ValueTable::create_expression(CallInst* C) {
269  Expression e;
270
271  e.type = C->getType();
272  e.function = C->getCalledFunction();
273  e.opcode = Expression::CALL;
274
275  CallSite CS(C);
276  for (CallInst::op_iterator I = CS.arg_begin(), E = CS.arg_end();
277       I != E; ++I)
278    e.varargs.push_back(lookup_or_add(*I));
279
280  return e;
281}
282
283Expression ValueTable::create_expression(BinaryOperator* BO) {
284  Expression e;
285  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
286  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
287  e.function = 0;
288  e.type = BO->getType();
289  e.opcode = static_cast<Expression::ExpressionOpcode>(BO->getOpcode());
290
291  return e;
292}
293
294Expression ValueTable::create_expression(CmpInst* C) {
295  Expression e;
296
297  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
298  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
299  e.function = 0;
300  e.type = C->getType();
301  e.opcode = getOpcode(C);
302
303  return e;
304}
305
306Expression ValueTable::create_expression(CastInst* C) {
307  Expression e;
308
309  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
310  e.function = 0;
311  e.type = C->getType();
312  e.opcode = static_cast<Expression::ExpressionOpcode>(C->getOpcode());
313
314  return e;
315}
316
317Expression ValueTable::create_expression(ShuffleVectorInst* S) {
318  Expression e;
319
320  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
321  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
322  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
323  e.function = 0;
324  e.type = S->getType();
325  e.opcode = Expression::SHUFFLE;
326
327  return e;
328}
329
330Expression ValueTable::create_expression(ExtractElementInst* E) {
331  Expression e;
332
333  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
334  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
335  e.function = 0;
336  e.type = E->getType();
337  e.opcode = Expression::EXTRACT;
338
339  return e;
340}
341
342Expression ValueTable::create_expression(InsertElementInst* I) {
343  Expression e;
344
345  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
346  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
347  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
348  e.function = 0;
349  e.type = I->getType();
350  e.opcode = Expression::INSERT;
351
352  return e;
353}
354
355Expression ValueTable::create_expression(SelectInst* I) {
356  Expression e;
357
358  e.varargs.push_back(lookup_or_add(I->getCondition()));
359  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
360  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
361  e.function = 0;
362  e.type = I->getType();
363  e.opcode = Expression::SELECT;
364
365  return e;
366}
367
368Expression ValueTable::create_expression(GetElementPtrInst* G) {
369  Expression e;
370
371  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
372  e.function = 0;
373  e.type = G->getType();
374  e.opcode = Expression::GEP;
375
376  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
377       I != E; ++I)
378    e.varargs.push_back(lookup_or_add(*I));
379
380  return e;
381}
382
383Expression ValueTable::create_expression(ExtractValueInst* E) {
384  Expression e;
385
386  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
387  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
388       II != IE; ++II)
389    e.varargs.push_back(*II);
390  e.function = 0;
391  e.type = E->getType();
392  e.opcode = Expression::EXTRACTVALUE;
393
394  return e;
395}
396
397Expression ValueTable::create_expression(InsertValueInst* E) {
398  Expression e;
399
400  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
401  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
402  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
403       II != IE; ++II)
404    e.varargs.push_back(*II);
405  e.function = 0;
406  e.type = E->getType();
407  e.opcode = Expression::INSERTVALUE;
408
409  return e;
410}
411
412//===----------------------------------------------------------------------===//
413//                     ValueTable External Functions
414//===----------------------------------------------------------------------===//
415
416/// add - Insert a value into the table with a specified value number.
417void ValueTable::add(Value *V, uint32_t num) {
418  valueNumbering.insert(std::make_pair(V, num));
419}
420
421uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
422  if (AA->doesNotAccessMemory(C)) {
423    Expression exp = create_expression(C);
424    uint32_t& e = expressionNumbering[exp];
425    if (!e) e = nextValueNumber++;
426    valueNumbering[C] = e;
427    return e;
428  } else if (AA->onlyReadsMemory(C)) {
429    Expression exp = create_expression(C);
430    uint32_t& e = expressionNumbering[exp];
431    if (!e) {
432      e = nextValueNumber++;
433      valueNumbering[C] = e;
434      return e;
435    }
436    if (!MD) {
437      e = nextValueNumber++;
438      valueNumbering[C] = e;
439      return e;
440    }
441
442    MemDepResult local_dep = MD->getDependency(C);
443
444    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
445      valueNumbering[C] =  nextValueNumber;
446      return nextValueNumber++;
447    }
448
449    if (local_dep.isDef()) {
450      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
451
452      if (local_cdep->getNumOperands() != C->getNumOperands()) {
453        valueNumbering[C] = nextValueNumber;
454        return nextValueNumber++;
455      }
456
457      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
458        uint32_t c_vn = lookup_or_add(C->getOperand(i));
459        uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
460        if (c_vn != cd_vn) {
461          valueNumbering[C] = nextValueNumber;
462          return nextValueNumber++;
463        }
464      }
465
466      uint32_t v = lookup_or_add(local_cdep);
467      valueNumbering[C] = v;
468      return v;
469    }
470
471    // Non-local case.
472    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
473      MD->getNonLocalCallDependency(CallSite(C));
474    // FIXME: call/call dependencies for readonly calls should return def, not
475    // clobber!  Move the checking logic to MemDep!
476    CallInst* cdep = 0;
477
478    // Check to see if we have a single dominating call instruction that is
479    // identical to C.
480    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
481      const NonLocalDepEntry *I = &deps[i];
482      // Ignore non-local dependencies.
483      if (I->getResult().isNonLocal())
484        continue;
485
486      // We don't handle non-depedencies.  If we already have a call, reject
487      // instruction dependencies.
488      if (I->getResult().isClobber() || cdep != 0) {
489        cdep = 0;
490        break;
491      }
492
493      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
494      // FIXME: All duplicated with non-local case.
495      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
496        cdep = NonLocalDepCall;
497        continue;
498      }
499
500      cdep = 0;
501      break;
502    }
503
504    if (!cdep) {
505      valueNumbering[C] = nextValueNumber;
506      return nextValueNumber++;
507    }
508
509    if (cdep->getNumOperands() != C->getNumOperands()) {
510      valueNumbering[C] = nextValueNumber;
511      return nextValueNumber++;
512    }
513    for (unsigned i = 1; i < C->getNumOperands(); ++i) {
514      uint32_t c_vn = lookup_or_add(C->getOperand(i));
515      uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
516      if (c_vn != cd_vn) {
517        valueNumbering[C] = nextValueNumber;
518        return nextValueNumber++;
519      }
520    }
521
522    uint32_t v = lookup_or_add(cdep);
523    valueNumbering[C] = v;
524    return v;
525
526  } else {
527    valueNumbering[C] = nextValueNumber;
528    return nextValueNumber++;
529  }
530}
531
532/// lookup_or_add - Returns the value number for the specified value, assigning
533/// it a new number if it did not have one before.
