GVN.cpp revision 0f18d97fd16a4735817327e58222eca717aa8271
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/InstructionSimplify.h"
27#include "llvm/Analysis/Loads.h"
28#include "llvm/Analysis/MemoryBuiltins.h"
29#include "llvm/Analysis/MemoryDependenceAnalysis.h"
30#include "llvm/Analysis/PHITransAddr.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/BasicBlockUtils.h"
35#include "llvm/Transforms/Utils/SSAUpdater.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/DepthFirstIterator.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/Support/Allocator.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/IRBuilder.h"
44using namespace llvm;
45
46STATISTIC(NumGVNInstr,  "Number of instructions deleted");
47STATISTIC(NumGVNLoad,   "Number of loads deleted");
48STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
49STATISTIC(NumGVNBlocks, "Number of blocks merged");
50STATISTIC(NumPRELoad,   "Number of loads PRE'd");
51
52static cl::opt<bool> EnablePRE("enable-pre",
53                               cl::init(true), cl::Hidden);
54static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
55
56//===----------------------------------------------------------------------===//
57//                         ValueTable Class
58//===----------------------------------------------------------------------===//
59
60/// This class holds the mapping between values and value numbers.  It is used
61/// as an efficient mechanism to determine the expression-wise equivalence of
62/// two values.
63namespace {
64  struct Expression {
65    uint32_t opcode;
66    const Type *type;
67    SmallVector<uint32_t, 4> varargs;
68
69    Expression(uint32_t o = ~2U) : opcode(o) { }
70
71    bool operator==(const Expression &other) const {
72      if (opcode != other.opcode)
73        return false;
74      if (opcode == ~0U || opcode == ~1U)
75        return true;
76      if (type != other.type)
77        return false;
78      if (varargs != other.varargs)
79        return false;
80      return true;
81    }
82  };
83
84  class ValueTable {
85    DenseMap<Value*, uint32_t> valueNumbering;
86    DenseMap<Expression, uint32_t> expressionNumbering;
87    AliasAnalysis *AA;
88    MemoryDependenceAnalysis *MD;
89    DominatorTree *DT;
90
91    uint32_t nextValueNumber;
92
93    Expression create_expression(Instruction* I);
94    uint32_t lookup_or_add_call(CallInst* C);
95  public:
96    ValueTable() : nextValueNumber(1) { }
97    uint32_t lookup_or_add(Value *V);
98    uint32_t lookup(Value *V) const;
99    void add(Value *V, uint32_t num);
100    void clear();
101    void erase(Value *v);
102    void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
103    AliasAnalysis *getAliasAnalysis() const { return AA; }
104    void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
105    void setDomTree(DominatorTree* D) { DT = D; }
106    uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
107    void verifyRemoved(const Value *) const;
108  };
109}
110
111namespace llvm {
112template <> struct DenseMapInfo<Expression> {
113  static inline Expression getEmptyKey() {
114    return ~0U;
115  }
116
117  static inline Expression getTombstoneKey() {
118    return ~1U;
119  }
120
121  static unsigned getHashValue(const Expression e) {
122    unsigned hash = e.opcode;
123
124    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
125            (unsigned)((uintptr_t)e.type >> 9));
126
127    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
128         E = e.varargs.end(); I != E; ++I)
129      hash = *I + hash * 37;
130
131    return hash;
132  }
133  static bool isEqual(const Expression &LHS, const Expression &RHS) {
134    return LHS == RHS;
135  }
136};
137
138}
139
140//===----------------------------------------------------------------------===//
141//                     ValueTable Internal Functions
142//===----------------------------------------------------------------------===//
143
144
145Expression ValueTable::create_expression(Instruction *I) {
146  Expression e;
147  e.type = I->getType();
148  e.opcode = I->getOpcode();
149  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
150       OI != OE; ++OI)
151    e.varargs.push_back(lookup_or_add(*OI));
152
153  if (CmpInst *C = dyn_cast<CmpInst>(I))
154    e.opcode = (C->getOpcode() << 8) | C->getPredicate();
155  else if (ExtractValueInst *E = dyn_cast<ExtractValueInst>(I)) {
156    for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
157         II != IE; ++II)
158      e.varargs.push_back(*II);
159  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
160    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
161         II != IE; ++II)
162      e.varargs.push_back(*II);
163  }
164
165  return e;
166}
167
168//===----------------------------------------------------------------------===//
169//                     ValueTable External Functions
170//===----------------------------------------------------------------------===//
171
172/// add - Insert a value into the table with a specified value number.
173void ValueTable::add(Value *V, uint32_t num) {
174  valueNumbering.insert(std::make_pair(V, num));
175}
176
177uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
178  if (AA->doesNotAccessMemory(C)) {
179    Expression exp = create_expression(C);
180    uint32_t& e = expressionNumbering[exp];
181    if (!e) e = nextValueNumber++;
182    valueNumbering[C] = e;
183    return e;
184  } else if (AA->onlyReadsMemory(C)) {
185    Expression exp = create_expression(C);
186    uint32_t& e = expressionNumbering[exp];
187    if (!e) {
188      e = nextValueNumber++;
189      valueNumbering[C] = e;
190      return e;
191    }
192    if (!MD) {
193      e = nextValueNumber++;
194      valueNumbering[C] = e;
195      return e;
196    }
197
198    MemDepResult local_dep = MD->getDependency(C);
199
200    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
201      valueNumbering[C] =  nextValueNumber;
202      return nextValueNumber++;
203    }
204
205    if (local_dep.isDef()) {
206      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
207
208      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
209        valueNumbering[C] = nextValueNumber;
210        return nextValueNumber++;
211      }
212
213      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
214        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
215        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
216        if (c_vn != cd_vn) {
217          valueNumbering[C] = nextValueNumber;
218          return nextValueNumber++;
219        }
220      }
221
222      uint32_t v = lookup_or_add(local_cdep);
223      valueNumbering[C] = v;
224      return v;
225    }
226
227    // Non-local case.
228    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
229      MD->getNonLocalCallDependency(CallSite(C));
230    // FIXME: call/call dependencies for readonly calls should return def, not
231    // clobber!  Move the checking logic to MemDep!
232    CallInst* cdep = 0;
233
234    // Check to see if we have a single dominating call instruction that is
235    // identical to C.
236    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
237      const NonLocalDepEntry *I = &deps[i];
238      // Ignore non-local dependencies.
239      if (I->getResult().isNonLocal())
240        continue;
241
242      // We don't handle non-depedencies.  If we already have a call, reject
243      // instruction dependencies.
244      if (I->getResult().isClobber() || cdep != 0) {
245        cdep = 0;
246        break;
247      }
248
249      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
250      // FIXME: All duplicated with non-local case.
251      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
252        cdep = NonLocalDepCall;
253        continue;
254      }
255
256      cdep = 0;
257      break;
258    }
259
260    if (!cdep) {
261      valueNumbering[C] = nextValueNumber;
262      return nextValueNumber++;
263    }
264
265    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
266      valueNumbering[C] = nextValueNumber;
267      return nextValueNumber++;
268    }
269    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
270      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
271      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
272      if (c_vn != cd_vn) {
273        valueNumbering[C] = nextValueNumber;
274        return nextValueNumber++;
275      }
276    }
277
278    uint32_t v = lookup_or_add(cdep);
279    valueNumbering[C] = v;
280    return v;
281
282  } else {
283    valueNumbering[C] = nextValueNumber;
284    return nextValueNumber++;
285  }
286}
287
288/// lookup_or_add - Returns the value number for the specified value, assigning
289/// it a new number if it did not have one before.
