GVN.cpp revision 13d10096e1e2c1185c89d94ca69827a737550afd
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself, it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/Instructions.h"
25#include "llvm/Value.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/DepthFirstIterator.h"
28#include "llvm/ADT/PostOrderIterator.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Analysis/AliasAnalysis.h"
34#include "llvm/Analysis/MemoryDependenceAnalysis.h"
35#include "llvm/Support/CFG.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Transforms/Utils/BasicBlockUtils.h"
40#include <cstdio>
41using namespace llvm;
42
43STATISTIC(NumGVNInstr, "Number of instructions deleted");
44STATISTIC(NumGVNLoad, "Number of loads deleted");
45STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
46STATISTIC(NumGVNBlocks, "Number of blocks merged");
47STATISTIC(NumPRELoad, "Number of loads PRE'd");
48
49static cl::opt<bool> EnablePRE("enable-pre",
50                               cl::init(true), cl::Hidden);
51cl::opt<bool> EnableLoadPRE("enable-load-pre"/*, cl::init(true)*/);
52
53//===----------------------------------------------------------------------===//
54//                         ValueTable Class
55//===----------------------------------------------------------------------===//
56
57/// This class holds the mapping between values and value numbers.  It is used
58/// as an efficient mechanism to determine the expression-wise equivalence of
59/// two values.
60namespace {
61  struct VISIBILITY_HIDDEN Expression {
62    enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM,
63                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
64                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
65                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
66                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
67                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
68                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
69                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
70                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
71                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
72                            EMPTY, TOMBSTONE };
73
74    ExpressionOpcode opcode;
75    const Type* type;
76    uint32_t firstVN;
77    uint32_t secondVN;
78    uint32_t thirdVN;
79    SmallVector<uint32_t, 4> varargs;
80    Value* function;
81
82    Expression() { }
83    Expression(ExpressionOpcode o) : opcode(o) { }
84
85    bool operator==(const Expression &other) const {
86      if (opcode != other.opcode)
87        return false;
88      else if (opcode == EMPTY || opcode == TOMBSTONE)
89        return true;
90      else if (type != other.type)
91        return false;
92      else if (function != other.function)
93        return false;
94      else if (firstVN != other.firstVN)
95        return false;
96      else if (secondVN != other.secondVN)
97        return false;
98      else if (thirdVN != other.thirdVN)
99        return false;
100      else {
101        if (varargs.size() != other.varargs.size())
102          return false;
103
104        for (size_t i = 0; i < varargs.size(); ++i)
105          if (varargs[i] != other.varargs[i])
106            return false;
107
108        return true;
109      }
110    }
111
112    bool operator!=(const Expression &other) const {
113      if (opcode != other.opcode)
114        return true;
115      else if (opcode == EMPTY || opcode == TOMBSTONE)
116        return false;
117      else if (type != other.type)
118        return true;
119      else if (function != other.function)
120        return true;
121      else if (firstVN != other.firstVN)
122        return true;
123      else if (secondVN != other.secondVN)
124        return true;
125      else if (thirdVN != other.thirdVN)
126        return true;
127      else {
128        if (varargs.size() != other.varargs.size())
129          return true;
130
131        for (size_t i = 0; i < varargs.size(); ++i)
132          if (varargs[i] != other.varargs[i])
133            return true;
134
135          return false;
136      }
137    }
138  };
139
140  class VISIBILITY_HIDDEN ValueTable {
141    private:
142      DenseMap<Value*, uint32_t> valueNumbering;
143      DenseMap<Expression, uint32_t> expressionNumbering;
144      AliasAnalysis* AA;
145      MemoryDependenceAnalysis* MD;
146      DominatorTree* DT;
147
148      uint32_t nextValueNumber;
149
150      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
151      Expression::ExpressionOpcode getOpcode(CmpInst* C);
152      Expression::ExpressionOpcode getOpcode(CastInst* C);
153      Expression create_expression(BinaryOperator* BO);
154      Expression create_expression(CmpInst* C);
155      Expression create_expression(ShuffleVectorInst* V);
156      Expression create_expression(ExtractElementInst* C);
157      Expression create_expression(InsertElementInst* V);
158      Expression create_expression(SelectInst* V);
159      Expression create_expression(CastInst* C);
160      Expression create_expression(GetElementPtrInst* G);
161      Expression create_expression(CallInst* C);
162      Expression create_expression(Constant* C);
163    public:
164      ValueTable() : nextValueNumber(1) { }
165      uint32_t lookup_or_add(Value* V);
166      uint32_t lookup(Value* V) const;
167      void add(Value* V, uint32_t num);
168      void clear();
169      void erase(Value* v);
170      unsigned size();
171      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
172      AliasAnalysis *getAliasAnalysis() const { return AA; }