534uint32_t ValueTable::lookup_or_add(Value *V) {
535  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
536  if (VI != valueNumbering.end())
537    return VI->second;
538
539  if (!isa<Instruction>(V)) {
540    valueNumbering[V] = nextValueNumber;
541    return nextValueNumber++;
542  }
543
544  Instruction* I = cast<Instruction>(V);
545  Expression exp;
546  switch (I->getOpcode()) {
547    case Instruction::Call:
548      return lookup_or_add_call(cast<CallInst>(I));
549    case Instruction::Add:
550    case Instruction::FAdd:
551    case Instruction::Sub:
552    case Instruction::FSub:
553    case Instruction::Mul:
554    case Instruction::FMul:
555    case Instruction::UDiv:
556    case Instruction::SDiv:
557    case Instruction::FDiv:
558    case Instruction::URem:
559    case Instruction::SRem:
560    case Instruction::FRem:
561    case Instruction::Shl:
562    case Instruction::LShr:
563    case Instruction::AShr:
564    case Instruction::And:
565    case Instruction::Or :
566    case Instruction::Xor:
567      exp = create_expression(cast<BinaryOperator>(I));
568      break;
569    case Instruction::ICmp:
570    case Instruction::FCmp:
571      exp = create_expression(cast<CmpInst>(I));
572      break;
573    case Instruction::Trunc:
574    case Instruction::ZExt:
575    case Instruction::SExt:
576    case Instruction::FPToUI:
577    case Instruction::FPToSI:
578    case Instruction::UIToFP:
579    case Instruction::SIToFP:
580    case Instruction::FPTrunc:
581    case Instruction::FPExt:
582    case Instruction::PtrToInt:
583    case Instruction::IntToPtr:
584    case Instruction::BitCast:
585      exp = create_expression(cast<CastInst>(I));
586      break;
587    case Instruction::Select:
588      exp = create_expression(cast<SelectInst>(I));
589      break;
590    case Instruction::ExtractElement:
591      exp = create_expression(cast<ExtractElementInst>(I));
592      break;
593    case Instruction::InsertElement:
594      exp = create_expression(cast<InsertElementInst>(I));
595      break;
596    case Instruction::ShuffleVector:
597      exp = create_expression(cast<ShuffleVectorInst>(I));
598      break;
599    case Instruction::ExtractValue:
600      exp = create_expression(cast<ExtractValueInst>(I));
601      break;
602    case Instruction::InsertValue:
603      exp = create_expression(cast<InsertValueInst>(I));
604      break;
605    case Instruction::GetElementPtr:
606      exp = create_expression(cast<GetElementPtrInst>(I));
607      break;
608    default:
609      valueNumbering[V] = nextValueNumber;
610      return nextValueNumber++;
611  }
612
613  uint32_t& e = expressionNumbering[exp];
614  if (!e) e = nextValueNumber++;
615  valueNumbering[V] = e;
616  return e;
617}
618
619/// lookup - Returns the value number of the specified value. Fails if
620/// the value has not yet been numbered.
621uint32_t ValueTable::lookup(Value *V) const {
622  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
623  assert(VI != valueNumbering.end() && "Value not numbered?");
624  return VI->second;
625}
626
627/// clear - Remove all entries from the ValueTable
628void ValueTable::clear() {
629  valueNumbering.clear();
630  expressionNumbering.clear();
631  nextValueNumber = 1;
632}
633
634/// erase - Remove a value from the value numbering
635void ValueTable::erase(Value *V) {
636  valueNumbering.erase(V);
637}
638
639/// verifyRemoved - Verify that the value is removed from all internal data
640/// structures.
641void ValueTable::verifyRemoved(const Value *V) const {
642  for (DenseMap<Value*, uint32_t>::const_iterator
643         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
644    assert(I->first != V && "Inst still occurs in value numbering map!");
645  }
646}
647
648//===----------------------------------------------------------------------===//
649//                                GVN Pass
650//===----------------------------------------------------------------------===//
651
652namespace {
653  struct ValueNumberScope {
654    ValueNumberScope* parent;
655    DenseMap<uint32_t, Value*> table;
656
657    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
658  };
659}
660
661namespace {
662
663  class GVN : public FunctionPass {
664    bool runOnFunction(Function &F);
665  public:
666    static char ID; // Pass identification, replacement for typeid
667    explicit GVN(bool noloads = false)
668      : FunctionPass(&ID), NoLoads(noloads), MD(0) { }
669
670  private:
671    bool NoLoads;
672    MemoryDependenceAnalysis *MD;
673    DominatorTree *DT;
674
675    ValueTable VN;
676    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
677
678    // List of critical edges to be split between iterations.
679    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
680
681    // This transformation requires dominator postdominator info
682    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
683      AU.addRequired<DominatorTree>();
684      if (!NoLoads)
685        AU.addRequired<MemoryDependenceAnalysis>();
686      AU.addRequired<AliasAnalysis>();
687
688      AU.addPreserved<DominatorTree>();
689      AU.addPreserved<AliasAnalysis>();
690    }
691
692    // Helper fuctions
693    // FIXME: eliminate or document these better
694    bool processLoad(LoadInst* L,
695                     SmallVectorImpl<Instruction*> &toErase);
696    bool processInstruction(Instruction *I,
697                            SmallVectorImpl<Instruction*> &toErase);
698    bool processNonLocalLoad(LoadInst* L,
699                             SmallVectorImpl<Instruction*> &toErase);
700    bool processBlock(BasicBlock *BB);
701    void dump(DenseMap<uint32_t, Value*>& d);
702    bool iterateOnFunction(Function &F);
703    Value *CollapsePhi(PHINode* p);
704    bool performPRE(Function& F);
705    Value *lookupNumber(BasicBlock *BB, uint32_t num);
706    void cleanupGlobalSets();
707    void verifyRemoved(const Instruction *I) const;
708    bool splitCriticalEdges();
709  };
710
711  char GVN::ID = 0;
712}
713
714// createGVNPass - The public interface to this file...
715FunctionPass *llvm::createGVNPass(bool NoLoads) {
716  return new GVN(NoLoads);
717}
718
719static RegisterPass<GVN> X("gvn",
720                           "Global Value Numbering");
721
722void GVN::dump(DenseMap<uint32_t, Value*>& d) {
723  errs() << "{\n";
724  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
725       E = d.end(); I != E; ++I) {
726      errs() << I->first << "\n";
727      I->second->dump();
728  }
729  errs() << "}\n";
730}
731
732static bool isSafeReplacement(PHINode* p, Instruction *inst) {
733  if (!isa<PHINode>(inst))
734    return true;
735
736  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
737       UI != E; ++UI)
738    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
739      if (use_phi->getParent() == inst->getParent())
740        return false;
741
742  return true;
743}
744
745Value *GVN::CollapsePhi(PHINode *PN) {
746  Value *ConstVal = PN->hasConstantValue(DT);
747  if (!ConstVal) return 0;
748
749  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
750  if (!Inst)
751    return ConstVal;
752
753  if (DT->dominates(Inst, PN))
754    if (isSafeReplacement(PN, Inst))
755      return Inst;
756  return 0;
757}
758
759/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
760/// we're analyzing is fully available in the specified block.  As we go, keep
761/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
762/// map is actually a tri-state map with the following values:
763///   0) we know the block *is not* fully available.
764///   1) we know the block *is* fully available.
765///   2) we do not know whether the block is fully available or not, but we are
766///      currently speculating that it will be.
767///   3) we are speculating for this block and have used that to speculate for
768///      other blocks.
769static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
770                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
771  // Optimistically assume that the block is fully available and check to see
772  // if we already know about this block in one lookup.
773  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
774    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
775
776  // If the entry already existed for this block, return the precomputed value.
777  if (!IV.second) {
778    // If this is a speculative "available" value, mark it as being used for
779    // speculation of other blocks.
780    if (IV.first->second == 2)
781      IV.first->second = 3;
782    return IV.first->second != 0;
783  }
784
785  // Otherwise, see if it is fully available in all predecessors.
786  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
787
788  // If this block has no predecessors, it isn't live-in here.
789  if (PI == PE)
790    goto SpeculationFailure;
791
792  for (; PI != PE; ++PI)
793    // If the value isn't fully available in one of our predecessors, then it
794    // isn't fully available in this block either.  Undo our previous
795    // optimistic assumption and bail out.
796    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
797      goto SpeculationFailure;
798
799  return true;
800
801// SpeculationFailure - If we get here, we found out that this is not, after
802// all, a fully-available block.  We have a problem if we speculated on this and
803// used the speculation to mark other blocks as available.
804SpeculationFailure:
805  char &BBVal = FullyAvailableBlocks[BB];
806
807  // If we didn't speculate on this, just return with it set to false.