290uint32_t ValueTable::lookup_or_add(Value *V) {
291  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
292  if (VI != valueNumbering.end())
293    return VI->second;
294
295  if (!isa<Instruction>(V)) {
296    valueNumbering[V] = nextValueNumber;
297    return nextValueNumber++;
298  }
299
300  Instruction* I = cast<Instruction>(V);
301  Expression exp;
302  switch (I->getOpcode()) {
303    case Instruction::Call:
304      return lookup_or_add_call(cast<CallInst>(I));
305    case Instruction::Add:
306    case Instruction::FAdd:
307    case Instruction::Sub:
308    case Instruction::FSub:
309    case Instruction::Mul:
310    case Instruction::FMul:
311    case Instruction::UDiv:
312    case Instruction::SDiv:
313    case Instruction::FDiv:
314    case Instruction::URem:
315    case Instruction::SRem:
316    case Instruction::FRem:
317    case Instruction::Shl:
318    case Instruction::LShr:
319    case Instruction::AShr:
320    case Instruction::And:
321    case Instruction::Or :
322    case Instruction::Xor:
323    case Instruction::ICmp:
324    case Instruction::FCmp:
325    case Instruction::Trunc:
326    case Instruction::ZExt:
327    case Instruction::SExt:
328    case Instruction::FPToUI:
329    case Instruction::FPToSI:
330    case Instruction::UIToFP:
331    case Instruction::SIToFP:
332    case Instruction::FPTrunc:
333    case Instruction::FPExt:
334    case Instruction::PtrToInt:
335    case Instruction::IntToPtr:
336    case Instruction::BitCast:
337    case Instruction::Select:
338    case Instruction::ExtractElement:
339    case Instruction::InsertElement:
340    case Instruction::ShuffleVector:
341    case Instruction::ExtractValue:
342    case Instruction::InsertValue:
343    case Instruction::GetElementPtr:
344      exp = create_expression(I);
345      break;
346    default:
347      valueNumbering[V] = nextValueNumber;
348      return nextValueNumber++;
349  }
350
351  uint32_t& e = expressionNumbering[exp];
352  if (!e) e = nextValueNumber++;
353  valueNumbering[V] = e;
354  return e;
355}
356
357/// lookup - Returns the value number of the specified value. Fails if
358/// the value has not yet been numbered.
359uint32_t ValueTable::lookup(Value *V) const {
360  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
361  assert(VI != valueNumbering.end() && "Value not numbered?");
362  return VI->second;
363}
364
365/// clear - Remove all entries from the ValueTable.
366void ValueTable::clear() {
367  valueNumbering.clear();
368  expressionNumbering.clear();
369  nextValueNumber = 1;
370}
371
372/// erase - Remove a value from the value numbering.
373void ValueTable::erase(Value *V) {
374  valueNumbering.erase(V);
375}
376
377/// verifyRemoved - Verify that the value is removed from all internal data
378/// structures.
379void ValueTable::verifyRemoved(const Value *V) const {
380  for (DenseMap<Value*, uint32_t>::const_iterator
381         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
382    assert(I->first != V && "Inst still occurs in value numbering map!");
383  }
384}
385
386//===----------------------------------------------------------------------===//
387//                                GVN Pass
388//===----------------------------------------------------------------------===//
389
390namespace {
391
392  class GVN : public FunctionPass {
393    bool NoLoads;
394    MemoryDependenceAnalysis *MD;
395    DominatorTree *DT;
396    const TargetData *TD;
397
398    ValueTable VN;
399
400    /// LeaderTable - A mapping from value numbers to lists of Value*'s that
401    /// have that value number.  Use findLeader to query it.
402    struct LeaderTableEntry {
403      Value *Val;
404      BasicBlock *BB;
405      LeaderTableEntry *Next;
406    };
407    DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
408    BumpPtrAllocator TableAllocator;
409
410    SmallVector<Instruction*, 8> InstrsToErase;
411  public:
412    static char ID; // Pass identification, replacement for typeid
413    explicit GVN(bool noloads = false)
414        : FunctionPass(ID), NoLoads(noloads), MD(0) {
415      initializeGVNPass(*PassRegistry::getPassRegistry());
416    }
417
418    bool runOnFunction(Function &F);
419
420    /// markInstructionForDeletion - This removes the specified instruction from
421    /// our various maps and marks it for deletion.
422    void markInstructionForDeletion(Instruction *I) {
423      VN.erase(I);
424      InstrsToErase.push_back(I);
425    }
426
427    const TargetData *getTargetData() const { return TD; }
428    DominatorTree &getDominatorTree() const { return *DT; }
429    AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
430    MemoryDependenceAnalysis &getMemDep() const { return *MD; }
431  private:
432    /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
433    /// its value number.
434    void addToLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
435      LeaderTableEntry &Curr = LeaderTable[N];
436      if (!Curr.Val) {
437        Curr.Val = V;
438        Curr.BB = BB;
439        return;
440      }
441
442      LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
443      Node->Val = V;
444      Node->BB = BB;
445      Node->Next = Curr.Next;
446      Curr.Next = Node;
447    }
448
449    /// removeFromLeaderTable - Scan the list of values corresponding to a given
450    /// value number, and remove the given value if encountered.
451    void removeFromLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
452      LeaderTableEntry* Prev = 0;
453      LeaderTableEntry* Curr = &LeaderTable[N];
454
455      while (Curr->Val != V || Curr->BB != BB) {
456        Prev = Curr;
457        Curr = Curr->Next;
458      }
459
460      if (Prev) {
461        Prev->Next = Curr->Next;
462      } else {
463        if (!Curr->Next) {
464          Curr->Val = 0;
465          Curr->BB = 0;
466        } else {
467          LeaderTableEntry* Next = Curr->Next;
468          Curr->Val = Next->Val;
469          Curr->BB = Next->BB;
470          Curr->Next = Next->Next;
471        }
472      }
473    }
474
475    // List of critical edges to be split between iterations.
476    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
477
478    // This transformation requires dominator postdominator info
479    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
480      AU.addRequired<DominatorTree>();
481      if (!NoLoads)
482        AU.addRequired<MemoryDependenceAnalysis>();
483      AU.addRequired<AliasAnalysis>();
484
485      AU.addPreserved<DominatorTree>();
486      AU.addPreserved<AliasAnalysis>();
487    }
488
489
490    // Helper fuctions
491    // FIXME: eliminate or document these better
492    bool processLoad(LoadInst *L);
493    bool processInstruction(Instruction *I);
494    bool processNonLocalLoad(LoadInst *L);
495    bool processBlock(BasicBlock *BB);
496    void dump(DenseMap<uint32_t, Value*> &d);
497    bool iterateOnFunction(Function &F);
498    bool performPRE(Function &F);
499    Value *findLeader(BasicBlock *BB, uint32_t num);
500    void cleanupGlobalSets();
501    void verifyRemoved(const Instruction *I) const;
502    bool splitCriticalEdges();
503  };
504
505  char GVN::ID = 0;
506}
507
508// createGVNPass - The public interface to this file...
509FunctionPass *llvm::createGVNPass(bool NoLoads) {
510  return new GVN(NoLoads);
511}
512
513INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
514INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
515INITIALIZE_PASS_DEPENDENCY(DominatorTree)
516INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
517INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
518
519void GVN::dump(DenseMap<uint32_t, Value*>& d) {
520  errs() << "{\n";
521  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
522       E = d.end(); I != E; ++I) {
523      errs() << I->first << "\n";
524      I->second->dump();
525  }
526  errs() << "}\n";
527}
528
529/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
530/// we're analyzing is fully available in the specified block.  As we go, keep
531/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
532/// map is actually a tri-state map with the following values:
533///   0) we know the block *is not* fully available.
534///   1) we know the block *is* fully available.
535///   2) we do not know whether the block is fully available or not, but we are
536///      currently speculating that it will be.
537///   3) we are speculating for this block and have used that to speculate for
538///      other blocks.
539static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
540                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
541  // Optimistically assume that the block is fully available and check to see
542  // if we already know about this block in one lookup.
543  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
544    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
545
546  // If the entry already existed for this block, return the precomputed value.
547  if (!IV.second) {
548    // If this is a speculative "available" value, mark it as being used for
549    // speculation of other blocks.
550    if (IV.first->second == 2)
551      IV.first->second = 3;
552    return IV.first->second != 0;
553  }
554
555  // Otherwise, see if it is fully available in all predecessors.
556  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
557
558  // If this block has no predecessors, it isn't live-in here.
559  if (PI == PE)
560    goto SpeculationFailure;
561
562  for (; PI != PE; ++PI)
563    // If the value isn't fully available in one of our predecessors, then it
564    // isn't fully available in this block either.  Undo our previous
565    // optimistic assumption and bail out.
566    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
567      goto SpeculationFailure;
568
569  return true;
570
571// SpeculationFailure - If we get here, we found out that this is not, after
572// all, a fully-available block.  We have a problem if we speculated on this and
573// used the speculation to mark other blocks as available.
574SpeculationFailure:
575  char &BBVal = FullyAvailableBlocks[BB];
576
577  // If we didn't speculate on this, just return with it set to false.
578  if (BBVal == 2) {
579    BBVal = 0;
580    return false;
581  }
582
583  // If we did speculate on this value, we could have blocks set to 1 that are
584  // incorrect.  Walk the (transitive) successors of this block and mark them as
585  // 0 if set to one.
586  SmallVector<BasicBlock*, 32> BBWorklist;
587  BBWorklist.push_back(BB);
588
589  do {
590    BasicBlock *Entry = BBWorklist.pop_back_val();
591    // Note that this sets blocks to 0 (unavailable) if they happen to not
592    // already be in FullyAvailableBlocks.  This is safe.
593    char &EntryVal = FullyAvailableBlocks[Entry];
594    if (EntryVal == 0) continue;  // Already unavailable.
