GVN.cpp revision 0ee443d169786017d151034b8bd34225bc144c98
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Value.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/PostOrderIterator.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/Analysis/ConstantFolding.h"
36#include "llvm/Analysis/Dominators.h"
37#include "llvm/Analysis/MemoryBuiltins.h"
38#include "llvm/Analysis/MemoryDependenceAnalysis.h"
39#include "llvm/Analysis/PHITransAddr.h"
40#include "llvm/Support/CFG.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/GetElementPtrTypeIterator.h"
45#include "llvm/Support/IRBuilder.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Transforms/Utils/Local.h"
50#include "llvm/Transforms/Utils/SSAUpdater.h"
51using namespace llvm;
52
53STATISTIC(NumGVNInstr,  "Number of instructions deleted");
54STATISTIC(NumGVNLoad,   "Number of loads deleted");
55STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
56STATISTIC(NumGVNBlocks, "Number of blocks merged");
57STATISTIC(NumPRELoad,   "Number of loads PRE'd");
58
59static cl::opt<bool> EnablePRE("enable-pre",
60                               cl::init(true), cl::Hidden);
61static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
62
63//===----------------------------------------------------------------------===//
64//                         ValueTable Class
65//===----------------------------------------------------------------------===//
66
67/// This class holds the mapping between values and value numbers.  It is used
68/// as an efficient mechanism to determine the expression-wise equivalence of
69/// two values.
70namespace {
71  struct Expression {
72    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
73                            UDIV, SDIV, FDIV, UREM, SREM,
74                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
75                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
76                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
77                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
78                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
79                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
80                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
81                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
82                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
83                            INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
84
85    ExpressionOpcode opcode;
86    const Type* type;
87    SmallVector<uint32_t, 4> varargs;
88    Value *function;
89
90    Expression() { }
91    Expression(ExpressionOpcode o) : opcode(o) { }
92
93    bool operator==(const Expression &other) const {
94      if (opcode != other.opcode)
95        return false;
96      else if (opcode == EMPTY || opcode == TOMBSTONE)
97        return true;
98      else if (type != other.type)
99        return false;
100      else if (function != other.function)
101        return false;
102      else {
103        if (varargs.size() != other.varargs.size())
104          return false;
105
106        for (size_t i = 0; i < varargs.size(); ++i)
107          if (varargs[i] != other.varargs[i])
108            return false;
109
110        return true;
111      }
112    }
113
114    bool operator!=(const Expression &other) const {
115      return !(*this == other);
116    }
117  };
118
119  class ValueTable {
120    private:
121      DenseMap<Value*, uint32_t> valueNumbering;
122      DenseMap<Expression, uint32_t> expressionNumbering;
123      AliasAnalysis* AA;
124      MemoryDependenceAnalysis* MD;
125      DominatorTree* DT;
126
127      uint32_t nextValueNumber;
128
129      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
130      Expression::ExpressionOpcode getOpcode(CmpInst* C);
131      Expression::ExpressionOpcode getOpcode(CastInst* C);
132      Expression create_expression(BinaryOperator* BO);
133      Expression create_expression(CmpInst* C);
134      Expression create_expression(ShuffleVectorInst* V);
135      Expression create_expression(ExtractElementInst* C);
136      Expression create_expression(InsertElementInst* V);
137      Expression create_expression(SelectInst* V);
138      Expression create_expression(CastInst* C);
139      Expression create_expression(GetElementPtrInst* G);
140      Expression create_expression(CallInst* C);
141      Expression create_expression(Constant* C);
142      Expression create_expression(ExtractValueInst* C);
143      Expression create_expression(InsertValueInst* C);
144
145      uint32_t lookup_or_add_call(CallInst* C);
146    public:
147      ValueTable() : nextValueNumber(1) { }
148      uint32_t lookup_or_add(Value *V);
149      uint32_t lookup(Value *V) const;
150      void add(Value *V, uint32_t num);
151      void clear();
152      void erase(Value *v);
153      unsigned size();
154      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
155      AliasAnalysis *getAliasAnalysis() const { return AA; }
156      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
157      void setDomTree(DominatorTree* D) { DT = D; }
158      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
159      void verifyRemoved(const Value *) const;
160  };
161}
162
163namespace llvm {
164template <> struct DenseMapInfo<Expression> {
165  static inline Expression getEmptyKey() {
166    return Expression(Expression::EMPTY);
167  }
168
169  static inline Expression getTombstoneKey() {
170    return Expression(Expression::TOMBSTONE);
171  }
172
173  static unsigned getHashValue(const Expression e) {
174    unsigned hash = e.opcode;
175
176    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
177            (unsigned)((uintptr_t)e.type >> 9));
178
179    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
180         E = e.varargs.end(); I != E; ++I)
181      hash = *I + hash * 37;
182
183    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
184            (unsigned)((uintptr_t)e.function >> 9)) +
185           hash * 37;
186
187    return hash;
188  }
189  static bool isEqual(const Expression &LHS, const Expression &RHS) {
190    return LHS == RHS;
191  }
192};
193
194template <>
195struct isPodLike<Expression> { static const bool value = true; };
196
197}
198
199//===----------------------------------------------------------------------===//
200//                     ValueTable Internal Functions
201//===----------------------------------------------------------------------===//
202Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
203  switch(BO->getOpcode()) {
204  default: // THIS SHOULD NEVER HAPPEN
205    llvm_unreachable("Binary operator with unknown opcode?");
206  case Instruction::Add:  return Expression::ADD;
207  case Instruction::FAdd: return Expression::FADD;
208  case Instruction::Sub:  return Expression::SUB;
209  case Instruction::FSub: return Expression::FSUB;
210  case Instruction::Mul:  return Expression::MUL;
211  case Instruction::FMul: return Expression::FMUL;
212  case Instruction::UDiv: return Expression::UDIV;
213  case Instruction::SDiv: return Expression::SDIV;
214  case Instruction::FDiv: return Expression::FDIV;
215  case Instruction::URem: return Expression::UREM;
216  case Instruction::SRem: return Expression::SREM;
217  case Instruction::FRem: return Expression::FREM;
218  case Instruction::Shl:  return Expression::SHL;
219  case Instruction::LShr: return Expression::LSHR;
220  case Instruction::AShr: return Expression::ASHR;
221  case Instruction::And:  return Expression::AND;
222  case Instruction::Or:   return Expression::OR;
223  case Instruction::Xor:  return Expression::XOR;
224  }
225}
226
227Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
228  if (isa<ICmpInst>(C)) {
229    switch (C->getPredicate()) {
230    default:  // THIS SHOULD NEVER HAPPEN
231      llvm_unreachable("Comparison with unknown predicate?");
232    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
233    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
234    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
235    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
236    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
237    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
238    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
239    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
240    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
241    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
242    }
243  } else {
244    switch (C->getPredicate()) {
245    default: // THIS SHOULD NEVER HAPPEN
246      llvm_unreachable("Comparison with unknown predicate?");
247    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
248    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
249    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
250    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
251    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
252    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
253    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
254    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
255    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
256    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
257    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
258    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
259    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
260    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
261    }
262  }
263}
264
265Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
266  switch(C->getOpcode()) {
267  default: // THIS SHOULD NEVER HAPPEN
268    llvm_unreachable("Cast operator with unknown opcode?");
269  case Instruction::Trunc:    return Expression::TRUNC;
270  case Instruction::ZExt:     return Expression::ZEXT;
271  case Instruction::SExt:     return Expression::SEXT;
272  case Instruction::FPToUI:   return Expression::FPTOUI;
273  case Instruction::FPToSI:   return Expression::FPTOSI;
274  case Instruction::UIToFP:   return Expression::UITOFP;
275  case Instruction::SIToFP:   return Expression::SITOFP;
276  case Instruction::FPTrunc:  return Expression::FPTRUNC;
277  case Instruction::FPExt:    return Expression::FPEXT;
278  case Instruction::PtrToInt: return Expression::PTRTOINT;
279  case Instruction::IntToPtr: return Expression::INTTOPTR;
280  case Instruction::BitCast:  return Expression::BITCAST;
281  }
282}
283
284Expression ValueTable::create_expression(CallInst* C) {
285  Expression e;
286
287  e.type = C->getType();
288  e.function = C->getCalledFunction();