808  if (BBVal == 2) {
809    BBVal = 0;
810    return false;
811  }
812
813  // If we did speculate on this value, we could have blocks set to 1 that are
814  // incorrect.  Walk the (transitive) successors of this block and mark them as
815  // 0 if set to one.
816  SmallVector<BasicBlock*, 32> BBWorklist;
817  BBWorklist.push_back(BB);
818
819  do {
820    BasicBlock *Entry = BBWorklist.pop_back_val();
821    // Note that this sets blocks to 0 (unavailable) if they happen to not
822    // already be in FullyAvailableBlocks.  This is safe.
823    char &EntryVal = FullyAvailableBlocks[Entry];
824    if (EntryVal == 0) continue;  // Already unavailable.
825
826    // Mark as unavailable.
827    EntryVal = 0;
828
829    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
830      BBWorklist.push_back(*I);
831  } while (!BBWorklist.empty());
832
833  return false;
834}
835
836
837/// CanCoerceMustAliasedValueToLoad - Return true if
838/// CoerceAvailableValueToLoadType will succeed.
839static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
840                                            const Type *LoadTy,
841                                            const TargetData &TD) {
842  // If the loaded or stored value is an first class array or struct, don't try
843  // to transform them.  We need to be able to bitcast to integer.
844  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
845      StoredVal->getType()->isStructTy() ||
846      StoredVal->getType()->isArrayTy())
847    return false;
848
849  // The store has to be at least as big as the load.
850  if (TD.getTypeSizeInBits(StoredVal->getType()) <
851        TD.getTypeSizeInBits(LoadTy))
852    return false;
853
854  return true;
855}
856
857
858/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
859/// then a load from a must-aliased pointer of a different type, try to coerce
860/// the stored value.  LoadedTy is the type of the load we want to replace and
861/// InsertPt is the place to insert new instructions.
862///
863/// If we can't do it, return null.
864static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
865                                             const Type *LoadedTy,
866                                             Instruction *InsertPt,
867                                             const TargetData &TD) {
868  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
869    return 0;
870
871  const Type *StoredValTy = StoredVal->getType();
872
873  uint64_t StoreSize = TD.getTypeStoreSizeInBits(StoredValTy);
874  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
875
876  // If the store and reload are the same size, we can always reuse it.
877  if (StoreSize == LoadSize) {
878    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy()) {
879      // Pointer to Pointer -> use bitcast.
880      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
881    }
882
883    // Convert source pointers to integers, which can be bitcast.
884    if (StoredValTy->isPointerTy()) {
885      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
886      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
887    }
888
889    const Type *TypeToCastTo = LoadedTy;
890    if (TypeToCastTo->isPointerTy())
891      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
892
893    if (StoredValTy != TypeToCastTo)
894      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
895
896    // Cast to pointer if the load needs a pointer type.
897    if (LoadedTy->isPointerTy())
898      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
899
900    return StoredVal;
901  }
902
903  // If the loaded value is smaller than the available value, then we can
904  // extract out a piece from it.  If the available value is too small, then we
905  // can't do anything.
906  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
907
908  // Convert source pointers to integers, which can be manipulated.
909  if (StoredValTy->isPointerTy()) {
910    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
911    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
912  }
913
914  // Convert vectors and fp to integer, which can be manipulated.
915  if (!StoredValTy->isIntegerTy()) {
916    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
917    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
918  }
919
920  // If this is a big-endian system, we need to shift the value down to the low
921  // bits so that a truncate will work.
922  if (TD.isBigEndian()) {
923    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
924    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
925  }
926
927  // Truncate the integer to the right size now.
928  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
929  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
930
931  if (LoadedTy == NewIntTy)
932    return StoredVal;
933
934  // If the result is a pointer, inttoptr.
935  if (LoadedTy->isPointerTy())
936    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
937
938  // Otherwise, bitcast.
939  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
940}
941
942/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
943/// be expressed as a base pointer plus a constant offset.  Return the base and
944/// offset to the caller.
945static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
946                                        const TargetData &TD) {
947  Operator *PtrOp = dyn_cast<Operator>(Ptr);
948  if (PtrOp == 0) return Ptr;
949
950  // Just look through bitcasts.
951  if (PtrOp->getOpcode() == Instruction::BitCast)
952    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
953
954  // If this is a GEP with constant indices, we can look through it.
955  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
956  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
957
958  gep_type_iterator GTI = gep_type_begin(GEP);
959  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
960       ++I, ++GTI) {
961    ConstantInt *OpC = cast<ConstantInt>(*I);
962    if (OpC->isZero()) continue;
963
964    // Handle a struct and array indices which add their offset to the pointer.
965    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
966      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
967    } else {
968      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
969      Offset += OpC->getSExtValue()*Size;
970    }
971  }
972
973  // Re-sign extend from the pointer size if needed to get overflow edge cases
974  // right.
975  unsigned PtrSize = TD.getPointerSizeInBits();
976  if (PtrSize < 64)
977    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
978
979  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
980}
981
982
983/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
984/// memdep query of a load that ends up being a clobbering memory write (store,
985/// memset, memcpy, memmove).  This means that the write *may* provide bits used
986/// by the load but we can't be sure because the pointers don't mustalias.
987///
988/// Check this case to see if there is anything more we can do before we give
989/// up.  This returns -1 if we have to give up, or a byte number in the stored
990/// value of the piece that feeds the load.
991static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
992                                          Value *WritePtr,
993                                          uint64_t WriteSizeInBits,
994                                          const TargetData &TD) {
995  // If the loaded or stored value is an first class array or struct, don't try
996  // to transform them.  We need to be able to bitcast to integer.
997  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
998    return -1;
999
1000  int64_t StoreOffset = 0, LoadOffset = 0;
1001  Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD);
1002  Value *LoadBase =
1003    GetBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
1004  if (StoreBase != LoadBase)
1005    return -1;
1006
1007  // If the load and store are to the exact same address, they should have been
1008  // a must alias.  AA must have gotten confused.
1009  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
1010  // to a load from the base of the memset.
1011#if 0
1012  if (LoadOffset == StoreOffset) {
1013    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1014    << "Base       = " << *StoreBase << "\n"
1015    << "Store Ptr  = " << *WritePtr << "\n"
1016    << "Store Offs = " << StoreOffset << "\n"
1017    << "Load Ptr   = " << *LoadPtr << "\n";
1018    abort();
1019  }
1020#endif
1021
1022  // If the load and store don't overlap at all, the store doesn't provide
1023  // anything to the load.  In this case, they really don't alias at all, AA
1024  // must have gotten confused.
1025  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1026  // remove this check, as it is duplicated with what we have below.
1027  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
1028
1029  if ((WriteSizeInBits & 7) | (LoadSize & 7))
1030    return -1;
1031  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
1032  LoadSize >>= 3;
1033
1034
1035  bool isAAFailure = false;
1036  if (StoreOffset < LoadOffset)
1037    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1038  else
1039    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1040
1041  if (isAAFailure) {
1042#if 0
1043    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1044    << "Base       = " << *StoreBase << "\n"
1045    << "Store Ptr  = " << *WritePtr << "\n"
1046    << "Store Offs = " << StoreOffset << "\n"
1047    << "Load Ptr   = " << *LoadPtr << "\n";
1048    abort();
1049#endif
1050    return -1;
1051  }
1052
1053  // If the Load isn't completely contained within the stored bits, we don't
1054  // have all the bits to feed it.  We could do something crazy in the future
1055  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1056  // valuable.
1057  if (StoreOffset > LoadOffset ||
1058      StoreOffset+StoreSize < LoadOffset+LoadSize)
1059    return -1;
1060
1061  // Okay, we can do this transformation.  Return the number of bytes into the
1062  // store that the load is.
1063  return LoadOffset-StoreOffset;
1064}
1065
1066/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1067/// memdep query of a load that ends up being a clobbering store.
1068static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
1069                                          StoreInst *DepSI,
1070                                          const TargetData &TD) {
1071  // Cannot handle reading from store of first-class aggregate yet.