595
596    // Mark as unavailable.
597    EntryVal = 0;
598
599    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
600      BBWorklist.push_back(*I);
601  } while (!BBWorklist.empty());
602
603  return false;
604}
605
606
607/// CanCoerceMustAliasedValueToLoad - Return true if
608/// CoerceAvailableValueToLoadType will succeed.
609static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
610                                            const Type *LoadTy,
611                                            const TargetData &TD) {
612  // If the loaded or stored value is an first class array or struct, don't try
613  // to transform them.  We need to be able to bitcast to integer.
614  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
615      StoredVal->getType()->isStructTy() ||
616      StoredVal->getType()->isArrayTy())
617    return false;
618
619  // The store has to be at least as big as the load.
620  if (TD.getTypeSizeInBits(StoredVal->getType()) <
621        TD.getTypeSizeInBits(LoadTy))
622    return false;
623
624  return true;
625}
626
627
628/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
629/// then a load from a must-aliased pointer of a different type, try to coerce
630/// the stored value.  LoadedTy is the type of the load we want to replace and
631/// InsertPt is the place to insert new instructions.
632///
633/// If we can't do it, return null.
634static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
635                                             const Type *LoadedTy,
636                                             Instruction *InsertPt,
637                                             const TargetData &TD) {
638  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
639    return 0;
640
641  // If this is already the right type, just return it.
642  const Type *StoredValTy = StoredVal->getType();
643
644  uint64_t StoreSize = TD.getTypeStoreSizeInBits(StoredValTy);
645  uint64_t LoadSize = TD.getTypeStoreSizeInBits(LoadedTy);
646
647  // If the store and reload are the same size, we can always reuse it.
648  if (StoreSize == LoadSize) {
649    // Pointer to Pointer -> use bitcast.
650    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy())
651      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
652
653    // Convert source pointers to integers, which can be bitcast.
654    if (StoredValTy->isPointerTy()) {
655      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
656      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
657    }
658
659    const Type *TypeToCastTo = LoadedTy;
660    if (TypeToCastTo->isPointerTy())
661      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
662
663    if (StoredValTy != TypeToCastTo)
664      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
665
666    // Cast to pointer if the load needs a pointer type.
667    if (LoadedTy->isPointerTy())
668      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
669
670    return StoredVal;
671  }
672
673  // If the loaded value is smaller than the available value, then we can
674  // extract out a piece from it.  If the available value is too small, then we
675  // can't do anything.
676  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
677
678  // Convert source pointers to integers, which can be manipulated.
679  if (StoredValTy->isPointerTy()) {
680    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
681    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
682  }
683
684  // Convert vectors and fp to integer, which can be manipulated.
685  if (!StoredValTy->isIntegerTy()) {
686    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
687    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
688  }
689
690  // If this is a big-endian system, we need to shift the value down to the low
691  // bits so that a truncate will work.
692  if (TD.isBigEndian()) {
693    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
694    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
695  }
696
697  // Truncate the integer to the right size now.
698  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
699  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
700
701  if (LoadedTy == NewIntTy)
702    return StoredVal;
703
704  // If the result is a pointer, inttoptr.
705  if (LoadedTy->isPointerTy())
706    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
707
708  // Otherwise, bitcast.
709  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
710}
711
712/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
713/// memdep query of a load that ends up being a clobbering memory write (store,
714/// memset, memcpy, memmove).  This means that the write *may* provide bits used
715/// by the load but we can't be sure because the pointers don't mustalias.
716///
717/// Check this case to see if there is anything more we can do before we give
718/// up.  This returns -1 if we have to give up, or a byte number in the stored
719/// value of the piece that feeds the load.
720static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
721                                          Value *WritePtr,
722                                          uint64_t WriteSizeInBits,
723                                          const TargetData &TD) {
724  // If the loaded or stored value is an first class array or struct, don't try
725  // to transform them.  We need to be able to bitcast to integer.
726  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
727    return -1;
728
729  int64_t StoreOffset = 0, LoadOffset = 0;
730  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
731  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
732  if (StoreBase != LoadBase)
733    return -1;
734
735  // If the load and store are to the exact same address, they should have been
736  // a must alias.  AA must have gotten confused.
737  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
738  // to a load from the base of the memset.
739#if 0
740  if (LoadOffset == StoreOffset) {
741    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
742    << "Base       = " << *StoreBase << "\n"
743    << "Store Ptr  = " << *WritePtr << "\n"
744    << "Store Offs = " << StoreOffset << "\n"
745    << "Load Ptr   = " << *LoadPtr << "\n";
746    abort();
747  }
748#endif
749
750  // If the load and store don't overlap at all, the store doesn't provide
751  // anything to the load.  In this case, they really don't alias at all, AA
752  // must have gotten confused.
753  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
754
755  if ((WriteSizeInBits & 7) | (LoadSize & 7))
756    return -1;
757  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
758  LoadSize >>= 3;
759
760
761  bool isAAFailure = false;
762  if (StoreOffset < LoadOffset)
763    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
764  else
765    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
766
767  if (isAAFailure) {
768#if 0
769    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
770    << "Base       = " << *StoreBase << "\n"
771    << "Store Ptr  = " << *WritePtr << "\n"
772    << "Store Offs = " << StoreOffset << "\n"
773    << "Load Ptr   = " << *LoadPtr << "\n";
774    abort();
775#endif
776    return -1;
777  }
778
779  // If the Load isn't completely contained within the stored bits, we don't
780  // have all the bits to feed it.  We could do something crazy in the future
781  // (issue a smaller load then merge the bits in) but this seems unlikely to be
782  // valuable.
783  if (StoreOffset > LoadOffset ||
784      StoreOffset+StoreSize < LoadOffset+LoadSize)
785    return -1;
786
787  // Okay, we can do this transformation.  Return the number of bytes into the
788  // store that the load is.
789  return LoadOffset-StoreOffset;
790}
791
792/// AnalyzeLoadFromClobberingStore - This function is called when we have a
793/// memdep query of a load that ends up being a clobbering store.
794static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
795                                          StoreInst *DepSI,
796                                          const TargetData &TD) {
797  // Cannot handle reading from store of first-class aggregate yet.
798  if (DepSI->getValueOperand()->getType()->isStructTy() ||
799      DepSI->getValueOperand()->getType()->isArrayTy())
800    return -1;
801
802  Value *StorePtr = DepSI->getPointerOperand();
803  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
804  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
805                                        StorePtr, StoreSize, TD);
806}
807
808/// AnalyzeLoadFromClobberingLoad - This function is called when we have a
809/// memdep query of a load that ends up being clobbered by another load.  See if
810/// the other load can feed into the second load.
811static int AnalyzeLoadFromClobberingLoad(const Type *LoadTy, Value *LoadPtr,
812                                         LoadInst *DepLI, const TargetData &TD){
813  // Cannot handle reading from store of first-class aggregate yet.
814  if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
815    return -1;
816
817  Value *DepPtr = DepLI->getPointerOperand();
818  uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
819  int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
820  if (R != -1) return R;
821
822  // If we have a load/load clobber an DepLI can be widened to cover this load,
823  // then we should widen it!
824  int64_t LoadOffs = 0;
825  const Value *LoadBase =
826    GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD);
827  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
828
829  unsigned Size = MemoryDependenceAnalysis::
830    getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
831  if (Size == 0) return -1;
832
833  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
834}
835
836
837
838static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
839                                            MemIntrinsic *MI,
840                                            const TargetData &TD) {
841  // If the mem operation is a non-constant size, we can't handle it.
842  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
843  if (SizeCst == 0) return -1;
844  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
845
846  // If this is memset, we just need to see if the offset is valid in the size
847  // of the memset..
848  if (MI->getIntrinsicID() == Intrinsic::memset)
849    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
850                                          MemSizeInBits, TD);
851
852  // If we have a memcpy/memmove, the only case we can handle is if this is a
853  // copy from constant memory.  In that case, we can read directly from the
854  // constant memory.
855  MemTransferInst *MTI = cast<MemTransferInst>(MI);
856
857  Constant *Src = dyn_cast<Constant>(MTI->getSource());
858  if (Src == 0) return -1;
859
860  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
861  if (GV == 0 || !GV->isConstant()) return -1;
862
863  // See if the access is within the bounds of the transfer.
864  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
865                                              MI->getDest(), MemSizeInBits, TD);
866  if (Offset == -1)
867    return Offset;
868
869  // Otherwise, see if we can constant fold a load from the constant with the
870  // offset applied as appropriate.