173      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
174      void setDomTree(DominatorTree* D) { DT = D; }
175      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
176  };
177}
178
179namespace llvm {
180template <> struct DenseMapInfo<Expression> {
181  static inline Expression getEmptyKey() {
182    return Expression(Expression::EMPTY);
183  }
184
185  static inline Expression getTombstoneKey() {
186    return Expression(Expression::TOMBSTONE);
187  }
188
189  static unsigned getHashValue(const Expression e) {
190    unsigned hash = e.opcode;
191
192    hash = e.firstVN + hash * 37;
193    hash = e.secondVN + hash * 37;
194    hash = e.thirdVN + hash * 37;
195
196    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
197            (unsigned)((uintptr_t)e.type >> 9)) +
198           hash * 37;
199
200    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
201         E = e.varargs.end(); I != E; ++I)
202      hash = *I + hash * 37;
203
204    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
205            (unsigned)((uintptr_t)e.function >> 9)) +
206           hash * 37;
207
208    return hash;
209  }
210  static bool isEqual(const Expression &LHS, const Expression &RHS) {
211    return LHS == RHS;
212  }
213  static bool isPod() { return true; }
214};
215}
216
217//===----------------------------------------------------------------------===//
218//                     ValueTable Internal Functions
219//===----------------------------------------------------------------------===//
220Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
221  switch(BO->getOpcode()) {
222  default: // THIS SHOULD NEVER HAPPEN
223    assert(0 && "Binary operator with unknown opcode?");
224  case Instruction::Add:  return Expression::ADD;
225  case Instruction::Sub:  return Expression::SUB;
226  case Instruction::Mul:  return Expression::MUL;
227  case Instruction::UDiv: return Expression::UDIV;
228  case Instruction::SDiv: return Expression::SDIV;
229  case Instruction::FDiv: return Expression::FDIV;
230  case Instruction::URem: return Expression::UREM;
231  case Instruction::SRem: return Expression::SREM;
232  case Instruction::FRem: return Expression::FREM;
233  case Instruction::Shl:  return Expression::SHL;
234  case Instruction::LShr: return Expression::LSHR;
235  case Instruction::AShr: return Expression::ASHR;
236  case Instruction::And:  return Expression::AND;
237  case Instruction::Or:   return Expression::OR;
238  case Instruction::Xor:  return Expression::XOR;
239  }
240}
241
242Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
243  if (isa<ICmpInst>(C) || isa<VICmpInst>(C)) {
244    switch (C->getPredicate()) {
245    default:  // THIS SHOULD NEVER HAPPEN
246      assert(0 && "Comparison with unknown predicate?");
247    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
248    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
249    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
250    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
251    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
252    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
253    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
254    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
255    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
256    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
257    }
258  }
259  assert((isa<FCmpInst>(C) || isa<VFCmpInst>(C)) && "Unknown compare");
260  switch (C->getPredicate()) {
261  default: // THIS SHOULD NEVER HAPPEN
262    assert(0 && "Comparison with unknown predicate?");
263  case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
264  case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
265  case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
266  case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
267  case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
268  case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
269  case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
270  case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
271  case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
272  case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
273  case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
274  case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
275  case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
276  case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
277  }
278}
279
280Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
281  switch(C->getOpcode()) {
282  default: // THIS SHOULD NEVER HAPPEN
283    assert(0 && "Cast operator with unknown opcode?");
284  case Instruction::Trunc:    return Expression::TRUNC;
285  case Instruction::ZExt:     return Expression::ZEXT;
286  case Instruction::SExt:     return Expression::SEXT;
287  case Instruction::FPToUI:   return Expression::FPTOUI;
288  case Instruction::FPToSI:   return Expression::FPTOSI;
289  case Instruction::UIToFP:   return Expression::UITOFP;
290  case Instruction::SIToFP:   return Expression::SITOFP;
291  case Instruction::FPTrunc:  return Expression::FPTRUNC;
292  case Instruction::FPExt:    return Expression::FPEXT;
293  case Instruction::PtrToInt: return Expression::PTRTOINT;
294  case Instruction::IntToPtr: return Expression::INTTOPTR;
295  case Instruction::BitCast:  return Expression::BITCAST;
296  }
297}
298
299Expression ValueTable::create_expression(CallInst* C) {
300  Expression e;
301
302  e.type = C->getType();
303  e.firstVN = 0;
304  e.secondVN = 0;
305  e.thirdVN = 0;
306  e.function = C->getCalledFunction();