1072  if (DepSI->getOperand(0)->getType()->isStructTy() ||
1073      DepSI->getOperand(0)->getType()->isArrayTy())
1074    return -1;
1075
1076  Value *StorePtr = DepSI->getPointerOperand();
1077  uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
1078  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1079                                        StorePtr, StoreSize, TD);
1080}
1081
1082static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
1083                                            MemIntrinsic *MI,
1084                                            const TargetData &TD) {
1085  // If the mem operation is a non-constant size, we can't handle it.
1086  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1087  if (SizeCst == 0) return -1;
1088  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1089
1090  // If this is memset, we just need to see if the offset is valid in the size
1091  // of the memset..
1092  if (MI->getIntrinsicID() == Intrinsic::memset)
1093    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1094                                          MemSizeInBits, TD);
1095
1096  // If we have a memcpy/memmove, the only case we can handle is if this is a
1097  // copy from constant memory.  In that case, we can read directly from the
1098  // constant memory.
1099  MemTransferInst *MTI = cast<MemTransferInst>(MI);
1100
1101  Constant *Src = dyn_cast<Constant>(MTI->getSource());
1102  if (Src == 0) return -1;
1103
1104  GlobalVariable *GV = dyn_cast<GlobalVariable>(Src->getUnderlyingObject());
1105  if (GV == 0 || !GV->isConstant()) return -1;
1106
1107  // See if the access is within the bounds of the transfer.
1108  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1109                                              MI->getDest(), MemSizeInBits, TD);
1110  if (Offset == -1)
1111    return Offset;
1112
1113  // Otherwise, see if we can constant fold a load from the constant with the
1114  // offset applied as appropriate.
1115  Src = ConstantExpr::getBitCast(Src,
1116                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1117  Constant *OffsetCst =
1118    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1119  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1120  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1121  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1122    return Offset;
1123  return -1;
1124}
1125
1126
1127/// GetStoreValueForLoad - This function is called when we have a
1128/// memdep query of a load that ends up being a clobbering store.  This means
1129/// that the store *may* provide bits used by the load but we can't be sure
1130/// because the pointers don't mustalias.  Check this case to see if there is
1131/// anything more we can do before we give up.
1132static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1133                                   const Type *LoadTy,
1134                                   Instruction *InsertPt, const TargetData &TD){
1135  LLVMContext &Ctx = SrcVal->getType()->getContext();
1136
1137  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1138  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1139
1140  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1141
1142  // Compute which bits of the stored value are being used by the load.  Convert
1143  // to an integer type to start with.
1144  if (SrcVal->getType()->isPointerTy())
1145    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
1146  if (!SrcVal->getType()->isIntegerTy())
1147    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1148                                   "tmp");
1149
1150  // Shift the bits to the least significant depending on endianness.
1151  unsigned ShiftAmt;
1152  if (TD.isLittleEndian())
1153    ShiftAmt = Offset*8;
1154  else
1155    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1156
1157  if (ShiftAmt)
1158    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
1159
1160  if (LoadSize != StoreSize)
1161    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1162                                 "tmp");
1163
1164  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1165}
1166
1167/// GetMemInstValueForLoad - This function is called when we have a
1168/// memdep query of a load that ends up being a clobbering mem intrinsic.
1169static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1170                                     const Type *LoadTy, Instruction *InsertPt,
1171                                     const TargetData &TD){
1172  LLVMContext &Ctx = LoadTy->getContext();
1173  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1174
1175  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1176
1177  // We know that this method is only called when the mem transfer fully
1178  // provides the bits for the load.
1179  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1180    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1181    // independently of what the offset is.
1182    Value *Val = MSI->getValue();
1183    if (LoadSize != 1)
1184      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1185
1186    Value *OneElt = Val;
1187
1188    // Splat the value out to the right number of bits.
1189    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1190      // If we can double the number of bytes set, do it.
1191      if (NumBytesSet*2 <= LoadSize) {
1192        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1193        Val = Builder.CreateOr(Val, ShVal);
1194        NumBytesSet <<= 1;
1195        continue;
1196      }
1197
1198      // Otherwise insert one byte at a time.
1199      Value *ShVal = Builder.CreateShl(Val, 1*8);
1200      Val = Builder.CreateOr(OneElt, ShVal);
1201      ++NumBytesSet;
1202    }
1203
1204    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1205  }
1206
1207  // Otherwise, this is a memcpy/memmove from a constant global.
1208  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1209  Constant *Src = cast<Constant>(MTI->getSource());
1210
1211  // Otherwise, see if we can constant fold a load from the constant with the
1212  // offset applied as appropriate.
1213  Src = ConstantExpr::getBitCast(Src,
1214                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1215  Constant *OffsetCst =
1216  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1217  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1218  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1219  return ConstantFoldLoadFromConstPtr(Src, &TD);
1220}
1221
1222namespace {
1223
1224struct AvailableValueInBlock {
1225  /// BB - The basic block in question.
1226  BasicBlock *BB;
1227  enum ValType {
1228    SimpleVal,  // A simple offsetted value that is accessed.
1229    MemIntrin   // A memory intrinsic which is loaded from.
1230  };
1231
1232  /// V - The value that is live out of the block.
1233  PointerIntPair<Value *, 1, ValType> Val;
1234
1235  /// Offset - The byte offset in Val that is interesting for the load query.
1236  unsigned Offset;
1237
1238  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1239                                   unsigned Offset = 0) {
1240    AvailableValueInBlock Res;
1241    Res.BB = BB;
1242    Res.Val.setPointer(V);
1243    Res.Val.setInt(SimpleVal);
1244    Res.Offset = Offset;
1245    return Res;
1246  }
1247
1248  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1249                                     unsigned Offset = 0) {
1250    AvailableValueInBlock Res;
1251    Res.BB = BB;
1252    Res.Val.setPointer(MI);
1253    Res.Val.setInt(MemIntrin);
1254    Res.Offset = Offset;
1255    return Res;
1256  }
1257
1258  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1259  Value *getSimpleValue() const {
1260    assert(isSimpleValue() && "Wrong accessor");
1261    return Val.getPointer();
1262  }
1263
1264  MemIntrinsic *getMemIntrinValue() const {
1265    assert(!isSimpleValue() && "Wrong accessor");
1266    return cast<MemIntrinsic>(Val.getPointer());
1267  }
1268
1269  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1270  /// defined here to the specified type.  This handles various coercion cases.
1271  Value *MaterializeAdjustedValue(const Type *LoadTy,
1272                                  const TargetData *TD) const {
1273    Value *Res;
1274    if (isSimpleValue()) {
1275      Res = getSimpleValue();
1276      if (Res->getType() != LoadTy) {
1277        assert(TD && "Need target data to handle type mismatch case");
1278        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1279                                   *TD);
1280
1281        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1282                     << *getSimpleValue() << '\n'
1283                     << *Res << '\n' << "\n\n\n");
1284      }
1285    } else {
1286      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1287                                   LoadTy, BB->getTerminator(), *TD);
1288      DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1289                   << "  " << *getMemIntrinValue() << '\n'
1290                   << *Res << '\n' << "\n\n\n");
1291    }
1292    return Res;
1293  }
1294};
1295
1296}
1297
1298/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1299/// construct SSA form, allowing us to eliminate LI.  This returns the value
1300/// that should be used at LI's definition site.
1301static Value *ConstructSSAForLoadSet(LoadInst *LI,
1302                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1303                                     const TargetData *TD,
1304                                     const DominatorTree &DT,
1305                                     AliasAnalysis *AA) {
1306  // Check for the fully redundant, dominating load case.  In this case, we can
1307  // just use the dominating value directly.
1308  if (ValuesPerBlock.size() == 1 &&
1309      DT.properlyDominates(ValuesPerBlock[0].BB, LI->getParent()))
1310    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), TD);
1311
1312  // Otherwise, we have to construct SSA form.