871  Src = ConstantExpr::getBitCast(Src,
872                                 llvm::Type::getInt8PtrTy(Src->getContext()));
873  Constant *OffsetCst =
874    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
875  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
876  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
877  if (ConstantFoldLoadFromConstPtr(Src, &TD))
878    return Offset;
879  return -1;
880}
881
882
883/// GetStoreValueForLoad - This function is called when we have a
884/// memdep query of a load that ends up being a clobbering store.  This means
885/// that the store provides bits used by the load but we the pointers don't
886/// mustalias.  Check this case to see if there is anything more we can do
887/// before we give up.
888static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
889                                   const Type *LoadTy,
890                                   Instruction *InsertPt, const TargetData &TD){
891  LLVMContext &Ctx = SrcVal->getType()->getContext();
892
893  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
894  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
895
896  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
897
898  // Compute which bits of the stored value are being used by the load.  Convert
899  // to an integer type to start with.
900  if (SrcVal->getType()->isPointerTy())
901    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
902  if (!SrcVal->getType()->isIntegerTy())
903    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
904                                   "tmp");
905
906  // Shift the bits to the least significant depending on endianness.
907  unsigned ShiftAmt;
908  if (TD.isLittleEndian())
909    ShiftAmt = Offset*8;
910  else
911    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
912
913  if (ShiftAmt)
914    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
915
916  if (LoadSize != StoreSize)
917    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
918                                 "tmp");
919
920  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
921}
922
923/// GetStoreValueForLoad - This function is called when we have a
924/// memdep query of a load that ends up being a clobbering load.  This means
925/// that the load *may* provide bits used by the load but we can't be sure
926/// because the pointers don't mustalias.  Check this case to see if there is
927/// anything more we can do before we give up.
928static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
929                                  const Type *LoadTy, Instruction *InsertPt,
930                                  GVN &gvn) {
931  const TargetData &TD = *gvn.getTargetData();
932  // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
933  // widen SrcVal out to a larger load.
934  unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
935  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
936  if (Offset+LoadSize > SrcValSize) {
937    assert(!SrcVal->isVolatile() && "Cannot widen volatile load!");
938    assert(isa<IntegerType>(SrcVal->getType())&&"Can't widen non-integer load");
939    // If we have a load/load clobber an DepLI can be widened to cover this
940    // load, then we should widen it to the next power of 2 size big enough!
941    unsigned NewLoadSize = Offset+LoadSize;
942    if (!isPowerOf2_32(NewLoadSize))
943      NewLoadSize = NextPowerOf2(NewLoadSize);
944
945    Value *PtrVal = SrcVal->getPointerOperand();
946
947    // Insert the new load after the old load.  This ensures that subsequent
948    // memdep queries will find the new load.  We can't easily remove the old
949    // load completely because it is already in the value numbering table.
950    IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
951    const Type *DestPTy =
952      IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
953    DestPTy = PointerType::get(DestPTy,
954                       cast<PointerType>(PtrVal->getType())->getAddressSpace());
955    Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
956    PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
957    LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
958    NewLoad->takeName(SrcVal);
959    NewLoad->setAlignment(SrcVal->getAlignment());
960
961    DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
962    DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
963
964    // Replace uses of the original load with the wider load.  On a big endian
965    // system, we need to shift down to get the relevant bits.
966    Value *RV = NewLoad;
967    if (TD.isBigEndian())
968      RV = Builder.CreateLShr(RV,
969                    NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
970    RV = Builder.CreateTrunc(RV, SrcVal->getType());
971    SrcVal->replaceAllUsesWith(RV);
972
973    // We would like to use gvn.markInstructionForDeletion here, but we can't
974    // because the load is already memoized into the leader map table that GVN
975    // tracks.  It is potentially possible to remove the load from the table,
976    // but then there all of the operations based on it would need to be
977    // rehashed.  Just leave the dead load around.
978    gvn.getMemDep().removeInstruction(SrcVal);
979    SrcVal = NewLoad;
980  }
981
982  return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
983}
984
985
986/// GetMemInstValueForLoad - This function is called when we have a
987/// memdep query of a load that ends up being a clobbering mem intrinsic.
988static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
989                                     const Type *LoadTy, Instruction *InsertPt,
990                                     const TargetData &TD){
991  LLVMContext &Ctx = LoadTy->getContext();
992  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
993
994  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
995
996  // We know that this method is only called when the mem transfer fully
997  // provides the bits for the load.
998  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
999    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1000    // independently of what the offset is.
1001    Value *Val = MSI->getValue();
1002    if (LoadSize != 1)
1003      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1004
1005    Value *OneElt = Val;
1006
1007    // Splat the value out to the right number of bits.
1008    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1009      // If we can double the number of bytes set, do it.
1010      if (NumBytesSet*2 <= LoadSize) {
1011        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1012        Val = Builder.CreateOr(Val, ShVal);
1013        NumBytesSet <<= 1;
1014        continue;
1015      }
1016
1017      // Otherwise insert one byte at a time.
1018      Value *ShVal = Builder.CreateShl(Val, 1*8);
1019      Val = Builder.CreateOr(OneElt, ShVal);
1020      ++NumBytesSet;
1021    }
1022
1023    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1024  }
1025
1026  // Otherwise, this is a memcpy/memmove from a constant global.
1027  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1028  Constant *Src = cast<Constant>(MTI->getSource());
1029
1030  // Otherwise, see if we can constant fold a load from the constant with the
1031  // offset applied as appropriate.
1032  Src = ConstantExpr::getBitCast(Src,
1033                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1034  Constant *OffsetCst =
1035  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1036  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1037  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1038  return ConstantFoldLoadFromConstPtr(Src, &TD);
1039}
1040
1041namespace {
1042
1043struct AvailableValueInBlock {
1044  /// BB - The basic block in question.
1045  BasicBlock *BB;
1046  enum ValType {
1047    SimpleVal,  // A simple offsetted value that is accessed.
1048    LoadVal,    // A value produced by a load.
1049    MemIntrin   // A memory intrinsic which is loaded from.
1050  };
1051
1052  /// V - The value that is live out of the block.
1053  PointerIntPair<Value *, 2, ValType> Val;
1054
1055  /// Offset - The byte offset in Val that is interesting for the load query.
1056  unsigned Offset;
1057
1058  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1059                                   unsigned Offset = 0) {
1060    AvailableValueInBlock Res;
1061    Res.BB = BB;
1062    Res.Val.setPointer(V);
1063    Res.Val.setInt(SimpleVal);
1064    Res.Offset = Offset;
1065    return Res;
1066  }
1067
1068  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1069                                     unsigned Offset = 0) {
1070    AvailableValueInBlock Res;
1071    Res.BB = BB;
1072    Res.Val.setPointer(MI);
1073    Res.Val.setInt(MemIntrin);
1074    Res.Offset = Offset;
1075    return Res;
1076  }
1077
1078  static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
1079                                       unsigned Offset = 0) {
1080    AvailableValueInBlock Res;
1081    Res.BB = BB;
1082    Res.Val.setPointer(LI);
1083    Res.Val.setInt(LoadVal);
1084    Res.Offset = Offset;
1085    return Res;
1086  }
1087
1088  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1089  bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
1090  bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
1091
1092  Value *getSimpleValue() const {
1093    assert(isSimpleValue() && "Wrong accessor");
1094    return Val.getPointer();
1095  }
1096
1097  LoadInst *getCoercedLoadValue() const {
1098    assert(isCoercedLoadValue() && "Wrong accessor");
1099    return cast<LoadInst>(Val.getPointer());
1100  }
1101
1102  MemIntrinsic *getMemIntrinValue() const {
1103    assert(isMemIntrinValue() && "Wrong accessor");
1104    return cast<MemIntrinsic>(Val.getPointer());
1105  }
1106
1107  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1108  /// defined here to the specified type.  This handles various coercion cases.
1109  Value *MaterializeAdjustedValue(const Type *LoadTy, GVN &gvn) const {
1110    Value *Res;
1111    if (isSimpleValue()) {
1112      Res = getSimpleValue();
1113      if (Res->getType() != LoadTy) {
1114        const TargetData *TD = gvn.getTargetData();
1115        assert(TD && "Need target data to handle type mismatch case");
1116        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1117                                   *TD);
1118
1119        DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1120                     << *getSimpleValue() << '\n'
1121                     << *Res << '\n' << "\n\n\n");
1122      }
1123    } else if (isCoercedLoadValue()) {
1124      LoadInst *Load = getCoercedLoadValue();
1125      if (Load->getType() == LoadTy && Offset == 0) {
1126        Res = Load;
1127      } else {
1128        Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1129                                  gvn);
1130
1131        DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
1132                     << *getCoercedLoadValue() << '\n'
1133                     << *Res << '\n' << "\n\n\n");
1134      }
1135    } else {
1136      const TargetData *TD = gvn.getTargetData();
1137      assert(TD && "Need target data to handle type mismatch case");
1138      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1139                                   LoadTy, BB->getTerminator(), *TD);
1140      DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1141                   << "  " << *getMemIntrinValue() << '\n'
1142                   << *Res << '\n' << "\n\n\n");
1143    }
1144    return Res;
1145  }
1146};
1147
1148} // end anonymous namespace
1149
1150/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1151/// construct SSA form, allowing us to eliminate LI.  This returns the value
1152/// that should be used at LI's definition site.