289  e.opcode = Expression::CALL;
290
291  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
292       I != E; ++I)
293    e.varargs.push_back(lookup_or_add(*I));
294
295  return e;
296}
297
298Expression ValueTable::create_expression(BinaryOperator* BO) {
299  Expression e;
300  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
301  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
302  e.function = 0;
303  e.type = BO->getType();
304  e.opcode = getOpcode(BO);
305
306  return e;
307}
308
309Expression ValueTable::create_expression(CmpInst* C) {
310  Expression e;
311
312  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
313  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
314  e.function = 0;
315  e.type = C->getType();
316  e.opcode = getOpcode(C);
317
318  return e;
319}
320
321Expression ValueTable::create_expression(CastInst* C) {
322  Expression e;
323
324  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
325  e.function = 0;
326  e.type = C->getType();
327  e.opcode = getOpcode(C);
328
329  return e;
330}
331
332Expression ValueTable::create_expression(ShuffleVectorInst* S) {
333  Expression e;
334
335  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
336  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
337  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
338  e.function = 0;
339  e.type = S->getType();
340  e.opcode = Expression::SHUFFLE;
341
342  return e;
343}
344
345Expression ValueTable::create_expression(ExtractElementInst* E) {
346  Expression e;
347
348  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
349  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
350  e.function = 0;
351  e.type = E->getType();
352  e.opcode = Expression::EXTRACT;
353
354  return e;
355}
356
357Expression ValueTable::create_expression(InsertElementInst* I) {
358  Expression e;
359
360  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
361  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
362  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
363  e.function = 0;
364  e.type = I->getType();
365  e.opcode = Expression::INSERT;
366
367  return e;
368}
369
370Expression ValueTable::create_expression(SelectInst* I) {
371  Expression e;
372
373  e.varargs.push_back(lookup_or_add(I->getCondition()));
374  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
375  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
376  e.function = 0;
377  e.type = I->getType();
378  e.opcode = Expression::SELECT;
379
380  return e;
381}
382
383Expression ValueTable::create_expression(GetElementPtrInst* G) {
384  Expression e;
385
386  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
387  e.function = 0;
388  e.type = G->getType();
389  e.opcode = Expression::GEP;
390
391  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
392       I != E; ++I)
393    e.varargs.push_back(lookup_or_add(*I));
394
395  return e;
396}
397
398Expression ValueTable::create_expression(ExtractValueInst* E) {
399  Expression e;
400
401  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
402  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
403       II != IE; ++II)
404    e.varargs.push_back(*II);
405  e.function = 0;
406  e.type = E->getType();
407  e.opcode = Expression::EXTRACTVALUE;
408
409  return e;
410}
411
412Expression ValueTable::create_expression(InsertValueInst* E) {
413  Expression e;
414
415  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
416  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
417  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
418       II != IE; ++II)
419    e.varargs.push_back(*II);
420  e.function = 0;
421  e.type = E->getType();
422  e.opcode = Expression::INSERTVALUE;
423
424  return e;
425}
426
427//===----------------------------------------------------------------------===//
428//                     ValueTable External Functions
429//===----------------------------------------------------------------------===//
430
431/// add - Insert a value into the table with a specified value number.
432void ValueTable::add(Value *V, uint32_t num) {
433  valueNumbering.insert(std::make_pair(V, num));
434}
435
436uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
437  if (AA->doesNotAccessMemory(C)) {
438    Expression exp = create_expression(C);
439    uint32_t& e = expressionNumbering[exp];
440    if (!e) e = nextValueNumber++;
441    valueNumbering[C] = e;
442    return e;
443  } else if (AA->onlyReadsMemory(C)) {
444    Expression exp = create_expression(C);
445    uint32_t& e = expressionNumbering[exp];
446    if (!e) {
447      e = nextValueNumber++;
448      valueNumbering[C] = e;
449      return e;
450    }
451    if (!MD) {
452      e = nextValueNumber++;
453      valueNumbering[C] = e;
454      return e;
455    }
456
457    MemDepResult local_dep = MD->getDependency(C);
458
459    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
460      valueNumbering[C] =  nextValueNumber;
461      return nextValueNumber++;
462    }
463
464    if (local_dep.isDef()) {
465      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
466
467      if (local_cdep->getNumOperands() != C->getNumOperands()) {
468        valueNumbering[C] = nextValueNumber;
469        return nextValueNumber++;
470      }
471
472      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
473        uint32_t c_vn = lookup_or_add(C->getOperand(i));
474        uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
475        if (c_vn != cd_vn) {
476          valueNumbering[C] = nextValueNumber;
477          return nextValueNumber++;
478        }
479      }
480
481      uint32_t v = lookup_or_add(local_cdep);
482      valueNumbering[C] = v;
483      return v;
484    }
485
486    // Non-local case.
487    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
488      MD->getNonLocalCallDependency(CallSite(C));
489    // FIXME: call/call dependencies for readonly calls should return def, not
490    // clobber!  Move the checking logic to MemDep!
491    CallInst* cdep = 0;
492
493    // Check to see if we have a single dominating call instruction that is
494    // identical to C.
495    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
496      const NonLocalDepEntry *I = &deps[i];
497      // Ignore non-local dependencies.
498      if (I->getResult().isNonLocal())
499        continue;
500
501      // We don't handle non-depedencies.  If we already have a call, reject
502      // instruction dependencies.
503      if (I->getResult().isClobber() || cdep != 0) {
504        cdep = 0;
505        break;
506      }
507
508      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
509      // FIXME: All duplicated with non-local case.
510      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
511        cdep = NonLocalDepCall;
512        continue;
513      }
514
515      cdep = 0;
516      break;
517    }
518
519    if (!cdep) {
520      valueNumbering[C] = nextValueNumber;
521      return nextValueNumber++;
522    }
523
524    if (cdep->getNumOperands() != C->getNumOperands()) {
525      valueNumbering[C] = nextValueNumber;
526      return nextValueNumber++;
527    }
528    for (unsigned i = 1; i < C->getNumOperands(); ++i) {
529      uint32_t c_vn = lookup_or_add(C->getOperand(i));
530      uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
531      if (c_vn != cd_vn) {
532        valueNumbering[C] = nextValueNumber;
533        return nextValueNumber++;
534      }
535    }
536
537    uint32_t v = lookup_or_add(cdep);
538    valueNumbering[C] = v;
539    return v;
540
541  } else {
542    valueNumbering[C] = nextValueNumber;
543    return nextValueNumber++;
544  }
545}
546
547/// lookup_or_add - Returns the value number for the specified value, assigning
548/// it a new number if it did not have one before.
549uint32_t ValueTable::lookup_or_add(Value *V) {
550  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
551  if (VI != valueNumbering.end())
552    return VI->second;
553
554  if (!isa<Instruction>(V)) {
555    valueNumbering[V] = nextValueNumber;
556    return nextValueNumber++;
557  }
558
559  Instruction* I = cast<Instruction>(V);
560  Expression exp;
561  switch (I->getOpcode()) {
562    case Instruction::Call:
563      return lookup_or_add_call(cast<CallInst>(I));
564    case Instruction::Add:
565    case Instruction::FAdd:
566    case Instruction::Sub:
567    case Instruction::FSub:
568    case Instruction::Mul:
569    case Instruction::FMul:
570    case Instruction::UDiv:
571    case Instruction::SDiv:
572    case Instruction::FDiv:
573    case Instruction::URem:
574    case Instruction::SRem:
575    case Instruction::FRem:
576    case Instruction::Shl:
577    case Instruction::LShr:
578    case Instruction::AShr:
579    case Instruction::And:
580    case Instruction::Or :
581    case Instruction::Xor:
582      exp = create_expression(cast<BinaryOperator>(I));
583      break;
584    case Instruction::ICmp:
585    case Instruction::FCmp:
586      exp = create_expression(cast<CmpInst>(I));
587      break;
588    case Instruction::Trunc:
589    case Instruction::ZExt:
590    case Instruction::SExt:
591    case Instruction::FPToUI:
592    case Instruction::FPToSI:
593    case Instruction::UIToFP:
594    case Instruction::SIToFP:
595    case Instruction::FPTrunc:
596    case Instruction::FPExt:
597    case Instruction::PtrToInt:
598    case Instruction::IntToPtr:
599    case Instruction::BitCast:
600      exp = create_expression(cast<CastInst>(I));
601      break;
602    case Instruction::Select:
603      exp = create_expression(cast<SelectInst>(I));
604      break;
605    case Instruction::ExtractElement:
606      exp = create_expression(cast<ExtractElementInst>(I));
607      break;
608    case Instruction::InsertElement:
609      exp = create_expression(cast<InsertElementInst>(I));
610      break;
611    case Instruction::ShuffleVector:
612      exp = create_expression(cast<ShuffleVectorInst>(I));
613      break;
614    case Instruction::ExtractValue:
615      exp = create_expression(cast<ExtractValueInst>(I));
616      break;
617    case Instruction::InsertValue:
618      exp = create_expression(cast<InsertValueInst>(I));
619      break;
620    case Instruction::GetElementPtr:
621      exp = create_expression(cast<GetElementPtrInst>(I));
622      break;
623    default:
624      valueNumbering[V] = nextValueNumber;
625      return nextValueNumber++;
626  }
627
628  uint32_t& e = expressionNumbering[exp];
629  if (!e) e = nextValueNumber++;
630  valueNumbering[V] = e;
631  return e;
632}
633
634/// lookup - Returns the value number of the specified value. Fails if
635/// the value has not yet been numbered.