1313  SmallVector<PHINode*, 8> NewPHIs;
1314  SSAUpdater SSAUpdate(&NewPHIs);
1315  SSAUpdate.Initialize(LI);
1316
1317  const Type *LoadTy = LI->getType();
1318
1319  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1320    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1321    BasicBlock *BB = AV.BB;
1322
1323    if (SSAUpdate.HasValueForBlock(BB))
1324      continue;
1325
1326    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, TD));
1327  }
1328
1329  // Perform PHI construction.
1330  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1331
1332  // If new PHI nodes were created, notify alias analysis.
1333  if (V->getType()->isPointerTy())
1334    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1335      AA->copyValue(LI, NewPHIs[i]);
1336
1337  return V;
1338}
1339
1340static bool isLifetimeStart(const Instruction *Inst) {
1341  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1342    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1343  return false;
1344}
1345
1346/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1347/// non-local by performing PHI construction.
1348bool GVN::processNonLocalLoad(LoadInst *LI,
1349                              SmallVectorImpl<Instruction*> &toErase) {
1350  // Find the non-local dependencies of the load.
1351  SmallVector<NonLocalDepResult, 64> Deps;
1352  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1353                                   Deps);
1354  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1355  //             << Deps.size() << *LI << '\n');
1356
1357  // If we had to process more than one hundred blocks to find the
1358  // dependencies, this load isn't worth worrying about.  Optimizing
1359  // it will be too expensive.
1360  if (Deps.size() > 100)
1361    return false;
1362
1363  // If we had a phi translation failure, we'll have a single entry which is a
1364  // clobber in the current block.  Reject this early.
1365  if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
1366    DEBUG(
1367      dbgs() << "GVN: non-local load ";
1368      WriteAsOperand(dbgs(), LI);
1369      dbgs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
1370    );
1371    return false;
1372  }
1373
1374  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1375  // where we have a value available in repl, also keep track of whether we see
1376  // dependencies that produce an unknown value for the load (such as a call
1377  // that could potentially clobber the load).
1378  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1379  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1380
1381  const TargetData *TD = 0;
1382
1383  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1384    BasicBlock *DepBB = Deps[i].getBB();
1385    MemDepResult DepInfo = Deps[i].getResult();
1386
1387    if (DepInfo.isClobber()) {
1388      // The address being loaded in this non-local block may not be the same as
1389      // the pointer operand of the load if PHI translation occurs.  Make sure
1390      // to consider the right address.
1391      Value *Address = Deps[i].getAddress();
1392
1393      // If the dependence is to a store that writes to a superset of the bits
1394      // read by the load, we can extract the bits we need for the load from the
1395      // stored value.
1396      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1397        if (TD == 0)
1398          TD = getAnalysisIfAvailable<TargetData>();
1399        if (TD && Address) {
1400          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1401                                                      DepSI, *TD);
1402          if (Offset != -1) {
1403            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1404                                                           DepSI->getOperand(0),
1405                                                                Offset));
1406            continue;
1407          }
1408        }
1409      }
1410
1411      // If the clobbering value is a memset/memcpy/memmove, see if we can
1412      // forward a value on from it.
1413      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1414        if (TD == 0)
1415          TD = getAnalysisIfAvailable<TargetData>();
1416        if (TD && Address) {
1417          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1418                                                        DepMI, *TD);
1419          if (Offset != -1) {
1420            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1421                                                                  Offset));
1422            continue;
1423          }
1424        }
1425      }
1426
1427      UnavailableBlocks.push_back(DepBB);
1428      continue;
1429    }
1430
1431    Instruction *DepInst = DepInfo.getInst();
1432
1433    // Loading the allocation -> undef.
1434    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1435        // Loading immediately after lifetime begin -> undef.
1436        isLifetimeStart(DepInst)) {
1437      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1438                                             UndefValue::get(LI->getType())));
1439      continue;
1440    }
1441
1442    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1443      // Reject loads and stores that are to the same address but are of
1444      // different types if we have to.
1445      if (S->getOperand(0)->getType() != LI->getType()) {
1446        if (TD == 0)
1447          TD = getAnalysisIfAvailable<TargetData>();
1448
1449        // If the stored value is larger or equal to the loaded value, we can
1450        // reuse it.
1451        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1452                                                        LI->getType(), *TD)) {
1453          UnavailableBlocks.push_back(DepBB);
1454          continue;
1455        }
1456      }
1457
1458      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1459                                                          S->getOperand(0)));
1460      continue;
1461    }
1462
1463    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1464      // If the types mismatch and we can't handle it, reject reuse of the load.
1465      if (LD->getType() != LI->getType()) {
1466        if (TD == 0)
1467          TD = getAnalysisIfAvailable<TargetData>();
1468
1469        // If the stored value is larger or equal to the loaded value, we can
1470        // reuse it.
1471        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1472          UnavailableBlocks.push_back(DepBB);
1473          continue;
1474        }
1475      }
1476      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1477      continue;
1478    }
1479
1480    UnavailableBlocks.push_back(DepBB);
1481    continue;
1482  }
1483
1484  // If we have no predecessors that produce a known value for this load, exit
1485  // early.
1486  if (ValuesPerBlock.empty()) return false;
1487
1488  // If all of the instructions we depend on produce a known value for this
1489  // load, then it is fully redundant and we can use PHI insertion to compute
1490  // its value.  Insert PHIs and remove the fully redundant value now.
1491  if (UnavailableBlocks.empty()) {
1492    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1493
1494    // Perform PHI construction.
1495    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1496                                      VN.getAliasAnalysis());
1497    LI->replaceAllUsesWith(V);
1498
1499    if (isa<PHINode>(V))
1500      V->takeName(LI);
1501    if (V->getType()->isPointerTy())
1502      MD->invalidateCachedPointerInfo(V);
1503    VN.erase(LI);
1504    toErase.push_back(LI);
1505    ++NumGVNLoad;
1506    return true;
1507  }
1508
1509  if (!EnablePRE || !EnableLoadPRE)
1510    return false;
1511
1512  // Okay, we have *some* definitions of the value.  This means that the value
1513  // is available in some of our (transitive) predecessors.  Lets think about
1514  // doing PRE of this load.  This will involve inserting a new load into the
1515  // predecessor when it's not available.  We could do this in general, but
1516  // prefer to not increase code size.  As such, we only do this when we know
1517  // that we only have to insert *one* load (which means we're basically moving
1518  // the load, not inserting a new one).
1519
1520  SmallPtrSet<BasicBlock *, 4> Blockers;
1521  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1522    Blockers.insert(UnavailableBlocks[i]);
1523
1524  // Lets find first basic block with more than one predecessor.  Walk backwards
1525  // through predecessors if needed.
1526  BasicBlock *LoadBB = LI->getParent();
1527  BasicBlock *TmpBB = LoadBB;
1528
1529  bool isSinglePred = false;
1530  bool allSingleSucc = true;
1531  while (TmpBB->getSinglePredecessor()) {
1532    isSinglePred = true;
1533    TmpBB = TmpBB->getSinglePredecessor();
1534    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1535      return false;
1536    if (Blockers.count(TmpBB))
1537      return false;
1538    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1539      allSingleSucc = false;
1540  }
1541
1542  assert(TmpBB);
1543  LoadBB = TmpBB;
1544
1545  // If we have a repl set with LI itself in it, this means we have a loop where
1546  // at least one of the values is LI.  Since this means that we won't be able
1547  // to eliminate LI even if we insert uses in the other predecessors, we will
1548  // end up increasing code size.  Reject this by scanning for LI.
1549  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1550    if (ValuesPerBlock[i].isSimpleValue() &&
1551        ValuesPerBlock[i].getSimpleValue() == LI) {
1552      // Skip cases where LI is the only definition, even for EnableFullLoadPRE.
1553      if (!EnableFullLoadPRE || e == 1)
1554        return false;
1555    }
1556  }
1557
1558  // FIXME: It is extremely unclear what this loop is doing, other than
1559  // artificially restricting loadpre.