1153static Value *ConstructSSAForLoadSet(LoadInst *LI,
1154                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1155                                     GVN &gvn) {
1156  // Check for the fully redundant, dominating load case.  In this case, we can
1157  // just use the dominating value directly.
1158  if (ValuesPerBlock.size() == 1 &&
1159      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1160                                               LI->getParent()))
1161    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1162
1163  // Otherwise, we have to construct SSA form.
1164  SmallVector<PHINode*, 8> NewPHIs;
1165  SSAUpdater SSAUpdate(&NewPHIs);
1166  SSAUpdate.Initialize(LI->getType(), LI->getName());
1167
1168  const Type *LoadTy = LI->getType();
1169
1170  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1171    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1172    BasicBlock *BB = AV.BB;
1173
1174    if (SSAUpdate.HasValueForBlock(BB))
1175      continue;
1176
1177    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1178  }
1179
1180  // Perform PHI construction.
1181  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1182
1183  // If new PHI nodes were created, notify alias analysis.
1184  if (V->getType()->isPointerTy()) {
1185    AliasAnalysis *AA = gvn.getAliasAnalysis();
1186
1187    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1188      AA->copyValue(LI, NewPHIs[i]);
1189
1190    // Now that we've copied information to the new PHIs, scan through
1191    // them again and inform alias analysis that we've added potentially
1192    // escaping uses to any values that are operands to these PHIs.
1193    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1194      PHINode *P = NewPHIs[i];
1195      for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii)
1196        AA->addEscapingUse(P->getOperandUse(2*ii));
1197    }
1198  }
1199
1200  return V;
1201}
1202
1203static bool isLifetimeStart(const Instruction *Inst) {
1204  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1205    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1206  return false;
1207}
1208
1209/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1210/// non-local by performing PHI construction.
1211bool GVN::processNonLocalLoad(LoadInst *LI) {
1212  // Find the non-local dependencies of the load.
1213  SmallVector<NonLocalDepResult, 64> Deps;
1214  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1215  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1216  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1217  //             << Deps.size() << *LI << '\n');
1218
1219  // If we had to process more than one hundred blocks to find the
1220  // dependencies, this load isn't worth worrying about.  Optimizing
1221  // it will be too expensive.
1222  if (Deps.size() > 100)
1223    return false;
1224
1225  // If we had a phi translation failure, we'll have a single entry which is a
1226  // clobber in the current block.  Reject this early.
1227  if (Deps.size() == 1 && Deps[0].getResult().isClobber() &&
1228      Deps[0].getResult().getInst()->getParent() == LI->getParent()) {
1229    DEBUG(
1230      dbgs() << "GVN: non-local load ";
1231      WriteAsOperand(dbgs(), LI);
1232      dbgs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
1233    );
1234    return false;
1235  }
1236
1237  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1238  // where we have a value available in repl, also keep track of whether we see
1239  // dependencies that produce an unknown value for the load (such as a call
1240  // that could potentially clobber the load).
1241  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1242  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1243
1244  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1245    BasicBlock *DepBB = Deps[i].getBB();
1246    MemDepResult DepInfo = Deps[i].getResult();
1247
1248    if (DepInfo.isClobber()) {
1249      // The address being loaded in this non-local block may not be the same as
1250      // the pointer operand of the load if PHI translation occurs.  Make sure
1251      // to consider the right address.
1252      Value *Address = Deps[i].getAddress();
1253
1254      // If the dependence is to a store that writes to a superset of the bits
1255      // read by the load, we can extract the bits we need for the load from the
1256      // stored value.
1257      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1258        if (TD && Address) {
1259          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1260                                                      DepSI, *TD);
1261          if (Offset != -1) {
1262            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1263                                                       DepSI->getValueOperand(),
1264                                                                Offset));
1265            continue;
1266          }
1267        }
1268      }
1269
1270      // Check to see if we have something like this:
1271      //    load i32* P
1272      //    load i8* (P+1)
1273      // if we have this, replace the later with an extraction from the former.
1274      if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1275        // If this is a clobber and L is the first instruction in its block, then
1276        // we have the first instruction in the entry block.
1277        if (DepLI != LI && Address && TD) {
1278          int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
1279                                                     LI->getPointerOperand(),
1280                                                     DepLI, *TD);
1281
1282          if (Offset != -1) {
1283            ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1284                                                                    Offset));
1285            continue;
1286          }
1287        }
1288      }
1289
1290      // If the clobbering value is a memset/memcpy/memmove, see if we can
1291      // forward a value on from it.
1292      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1293        if (TD && Address) {
1294          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1295                                                        DepMI, *TD);
1296          if (Offset != -1) {
1297            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1298                                                                  Offset));
1299            continue;
1300          }
1301        }
1302      }
1303
1304      UnavailableBlocks.push_back(DepBB);
1305      continue;
1306    }
1307
1308    Instruction *DepInst = DepInfo.getInst();
1309
1310    // Loading the allocation -> undef.
1311    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1312        // Loading immediately after lifetime begin -> undef.
1313        isLifetimeStart(DepInst)) {
1314      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1315                                             UndefValue::get(LI->getType())));
1316      continue;
1317    }
1318
1319    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1320      // Reject loads and stores that are to the same address but are of
1321      // different types if we have to.
1322      if (S->getValueOperand()->getType() != LI->getType()) {
1323        // If the stored value is larger or equal to the loaded value, we can
1324        // reuse it.
1325        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1326                                                        LI->getType(), *TD)) {
1327          UnavailableBlocks.push_back(DepBB);
1328          continue;
1329        }
1330      }
1331
1332      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1333                                                         S->getValueOperand()));
1334      continue;
1335    }
1336
1337    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1338      // If the types mismatch and we can't handle it, reject reuse of the load.
1339      if (LD->getType() != LI->getType()) {
1340        // If the stored value is larger or equal to the loaded value, we can
1341        // reuse it.
1342        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1343          UnavailableBlocks.push_back(DepBB);
1344          continue;
1345        }
1346      }
1347      ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1348      continue;
1349    }
1350
1351    UnavailableBlocks.push_back(DepBB);
1352    continue;
1353  }
1354
1355  // If we have no predecessors that produce a known value for this load, exit
1356  // early.
1357  if (ValuesPerBlock.empty()) return false;
1358
1359  // If all of the instructions we depend on produce a known value for this
1360  // load, then it is fully redundant and we can use PHI insertion to compute
1361  // its value.  Insert PHIs and remove the fully redundant value now.
1362  if (UnavailableBlocks.empty()) {
1363    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1364
1365    // Perform PHI construction.
1366    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1367    LI->replaceAllUsesWith(V);
1368
1369    if (isa<PHINode>(V))
1370      V->takeName(LI);
1371    if (V->getType()->isPointerTy())
1372      MD->invalidateCachedPointerInfo(V);
1373    markInstructionForDeletion(LI);
1374    ++NumGVNLoad;
1375    return true;
1376  }
1377
1378  if (!EnablePRE || !EnableLoadPRE)
1379    return false;
1380
1381  // Okay, we have *some* definitions of the value.  This means that the value
1382  // is available in some of our (transitive) predecessors.  Lets think about
1383  // doing PRE of this load.  This will involve inserting a new load into the
1384  // predecessor when it's not available.  We could do this in general, but
1385  // prefer to not increase code size.  As such, we only do this when we know
1386  // that we only have to insert *one* load (which means we're basically moving
1387  // the load, not inserting a new one).
1388
1389  SmallPtrSet<BasicBlock *, 4> Blockers;
1390  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1391    Blockers.insert(UnavailableBlocks[i]);
1392
1393  // Lets find first basic block with more than one predecessor.  Walk backwards
1394  // through predecessors if needed.
1395  BasicBlock *LoadBB = LI->getParent();
1396  BasicBlock *TmpBB = LoadBB;
1397
1398  bool isSinglePred = false;
1399  bool allSingleSucc = true;
1400  while (TmpBB->getSinglePredecessor()) {
1401    isSinglePred = true;
1402    TmpBB = TmpBB->getSinglePredecessor();
1403    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1404      return false;
1405    if (Blockers.count(TmpBB))
1406      return false;
1407
1408    // If any of these blocks has more than one successor (i.e. if the edge we
1409    // just traversed was critical), then there are other paths through this
1410    // block along which the load may not be anticipated.  Hoisting the load
1411    // above this block would be adding the load to execution paths along
1412    // which it was not previously executed.