636uint32_t ValueTable::lookup(Value *V) const {
637  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
638  assert(VI != valueNumbering.end() && "Value not numbered?");
639  return VI->second;
640}
641
642/// clear - Remove all entries from the ValueTable
643void ValueTable::clear() {
644  valueNumbering.clear();
645  expressionNumbering.clear();
646  nextValueNumber = 1;
647}
648
649/// erase - Remove a value from the value numbering
650void ValueTable::erase(Value *V) {
651  valueNumbering.erase(V);
652}
653
654/// verifyRemoved - Verify that the value is removed from all internal data
655/// structures.
656void ValueTable::verifyRemoved(const Value *V) const {
657  for (DenseMap<Value*, uint32_t>::const_iterator
658         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
659    assert(I->first != V && "Inst still occurs in value numbering map!");
660  }
661}
662
663//===----------------------------------------------------------------------===//
664//                                GVN Pass
665//===----------------------------------------------------------------------===//
666
667namespace {
668  struct ValueNumberScope {
669    ValueNumberScope* parent;
670    DenseMap<uint32_t, Value*> table;
671
672    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
673  };
674}
675
676namespace {
677
678  class GVN : public FunctionPass {
679    bool runOnFunction(Function &F);
680  public:
681    static char ID; // Pass identification, replacement for typeid
682    explicit GVN(bool nopre = false, bool noloads = false)
683      : FunctionPass(&ID), NoPRE(nopre), NoLoads(noloads), MD(0) { }
684
685  private:
686    bool NoPRE;
687    bool NoLoads;
688    MemoryDependenceAnalysis *MD;
689    DominatorTree *DT;
690
691    ValueTable VN;
692    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
693
694    // This transformation requires dominator postdominator info
695    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
696      AU.addRequired<DominatorTree>();
697      if (!NoLoads)
698        AU.addRequired<MemoryDependenceAnalysis>();
699      AU.addRequired<AliasAnalysis>();
700
701      AU.addPreserved<DominatorTree>();
702      AU.addPreserved<AliasAnalysis>();
703    }
704
705    // Helper fuctions
706    // FIXME: eliminate or document these better
707    bool processLoad(LoadInst* L,
708                     SmallVectorImpl<Instruction*> &toErase);
709    bool processInstruction(Instruction *I,
710                            SmallVectorImpl<Instruction*> &toErase);
711    bool processNonLocalLoad(LoadInst* L,
712                             SmallVectorImpl<Instruction*> &toErase);
713    bool processBlock(BasicBlock *BB);
714    void dump(DenseMap<uint32_t, Value*>& d);
715    bool iterateOnFunction(Function &F);
716    Value *CollapsePhi(PHINode* p);
717    bool performPRE(Function& F);
718    Value *lookupNumber(BasicBlock *BB, uint32_t num);
719    void cleanupGlobalSets();
720    void verifyRemoved(const Instruction *I) const;
721  };
722
723  char GVN::ID = 0;
724}
725
726// createGVNPass - The public interface to this file...
727FunctionPass *llvm::createGVNPass(bool NoPRE, bool NoLoads) {
728  return new GVN(NoPRE, NoLoads);
729}
730
731static RegisterPass<GVN> X("gvn",
732                           "Global Value Numbering");
733
734void GVN::dump(DenseMap<uint32_t, Value*>& d) {
735  errs() << "{\n";
736  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
737       E = d.end(); I != E; ++I) {
738      errs() << I->first << "\n";
739      I->second->dump();
740  }
741  errs() << "}\n";
742}
743
744static bool isSafeReplacement(PHINode* p, Instruction *inst) {
745  if (!isa<PHINode>(inst))
746    return true;
747
748  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
749       UI != E; ++UI)
750    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
751      if (use_phi->getParent() == inst->getParent())
752        return false;
753
754  return true;
755}
756
757Value *GVN::CollapsePhi(PHINode *PN) {
758  Value *ConstVal = PN->hasConstantValue(DT);
759  if (!ConstVal) return 0;
760
761  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
762  if (!Inst)
763    return ConstVal;
764
765  if (DT->dominates(Inst, PN))
766    if (isSafeReplacement(PN, Inst))
767      return Inst;
768  return 0;
769}
770
771/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
772/// we're analyzing is fully available in the specified block.  As we go, keep
773/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
774/// map is actually a tri-state map with the following values:
775///   0) we know the block *is not* fully available.
776///   1) we know the block *is* fully available.
777///   2) we do not know whether the block is fully available or not, but we are
778///      currently speculating that it will be.
779///   3) we are speculating for this block and have used that to speculate for
780///      other blocks.
781static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
782                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
783  // Optimistically assume that the block is fully available and check to see
784  // if we already know about this block in one lookup.
785  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
786    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
787
788  // If the entry already existed for this block, return the precomputed value.
789  if (!IV.second) {
790    // If this is a speculative "available" value, mark it as being used for
791    // speculation of other blocks.
792    if (IV.first->second == 2)
793      IV.first->second = 3;
794    return IV.first->second != 0;
795  }
796
797  // Otherwise, see if it is fully available in all predecessors.
798  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
799
800  // If this block has no predecessors, it isn't live-in here.
801  if (PI == PE)
802    goto SpeculationFailure;
803
804  for (; PI != PE; ++PI)
805    // If the value isn't fully available in one of our predecessors, then it
806    // isn't fully available in this block either.  Undo our previous
807    // optimistic assumption and bail out.
808    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
809      goto SpeculationFailure;
810
811  return true;
812
813// SpeculationFailure - If we get here, we found out that this is not, after
814// all, a fully-available block.  We have a problem if we speculated on this and
815// used the speculation to mark other blocks as available.
816SpeculationFailure:
817  char &BBVal = FullyAvailableBlocks[BB];
818
819  // If we didn't speculate on this, just return with it set to false.
820  if (BBVal == 2) {
821    BBVal = 0;
822    return false;
823  }
824
825  // If we did speculate on this value, we could have blocks set to 1 that are
826  // incorrect.  Walk the (transitive) successors of this block and mark them as
827  // 0 if set to one.
828  SmallVector<BasicBlock*, 32> BBWorklist;
829  BBWorklist.push_back(BB);
830
831  while (!BBWorklist.empty()) {
832    BasicBlock *Entry = BBWorklist.pop_back_val();
833    // Note that this sets blocks to 0 (unavailable) if they happen to not
834    // already be in FullyAvailableBlocks.  This is safe.
835    char &EntryVal = FullyAvailableBlocks[Entry];
836    if (EntryVal == 0) continue;  // Already unavailable.
837
838    // Mark as unavailable.
839    EntryVal = 0;
840
841    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
842      BBWorklist.push_back(*I);
843  }
844
845  return false;
846}
847
848
849/// CanCoerceMustAliasedValueToLoad - Return true if
850/// CoerceAvailableValueToLoadType will succeed.
851static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
852                                            const Type *LoadTy,
853                                            const TargetData &TD) {
854  // If the loaded or stored value is an first class array or struct, don't try
855  // to transform them.  We need to be able to bitcast to integer.
856  if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy) ||
857      isa<StructType>(StoredVal->getType()) ||
858      isa<ArrayType>(StoredVal->getType()))
859    return false;
860
861  // The store has to be at least as big as the load.
862  if (TD.getTypeSizeInBits(StoredVal->getType()) <
863        TD.getTypeSizeInBits(LoadTy))
864    return false;
865
866  return true;
867}
868
869
870/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
871/// then a load from a must-aliased pointer of a different type, try to coerce
872/// the stored value.  LoadedTy is the type of the load we want to replace and
873/// InsertPt is the place to insert new instructions.
874///
875/// If we can't do it, return null.
876static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
877                                             const Type *LoadedTy,
878                                             Instruction *InsertPt,
879                                             const TargetData &TD) {
880  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
881    return 0;
882
883  const Type *StoredValTy = StoredVal->getType();
884
885  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
886  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
887
888  // If the store and reload are the same size, we can always reuse it.
889  if (StoreSize == LoadSize) {
890    if (isa<PointerType>(StoredValTy) && isa<PointerType>(LoadedTy)) {
891      // Pointer to Pointer -> use bitcast.
892      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
893    }
894
895    // Convert source pointers to integers, which can be bitcast.