1560  if (isSinglePred) {
1561    bool isHot = false;
1562    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1563      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1564      if (AV.isSimpleValue())
1565        // "Hot" Instruction is in some loop (because it dominates its dep.
1566        // instruction).
1567        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1568          if (DT->dominates(LI, I)) {
1569            isHot = true;
1570            break;
1571          }
1572    }
1573
1574    // We are interested only in "hot" instructions. We don't want to do any
1575    // mis-optimizations here.
1576    if (!isHot)
1577      return false;
1578  }
1579
1580  // Check to see how many predecessors have the loaded value fully
1581  // available.
1582  DenseMap<BasicBlock*, Value*> PredLoads;
1583  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1584  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1585    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1586  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1587    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1588
1589  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1590  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1591       PI != E; ++PI) {
1592    BasicBlock *Pred = *PI;
1593    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1594      continue;
1595    }
1596    PredLoads[Pred] = 0;
1597
1598    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1599      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1600        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1601              << Pred->getName() << "': " << *LI << '\n');
1602        return false;
1603      }
1604      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1605      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1606    }
1607  }
1608  if (!NeedToSplit.empty()) {
1609    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1610    return false;
1611  }
1612
1613  // Decide whether PRE is profitable for this load.
1614  unsigned NumUnavailablePreds = PredLoads.size();
1615  assert(NumUnavailablePreds != 0 &&
1616         "Fully available value should be eliminated above!");
1617  if (!EnableFullLoadPRE) {
1618    // If this load is unavailable in multiple predecessors, reject it.
1619    // FIXME: If we could restructure the CFG, we could make a common pred with
1620    // all the preds that don't have an available LI and insert a new load into
1621    // that one block.
1622    if (NumUnavailablePreds != 1)
1623      return false;
1624  }
1625
1626  // Check if the load can safely be moved to all the unavailable predecessors.
1627  bool CanDoPRE = true;
1628  SmallVector<Instruction*, 8> NewInsts;
1629  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1630         E = PredLoads.end(); I != E; ++I) {
1631    BasicBlock *UnavailablePred = I->first;
1632
1633    // Do PHI translation to get its value in the predecessor if necessary.  The
1634    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1635
1636    // If all preds have a single successor, then we know it is safe to insert
1637    // the load on the pred (?!?), so we can insert code to materialize the
1638    // pointer if it is not available.
1639    PHITransAddr Address(LI->getOperand(0), TD);
1640    Value *LoadPtr = 0;
1641    if (allSingleSucc) {
1642      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1643                                                  *DT, NewInsts);
1644    } else {
1645      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1646      LoadPtr = Address.getAddr();
1647    }
1648
1649    // If we couldn't find or insert a computation of this phi translated value,
1650    // we fail PRE.
1651    if (LoadPtr == 0) {
1652      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1653            << *LI->getOperand(0) << "\n");
1654      CanDoPRE = false;
1655      break;
1656    }
1657
1658    // Make sure it is valid to move this load here.  We have to watch out for:
1659    //  @1 = getelementptr (i8* p, ...
1660    //  test p and branch if == 0
1661    //  load @1
1662    // It is valid to have the getelementptr before the test, even if p can be 0,
1663    // as getelementptr only does address arithmetic.
1664    // If we are not pushing the value through any multiple-successor blocks
1665    // we do not have this case.  Otherwise, check that the load is safe to
1666    // put anywhere; this can be improved, but should be conservatively safe.
1667    if (!allSingleSucc &&
1668        // FIXME: REEVALUTE THIS.
1669        !isSafeToLoadUnconditionally(LoadPtr,
1670                                     UnavailablePred->getTerminator(),
1671                                     LI->getAlignment(), TD)) {
1672      CanDoPRE = false;
1673      break;
1674    }
1675
1676    I->second = LoadPtr;
1677  }
1678
1679  if (!CanDoPRE) {
1680    while (!NewInsts.empty())
1681      NewInsts.pop_back_val()->eraseFromParent();
1682    return false;
1683  }
1684
1685  // Okay, we can eliminate this load by inserting a reload in the predecessor
1686  // and using PHI construction to get the value in the other predecessors, do
1687  // it.
1688  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1689  DEBUG(if (!NewInsts.empty())
1690          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1691                 << *NewInsts.back() << '\n');
1692
1693  // Assign value numbers to the new instructions.
1694  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1695    // FIXME: We really _ought_ to insert these value numbers into their
1696    // parent's availability map.  However, in doing so, we risk getting into
1697    // ordering issues.  If a block hasn't been processed yet, we would be
1698    // marking a value as AVAIL-IN, which isn't what we intend.
1699    VN.lookup_or_add(NewInsts[i]);
1700  }
1701
1702  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1703         E = PredLoads.end(); I != E; ++I) {
1704    BasicBlock *UnavailablePred = I->first;
1705    Value *LoadPtr = I->second;
1706
1707    Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1708                                  LI->getAlignment(),
1709                                  UnavailablePred->getTerminator());
1710
1711    // Add the newly created load.
1712    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1713                                                        NewLoad));
1714    MD->invalidateCachedPointerInfo(LoadPtr);
1715    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1716  }
1717
1718  // Perform PHI construction.
1719  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1720                                    VN.getAliasAnalysis());
1721  LI->replaceAllUsesWith(V);
1722  if (isa<PHINode>(V))
1723    V->takeName(LI);
1724  if (V->getType()->isPointerTy())
1725    MD->invalidateCachedPointerInfo(V);
1726  VN.erase(LI);
1727  toErase.push_back(LI);
1728  ++NumPRELoad;
1729  return true;
1730}
1731
1732/// processLoad - Attempt to eliminate a load, first by eliminating it
1733/// locally, and then attempting non-local elimination if that fails.
1734bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1735  if (!MD)
1736    return false;
1737
1738  if (L->isVolatile())
1739    return false;
1740
1741  // ... to a pointer that has been loaded from before...
1742  MemDepResult Dep = MD->getDependency(L);
1743
1744  // If the value isn't available, don't do anything!
1745  if (Dep.isClobber()) {
1746    // Check to see if we have something like this:
1747    //   store i32 123, i32* %P
1748    //   %A = bitcast i32* %P to i8*
1749    //   %B = gep i8* %A, i32 1
1750    //   %C = load i8* %B
1751    //
1752    // We could do that by recognizing if the clobber instructions are obviously
1753    // a common base + constant offset, and if the previous store (or memset)
1754    // completely covers this load.  This sort of thing can happen in bitfield
1755    // access code.
1756    Value *AvailVal = 0;
1757    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1758      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1759        int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1760                                                    L->getPointerOperand(),
1761                                                    DepSI, *TD);
1762        if (Offset != -1)
1763          AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1764                                          L->getType(), L, *TD);
1765      }
1766
1767    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1768    // a value on from it.
1769    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1770      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1771        int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1772                                                      L->getPointerOperand(),
1773                                                      DepMI, *TD);
1774        if (Offset != -1)
1775          AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
1776      }
1777    }
1778
1779    if (AvailVal) {
1780      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1781            << *AvailVal << '\n' << *L << "\n\n\n");
1782
1783      // Replace the load!
1784      L->replaceAllUsesWith(AvailVal);
1785      if (AvailVal->getType()->isPointerTy())
1786        MD->invalidateCachedPointerInfo(AvailVal);
1787      VN.erase(L);
1788      toErase.push_back(L);
1789      ++NumGVNLoad;
1790      return true;
1791    }
1792
1793    DEBUG(
1794      // fast print dep, using operator<< on instruction would be too slow
1795      dbgs() << "GVN: load ";
1796      WriteAsOperand(dbgs(), L);
1797      Instruction *I = Dep.getInst();
1798      dbgs() << " is clobbered by " << *I << '\n';
1799    );
1800    return false;
1801  }
1802
1803  // If it is defined in another block, try harder.