307  e.opcode = Expression::CALL;
308
309  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
310       I != E; ++I)
311    e.varargs.push_back(lookup_or_add(*I));
312
313  return e;
314}
315
316Expression ValueTable::create_expression(BinaryOperator* BO) {
317  Expression e;
318
319  e.firstVN = lookup_or_add(BO->getOperand(0));
320  e.secondVN = lookup_or_add(BO->getOperand(1));
321  e.thirdVN = 0;
322  e.function = 0;
323  e.type = BO->getType();
324  e.opcode = getOpcode(BO);
325
326  return e;
327}
328
329Expression ValueTable::create_expression(CmpInst* C) {
330  Expression e;
331
332  e.firstVN = lookup_or_add(C->getOperand(0));
333  e.secondVN = lookup_or_add(C->getOperand(1));
334  e.thirdVN = 0;
335  e.function = 0;
336  e.type = C->getType();
337  e.opcode = getOpcode(C);
338
339  return e;
340}
341
342Expression ValueTable::create_expression(CastInst* C) {
343  Expression e;
344
345  e.firstVN = lookup_or_add(C->getOperand(0));
346  e.secondVN = 0;
347  e.thirdVN = 0;
348  e.function = 0;
349  e.type = C->getType();
350  e.opcode = getOpcode(C);
351
352  return e;
353}
354
355Expression ValueTable::create_expression(ShuffleVectorInst* S) {
356  Expression e;
357
358  e.firstVN = lookup_or_add(S->getOperand(0));
359  e.secondVN = lookup_or_add(S->getOperand(1));
360  e.thirdVN = lookup_or_add(S->getOperand(2));
361  e.function = 0;
362  e.type = S->getType();
363  e.opcode = Expression::SHUFFLE;
364
365  return e;
366}
367
368Expression ValueTable::create_expression(ExtractElementInst* E) {
369  Expression e;
370
371  e.firstVN = lookup_or_add(E->getOperand(0));
372  e.secondVN = lookup_or_add(E->getOperand(1));
373  e.thirdVN = 0;
374  e.function = 0;
375  e.type = E->getType();
376  e.opcode = Expression::EXTRACT;
377
378  return e;
379}
380
381Expression ValueTable::create_expression(InsertElementInst* I) {
382  Expression e;
383
384  e.firstVN = lookup_or_add(I->getOperand(0));
385  e.secondVN = lookup_or_add(I->getOperand(1));
386  e.thirdVN = lookup_or_add(I->getOperand(2));
387  e.function = 0;
388  e.type = I->getType();
389  e.opcode = Expression::INSERT;
390
391  return e;
392}
393
394Expression ValueTable::create_expression(SelectInst* I) {
395  Expression e;
396
397  e.firstVN = lookup_or_add(I->getCondition());
398  e.secondVN = lookup_or_add(I->getTrueValue());
399  e.thirdVN = lookup_or_add(I->getFalseValue());
400  e.function = 0;
401  e.type = I->getType();
402  e.opcode = Expression::SELECT;
403
404  return e;
405}
406
407Expression ValueTable::create_expression(GetElementPtrInst* G) {
408  Expression e;
409
410  e.firstVN = lookup_or_add(G->getPointerOperand());
411  e.secondVN = 0;
412  e.thirdVN = 0;
413  e.function = 0;
414  e.type = G->getType();
415  e.opcode = Expression::GEP;
416
417  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
418       I != E; ++I)
419    e.varargs.push_back(lookup_or_add(*I));
420
421  return e;
422}
423
424//===----------------------------------------------------------------------===//
425//                     ValueTable External Functions
426//===----------------------------------------------------------------------===//
427
428/// add - Insert a value into the table with a specified value number.
429void ValueTable::add(Value* V, uint32_t num) {
430  valueNumbering.insert(std::make_pair(V, num));
431}
432
433/// lookup_or_add - Returns the value number for the specified value, assigning
434/// it a new number if it did not have one before.
435uint32_t ValueTable::lookup_or_add(Value* V) {
436  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
437  if (VI != valueNumbering.end())
438    return VI->second;
439
440  if (CallInst* C = dyn_cast<CallInst>(V)) {
441    if (AA->doesNotAccessMemory(C)) {
442      Expression e = create_expression(C);
443
444      DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
445      if (EI != expressionNumbering.end()) {
446        valueNumbering.insert(std::make_pair(V, EI->second));
447        return EI->second;
448      } else {
449        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
450        valueNumbering.insert(std::make_pair(V, nextValueNumber));
451
452        return nextValueNumber++;
453      }
454    } else if (AA->onlyReadsMemory(C)) {
455      Expression e = create_expression(C);
456
457      if (expressionNumbering.find(e) == expressionNumbering.end()) {
458        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
459        valueNumbering.insert(std::make_pair(V, nextValueNumber));
460        return nextValueNumber++;
461      }
462
463      MemDepResult local_dep = MD->getDependency(C);
464
465      if (!local_dep.isDef() && !local_dep.isNonLocal()) {
466        valueNumbering.insert(std::make_pair(V, nextValueNumber));
467        return nextValueNumber++;
468      }
469
470      if (local_dep.isDef()) {
471        CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
472
473        if (local_cdep->getNumOperands() != C->getNumOperands()) {
474          valueNumbering.insert(std::make_pair(V, nextValueNumber));
475          return nextValueNumber++;
476        }
477
478        for (unsigned i = 1; i < C->getNumOperands(); ++i) {
479          uint32_t c_vn = lookup_or_add(C->getOperand(i));
480          uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
481          if (c_vn != cd_vn) {
482            valueNumbering.insert(std::make_pair(V, nextValueNumber));
483            return nextValueNumber++;
484          }
485        }
486
487        uint32_t v = lookup_or_add(local_cdep);
488        valueNumbering.insert(std::make_pair(V, v));
489        return v;
490      }
491
492      // Non-local case.