1413    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1414      return false;
1415  }
1416
1417  assert(TmpBB);
1418  LoadBB = TmpBB;
1419
1420  // FIXME: It is extremely unclear what this loop is doing, other than
1421  // artificially restricting loadpre.
1422  if (isSinglePred) {
1423    bool isHot = false;
1424    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1425      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1426      if (AV.isSimpleValue())
1427        // "Hot" Instruction is in some loop (because it dominates its dep.
1428        // instruction).
1429        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1430          if (DT->dominates(LI, I)) {
1431            isHot = true;
1432            break;
1433          }
1434    }
1435
1436    // We are interested only in "hot" instructions. We don't want to do any
1437    // mis-optimizations here.
1438    if (!isHot)
1439      return false;
1440  }
1441
1442  // Check to see how many predecessors have the loaded value fully
1443  // available.
1444  DenseMap<BasicBlock*, Value*> PredLoads;
1445  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1446  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1447    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1448  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1449    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1450
1451  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1452  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1453       PI != E; ++PI) {
1454    BasicBlock *Pred = *PI;
1455    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1456      continue;
1457    }
1458    PredLoads[Pred] = 0;
1459
1460    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1461      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1462        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1463              << Pred->getName() << "': " << *LI << '\n');
1464        return false;
1465      }
1466      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1467      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1468    }
1469  }
1470  if (!NeedToSplit.empty()) {
1471    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1472    return false;
1473  }
1474
1475  // Decide whether PRE is profitable for this load.
1476  unsigned NumUnavailablePreds = PredLoads.size();
1477  assert(NumUnavailablePreds != 0 &&
1478         "Fully available value should be eliminated above!");
1479
1480  // If this load is unavailable in multiple predecessors, reject it.
1481  // FIXME: If we could restructure the CFG, we could make a common pred with
1482  // all the preds that don't have an available LI and insert a new load into
1483  // that one block.
1484  if (NumUnavailablePreds != 1)
1485      return false;
1486
1487  // Check if the load can safely be moved to all the unavailable predecessors.
1488  bool CanDoPRE = true;
1489  SmallVector<Instruction*, 8> NewInsts;
1490  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1491         E = PredLoads.end(); I != E; ++I) {
1492    BasicBlock *UnavailablePred = I->first;
1493
1494    // Do PHI translation to get its value in the predecessor if necessary.  The
1495    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1496
1497    // If all preds have a single successor, then we know it is safe to insert
1498    // the load on the pred (?!?), so we can insert code to materialize the
1499    // pointer if it is not available.
1500    PHITransAddr Address(LI->getPointerOperand(), TD);
1501    Value *LoadPtr = 0;
1502    if (allSingleSucc) {
1503      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1504                                                  *DT, NewInsts);
1505    } else {
1506      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1507      LoadPtr = Address.getAddr();
1508    }
1509
1510    // If we couldn't find or insert a computation of this phi translated value,
1511    // we fail PRE.
1512    if (LoadPtr == 0) {
1513      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1514            << *LI->getPointerOperand() << "\n");
1515      CanDoPRE = false;
1516      break;
1517    }
1518
1519    // Make sure it is valid to move this load here.  We have to watch out for:
1520    //  @1 = getelementptr (i8* p, ...
1521    //  test p and branch if == 0
1522    //  load @1
1523    // It is valid to have the getelementptr before the test, even if p can
1524    // be 0, as getelementptr only does address arithmetic.
1525    // If we are not pushing the value through any multiple-successor blocks
1526    // we do not have this case.  Otherwise, check that the load is safe to
1527    // put anywhere; this can be improved, but should be conservatively safe.
1528    if (!allSingleSucc &&
1529        // FIXME: REEVALUTE THIS.
1530        !isSafeToLoadUnconditionally(LoadPtr,
1531                                     UnavailablePred->getTerminator(),
1532                                     LI->getAlignment(), TD)) {
1533      CanDoPRE = false;
1534      break;
1535    }
1536
1537    I->second = LoadPtr;
1538  }
1539
1540  if (!CanDoPRE) {
1541    while (!NewInsts.empty()) {
1542      Instruction *I = NewInsts.pop_back_val();
1543      if (MD) MD->removeInstruction(I);
1544      I->eraseFromParent();
1545    }
1546    return false;
1547  }
1548
1549  // Okay, we can eliminate this load by inserting a reload in the predecessor
1550  // and using PHI construction to get the value in the other predecessors, do
1551  // it.
1552  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1553  DEBUG(if (!NewInsts.empty())
1554          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1555                 << *NewInsts.back() << '\n');
1556
1557  // Assign value numbers to the new instructions.
1558  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1559    // FIXME: We really _ought_ to insert these value numbers into their
1560    // parent's availability map.  However, in doing so, we risk getting into
1561    // ordering issues.  If a block hasn't been processed yet, we would be
1562    // marking a value as AVAIL-IN, which isn't what we intend.
1563    VN.lookup_or_add(NewInsts[i]);
1564  }
1565
1566  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1567         E = PredLoads.end(); I != E; ++I) {
1568    BasicBlock *UnavailablePred = I->first;
1569    Value *LoadPtr = I->second;
1570
1571    Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1572                                        LI->getAlignment(),
1573                                        UnavailablePred->getTerminator());
1574
1575    // Transfer the old load's TBAA tag to the new load.
1576    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1577      NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1578
1579    // Add the newly created load.
1580    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1581                                                        NewLoad));
1582    MD->invalidateCachedPointerInfo(LoadPtr);
1583    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1584  }
1585
1586  // Perform PHI construction.
1587  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1588  LI->replaceAllUsesWith(V);
1589  if (isa<PHINode>(V))
1590    V->takeName(LI);
1591  if (V->getType()->isPointerTy())
1592    MD->invalidateCachedPointerInfo(V);
1593  markInstructionForDeletion(LI);
1594  ++NumPRELoad;
1595  return true;
1596}
1597
1598/// processLoad - Attempt to eliminate a load, first by eliminating it
1599/// locally, and then attempting non-local elimination if that fails.
1600bool GVN::processLoad(LoadInst *L) {
1601  if (!MD)
1602    return false;
1603
1604  if (L->isVolatile())
1605    return false;
1606
1607  // ... to a pointer that has been loaded from before...
1608  MemDepResult Dep = MD->getDependency(L);
1609
1610  // If we have a clobber and target data is around, see if this is a clobber
1611  // that we can fix up through code synthesis.
1612  if (Dep.isClobber() && TD) {
1613    // Check to see if we have something like this:
1614    //   store i32 123, i32* %P
1615    //   %A = bitcast i32* %P to i8*
1616    //   %B = gep i8* %A, i32 1
1617    //   %C = load i8* %B
1618    //
1619    // We could do that by recognizing if the clobber instructions are obviously
1620    // a common base + constant offset, and if the previous store (or memset)
1621    // completely covers this load.  This sort of thing can happen in bitfield
1622    // access code.
1623    Value *AvailVal = 0;
1624    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1625      int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1626                                                  L->getPointerOperand(),
1627                                                  DepSI, *TD);
1628      if (Offset != -1)
1629        AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1630                                        L->getType(), L, *TD);
1631    }
1632
1633    // Check to see if we have something like this:
1634    //    load i32* P
1635    //    load i8* (P+1)
1636    // if we have this, replace the later with an extraction from the former.
1637    if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1638      // If this is a clobber and L is the first instruction in its block, then
1639      // we have the first instruction in the entry block.
1640      if (DepLI == L)
1641        return false;
1642
1643      int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1644                                                 L->getPointerOperand(),
1645                                                 DepLI, *TD);
1646      if (Offset != -1)
1647        AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1648    }
1649
1650    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1651    // a value on from it.
1652    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1653      int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1654                                                    L->getPointerOperand(),
1655                                                    DepMI, *TD);
1656      if (Offset != -1)
1657        AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
1658    }
1659
1660    if (AvailVal) {
1661      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1662            << *AvailVal << '\n' << *L << "\n\n\n");
1663
1664      // Replace the load!
1665      L->replaceAllUsesWith(AvailVal);
1666      if (AvailVal->getType()->isPointerTy())
1667        MD->invalidateCachedPointerInfo(AvailVal);
1668      markInstructionForDeletion(L);
1669      ++NumGVNLoad;
1670      return true;
1671    }
1672  }
1673
1674  // If the value isn't available, don't do anything!
1675  if (Dep.isClobber()) {
1676    DEBUG(
1677      // fast print dep, using operator<< on instruction is too slow.