1804  if (Dep.isNonLocal())
1805    return processNonLocalLoad(L, toErase);
1806
1807  Instruction *DepInst = Dep.getInst();
1808  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1809    Value *StoredVal = DepSI->getOperand(0);
1810
1811    // The store and load are to a must-aliased pointer, but they may not
1812    // actually have the same type.  See if we know how to reuse the stored
1813    // value (depending on its type).
1814    const TargetData *TD = 0;
1815    if (StoredVal->getType() != L->getType()) {
1816      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1817        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1818                                                   L, *TD);
1819        if (StoredVal == 0)
1820          return false;
1821
1822        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1823                     << '\n' << *L << "\n\n\n");
1824      }
1825      else
1826        return false;
1827    }
1828
1829    // Remove it!
1830    L->replaceAllUsesWith(StoredVal);
1831    if (StoredVal->getType()->isPointerTy())
1832      MD->invalidateCachedPointerInfo(StoredVal);
1833    VN.erase(L);
1834    toErase.push_back(L);
1835    ++NumGVNLoad;
1836    return true;
1837  }
1838
1839  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1840    Value *AvailableVal = DepLI;
1841
1842    // The loads are of a must-aliased pointer, but they may not actually have
1843    // the same type.  See if we know how to reuse the previously loaded value
1844    // (depending on its type).
1845    const TargetData *TD = 0;
1846    if (DepLI->getType() != L->getType()) {
1847      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1848        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1849        if (AvailableVal == 0)
1850          return false;
1851
1852        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1853                     << "\n" << *L << "\n\n\n");
1854      }
1855      else
1856        return false;
1857    }
1858
1859    // Remove it!
1860    L->replaceAllUsesWith(AvailableVal);
1861    if (DepLI->getType()->isPointerTy())
1862      MD->invalidateCachedPointerInfo(DepLI);
1863    VN.erase(L);
1864    toErase.push_back(L);
1865    ++NumGVNLoad;
1866    return true;
1867  }
1868
1869  // If this load really doesn't depend on anything, then we must be loading an
1870  // undef value.  This can happen when loading for a fresh allocation with no
1871  // intervening stores, for example.
1872  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1873    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1874    VN.erase(L);
1875    toErase.push_back(L);
1876    ++NumGVNLoad;
1877    return true;
1878  }
1879
1880  // If this load occurs either right after a lifetime begin,
1881  // then the loaded value is undefined.
1882  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1883    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1884      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1885      VN.erase(L);
1886      toErase.push_back(L);
1887      ++NumGVNLoad;
1888      return true;
1889    }
1890  }
1891
1892  return false;
1893}
1894
1895Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1896  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1897  if (I == localAvail.end())
1898    return 0;
1899
1900  ValueNumberScope *Locals = I->second;
1901  while (Locals) {
1902    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1903    if (I != Locals->table.end())
1904      return I->second;
1905    Locals = Locals->parent;
1906  }
1907
1908  return 0;
1909}
1910
1911
1912/// processInstruction - When calculating availability, handle an instruction
1913/// by inserting it into the appropriate sets
1914bool GVN::processInstruction(Instruction *I,
1915                             SmallVectorImpl<Instruction*> &toErase) {
1916  // Ignore dbg info intrinsics.
1917  if (isa<DbgInfoIntrinsic>(I))
1918    return false;
1919
1920  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1921    bool Changed = processLoad(LI, toErase);
1922
1923    if (!Changed) {
1924      unsigned Num = VN.lookup_or_add(LI);
1925      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1926    }
1927
1928    return Changed;
1929  }
1930
1931  uint32_t NextNum = VN.getNextUnusedValueNumber();
1932  unsigned Num = VN.lookup_or_add(I);
1933
1934  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1935    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1936
1937    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1938      return false;
1939
1940    Value *BranchCond = BI->getCondition();
1941    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1942
1943    BasicBlock *TrueSucc = BI->getSuccessor(0);
1944    BasicBlock *FalseSucc = BI->getSuccessor(1);
1945
1946    if (TrueSucc->getSinglePredecessor())
1947      localAvail[TrueSucc]->table[CondVN] =
1948        ConstantInt::getTrue(TrueSucc->getContext());
1949    if (FalseSucc->getSinglePredecessor())
1950      localAvail[FalseSucc]->table[CondVN] =
1951        ConstantInt::getFalse(TrueSucc->getContext());
1952
1953    return false;
1954
1955  // Allocations are always uniquely numbered, so we can save time and memory
1956  // by fast failing them.
1957  } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
1958    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1959    return false;
1960  }
1961
1962  // Collapse PHI nodes
1963  if (PHINode* p = dyn_cast<PHINode>(I)) {
1964    Value *constVal = CollapsePhi(p);
1965
1966    if (constVal) {
1967      p->replaceAllUsesWith(constVal);
1968      if (MD && constVal->getType()->isPointerTy())
1969        MD->invalidateCachedPointerInfo(constVal);
1970      VN.erase(p);
1971
1972      toErase.push_back(p);
1973    } else {
1974      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1975    }
1976
1977  // If the number we were assigned was a brand new VN, then we don't
1978  // need to do a lookup to see if the number already exists
1979  // somewhere in the domtree: it can't!
1980  } else if (Num == NextNum) {
1981    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1982
1983  // Perform fast-path value-number based elimination of values inherited from
1984  // dominators.
1985  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1986    // Remove it!
1987    VN.erase(I);
1988    I->replaceAllUsesWith(repl);
1989    if (MD && repl->getType()->isPointerTy())
1990      MD->invalidateCachedPointerInfo(repl);
1991    toErase.push_back(I);
1992    return true;
1993
1994  } else {
1995    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1996  }
1997
1998  return false;
1999}
2000
2001/// runOnFunction - This is the main transformation entry point for a function.
2002bool GVN::runOnFunction(Function& F) {
2003  if (!NoLoads)
2004    MD = &getAnalysis<MemoryDependenceAnalysis>();
2005  DT = &getAnalysis<DominatorTree>();
2006  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2007  VN.setMemDep(MD);
2008  VN.setDomTree(DT);
2009
2010  bool Changed = false;
2011  bool ShouldContinue = true;
2012
2013  // Merge unconditional branches, allowing PRE to catch more
2014  // optimization opportunities.
2015  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2016    BasicBlock *BB = FI;
2017    ++FI;
2018    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2019    if (removedBlock) ++NumGVNBlocks;
2020
2021    Changed |= removedBlock;
2022  }
2023
2024  unsigned Iteration = 0;
2025
2026  while (ShouldContinue) {
2027    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2028    ShouldContinue = iterateOnFunction(F);
2029    if (splitCriticalEdges())
2030      ShouldContinue = true;
2031    Changed |= ShouldContinue;
2032    ++Iteration;
2033  }
2034
2035  if (EnablePRE) {
2036    bool PREChanged = true;
2037    while (PREChanged) {
2038      PREChanged = performPRE(F);
2039      Changed |= PREChanged;
2040    }
2041  }
2042  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2043  // computations into blocks where they become fully redundant.  Note that
2044  // we can't do this until PRE's critical edge splitting updates memdep.
2045  // Actually, when this happens, we should just fully integrate PRE into GVN.
2046
2047  cleanupGlobalSets();
2048
2049  return Changed;
2050}
2051
2052
2053bool GVN::processBlock(BasicBlock *BB) {
2054  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
2055  // incrementing BI before processing an instruction).
2056  SmallVector<Instruction*, 8> toErase;
2057  bool ChangedFunction = false;
2058
2059  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2060       BI != BE;) {
2061    ChangedFunction |= processInstruction(BI, toErase);
2062    if (toErase.empty()) {
2063      ++BI;
2064      continue;
2065    }
2066
2067    // If we need some instructions deleted, do it now.
2068    NumGVNInstr += toErase.size();
2069
2070    // Avoid iterator invalidation.