493      const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
494        MD->getNonLocalCallDependency(CallSite(C));
495      // FIXME: call/call dependencies for readonly calls should return def, not
496      // clobber!  Move the checking logic to MemDep!
497      CallInst* cdep = 0;
498
499      // Check to see if we have a single dominating call instruction that is
500      // identical to C.
501      for (unsigned i = 0, e = deps.size(); i != e; ++i) {
502        const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
503        // Ignore non-local dependencies.
504        if (I->second.isNonLocal())
505          continue;
506
507        // We don't handle non-depedencies.  If we already have a call, reject
508        // instruction dependencies.
509        if (I->second.isClobber() || cdep != 0) {
510          cdep = 0;
511          break;
512        }
513
514        CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
515        // FIXME: All duplicated with non-local case.
516        if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
517          cdep = NonLocalDepCall;
518          continue;
519        }
520
521        cdep = 0;
522        break;
523      }
524
525      if (!cdep) {
526        valueNumbering.insert(std::make_pair(V, nextValueNumber));
527        return nextValueNumber++;
528      }
529
530      if (cdep->getNumOperands() != C->getNumOperands()) {
531        valueNumbering.insert(std::make_pair(V, nextValueNumber));
532        return nextValueNumber++;
533      }
534      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
535        uint32_t c_vn = lookup_or_add(C->getOperand(i));
536        uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
537        if (c_vn != cd_vn) {
538          valueNumbering.insert(std::make_pair(V, nextValueNumber));
539          return nextValueNumber++;
540        }
541      }
542
543      uint32_t v = lookup_or_add(cdep);
544      valueNumbering.insert(std::make_pair(V, v));
545      return v;
546
547    } else {
548      valueNumbering.insert(std::make_pair(V, nextValueNumber));
549      return nextValueNumber++;
550    }
551  } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
552    Expression e = create_expression(BO);
553
554    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
555    if (EI != expressionNumbering.end()) {
556      valueNumbering.insert(std::make_pair(V, EI->second));
557      return EI->second;
558    } else {
559      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
560      valueNumbering.insert(std::make_pair(V, nextValueNumber));
561
562      return nextValueNumber++;
563    }
564  } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
565    Expression e = create_expression(C);
566
567    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
568    if (EI != expressionNumbering.end()) {
569      valueNumbering.insert(std::make_pair(V, EI->second));
570      return EI->second;
571    } else {
572      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
573      valueNumbering.insert(std::make_pair(V, nextValueNumber));
574
575      return nextValueNumber++;
576    }
577  } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
578    Expression e = create_expression(U);
579
580    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
581    if (EI != expressionNumbering.end()) {
582      valueNumbering.insert(std::make_pair(V, EI->second));
583      return EI->second;
584    } else {
585      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
586      valueNumbering.insert(std::make_pair(V, nextValueNumber));
587
588      return nextValueNumber++;
589    }
590  } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
591    Expression e = create_expression(U);
592
593    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
594    if (EI != expressionNumbering.end()) {
595      valueNumbering.insert(std::make_pair(V, EI->second));
596      return EI->second;
597    } else {
598      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
599      valueNumbering.insert(std::make_pair(V, nextValueNumber));
600
601      return nextValueNumber++;
602    }
603  } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
604    Expression e = create_expression(U);
605
606    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
607    if (EI != expressionNumbering.end()) {
608      valueNumbering.insert(std::make_pair(V, EI->second));
609      return EI->second;
610    } else {
611      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
612      valueNumbering.insert(std::make_pair(V, nextValueNumber));
613
614      return nextValueNumber++;
615    }
616  } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
617    Expression e = create_expression(U);
618
619    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
620    if (EI != expressionNumbering.end()) {
621      valueNumbering.insert(std::make_pair(V, EI->second));
622      return EI->second;
623    } else {
624      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
625      valueNumbering.insert(std::make_pair(V, nextValueNumber));
626
627      return nextValueNumber++;
628    }
629  } else if (CastInst* U = dyn_cast<CastInst>(V)) {
630    Expression e = create_expression(U);
631
632    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
633    if (EI != expressionNumbering.end()) {
634      valueNumbering.insert(std::make_pair(V, EI->second));
635      return EI->second;
636    } else {
637      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
638      valueNumbering.insert(std::make_pair(V, nextValueNumber));
639
640      return nextValueNumber++;
641    }
642  } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
643    Expression e = create_expression(U);
644
645    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
646    if (EI != expressionNumbering.end()) {
647      valueNumbering.insert(std::make_pair(V, EI->second));
648      return EI->second;
649    } else {
650      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
651      valueNumbering.insert(std::make_pair(V, nextValueNumber));
652
653      return nextValueNumber++;
654    }
655  } else {
656    valueNumbering.insert(std::make_pair(V, nextValueNumber));
657    return nextValueNumber++;
658  }
659}
660
661/// lookup - Returns the value number of the specified value. Fails if
662/// the value has not yet been numbered.