896    if (isa<PointerType>(StoredValTy)) {
897      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
898      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
899    }
900
901    const Type *TypeToCastTo = LoadedTy;
902    if (isa<PointerType>(TypeToCastTo))
903      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
904
905    if (StoredValTy != TypeToCastTo)
906      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
907
908    // Cast to pointer if the load needs a pointer type.
909    if (isa<PointerType>(LoadedTy))
910      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
911
912    return StoredVal;
913  }
914
915  // If the loaded value is smaller than the available value, then we can
916  // extract out a piece from it.  If the available value is too small, then we
917  // can't do anything.
918  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
919
920  // Convert source pointers to integers, which can be manipulated.
921  if (isa<PointerType>(StoredValTy)) {
922    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
923    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
924  }
925
926  // Convert vectors and fp to integer, which can be manipulated.
927  if (!isa<IntegerType>(StoredValTy)) {
928    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
929    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
930  }
931
932  // If this is a big-endian system, we need to shift the value down to the low
933  // bits so that a truncate will work.
934  if (TD.isBigEndian()) {
935    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
936    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
937  }
938
939  // Truncate the integer to the right size now.
940  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
941  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
942
943  if (LoadedTy == NewIntTy)
944    return StoredVal;
945
946  // If the result is a pointer, inttoptr.
947  if (isa<PointerType>(LoadedTy))
948    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
949
950  // Otherwise, bitcast.
951  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
952}
953
954/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
955/// be expressed as a base pointer plus a constant offset.  Return the base and
956/// offset to the caller.
957static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
958                                        const TargetData &TD) {
959  Operator *PtrOp = dyn_cast<Operator>(Ptr);
960  if (PtrOp == 0) return Ptr;
961
962  // Just look through bitcasts.
963  if (PtrOp->getOpcode() == Instruction::BitCast)
964    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
965
966  // If this is a GEP with constant indices, we can look through it.
967  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
968  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
969
970  gep_type_iterator GTI = gep_type_begin(GEP);
971  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
972       ++I, ++GTI) {
973    ConstantInt *OpC = cast<ConstantInt>(*I);
974    if (OpC->isZero()) continue;
975
976    // Handle a struct and array indices which add their offset to the pointer.
977    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
978      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
979    } else {
980      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
981      Offset += OpC->getSExtValue()*Size;
982    }
983  }
984
985  // Re-sign extend from the pointer size if needed to get overflow edge cases
986  // right.
987  unsigned PtrSize = TD.getPointerSizeInBits();
988  if (PtrSize < 64)
989    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
990
991  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
992}
993
994
995/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
996/// memdep query of a load that ends up being a clobbering memory write (store,
997/// memset, memcpy, memmove).  This means that the write *may* provide bits used
998/// by the load but we can't be sure because the pointers don't mustalias.
999///
1000/// Check this case to see if there is anything more we can do before we give
1001/// up.  This returns -1 if we have to give up, or a byte number in the stored
1002/// value of the piece that feeds the load.
1003static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
1004                                          Value *WritePtr,
1005                                          uint64_t WriteSizeInBits,
1006                                          const TargetData &TD) {
1007  // If the loaded or stored value is an first class array or struct, don't try
1008  // to transform them.  We need to be able to bitcast to integer.
1009  if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy))
1010    return -1;
1011
1012  int64_t StoreOffset = 0, LoadOffset = 0;
1013  Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD);
1014  Value *LoadBase =
1015    GetBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
1016  if (StoreBase != LoadBase)
1017    return -1;
1018
1019  // If the load and store are to the exact same address, they should have been
1020  // a must alias.  AA must have gotten confused.
1021  // FIXME: Study to see if/when this happens.
1022  if (LoadOffset == StoreOffset) {
1023#if 0
1024    errs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1025    << "Base       = " << *StoreBase << "\n"
1026    << "Store Ptr  = " << *WritePtr << "\n"
1027    << "Store Offs = " << StoreOffset << "\n"
1028    << "Load Ptr   = " << *LoadPtr << "\n";
1029    abort();
1030#endif
1031    return -1;
1032  }
1033
1034  // If the load and store don't overlap at all, the store doesn't provide
1035  // anything to the load.  In this case, they really don't alias at all, AA
1036  // must have gotten confused.
1037  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1038  // remove this check, as it is duplicated with what we have below.
1039  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
1040
1041  if ((WriteSizeInBits & 7) | (LoadSize & 7))
1042    return -1;
1043  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
1044  LoadSize >>= 3;
1045
1046
1047  bool isAAFailure = false;
1048  if (StoreOffset < LoadOffset) {
1049    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1050  } else {
1051    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1052  }
1053  if (isAAFailure) {
1054#if 0
1055    errs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1056    << "Base       = " << *StoreBase << "\n"
1057    << "Store Ptr  = " << *WritePtr << "\n"
1058    << "Store Offs = " << StoreOffset << "\n"
1059    << "Load Ptr   = " << *LoadPtr << "\n";
1060    abort();
1061#endif
1062    return -1;
1063  }
1064
1065  // If the Load isn't completely contained within the stored bits, we don't
1066  // have all the bits to feed it.  We could do something crazy in the future
1067  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1068  // valuable.
1069  if (StoreOffset > LoadOffset ||
1070      StoreOffset+StoreSize < LoadOffset+LoadSize)
1071    return -1;
1072
1073  // Okay, we can do this transformation.  Return the number of bytes into the
1074  // store that the load is.
1075  return LoadOffset-StoreOffset;
1076}
1077
1078/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1079/// memdep query of a load that ends up being a clobbering store.
1080static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
1081                                          StoreInst *DepSI,
1082                                          const TargetData &TD) {
1083  // Cannot handle reading from store of first-class aggregate yet.
1084  if (isa<StructType>(DepSI->getOperand(0)->getType()) ||
1085      isa<ArrayType>(DepSI->getOperand(0)->getType()))
1086    return -1;
1087
1088  Value *StorePtr = DepSI->getPointerOperand();
1089  uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
1090  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1091                                        StorePtr, StoreSize, TD);
1092}
1093
1094static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
1095                                            MemIntrinsic *MI,
1096                                            const TargetData &TD) {
1097  // If the mem operation is a non-constant size, we can't handle it.
1098  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1099  if (SizeCst == 0) return -1;
1100  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1101
1102  // If this is memset, we just need to see if the offset is valid in the size
1103  // of the memset..
1104  if (MI->getIntrinsicID() == Intrinsic::memset)
1105    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1106                                          MemSizeInBits, TD);
1107
1108  // If we have a memcpy/memmove, the only case we can handle is if this is a
1109  // copy from constant memory.  In that case, we can read directly from the
1110  // constant memory.
1111  MemTransferInst *MTI = cast<MemTransferInst>(MI);
1112
1113  Constant *Src = dyn_cast<Constant>(MTI->getSource());
1114  if (Src == 0) return -1;
1115
1116  GlobalVariable *GV = dyn_cast<GlobalVariable>(Src->getUnderlyingObject());
1117  if (GV == 0 || !GV->isConstant()) return -1;
1118
1119  // See if the access is within the bounds of the transfer.
1120  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1121                                              MI->getDest(), MemSizeInBits, TD);
1122  if (Offset == -1)
1123    return Offset;
1124
1125  // Otherwise, see if we can constant fold a load from the constant with the
1126  // offset applied as appropriate.
1127  Src = ConstantExpr::getBitCast(Src,
1128                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1129  Constant *OffsetCst =
1130    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1131  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1132  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1133  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1134    return Offset;
1135  return -1;
1136}
1137
1138
1139/// GetStoreValueForLoad - This function is called when we have a
1140/// memdep query of a load that ends up being a clobbering store.  This means
1141/// that the store *may* provide bits used by the load but we can't be sure
1142/// because the pointers don't mustalias.  Check this case to see if there is
1143/// anything more we can do before we give up.
1144static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1145                                   const Type *LoadTy,
1146                                   Instruction *InsertPt, const TargetData &TD){
1147  LLVMContext &Ctx = SrcVal->getType()->getContext();
1148
1149  uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8;
1150  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1151
1152  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1153
1154  // Compute which bits of the stored value are being used by the load.  Convert
1155  // to an integer type to start with.
1156  if (isa<PointerType>(SrcVal->getType()))
1157    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
1158  if (!isa<IntegerType>(SrcVal->getType()))
1159    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1160                                   "tmp");
1161
1162  // Shift the bits to the least significant depending on endianness.
1163  unsigned ShiftAmt;
1164  if (TD.isLittleEndian())
1165    ShiftAmt = Offset*8;
1166  else
1167    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1168
1169  if (ShiftAmt)
1170    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
1171
1172  if (LoadSize != StoreSize)
1173    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1174                                 "tmp");
1175
1176  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1177}
1178
1179/// GetMemInstValueForLoad - This function is called when we have a
1180/// memdep query of a load that ends up being a clobbering mem intrinsic.