1678      dbgs() << "GVN: load ";
1679      WriteAsOperand(dbgs(), L);
1680      Instruction *I = Dep.getInst();
1681      dbgs() << " is clobbered by " << *I << '\n';
1682    );
1683    return false;
1684  }
1685
1686  // If it is defined in another block, try harder.
1687  if (Dep.isNonLocal())
1688    return processNonLocalLoad(L);
1689
1690  Instruction *DepInst = Dep.getInst();
1691  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1692    Value *StoredVal = DepSI->getValueOperand();
1693
1694    // The store and load are to a must-aliased pointer, but they may not
1695    // actually have the same type.  See if we know how to reuse the stored
1696    // value (depending on its type).
1697    if (StoredVal->getType() != L->getType()) {
1698      if (TD) {
1699        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1700                                                   L, *TD);
1701        if (StoredVal == 0)
1702          return false;
1703
1704        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1705                     << '\n' << *L << "\n\n\n");
1706      }
1707      else
1708        return false;
1709    }
1710
1711    // Remove it!
1712    L->replaceAllUsesWith(StoredVal);
1713    if (StoredVal->getType()->isPointerTy())
1714      MD->invalidateCachedPointerInfo(StoredVal);
1715    markInstructionForDeletion(L);
1716    ++NumGVNLoad;
1717    return true;
1718  }
1719
1720  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1721    Value *AvailableVal = DepLI;
1722
1723    // The loads are of a must-aliased pointer, but they may not actually have
1724    // the same type.  See if we know how to reuse the previously loaded value
1725    // (depending on its type).
1726    if (DepLI->getType() != L->getType()) {
1727      if (TD) {
1728        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1729                                                      L, *TD);
1730        if (AvailableVal == 0)
1731          return false;
1732
1733        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1734                     << "\n" << *L << "\n\n\n");
1735      }
1736      else
1737        return false;
1738    }
1739
1740    // Remove it!
1741    L->replaceAllUsesWith(AvailableVal);
1742    if (DepLI->getType()->isPointerTy())
1743      MD->invalidateCachedPointerInfo(DepLI);
1744    markInstructionForDeletion(L);
1745    ++NumGVNLoad;
1746    return true;
1747  }
1748
1749  // If this load really doesn't depend on anything, then we must be loading an
1750  // undef value.  This can happen when loading for a fresh allocation with no
1751  // intervening stores, for example.
1752  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1753    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1754    markInstructionForDeletion(L);
1755    ++NumGVNLoad;
1756    return true;
1757  }
1758
1759  // If this load occurs either right after a lifetime begin,
1760  // then the loaded value is undefined.
1761  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1762    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1763      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1764      markInstructionForDeletion(L);
1765      ++NumGVNLoad;
1766      return true;
1767    }
1768  }
1769
1770  return false;
1771}
1772
1773// findLeader - In order to find a leader for a given value number at a
1774// specific basic block, we first obtain the list of all Values for that number,
1775// and then scan the list to find one whose block dominates the block in
1776// question.  This is fast because dominator tree queries consist of only
1777// a few comparisons of DFS numbers.
1778Value *GVN::findLeader(BasicBlock *BB, uint32_t num) {
1779  LeaderTableEntry Vals = LeaderTable[num];
1780  if (!Vals.Val) return 0;
1781
1782  Value *Val = 0;
1783  if (DT->dominates(Vals.BB, BB)) {
1784    Val = Vals.Val;
1785    if (isa<Constant>(Val)) return Val;
1786  }
1787
1788  LeaderTableEntry* Next = Vals.Next;
1789  while (Next) {
1790    if (DT->dominates(Next->BB, BB)) {
1791      if (isa<Constant>(Next->Val)) return Next->Val;
1792      if (!Val) Val = Next->Val;
1793    }
1794
1795    Next = Next->Next;
1796  }
1797
1798  return Val;
1799}
1800
1801
1802/// processInstruction - When calculating availability, handle an instruction
1803/// by inserting it into the appropriate sets
1804bool GVN::processInstruction(Instruction *I) {
1805  // Ignore dbg info intrinsics.
1806  if (isa<DbgInfoIntrinsic>(I))
1807    return false;
1808
1809  // If the instruction can be easily simplified then do so now in preference
1810  // to value numbering it.  Value numbering often exposes redundancies, for
1811  // example if it determines that %y is equal to %x then the instruction
1812  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
1813  if (Value *V = SimplifyInstruction(I, TD, DT)) {
1814    I->replaceAllUsesWith(V);
1815    if (MD && V->getType()->isPointerTy())
1816      MD->invalidateCachedPointerInfo(V);
1817    markInstructionForDeletion(I);
1818    return true;
1819  }
1820
1821  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1822    if (processLoad(LI))
1823      return true;
1824
1825    unsigned Num = VN.lookup_or_add(LI);
1826    addToLeaderTable(Num, LI, LI->getParent());
1827    return false;
1828  }
1829
1830  // For conditions branches, we can perform simple conditional propagation on
1831  // the condition value itself.
1832  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1833    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1834      return false;
1835
1836    Value *BranchCond = BI->getCondition();
1837    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1838
1839    BasicBlock *TrueSucc = BI->getSuccessor(0);
1840    BasicBlock *FalseSucc = BI->getSuccessor(1);
1841
1842    if (TrueSucc->getSinglePredecessor())
1843      addToLeaderTable(CondVN,
1844                   ConstantInt::getTrue(TrueSucc->getContext()),
1845                   TrueSucc);
1846    if (FalseSucc->getSinglePredecessor())
1847      addToLeaderTable(CondVN,
1848                   ConstantInt::getFalse(TrueSucc->getContext()),
1849                   FalseSucc);
1850
1851    return false;
1852  }
1853
1854  // Instructions with void type don't return a value, so there's
1855  // no point in trying to find redudancies in them.
1856  if (I->getType()->isVoidTy()) return false;
1857
1858  uint32_t NextNum = VN.getNextUnusedValueNumber();
1859  unsigned Num = VN.lookup_or_add(I);
1860
1861  // Allocations are always uniquely numbered, so we can save time and memory
1862  // by fast failing them.
1863  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
1864    addToLeaderTable(Num, I, I->getParent());
1865    return false;
1866  }
1867
1868  // If the number we were assigned was a brand new VN, then we don't
1869  // need to do a lookup to see if the number already exists
1870  // somewhere in the domtree: it can't!
1871  if (Num == NextNum) {
1872    addToLeaderTable(Num, I, I->getParent());
1873    return false;
1874  }
1875
1876  // Perform fast-path value-number based elimination of values inherited from
1877  // dominators.
1878  Value *repl = findLeader(I->getParent(), Num);
1879  if (repl == 0) {
1880    // Failure, just remember this instance for future use.
1881    addToLeaderTable(Num, I, I->getParent());
1882    return false;
1883  }
1884
1885  // Remove it!
1886  I->replaceAllUsesWith(repl);
1887  if (MD && repl->getType()->isPointerTy())
1888    MD->invalidateCachedPointerInfo(repl);
1889  markInstructionForDeletion(I);
1890  return true;
1891}
1892
1893/// runOnFunction - This is the main transformation entry point for a function.
1894bool GVN::runOnFunction(Function& F) {
1895  if (!NoLoads)
1896    MD = &getAnalysis<MemoryDependenceAnalysis>();
1897  DT = &getAnalysis<DominatorTree>();
1898  TD = getAnalysisIfAvailable<TargetData>();
1899  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1900  VN.setMemDep(MD);
1901  VN.setDomTree(DT);
1902
1903  bool Changed = false;
1904  bool ShouldContinue = true;
1905
1906  // Merge unconditional branches, allowing PRE to catch more
1907  // optimization opportunities.
1908  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1909    BasicBlock *BB = FI++;
1910
1911    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1912    if (removedBlock) ++NumGVNBlocks;
1913
1914    Changed |= removedBlock;
1915  }
1916
1917  unsigned Iteration = 0;
1918  while (ShouldContinue) {
1919    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
1920    ShouldContinue = iterateOnFunction(F);
1921    if (splitCriticalEdges())
1922      ShouldContinue = true;
1923    Changed |= ShouldContinue;
1924    ++Iteration;
1925  }
1926
1927  if (EnablePRE) {
1928    bool PREChanged = true;
1929    while (PREChanged) {
1930      PREChanged = performPRE(F);
1931      Changed |= PREChanged;
1932    }
1933  }
1934  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1935  // computations into blocks where they become fully redundant.  Note that
1936  // we can't do this until PRE's critical edge splitting updates memdep.
1937  // Actually, when this happens, we should just fully integrate PRE into GVN.