663uint32_t ValueTable::lookup(Value* V) const {
664  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
665  assert(VI != valueNumbering.end() && "Value not numbered?");
666  return VI->second;
667}
668
669/// clear - Remove all entries from the ValueTable
670void ValueTable::clear() {
671  valueNumbering.clear();
672  expressionNumbering.clear();
673  nextValueNumber = 1;
674}
675
676/// erase - Remove a value from the value numbering
677void ValueTable::erase(Value* V) {
678  valueNumbering.erase(V);
679}
680
681//===----------------------------------------------------------------------===//
682//                         GVN Pass
683//===----------------------------------------------------------------------===//
684
685namespace {
686  struct VISIBILITY_HIDDEN ValueNumberScope {
687    ValueNumberScope* parent;
688    DenseMap<uint32_t, Value*> table;
689
690    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
691  };
692}
693
694namespace {
695
696  class VISIBILITY_HIDDEN GVN : public FunctionPass {
697    bool runOnFunction(Function &F);
698  public:
699    static char ID; // Pass identification, replacement for typeid
700    GVN() : FunctionPass(&ID) { }
701
702  private:
703    MemoryDependenceAnalysis *MD;
704    DominatorTree *DT;
705
706    ValueTable VN;
707    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
708
709    typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
710    PhiMapType phiMap;
711
712
713    // This transformation requires dominator postdominator info
714    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
715      AU.addRequired<DominatorTree>();
716      AU.addRequired<MemoryDependenceAnalysis>();
717      AU.addRequired<AliasAnalysis>();
718
719      AU.addPreserved<DominatorTree>();
720      AU.addPreserved<AliasAnalysis>();
721    }
722
723    // Helper fuctions
724    // FIXME: eliminate or document these better
725    bool processLoad(LoadInst* L,
726                     SmallVectorImpl<Instruction*> &toErase);
727    bool processInstruction(Instruction* I,
728                            SmallVectorImpl<Instruction*> &toErase);
729    bool processNonLocalLoad(LoadInst* L,
730                             SmallVectorImpl<Instruction*> &toErase);
731    bool processBlock(BasicBlock* BB);
732    Value *GetValueForBlock(BasicBlock *BB, Instruction* orig,
733                            DenseMap<BasicBlock*, Value*> &Phis,
734                            bool top_level = false);
735    void dump(DenseMap<uint32_t, Value*>& d);
736    bool iterateOnFunction(Function &F);
737    Value* CollapsePhi(PHINode* p);
738    bool isSafeReplacement(PHINode* p, Instruction* inst);
739    bool performPRE(Function& F);
740    Value* lookupNumber(BasicBlock* BB, uint32_t num);
741    bool mergeBlockIntoPredecessor(BasicBlock* BB);
742    Value* AttemptRedundancyElimination(Instruction* orig, unsigned valno);
743    void cleanupGlobalSets();
744  };
745
746  char GVN::ID = 0;
747}
748
749// createGVNPass - The public interface to this file...
750FunctionPass *llvm::createGVNPass() { return new GVN(); }
751
752static RegisterPass<GVN> X("gvn",
753                           "Global Value Numbering");
754
755void GVN::dump(DenseMap<uint32_t, Value*>& d) {
756  printf("{\n");
757  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
758       E = d.end(); I != E; ++I) {
759      printf("%d\n", I->first);
760      I->second->dump();
761  }
762  printf("}\n");
763}
764
765Value* GVN::CollapsePhi(PHINode* p) {
766  Value* constVal = p->hasConstantValue();
767  if (!constVal) return 0;
768
769  Instruction* inst = dyn_cast<Instruction>(constVal);
770  if (!inst)
771    return constVal;
772
773  if (DT->dominates(inst, p))
774    if (isSafeReplacement(p, inst))
775      return inst;
776  return 0;
777}
778
779bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
780  if (!isa<PHINode>(inst))
781    return true;
782
783  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
784       UI != E; ++UI)
785    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
786      if (use_phi->getParent() == inst->getParent())
787        return false;
788
789  return true;
790}
791
792/// GetValueForBlock - Get the value to use within the specified basic block.
793/// available values are in Phis.
794Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction* orig,
795                             DenseMap<BasicBlock*, Value*> &Phis,
796                             bool top_level) {
797
798  // If we have already computed this value, return the previously computed val.
799  DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
800  if (V != Phis.end() && !top_level) return V->second;
801
802  // If the block is unreachable, just return undef, since this path
803  // can't actually occur at runtime.
804  if (!DT->isReachableFromEntry(BB))
805    return Phis[BB] = UndefValue::get(orig->getType());
806
807  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
808    Value *ret = GetValueForBlock(Pred, orig, Phis);
809    Phis[BB] = ret;
810    return ret;
811  }
812
813  // Get the number of predecessors of this block so we can reserve space later.
814  // If there is already a PHI in it, use the #preds from it, otherwise count.
815  // Getting it from the PHI is constant time.