1181static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1182                                     const Type *LoadTy, Instruction *InsertPt,
1183                                     const TargetData &TD){
1184  LLVMContext &Ctx = LoadTy->getContext();
1185  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1186
1187  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1188
1189  // We know that this method is only called when the mem transfer fully
1190  // provides the bits for the load.
1191  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1192    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1193    // independently of what the offset is.
1194    Value *Val = MSI->getValue();
1195    if (LoadSize != 1)
1196      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1197
1198    Value *OneElt = Val;
1199
1200    // Splat the value out to the right number of bits.
1201    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1202      // If we can double the number of bytes set, do it.
1203      if (NumBytesSet*2 <= LoadSize) {
1204        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1205        Val = Builder.CreateOr(Val, ShVal);
1206        NumBytesSet <<= 1;
1207        continue;
1208      }
1209
1210      // Otherwise insert one byte at a time.
1211      Value *ShVal = Builder.CreateShl(Val, 1*8);
1212      Val = Builder.CreateOr(OneElt, ShVal);
1213      ++NumBytesSet;
1214    }
1215
1216    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1217  }
1218
1219  // Otherwise, this is a memcpy/memmove from a constant global.
1220  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1221  Constant *Src = cast<Constant>(MTI->getSource());
1222
1223  // Otherwise, see if we can constant fold a load from the constant with the
1224  // offset applied as appropriate.
1225  Src = ConstantExpr::getBitCast(Src,
1226                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1227  Constant *OffsetCst =
1228  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1229  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1230  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1231  return ConstantFoldLoadFromConstPtr(Src, &TD);
1232}
1233
1234
1235
1236struct AvailableValueInBlock {
1237  /// BB - The basic block in question.
1238  BasicBlock *BB;
1239  enum ValType {
1240    SimpleVal,  // A simple offsetted value that is accessed.
1241    MemIntrin   // A memory intrinsic which is loaded from.
1242  };
1243
1244  /// V - The value that is live out of the block.
1245  PointerIntPair<Value *, 1, ValType> Val;
1246
1247  /// Offset - The byte offset in Val that is interesting for the load query.
1248  unsigned Offset;
1249
1250  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1251                                   unsigned Offset = 0) {
1252    AvailableValueInBlock Res;
1253    Res.BB = BB;
1254    Res.Val.setPointer(V);
1255    Res.Val.setInt(SimpleVal);
1256    Res.Offset = Offset;
1257    return Res;
1258  }
1259
1260  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1261                                     unsigned Offset = 0) {
1262    AvailableValueInBlock Res;
1263    Res.BB = BB;
1264    Res.Val.setPointer(MI);
1265    Res.Val.setInt(MemIntrin);
1266    Res.Offset = Offset;
1267    return Res;
1268  }
1269
1270  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1271  Value *getSimpleValue() const {
1272    assert(isSimpleValue() && "Wrong accessor");
1273    return Val.getPointer();
1274  }
1275
1276  MemIntrinsic *getMemIntrinValue() const {
1277    assert(!isSimpleValue() && "Wrong accessor");
1278    return cast<MemIntrinsic>(Val.getPointer());
1279  }
1280
1281  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1282  /// defined here to the specified type.  This handles various coercion cases.
1283  Value *MaterializeAdjustedValue(const Type *LoadTy,
1284                                  const TargetData *TD) const {
1285    Value *Res;
1286    if (isSimpleValue()) {
1287      Res = getSimpleValue();
1288      if (Res->getType() != LoadTy) {
1289        assert(TD && "Need target data to handle type mismatch case");
1290        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1291                                   *TD);
1292
1293        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1294                     << *getSimpleValue() << '\n'
1295                     << *Res << '\n' << "\n\n\n");
1296      }
1297    } else {
1298      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1299                                   LoadTy, BB->getTerminator(), *TD);
1300      DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1301                   << "  " << *getMemIntrinValue() << '\n'
1302                   << *Res << '\n' << "\n\n\n");
1303    }
1304    return Res;
1305  }
1306};
1307
1308/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1309/// construct SSA form, allowing us to eliminate LI.  This returns the value
1310/// that should be used at LI's definition site.
1311static Value *ConstructSSAForLoadSet(LoadInst *LI,
1312                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1313                                     const TargetData *TD,
1314                                     const DominatorTree &DT,
1315                                     AliasAnalysis *AA) {
1316  // Check for the fully redundant, dominating load case.  In this case, we can
1317  // just use the dominating value directly.
1318  if (ValuesPerBlock.size() == 1 &&
1319      DT.properlyDominates(ValuesPerBlock[0].BB, LI->getParent()))
1320    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), TD);
1321
1322  // Otherwise, we have to construct SSA form.
1323  SmallVector<PHINode*, 8> NewPHIs;
1324  SSAUpdater SSAUpdate(&NewPHIs);
1325  SSAUpdate.Initialize(LI);
1326
1327  const Type *LoadTy = LI->getType();
1328
1329  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1330    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1331    BasicBlock *BB = AV.BB;
1332
1333    if (SSAUpdate.HasValueForBlock(BB))
1334      continue;
1335
1336    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, TD));
1337  }
1338
1339  // Perform PHI construction.
1340  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1341
1342  // If new PHI nodes were created, notify alias analysis.
1343  if (isa<PointerType>(V->getType()))
1344    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1345      AA->copyValue(LI, NewPHIs[i]);
1346
1347  return V;
1348}
1349
1350static bool isLifetimeStart(Instruction *Inst) {
1351  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1352    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1353  return false;
1354}
1355
1356/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1357/// non-local by performing PHI construction.
1358bool GVN::processNonLocalLoad(LoadInst *LI,
1359                              SmallVectorImpl<Instruction*> &toErase) {
1360  // Find the non-local dependencies of the load.
1361  SmallVector<NonLocalDepResult, 64> Deps;
1362  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1363                                   Deps);
1364  //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
1365  //             << Deps.size() << *LI << '\n');
1366
1367  // If we had to process more than one hundred blocks to find the
1368  // dependencies, this load isn't worth worrying about.  Optimizing
1369  // it will be too expensive.
1370  if (Deps.size() > 100)
1371    return false;
1372
1373  // If we had a phi translation failure, we'll have a single entry which is a
1374  // clobber in the current block.  Reject this early.
1375  if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
1376    DEBUG(
1377      errs() << "GVN: non-local load ";
1378      WriteAsOperand(errs(), LI);
1379      errs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
1380    );
1381    return false;
1382  }
1383
1384  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1385  // where we have a value available in repl, also keep track of whether we see
1386  // dependencies that produce an unknown value for the load (such as a call
1387  // that could potentially clobber the load).
1388  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1389  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1390
1391  const TargetData *TD = 0;
1392
1393  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1394    BasicBlock *DepBB = Deps[i].getBB();
1395    MemDepResult DepInfo = Deps[i].getResult();
1396
1397    if (DepInfo.isClobber()) {
1398      // The address being loaded in this non-local block may not be the same as
1399      // the pointer operand of the load if PHI translation occurs.  Make sure
1400      // to consider the right address.
1401      Value *Address = Deps[i].getAddress();
1402
1403      // If the dependence is to a store that writes to a superset of the bits
1404      // read by the load, we can extract the bits we need for the load from the
1405      // stored value.
1406      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1407        if (TD == 0)
1408          TD = getAnalysisIfAvailable<TargetData>();
1409        if (TD && Address) {
1410          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1411                                                      DepSI, *TD);
1412          if (Offset != -1) {
1413            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1414                                                           DepSI->getOperand(0),
1415                                                                Offset));
1416            continue;
1417          }
1418        }
1419      }
1420
1421      // If the clobbering value is a memset/memcpy/memmove, see if we can
1422      // forward a value on from it.
1423      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1424        if (TD == 0)
1425          TD = getAnalysisIfAvailable<TargetData>();
1426        if (TD && Address) {
1427          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1428                                                        DepMI, *TD);
1429          if (Offset != -1) {
1430            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1431                                                                  Offset));
1432            continue;
1433          }
1434        }
1435      }
1436
1437      UnavailableBlocks.push_back(DepBB);
1438      continue;
1439    }
1440
1441    Instruction *DepInst = DepInfo.getInst();
1442
1443    // Loading the allocation -> undef.
1444    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1445        // Loading immediately after lifetime begin -> undef.
1446        isLifetimeStart(DepInst)) {
1447      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1448                                             UndefValue::get(LI->getType())));
1449      continue;
1450    }
1451
1452    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1453      // Reject loads and stores that are to the same address but are of
1454      // different types if we have to.
1455      if (S->getOperand(0)->getType() != LI->getType()) {
1456        if (TD == 0)
1457          TD = getAnalysisIfAvailable<TargetData>();
1458
1459        // If the stored value is larger or equal to the loaded value, we can
1460        // reuse it.