2071    bool AtStart = BI == BB->begin();
2072    if (!AtStart)
2073      --BI;
2074
2075    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
2076         E = toErase.end(); I != E; ++I) {
2077      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2078      if (MD) MD->removeInstruction(*I);
2079      (*I)->eraseFromParent();
2080      DEBUG(verifyRemoved(*I));
2081    }
2082    toErase.clear();
2083
2084    if (AtStart)
2085      BI = BB->begin();
2086    else
2087      ++BI;
2088  }
2089
2090  return ChangedFunction;
2091}
2092
2093/// performPRE - Perform a purely local form of PRE that looks for diamond
2094/// control flow patterns and attempts to perform simple PRE at the join point.
2095bool GVN::performPRE(Function &F) {
2096  bool Changed = false;
2097  DenseMap<BasicBlock*, Value*> predMap;
2098  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2099       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2100    BasicBlock *CurrentBlock = *DI;
2101
2102    // Nothing to PRE in the entry block.
2103    if (CurrentBlock == &F.getEntryBlock()) continue;
2104
2105    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2106         BE = CurrentBlock->end(); BI != BE; ) {
2107      Instruction *CurInst = BI++;
2108
2109      if (isa<AllocaInst>(CurInst) ||
2110          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2111          CurInst->getType()->isVoidTy() ||
2112          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2113          isa<DbgInfoIntrinsic>(CurInst))
2114        continue;
2115
2116      uint32_t ValNo = VN.lookup(CurInst);
2117
2118      // Look for the predecessors for PRE opportunities.  We're
2119      // only trying to solve the basic diamond case, where
2120      // a value is computed in the successor and one predecessor,
2121      // but not the other.  We also explicitly disallow cases
2122      // where the successor is its own predecessor, because they're
2123      // more complicated to get right.
2124      unsigned NumWith = 0;
2125      unsigned NumWithout = 0;
2126      BasicBlock *PREPred = 0;
2127      predMap.clear();
2128
2129      for (pred_iterator PI = pred_begin(CurrentBlock),
2130           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2131        // We're not interested in PRE where the block is its
2132        // own predecessor, or in blocks with predecessors
2133        // that are not reachable.
2134        if (*PI == CurrentBlock) {
2135          NumWithout = 2;
2136          break;
2137        } else if (!localAvail.count(*PI))  {
2138          NumWithout = 2;
2139          break;
2140        }
2141
2142        DenseMap<uint32_t, Value*>::iterator predV =
2143                                            localAvail[*PI]->table.find(ValNo);
2144        if (predV == localAvail[*PI]->table.end()) {
2145          PREPred = *PI;
2146          ++NumWithout;
2147        } else if (predV->second == CurInst) {
2148          NumWithout = 2;
2149        } else {
2150          predMap[*PI] = predV->second;
2151          ++NumWith;
2152        }
2153      }
2154
2155      // Don't do PRE when it might increase code size, i.e. when
2156      // we would need to insert instructions in more than one pred.
2157      if (NumWithout != 1 || NumWith == 0)
2158        continue;
2159
2160      // Don't do PRE across indirect branch.
2161      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2162        continue;
2163
2164      // We can't do PRE safely on a critical edge, so instead we schedule
2165      // the edge to be split and perform the PRE the next time we iterate
2166      // on the function.
2167      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2168      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2169        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2170        continue;
2171      }
2172
2173      // Instantiate the expression in the predecessor that lacked it.
2174      // Because we are going top-down through the block, all value numbers
2175      // will be available in the predecessor by the time we need them.  Any
2176      // that weren't originally present will have been instantiated earlier
2177      // in this loop.
2178      Instruction *PREInstr = CurInst->clone();
2179      bool success = true;
2180      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2181        Value *Op = PREInstr->getOperand(i);
2182        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2183          continue;
2184
2185        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
2186          PREInstr->setOperand(i, V);
2187        } else {
2188          success = false;
2189          break;
2190        }
2191      }
2192
2193      // Fail out if we encounter an operand that is not available in
2194      // the PRE predecessor.  This is typically because of loads which
2195      // are not value numbered precisely.
2196      if (!success) {
2197        delete PREInstr;
2198        DEBUG(verifyRemoved(PREInstr));
2199        continue;
2200      }
2201
2202      PREInstr->insertBefore(PREPred->getTerminator());
2203      PREInstr->setName(CurInst->getName() + ".pre");
2204      predMap[PREPred] = PREInstr;
2205      VN.add(PREInstr, ValNo);
2206      ++NumGVNPRE;
2207
2208      // Update the availability map to include the new instruction.
2209      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
2210
2211      // Create a PHI to make the value available in this block.
2212      PHINode* Phi = PHINode::Create(CurInst->getType(),
2213                                     CurInst->getName() + ".pre-phi",
2214                                     CurrentBlock->begin());
2215      for (pred_iterator PI = pred_begin(CurrentBlock),
2216           PE = pred_end(CurrentBlock); PI != PE; ++PI)
2217        Phi->addIncoming(predMap[*PI], *PI);
2218
2219      VN.add(Phi, ValNo);
2220      localAvail[CurrentBlock]->table[ValNo] = Phi;
2221
2222      CurInst->replaceAllUsesWith(Phi);
2223      if (MD && Phi->getType()->isPointerTy())
2224        MD->invalidateCachedPointerInfo(Phi);
2225      VN.erase(CurInst);
2226
2227      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2228      if (MD) MD->removeInstruction(CurInst);
2229      CurInst->eraseFromParent();
2230      DEBUG(verifyRemoved(CurInst));
2231      Changed = true;
2232    }
2233  }
2234
2235  if (splitCriticalEdges())
2236    Changed = true;
2237
2238  return Changed;
2239}
2240
2241/// splitCriticalEdges - Split critical edges found during the previous
2242/// iteration that may enable further optimization.
2243bool GVN::splitCriticalEdges() {
2244  if (toSplit.empty())
2245    return false;
2246  do {
2247    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2248    SplitCriticalEdge(Edge.first, Edge.second, this);
2249  } while (!toSplit.empty());
2250  if (MD) MD->invalidateCachedPredecessors();
2251  return true;
2252}
2253
2254/// iterateOnFunction - Executes one iteration of GVN
2255bool GVN::iterateOnFunction(Function &F) {
2256  cleanupGlobalSets();
2257
2258  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2259       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
2260    if (DI->getIDom())
2261      localAvail[DI->getBlock()] =
2262                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
2263    else
2264      localAvail[DI->getBlock()] = new ValueNumberScope(0);
2265  }
2266
2267  // Top-down walk of the dominator tree
2268  bool Changed = false;
2269#if 0
2270  // Needed for value numbering with phi construction to work.
2271  ReversePostOrderTraversal<Function*> RPOT(&F);
2272  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2273       RE = RPOT.end(); RI != RE; ++RI)
2274    Changed |= processBlock(*RI);
2275#else
2276  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2277       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2278    Changed |= processBlock(DI->getBlock());
2279#endif
2280
2281  return Changed;
2282}
2283
2284void GVN::cleanupGlobalSets() {
2285  VN.clear();
2286
2287  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2288       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
2289    delete I->second;
2290  localAvail.clear();
2291}
2292
2293/// verifyRemoved - Verify that the specified instruction does not occur in our
2294/// internal data structures.
2295void GVN::verifyRemoved(const Instruction *Inst) const {
2296  VN.verifyRemoved(Inst);
2297
2298  // Walk through the value number scope to make sure the instruction isn't
2299  // ferreted away in it.
2300  for (DenseMap<BasicBlock*, ValueNumberScope*>::const_iterator
2301         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2302    const ValueNumberScope *VNS = I->second;
2303
2304    while (VNS) {
2305      for (DenseMap<uint32_t, Value*>::const_iterator
2306             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2307        assert(II->second != Inst && "Inst still in value numbering scope!");
2308      }
2309
2310      VNS = VNS->parent;
2311    }
2312  }
2313}
2314