816  unsigned NumPreds;
817  if (PHINode *ExistingPN = dyn_cast<PHINode>(BB->begin()))
818    NumPreds = ExistingPN->getNumIncomingValues();
819  else
820    NumPreds = std::distance(pred_begin(BB), pred_end(BB));
821
822  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
823  // now, then get values to fill in the incoming values for the PHI.
824  PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
825                                BB->begin());
826  PN->reserveOperandSpace(NumPreds);
827
828  Phis.insert(std::make_pair(BB, PN));
829
830  // Fill in the incoming values for the block.
831  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
832    Value* val = GetValueForBlock(*PI, orig, Phis);
833    PN->addIncoming(val, *PI);
834  }
835
836  VN.getAliasAnalysis()->copyValue(orig, PN);
837
838  // Attempt to collapse PHI nodes that are trivially redundant
839  Value* v = CollapsePhi(PN);
840  if (!v) {
841    // Cache our phi construction results
842    if (LoadInst* L = dyn_cast<LoadInst>(orig))
843      phiMap[L->getPointerOperand()].insert(PN);
844    else
845      phiMap[orig].insert(PN);
846
847    return PN;
848  }
849
850  PN->replaceAllUsesWith(v);
851  if (isa<PointerType>(v->getType()))
852    MD->invalidateCachedPointerInfo(v);
853
854  for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
855       E = Phis.end(); I != E; ++I)
856    if (I->second == PN)
857      I->second = v;
858
859  DEBUG(cerr << "GVN removed: " << *PN);
860  MD->removeInstruction(PN);
861  PN->eraseFromParent();
862
863  Phis[BB] = v;
864  return v;
865}
866
867/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
868/// we're analyzing is fully available in the specified block.  As we go, keep
869/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
870/// map is actually a tri-state map with the following values:
871///   0) we know the block *is not* fully available.
872///   1) we know the block *is* fully available.
873///   2) we do not know whether the block is fully available or not, but we are
874///      currently speculating that it will be.
875///   3) we are speculating for this block and have used that to speculate for
876///      other blocks.
877static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
878                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
879  // Optimistically assume that the block is fully available and check to see
880  // if we already know about this block in one lookup.
881  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
882    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
883
884  // If the entry already existed for this block, return the precomputed value.
885  if (!IV.second) {
886    // If this is a speculative "available" value, mark it as being used for
887    // speculation of other blocks.
888    if (IV.first->second == 2)
889      IV.first->second = 3;
890    return IV.first->second != 0;
891  }
892
893  // Otherwise, see if it is fully available in all predecessors.
894  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
895
896  // If this block has no predecessors, it isn't live-in here.
897  if (PI == PE)
898    goto SpeculationFailure;
899
900  for (; PI != PE; ++PI)
901    // If the value isn't fully available in one of our predecessors, then it
902    // isn't fully available in this block either.  Undo our previous
903    // optimistic assumption and bail out.
904    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
905      goto SpeculationFailure;
906
907  return true;
908
909// SpeculationFailure - If we get here, we found out that this is not, after
910// all, a fully-available block.  We have a problem if we speculated on this and
911// used the speculation to mark other blocks as available.
912SpeculationFailure:
913  char &BBVal = FullyAvailableBlocks[BB];
914
915  // If we didn't speculate on this, just return with it set to false.
916  if (BBVal == 2) {
917    BBVal = 0;
918    return false;
919  }
920
921  // If we did speculate on this value, we could have blocks set to 1 that are
922  // incorrect.  Walk the (transitive) successors of this block and mark them as
923  // 0 if set to one.
924  SmallVector<BasicBlock*, 32> BBWorklist;
925  BBWorklist.push_back(BB);
926
927  while (!BBWorklist.empty()) {
928    BasicBlock *Entry = BBWorklist.pop_back_val();
929    // Note that this sets blocks to 0 (unavailable) if they happen to not
930    // already be in FullyAvailableBlocks.  This is safe.
931    char &EntryVal = FullyAvailableBlocks[Entry];
932    if (EntryVal == 0) continue;  // Already unavailable.
933
934    // Mark as unavailable.
935    EntryVal = 0;
936
937    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
938      BBWorklist.push_back(*I);
939  }
940
941  return false;
942}
943
944/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
945/// non-local by performing PHI construction.
946bool GVN::processNonLocalLoad(LoadInst *LI,
947                              SmallVectorImpl<Instruction*> &toErase) {
948  // Find the non-local dependencies of the load.
949  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
950  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
951                                   Deps);
952  //DEBUG(cerr << "INVESTIGATING NONLOCAL LOAD: " << Deps.size() << *LI);
953
954  // If we had to process more than one hundred blocks to find the
955  // dependencies, this load isn't worth worrying about.  Optimizing
956  // it will be too expensive.
957  if (Deps.size() > 100)
958    return false;
959
960  // Filter out useless results (non-locals, etc).  Keep track of the blocks
961  // where we have a value available in repl, also keep track of whether we see
962  // dependencies that produce an unknown value for the load (such as a call
963  // that could potentially clobber the load).