1461        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1462                                                        LI->getType(), *TD)) {
1463          UnavailableBlocks.push_back(DepBB);
1464          continue;
1465        }
1466      }
1467
1468      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1469                                                          S->getOperand(0)));
1470      continue;
1471    }
1472
1473    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1474      // If the types mismatch and we can't handle it, reject reuse of the load.
1475      if (LD->getType() != LI->getType()) {
1476        if (TD == 0)
1477          TD = getAnalysisIfAvailable<TargetData>();
1478
1479        // If the stored value is larger or equal to the loaded value, we can
1480        // reuse it.
1481        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1482          UnavailableBlocks.push_back(DepBB);
1483          continue;
1484        }
1485      }
1486      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1487      continue;
1488    }
1489
1490    UnavailableBlocks.push_back(DepBB);
1491    continue;
1492  }
1493
1494  // If we have no predecessors that produce a known value for this load, exit
1495  // early.
1496  if (ValuesPerBlock.empty()) return false;
1497
1498  // If all of the instructions we depend on produce a known value for this
1499  // load, then it is fully redundant and we can use PHI insertion to compute
1500  // its value.  Insert PHIs and remove the fully redundant value now.
1501  if (UnavailableBlocks.empty()) {
1502    DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1503
1504    // Perform PHI construction.
1505    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1506                                      VN.getAliasAnalysis());
1507    LI->replaceAllUsesWith(V);
1508
1509    if (isa<PHINode>(V))
1510      V->takeName(LI);
1511    if (isa<PointerType>(V->getType()))
1512      MD->invalidateCachedPointerInfo(V);
1513    toErase.push_back(LI);
1514    NumGVNLoad++;
1515    return true;
1516  }
1517
1518  if (!EnablePRE || !EnableLoadPRE)
1519    return false;
1520
1521  // Okay, we have *some* definitions of the value.  This means that the value
1522  // is available in some of our (transitive) predecessors.  Lets think about
1523  // doing PRE of this load.  This will involve inserting a new load into the
1524  // predecessor when it's not available.  We could do this in general, but
1525  // prefer to not increase code size.  As such, we only do this when we know
1526  // that we only have to insert *one* load (which means we're basically moving
1527  // the load, not inserting a new one).
1528
1529  SmallPtrSet<BasicBlock *, 4> Blockers;
1530  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1531    Blockers.insert(UnavailableBlocks[i]);
1532
1533  // Lets find first basic block with more than one predecessor.  Walk backwards
1534  // through predecessors if needed.
1535  BasicBlock *LoadBB = LI->getParent();
1536  BasicBlock *TmpBB = LoadBB;
1537
1538  bool isSinglePred = false;
1539  bool allSingleSucc = true;
1540  while (TmpBB->getSinglePredecessor()) {
1541    isSinglePred = true;
1542    TmpBB = TmpBB->getSinglePredecessor();
1543    if (!TmpBB) // If haven't found any, bail now.
1544      return false;
1545    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1546      return false;
1547    if (Blockers.count(TmpBB))
1548      return false;
1549    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1550      allSingleSucc = false;
1551  }
1552
1553  assert(TmpBB);
1554  LoadBB = TmpBB;
1555
1556  // If we have a repl set with LI itself in it, this means we have a loop where
1557  // at least one of the values is LI.  Since this means that we won't be able
1558  // to eliminate LI even if we insert uses in the other predecessors, we will
1559  // end up increasing code size.  Reject this by scanning for LI.
1560  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1561    if (ValuesPerBlock[i].isSimpleValue() &&
1562        ValuesPerBlock[i].getSimpleValue() == LI)
1563      return false;
1564
1565  // FIXME: It is extremely unclear what this loop is doing, other than
1566  // artificially restricting loadpre.
1567  if (isSinglePred) {
1568    bool isHot = false;
1569    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1570      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1571      if (AV.isSimpleValue())
1572        // "Hot" Instruction is in some loop (because it dominates its dep.
1573        // instruction).
1574        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1575          if (DT->dominates(LI, I)) {
1576            isHot = true;
1577            break;
1578          }
1579    }
1580
1581    // We are interested only in "hot" instructions. We don't want to do any
1582    // mis-optimizations here.
1583    if (!isHot)
1584      return false;
1585  }
1586
1587  // Okay, we have some hope :).  Check to see if the loaded value is fully
1588  // available in all but one predecessor.
1589  // FIXME: If we could restructure the CFG, we could make a common pred with
1590  // all the preds that don't have an available LI and insert a new load into
1591  // that one block.
1592  BasicBlock *UnavailablePred = 0;
1593
1594  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1595  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1596    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1597  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1598    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1599
1600  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1601       PI != E; ++PI) {
1602    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1603      continue;
1604
1605    // If this load is not available in multiple predecessors, reject it.
1606    if (UnavailablePred && UnavailablePred != *PI)
1607      return false;
1608    UnavailablePred = *PI;
1609  }
1610
1611  assert(UnavailablePred != 0 &&
1612         "Fully available value should be eliminated above!");
1613
1614  // We don't currently handle critical edges :(
1615  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1616    DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1617                 << UnavailablePred->getName() << "': " << *LI << '\n');
1618    return false;
1619  }
1620
1621  // Do PHI translation to get its value in the predecessor if necessary.  The
1622  // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1623  //
1624  SmallVector<Instruction*, 8> NewInsts;
1625
1626  // If all preds have a single successor, then we know it is safe to insert the
1627  // load on the pred (?!?), so we can insert code to materialize the pointer if
1628  // it is not available.
1629  PHITransAddr Address(LI->getOperand(0), TD);
1630  Value *LoadPtr = 0;
1631  if (allSingleSucc) {
1632    LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1633                                                *DT, NewInsts);
1634  } else {
1635    Address.PHITranslateValue(LoadBB, UnavailablePred);
1636    LoadPtr = Address.getAddr();
1637
1638    // Make sure the value is live in the predecessor.
1639    if (Instruction *Inst = dyn_cast_or_null<Instruction>(LoadPtr))
1640      if (!DT->dominates(Inst->getParent(), UnavailablePred))
1641        LoadPtr = 0;
1642  }
1643
1644  // If we couldn't find or insert a computation of this phi translated value,
1645  // we fail PRE.
1646  if (LoadPtr == 0) {
1647    assert(NewInsts.empty() && "Shouldn't insert insts on failure");
1648    DEBUG(errs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1649                 << *LI->getOperand(0) << "\n");
1650    return false;
1651  }
1652
1653  // Assign value numbers to these new instructions.
1654  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1655    // FIXME: We really _ought_ to insert these value numbers into their
1656    // parent's availability map.  However, in doing so, we risk getting into
1657    // ordering issues.  If a block hasn't been processed yet, we would be
1658    // marking a value as AVAIL-IN, which isn't what we intend.
1659    VN.lookup_or_add(NewInsts[i]);
1660  }
1661
1662  // Make sure it is valid to move this load here.  We have to watch out for:
1663  //  @1 = getelementptr (i8* p, ...
1664  //  test p and branch if == 0
1665  //  load @1
1666  // It is valid to have the getelementptr before the test, even if p can be 0,
1667  // as getelementptr only does address arithmetic.
1668  // If we are not pushing the value through any multiple-successor blocks
1669  // we do not have this case.  Otherwise, check that the load is safe to
1670  // put anywhere; this can be improved, but should be conservatively safe.
1671  if (!allSingleSucc &&
1672      // FIXME: REEVALUTE THIS.
1673      !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator())) {
1674    assert(NewInsts.empty() && "Should not have inserted instructions");
1675    return false;
1676  }
1677
1678  // Okay, we can eliminate this load by inserting a reload in the predecessor
1679  // and using PHI construction to get the value in the other predecessors, do
1680  // it.
1681  DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1682  DEBUG(if (!NewInsts.empty())
1683          errs() << "INSERTED " << NewInsts.size() << " INSTS: "
1684                 << *NewInsts.back() << '\n');
1685
1686  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1687                                LI->getAlignment(),
1688                                UnavailablePred->getTerminator());
1689
1690  // Add the newly created load.
1691  ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,NewLoad));
1692
1693  // Perform PHI construction.
1694  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1695                                    VN.getAliasAnalysis());
1696  LI->replaceAllUsesWith(V);
1697  if (isa<PHINode>(V))
1698    V->takeName(LI);
1699  if (isa<PointerType>(V->getType()))
1700    MD->invalidateCachedPointerInfo(V);
1701  toErase.push_back(LI);
1702  NumPRELoad++;
1703  return true;
1704}
1705
1706/// processLoad - Attempt to eliminate a load, first by eliminating it
1707/// locally, and then attempting non-local elimination if that fails.