1938
1939  cleanupGlobalSets();
1940
1941  return Changed;
1942}
1943
1944
1945bool GVN::processBlock(BasicBlock *BB) {
1946  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
1947  // (and incrementing BI before processing an instruction).
1948  assert(InstrsToErase.empty() &&
1949         "We expect InstrsToErase to be empty across iterations");
1950  bool ChangedFunction = false;
1951
1952  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1953       BI != BE;) {
1954    ChangedFunction |= processInstruction(BI);
1955    if (InstrsToErase.empty()) {
1956      ++BI;
1957      continue;
1958    }
1959
1960    // If we need some instructions deleted, do it now.
1961    NumGVNInstr += InstrsToErase.size();
1962
1963    // Avoid iterator invalidation.
1964    bool AtStart = BI == BB->begin();
1965    if (!AtStart)
1966      --BI;
1967
1968    for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
1969         E = InstrsToErase.end(); I != E; ++I) {
1970      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
1971      if (MD) MD->removeInstruction(*I);
1972      (*I)->eraseFromParent();
1973      DEBUG(verifyRemoved(*I));
1974    }
1975    InstrsToErase.clear();
1976
1977    if (AtStart)
1978      BI = BB->begin();
1979    else
1980      ++BI;
1981  }
1982
1983  return ChangedFunction;
1984}
1985
1986/// performPRE - Perform a purely local form of PRE that looks for diamond
1987/// control flow patterns and attempts to perform simple PRE at the join point.
1988bool GVN::performPRE(Function &F) {
1989  bool Changed = false;
1990  DenseMap<BasicBlock*, Value*> predMap;
1991  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1992       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1993    BasicBlock *CurrentBlock = *DI;
1994
1995    // Nothing to PRE in the entry block.
1996    if (CurrentBlock == &F.getEntryBlock()) continue;
1997
1998    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1999         BE = CurrentBlock->end(); BI != BE; ) {
2000      Instruction *CurInst = BI++;
2001
2002      if (isa<AllocaInst>(CurInst) ||
2003          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2004          CurInst->getType()->isVoidTy() ||
2005          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2006          isa<DbgInfoIntrinsic>(CurInst))
2007        continue;
2008
2009      // We don't currently value number ANY inline asm calls.
2010      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2011        if (CallI->isInlineAsm())
2012          continue;
2013
2014      uint32_t ValNo = VN.lookup(CurInst);
2015
2016      // Look for the predecessors for PRE opportunities.  We're
2017      // only trying to solve the basic diamond case, where
2018      // a value is computed in the successor and one predecessor,
2019      // but not the other.  We also explicitly disallow cases
2020      // where the successor is its own predecessor, because they're
2021      // more complicated to get right.
2022      unsigned NumWith = 0;
2023      unsigned NumWithout = 0;
2024      BasicBlock *PREPred = 0;
2025      predMap.clear();
2026
2027      for (pred_iterator PI = pred_begin(CurrentBlock),
2028           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2029        BasicBlock *P = *PI;
2030        // We're not interested in PRE where the block is its
2031        // own predecessor, or in blocks with predecessors
2032        // that are not reachable.
2033        if (P == CurrentBlock) {
2034          NumWithout = 2;
2035          break;
2036        } else if (!DT->dominates(&F.getEntryBlock(), P))  {
2037          NumWithout = 2;
2038          break;
2039        }
2040
2041        Value* predV = findLeader(P, ValNo);
2042        if (predV == 0) {
2043          PREPred = P;
2044          ++NumWithout;
2045        } else if (predV == CurInst) {
2046          NumWithout = 2;
2047        } else {
2048          predMap[P] = predV;
2049          ++NumWith;
2050        }
2051      }
2052
2053      // Don't do PRE when it might increase code size, i.e. when
2054      // we would need to insert instructions in more than one pred.
2055      if (NumWithout != 1 || NumWith == 0)
2056        continue;
2057
2058      // Don't do PRE across indirect branch.
2059      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2060        continue;
2061
2062      // We can't do PRE safely on a critical edge, so instead we schedule
2063      // the edge to be split and perform the PRE the next time we iterate
2064      // on the function.
2065      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2066      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2067        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2068        continue;
2069      }
2070
2071      // Instantiate the expression in the predecessor that lacked it.
2072      // Because we are going top-down through the block, all value numbers
2073      // will be available in the predecessor by the time we need them.  Any
2074      // that weren't originally present will have been instantiated earlier
2075      // in this loop.
2076      Instruction *PREInstr = CurInst->clone();
2077      bool success = true;
2078      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2079        Value *Op = PREInstr->getOperand(i);
2080        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2081          continue;
2082
2083        if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2084          PREInstr->setOperand(i, V);
2085        } else {
2086          success = false;
2087          break;
2088        }
2089      }
2090
2091      // Fail out if we encounter an operand that is not available in
2092      // the PRE predecessor.  This is typically because of loads which
2093      // are not value numbered precisely.
2094      if (!success) {
2095        delete PREInstr;
2096        DEBUG(verifyRemoved(PREInstr));
2097        continue;
2098      }
2099
2100      PREInstr->insertBefore(PREPred->getTerminator());
2101      PREInstr->setName(CurInst->getName() + ".pre");
2102      predMap[PREPred] = PREInstr;
2103      VN.add(PREInstr, ValNo);
2104      ++NumGVNPRE;
2105
2106      // Update the availability map to include the new instruction.
2107      addToLeaderTable(ValNo, PREInstr, PREPred);
2108
2109      // Create a PHI to make the value available in this block.
2110      pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
2111      PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE),
2112                                     CurInst->getName() + ".pre-phi",
2113                                     CurrentBlock->begin());
2114      for (pred_iterator PI = PB; PI != PE; ++PI) {
2115        BasicBlock *P = *PI;
2116        Phi->addIncoming(predMap[P], P);
2117      }
2118
2119      VN.add(Phi, ValNo);
2120      addToLeaderTable(ValNo, Phi, CurrentBlock);
2121      Phi->setDebugLoc(CurInst->getDebugLoc());
2122      CurInst->replaceAllUsesWith(Phi);
2123      if (Phi->getType()->isPointerTy()) {
2124        // Because we have added a PHI-use of the pointer value, it has now
2125        // "escaped" from alias analysis' perspective.  We need to inform
2126        // AA of this.
2127        for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee; ++ii)
2128          VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(2*ii));
2129
2130        if (MD)
2131          MD->invalidateCachedPointerInfo(Phi);
2132      }
2133      VN.erase(CurInst);
2134      removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2135
2136      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2137      if (MD) MD->removeInstruction(CurInst);
2138      CurInst->eraseFromParent();
2139      DEBUG(verifyRemoved(CurInst));
2140      Changed = true;
2141    }
2142  }
2143
2144  if (splitCriticalEdges())
2145    Changed = true;
2146
2147  return Changed;
2148}
2149
2150/// splitCriticalEdges - Split critical edges found during the previous
2151/// iteration that may enable further optimization.
2152bool GVN::splitCriticalEdges() {
2153  if (toSplit.empty())
2154    return false;
2155  do {
2156    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2157    SplitCriticalEdge(Edge.first, Edge.second, this);
2158  } while (!toSplit.empty());
2159  if (MD) MD->invalidateCachedPredecessors();
2160  return true;
2161}
2162
2163/// iterateOnFunction - Executes one iteration of GVN
2164bool GVN::iterateOnFunction(Function &F) {
2165  cleanupGlobalSets();
2166
2167  // Top-down walk of the dominator tree
2168  bool Changed = false;
2169#if 0
2170  // Needed for value numbering with phi construction to work.
2171  ReversePostOrderTraversal<Function*> RPOT(&F);
2172  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2173       RE = RPOT.end(); RI != RE; ++RI)
2174    Changed |= processBlock(*RI);
2175#else
2176  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2177       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2178    Changed |= processBlock(DI->getBlock());
2179#endif
2180
2181  return Changed;
2182}
2183
2184void GVN::cleanupGlobalSets() {
2185  VN.clear();
2186  LeaderTable.clear();
2187  TableAllocator.Reset();
2188}
2189
2190/// verifyRemoved - Verify that the specified instruction does not occur in our
2191/// internal data structures.
2192void GVN::verifyRemoved(const Instruction *Inst) const {
2193  VN.verifyRemoved(Inst);
2194
2195  // Walk through the value number scope to make sure the instruction isn't
2196  // ferreted away in it.
2197  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2198       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2199    const LeaderTableEntry *Node = &I->second;
2200    assert(Node->Val != Inst && "Inst still in value numbering scope!");
2201
2202    while (Node->Next) {
2203      Node = Node->Next;
2204      assert(Node->Val != Inst && "Inst still in value numbering scope!");
2205    }
2206  }
2207}
2208