964  SmallVector<std::pair<BasicBlock*, Value*>, 16> ValuesPerBlock;
965  SmallVector<BasicBlock*, 16> UnavailableBlocks;
966
967  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
968    BasicBlock *DepBB = Deps[i].first;
969    MemDepResult DepInfo = Deps[i].second;
970
971    if (DepInfo.isClobber()) {
972      UnavailableBlocks.push_back(DepBB);
973      continue;
974    }
975
976    Instruction *DepInst = DepInfo.getInst();
977
978    // Loading the allocation -> undef.
979    if (isa<AllocationInst>(DepInst)) {
980      ValuesPerBlock.push_back(std::make_pair(DepBB,
981                                              UndefValue::get(LI->getType())));
982      continue;
983    }
984
985    if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
986      // Reject loads and stores that are to the same address but are of
987      // different types.
988      // NOTE: 403.gcc does have this case (e.g. in readonly_fields_p) because
989      // of bitfield access, it would be interesting to optimize for it at some
990      // point.
991      if (S->getOperand(0)->getType() != LI->getType()) {
992        UnavailableBlocks.push_back(DepBB);
993        continue;
994      }
995
996      ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0)));
997
998    } else if (LoadInst* LD = dyn_cast<LoadInst>(DepInst)) {
999      if (LD->getType() != LI->getType()) {
1000        UnavailableBlocks.push_back(DepBB);
1001        continue;
1002      }
1003      ValuesPerBlock.push_back(std::make_pair(DepBB, LD));
1004    } else {
1005      UnavailableBlocks.push_back(DepBB);
1006      continue;
1007    }
1008  }
1009
1010  // If we have no predecessors that produce a known value for this load, exit
1011  // early.
1012  if (ValuesPerBlock.empty()) return false;
1013
1014  // If all of the instructions we depend on produce a known value for this
1015  // load, then it is fully redundant and we can use PHI insertion to compute
1016  // its value.  Insert PHIs and remove the fully redundant value now.
1017  if (UnavailableBlocks.empty()) {
1018    // Use cached PHI construction information from previous runs
1019    SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1020    // FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
1021    for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1022         I != E; ++I) {
1023      if ((*I)->getParent() == LI->getParent()) {
1024        DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD #1: " << *LI);
1025        LI->replaceAllUsesWith(*I);
1026        if (isa<PointerType>((*I)->getType()))
1027          MD->invalidateCachedPointerInfo(*I);
1028        toErase.push_back(LI);
1029        NumGVNLoad++;
1030        return true;
1031      }
1032
1033      ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1034    }
1035
1036    DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD: " << *LI);
1037
1038    DenseMap<BasicBlock*, Value*> BlockReplValues;
1039    BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1040    // Perform PHI construction.
1041    Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1042    LI->replaceAllUsesWith(v);
1043
1044    if (!isa<GlobalValue>(v))
1045      v->takeName(LI);
1046    if (isa<PointerType>(v->getType()))
1047      MD->invalidateCachedPointerInfo(v);
1048    toErase.push_back(LI);
1049    NumGVNLoad++;
1050    return true;
1051  }
1052
1053  if (!EnablePRE || !EnableLoadPRE)
1054    return false;
1055
1056  // Okay, we have *some* definitions of the value.  This means that the value
1057  // is available in some of our (transitive) predecessors.  Lets think about
1058  // doing PRE of this load.  This will involve inserting a new load into the
1059  // predecessor when it's not available.  We could do this in general, but
1060  // prefer to not increase code size.  As such, we only do this when we know
1061  // that we only have to insert *one* load (which means we're basically moving
1062  // the load, not inserting a new one).
1063
1064  // Everything we do here is based on local predecessors of LI's block.  If it
1065  // only has one predecessor, bail now.
1066  BasicBlock *LoadBB = LI->getParent();
1067  if (LoadBB->getSinglePredecessor())
1068    return false;
1069
1070  // If we have a repl set with LI itself in it, this means we have a loop where
1071  // at least one of the values is LI.  Since this means that we won't be able
1072  // to eliminate LI even if we insert uses in the other predecessors, we will
1073  // end up increasing code size.  Reject this by scanning for LI.
1074  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1075    if (ValuesPerBlock[i].second == LI)
1076      return false;
1077
1078  // Okay, we have some hope :).  Check to see if the loaded value is fully
1079  // available in all but one predecessor.
1080  // FIXME: If we could restructure the CFG, we could make a common pred with
1081  // all the preds that don't have an available LI and insert a new load into
1082  // that one block.
1083  BasicBlock *UnavailablePred = 0;
1084
1085  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1086  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1087    FullyAvailableBlocks[ValuesPerBlock[i].first] = true;
1088  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1089    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1090
1091  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1092       PI != E; ++PI) {
1093    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1094      continue;
1095
1096    // If this load is not available in multiple predecessors, reject it.
1097    if (UnavailablePred && UnavailablePred != *PI)
1098      return false;
1099    UnavailablePred = *PI;
1100  }
1101
1102  assert(UnavailablePred != 0 &&
1103         "Fully available value should be eliminated above!");
1104
1105  // If the loaded pointer is PHI node defined in this block, do PHI translation
1106  // to get its value in the predecessor.