1708bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1709  if (!MD)
1710    return false;
1711
1712  if (L->isVolatile())
1713    return false;
1714
1715  // ... to a pointer that has been loaded from before...
1716  MemDepResult Dep = MD->getDependency(L);
1717
1718  // If the value isn't available, don't do anything!
1719  if (Dep.isClobber()) {
1720    // Check to see if we have something like this:
1721    //   store i32 123, i32* %P
1722    //   %A = bitcast i32* %P to i8*
1723    //   %B = gep i8* %A, i32 1
1724    //   %C = load i8* %B
1725    //
1726    // We could do that by recognizing if the clobber instructions are obviously
1727    // a common base + constant offset, and if the previous store (or memset)
1728    // completely covers this load.  This sort of thing can happen in bitfield
1729    // access code.
1730    Value *AvailVal = 0;
1731    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1732      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1733        int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1734                                                    L->getPointerOperand(),
1735                                                    DepSI, *TD);
1736        if (Offset != -1)
1737          AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1738                                          L->getType(), L, *TD);
1739      }
1740
1741    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1742    // a value on from it.
1743    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1744      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1745        int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1746                                                      L->getPointerOperand(),
1747                                                      DepMI, *TD);
1748        if (Offset != -1)
1749          AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
1750      }
1751    }
1752
1753    if (AvailVal) {
1754      DEBUG(errs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1755            << *AvailVal << '\n' << *L << "\n\n\n");
1756
1757      // Replace the load!
1758      L->replaceAllUsesWith(AvailVal);
1759      if (isa<PointerType>(AvailVal->getType()))
1760        MD->invalidateCachedPointerInfo(AvailVal);
1761      toErase.push_back(L);
1762      NumGVNLoad++;
1763      return true;
1764    }
1765
1766    DEBUG(
1767      // fast print dep, using operator<< on instruction would be too slow
1768      errs() << "GVN: load ";
1769      WriteAsOperand(errs(), L);
1770      Instruction *I = Dep.getInst();
1771      errs() << " is clobbered by " << *I << '\n';
1772    );
1773    return false;
1774  }
1775
1776  // If it is defined in another block, try harder.
1777  if (Dep.isNonLocal())
1778    return processNonLocalLoad(L, toErase);
1779
1780  Instruction *DepInst = Dep.getInst();
1781  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1782    Value *StoredVal = DepSI->getOperand(0);
1783
1784    // The store and load are to a must-aliased pointer, but they may not
1785    // actually have the same type.  See if we know how to reuse the stored
1786    // value (depending on its type).
1787    const TargetData *TD = 0;
1788    if (StoredVal->getType() != L->getType()) {
1789      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1790        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1791                                                   L, *TD);
1792        if (StoredVal == 0)
1793          return false;
1794
1795        DEBUG(errs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1796                     << '\n' << *L << "\n\n\n");
1797      }
1798      else
1799        return false;
1800    }
1801
1802    // Remove it!
1803    L->replaceAllUsesWith(StoredVal);
1804    if (isa<PointerType>(StoredVal->getType()))
1805      MD->invalidateCachedPointerInfo(StoredVal);
1806    toErase.push_back(L);
1807    NumGVNLoad++;
1808    return true;
1809  }
1810
1811  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1812    Value *AvailableVal = DepLI;
1813
1814    // The loads are of a must-aliased pointer, but they may not actually have
1815    // the same type.  See if we know how to reuse the previously loaded value
1816    // (depending on its type).
1817    const TargetData *TD = 0;
1818    if (DepLI->getType() != L->getType()) {
1819      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1820        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1821        if (AvailableVal == 0)
1822          return false;
1823
1824        DEBUG(errs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1825                     << "\n" << *L << "\n\n\n");
1826      }
1827      else
1828        return false;
1829    }
1830
1831    // Remove it!
1832    L->replaceAllUsesWith(AvailableVal);
1833    if (isa<PointerType>(DepLI->getType()))
1834      MD->invalidateCachedPointerInfo(DepLI);
1835    toErase.push_back(L);
1836    NumGVNLoad++;
1837    return true;
1838  }
1839
1840  // If this load really doesn't depend on anything, then we must be loading an
1841  // undef value.  This can happen when loading for a fresh allocation with no
1842  // intervening stores, for example.
1843  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1844    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1845    toErase.push_back(L);
1846    NumGVNLoad++;
1847    return true;
1848  }
1849
1850  // If this load occurs either right after a lifetime begin,
1851  // then the loaded value is undefined.
1852  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1853    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1854      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1855      toErase.push_back(L);
1856      NumGVNLoad++;
1857      return true;
1858    }
1859  }
1860
1861  return false;
1862}
1863
1864Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1865  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1866  if (I == localAvail.end())
1867    return 0;
1868
1869  ValueNumberScope *Locals = I->second;
1870  while (Locals) {
1871    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1872    if (I != Locals->table.end())
1873      return I->second;
1874    Locals = Locals->parent;
1875  }
1876
1877  return 0;
1878}
1879
1880
1881/// processInstruction - When calculating availability, handle an instruction
1882/// by inserting it into the appropriate sets
1883bool GVN::processInstruction(Instruction *I,
1884                             SmallVectorImpl<Instruction*> &toErase) {
1885  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1886    bool Changed = processLoad(LI, toErase);
1887
1888    if (!Changed) {
1889      unsigned Num = VN.lookup_or_add(LI);
1890      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1891    }
1892
1893    return Changed;
1894  }
1895
1896  uint32_t NextNum = VN.getNextUnusedValueNumber();
1897  unsigned Num = VN.lookup_or_add(I);
1898
1899  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1900    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1901
1902    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1903      return false;
1904
1905    Value *BranchCond = BI->getCondition();
1906    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1907
1908    BasicBlock *TrueSucc = BI->getSuccessor(0);
1909    BasicBlock *FalseSucc = BI->getSuccessor(1);
1910
1911    if (TrueSucc->getSinglePredecessor())
1912      localAvail[TrueSucc]->table[CondVN] =
1913        ConstantInt::getTrue(TrueSucc->getContext());
1914    if (FalseSucc->getSinglePredecessor())
1915      localAvail[FalseSucc]->table[CondVN] =
1916        ConstantInt::getFalse(TrueSucc->getContext());
1917
1918    return false;
1919
1920  // Allocations are always uniquely numbered, so we can save time and memory
1921  // by fast failing them.
1922  } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
1923    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1924    return false;
1925  }
1926
1927  // Collapse PHI nodes
1928  if (PHINode* p = dyn_cast<PHINode>(I)) {
1929    Value *constVal = CollapsePhi(p);
1930
1931    if (constVal) {
1932      p->replaceAllUsesWith(constVal);
1933      if (MD && isa<PointerType>(constVal->getType()))
1934        MD->invalidateCachedPointerInfo(constVal);
1935      VN.erase(p);
1936
1937      toErase.push_back(p);
1938    } else {
1939      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1940    }
1941
1942  // If the number we were assigned was a brand new VN, then we don't
1943  // need to do a lookup to see if the number already exists
1944  // somewhere in the domtree: it can't!
1945  } else if (Num == NextNum) {
1946    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1947
1948  // Perform fast-path value-number based elimination of values inherited from
1949  // dominators.
1950  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1951    // Remove it!
1952    VN.erase(I);
1953    I->replaceAllUsesWith(repl);
1954    if (MD && isa<PointerType>(repl->getType()))
1955      MD->invalidateCachedPointerInfo(repl);
1956    toErase.push_back(I);
1957    return true;
1958
1959  } else {
1960    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1961  }
1962
1963  return false;
1964}
1965
1966/// runOnFunction - This is the main transformation entry point for a function.
1967bool GVN::runOnFunction(Function& F) {
1968  if (!NoLoads)
1969    MD = &getAnalysis<MemoryDependenceAnalysis>();
1970  DT = &getAnalysis<DominatorTree>();
1971  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1972  VN.setMemDep(MD);
1973  VN.setDomTree(DT);
1974
1975  bool Changed = false;
1976  bool ShouldContinue = true;
1977
1978  // Merge unconditional branches, allowing PRE to catch more
1979  // optimization opportunities.
1980  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1981    BasicBlock *BB = FI;
1982    ++FI;
1983    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1984    if (removedBlock) NumGVNBlocks++;
1985
1986    Changed |= removedBlock;
1987  }
1988
1989  unsigned Iteration = 0;
1990
1991  while (ShouldContinue) {
1992    DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
1993    ShouldContinue = iterateOnFunction(F);
1994    Changed |= ShouldContinue;
1995    ++Iteration;
1996  }
1997
1998  if (EnablePRE) {
1999    bool PREChanged = true;
2000    while (PREChanged) {
2001      PREChanged = performPRE(F);
2002      Changed |= PREChanged;
2003    }
2004  }
2005  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2006  // computations into blocks where they become fully redundant.  Note that
2007  // we can't do this until PRE's critical edge splitting updates memdep.
2008  // Actually, when this happens, we should just fully integrate PRE into GVN.
2009
2010  cleanupGlobalSets();
2011
2012  return Changed;
2013}
2014
2015
2016bool GVN::processBlock(BasicBlock *BB) {
2017  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
2018  // incrementing BI before processing an instruction).
2019  SmallVector<Instruction*, 8> toErase;
2020  bool ChangedFunction = false;
2021
2022  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2023       BI != BE;) {
2024    ChangedFunction |= processInstruction(BI, toErase);
2025    if (toErase.empty()) {
2026      ++BI;
2027      continue;
2028    }
2029
2030    // If we need some instructions deleted, do it now.
2031    NumGVNInstr += toErase.size();
2032
2033    // Avoid iterator invalidation.
2034    bool AtStart = BI == BB->begin();
2035    if (!AtStart)
2036      --BI;
2037
2038    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
2039         E = toErase.end(); I != E; ++I) {
2040      DEBUG(errs() << "GVN removed: " << **I << '\n');
2041      if (MD) MD->removeInstruction(*I);
2042      (*I)->eraseFromParent();
2043      DEBUG(verifyRemoved(*I));
2044    }
2045    toErase.clear();
2046
2047    if (AtStart)
2048      BI = BB->begin();
2049    else
2050      ++BI;
2051  }
2052
2053  return ChangedFunction;
2054}
2055
2056/// performPRE - Perform a purely local form of PRE that looks for diamond
2057/// control flow patterns and attempts to perform simple PRE at the join point.
2058bool GVN::performPRE(Function &F) {
2059  bool Changed = false;
2060  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
2061  DenseMap<BasicBlock*, Value*> predMap;
2062  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2063       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2064    BasicBlock *CurrentBlock = *DI;
2065
2066    // Nothing to PRE in the entry block.
2067    if (CurrentBlock == &F.getEntryBlock()) continue;
2068
2069    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2070         BE = CurrentBlock->end(); BI != BE; ) {
2071      Instruction *CurInst = BI++;
2072
2073      if (isa<AllocaInst>(CurInst) ||
2074          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2075          CurInst->getType()->isVoidTy() ||
2076          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2077          isa<DbgInfoIntrinsic>(CurInst))
2078        continue;
2079
2080      uint32_t ValNo = VN.lookup(CurInst);
2081
2082      // Look for the predecessors for PRE opportunities.  We're
2083      // only trying to solve the basic diamond case, where
2084      // a value is computed in the successor and one predecessor,
2085      // but not the other.  We also explicitly disallow cases
2086      // where the successor is its own predecessor, because they're
2087      // more complicated to get right.
2088      unsigned NumWith = 0;
2089      unsigned NumWithout = 0;
2090      BasicBlock *PREPred = 0;
2091      predMap.clear();
2092
2093      for (pred_iterator PI = pred_begin(CurrentBlock),
2094           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2095        // We're not interested in PRE where the block is its
2096        // own predecessor, on in blocks with predecessors
2097        // that are not reachable.
2098        if (*PI == CurrentBlock) {
2099          NumWithout = 2;
2100          break;
2101        } else if (!localAvail.count(*PI))  {
2102          NumWithout = 2;
2103          break;
2104        }
2105
2106        DenseMap<uint32_t, Value*>::iterator predV =
2107                                            localAvail[*PI]->table.find(ValNo);
2108        if (predV == localAvail[*PI]->table.end()) {
2109          PREPred = *PI;
2110          NumWithout++;
2111        } else if (predV->second == CurInst) {
2112          NumWithout = 2;
2113        } else {
2114          predMap[*PI] = predV->second;
2115          NumWith++;
2116        }
2117      }
2118
2119      // Don't do PRE when it might increase code size, i.e. when
2120      // we would need to insert instructions in more than one pred.
2121      if (NumWithout != 1 || NumWith == 0)
2122        continue;
2123
2124      // Don't do PRE across indirect branch.
2125      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2126        continue;
2127
2128      // We can't do PRE safely on a critical edge, so instead we schedule
2129      // the edge to be split and perform the PRE the next time we iterate
2130      // on the function.
2131      unsigned SuccNum = 0;
2132      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
2133           i != e; ++i)
2134        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
2135          SuccNum = i;
2136          break;
2137        }
2138
2139      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2140        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2141        continue;
2142      }
2143
2144      // Instantiate the expression the in predecessor that lacked it.
2145      // Because we are going top-down through the block, all value numbers
2146      // will be available in the predecessor by the time we need them.  Any
2147      // that weren't original present will have been instantiated earlier
2148      // in this loop.
2149      Instruction *PREInstr = CurInst->clone();
2150      bool success = true;
2151      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2152        Value *Op = PREInstr->getOperand(i);
2153        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2154          continue;
2155
2156        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
2157          PREInstr->setOperand(i, V);
2158        } else {
2159          success = false;
2160          break;
2161        }
2162      }
2163
2164      // Fail out if we encounter an operand that is not available in
2165      // the PRE predecessor.  This is typically because of loads which
2166      // are not value numbered precisely.
2167      if (!success) {
2168        delete PREInstr;
2169        DEBUG(verifyRemoved(PREInstr));
2170        continue;
2171      }
2172
2173      PREInstr->insertBefore(PREPred->getTerminator());
2174      PREInstr->setName(CurInst->getName() + ".pre");
2175      predMap[PREPred] = PREInstr;
2176      VN.add(PREInstr, ValNo);
2177      NumGVNPRE++;
2178
2179      // Update the availability map to include the new instruction.
2180      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
2181
2182      // Create a PHI to make the value available in this block.
2183      PHINode* Phi = PHINode::Create(CurInst->getType(),
2184                                     CurInst->getName() + ".pre-phi",
2185                                     CurrentBlock->begin());
2186      for (pred_iterator PI = pred_begin(CurrentBlock),
2187           PE = pred_end(CurrentBlock); PI != PE; ++PI)
2188        Phi->addIncoming(predMap[*PI], *PI);
2189
2190      VN.add(Phi, ValNo);
2191      localAvail[CurrentBlock]->table[ValNo] = Phi;
2192
2193      CurInst->replaceAllUsesWith(Phi);
2194      if (MD && isa<PointerType>(Phi->getType()))
2195        MD->invalidateCachedPointerInfo(Phi);
2196      VN.erase(CurInst);
2197
2198      DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
2199      if (MD) MD->removeInstruction(CurInst);
2200      CurInst->eraseFromParent();
2201      DEBUG(verifyRemoved(CurInst));
2202      Changed = true;
2203    }
2204  }
2205
2206  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
2207       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
2208    SplitCriticalEdge(I->first, I->second, this);
2209
2210  return Changed || toSplit.size();
2211}
2212
2213/// iterateOnFunction - Executes one iteration of GVN
2214bool GVN::iterateOnFunction(Function &F) {
2215  cleanupGlobalSets();
2216
2217  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2218       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
2219    if (DI->getIDom())
2220      localAvail[DI->getBlock()] =
2221                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
2222    else
2223      localAvail[DI->getBlock()] = new ValueNumberScope(0);
2224  }
2225
2226  // Top-down walk of the dominator tree
2227  bool Changed = false;
2228#if 0
2229  // Needed for value numbering with phi construction to work.
2230  ReversePostOrderTraversal<Function*> RPOT(&F);
2231  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2232       RE = RPOT.end(); RI != RE; ++RI)
2233    Changed |= processBlock(*RI);
2234#else
2235  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2236       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2237    Changed |= processBlock(DI->getBlock());
2238#endif
2239
2240  return Changed;
2241}
2242
2243void GVN::cleanupGlobalSets() {
2244  VN.clear();
2245
2246  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2247       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
2248    delete I->second;
2249  localAvail.clear();
2250}
2251
2252/// verifyRemoved - Verify that the specified instruction does not occur in our
2253/// internal data structures.
2254void GVN::verifyRemoved(const Instruction *Inst) const {
2255  VN.verifyRemoved(Inst);
2256
2257  // Walk through the value number scope to make sure the instruction isn't
2258  // ferreted away in it.
2259  for (DenseMap<BasicBlock*, ValueNumberScope*>::const_iterator
2260         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2261    const ValueNumberScope *VNS = I->second;
2262
2263    while (VNS) {
2264      for (DenseMap<uint32_t, Value*>::const_iterator
2265             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2266        assert(II->second != Inst && "Inst still in value numbering scope!");
2267      }
2268
2269      VNS = VNS->parent;
2270    }
2271  }
2272}
2273