1107  Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
1108
1109  // Make sure the value is live in the predecessor.  If it was defined by a
1110  // non-PHI instruction in this block, we don't know how to recompute it above.
1111  if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
1112    if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
1113      DEBUG(cerr << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
1114                 << *LPInst << *LI << "\n");
1115      return false;
1116    }
1117
1118  // We don't currently handle critical edges :(
1119  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1120    DEBUG(cerr << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1121                << UnavailablePred->getName() << "': " << *LI);
1122    return false;
1123  }
1124
1125  // Okay, we can eliminate this load by inserting a reload in the predecessor
1126  // and using PHI construction to get the value in the other predecessors, do
1127  // it.
1128  DEBUG(cerr << "GVN REMOVING PRE LOAD: " << *LI);
1129
1130  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1131                                LI->getAlignment(),
1132                                UnavailablePred->getTerminator());
1133
1134  DenseMap<BasicBlock*, Value*> BlockReplValues;
1135  BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1136  BlockReplValues[UnavailablePred] = NewLoad;
1137
1138  // Perform PHI construction.
1139  Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1140  LI->replaceAllUsesWith(v);
1141  if (!isa<GlobalValue>(v))
1142    v->takeName(LI);
1143  if (isa<PointerType>(v->getType()))
1144    MD->invalidateCachedPointerInfo(v);
1145  toErase.push_back(LI);
1146  NumPRELoad++;
1147  return true;
1148}
1149
1150/// processLoad - Attempt to eliminate a load, first by eliminating it
1151/// locally, and then attempting non-local elimination if that fails.
1152bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1153  if (L->isVolatile())
1154    return false;
1155
1156  Value* pointer = L->getPointerOperand();
1157
1158  // ... to a pointer that has been loaded from before...
1159  MemDepResult dep = MD->getDependency(L);
1160
1161  // If the value isn't available, don't do anything!
1162  if (dep.isClobber())
1163    return false;
1164
1165  // If it is defined in another block, try harder.
1166  if (dep.isNonLocal())
1167    return processNonLocalLoad(L, toErase);
1168
1169  Instruction *DepInst = dep.getInst();
1170  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1171    // Only forward substitute stores to loads of the same type.
1172    // FIXME: Could do better!
1173    if (DepSI->getPointerOperand()->getType() != pointer->getType())
1174      return false;
1175
1176    // Remove it!
1177    L->replaceAllUsesWith(DepSI->getOperand(0));
1178    if (isa<PointerType>(DepSI->getOperand(0)->getType()))
1179      MD->invalidateCachedPointerInfo(DepSI->getOperand(0));
1180    toErase.push_back(L);
1181    NumGVNLoad++;
1182    return true;
1183  }
1184
1185  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1186    // Only forward substitute stores to loads of the same type.
1187    // FIXME: Could do better! load i32 -> load i8 -> truncate on little endian.
1188    if (DepLI->getType() != L->getType())
1189      return false;
1190
1191    // Remove it!
1192    L->replaceAllUsesWith(DepLI);
1193    if (isa<PointerType>(DepLI->getType()))
1194      MD->invalidateCachedPointerInfo(DepLI);
1195    toErase.push_back(L);
1196    NumGVNLoad++;
1197    return true;
1198  }
1199
1200  // If this load really doesn't depend on anything, then we must be loading an
1201  // undef value.  This can happen when loading for a fresh allocation with no
1202  // intervening stores, for example.
1203  if (isa<AllocationInst>(DepInst)) {
1204    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1205    toErase.push_back(L);
1206    NumGVNLoad++;
1207    return true;
1208  }
1209
1210  return false;
1211}
1212
1213Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
1214  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1215  if (I == localAvail.end())
1216    return 0;
1217
1218  ValueNumberScope* locals = I->second;
1219
1220  while (locals) {
1221    DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
1222    if (I != locals->table.end())
1223      return I->second;
1224    else
1225      locals = locals->parent;
1226  }
1227
1228  return 0;
1229}
1230
1231/// AttemptRedundancyElimination - If the "fast path" of redundancy elimination
1232/// by inheritance from the dominator fails, see if we can perform phi
1233/// construction to eliminate the redundancy.
1234Value* GVN::AttemptRedundancyElimination(Instruction* orig, unsigned valno) {
1235  BasicBlock* BaseBlock = orig->getParent();
1236
1237  SmallPtrSet<BasicBlock*, 4> Visited;
1238  SmallVector<BasicBlock*, 8> Stack;
1239  Stack.push_back(BaseBlock);
1240
1241  DenseMap<BasicBlock*, Value*> Results;
1242
1243  // Walk backwards through our predecessors, looking for instances of the
1244  // value number we're looking for.  Instances are recorded in the Results
1245  // map, which is then used to perform phi construction.
1246  while (!Stack.empty()) {
1247    BasicBlock* Current = Stack.back();
1248    Stack.pop_back();
1249
1250    // If we've walked all the way to a proper dominator, then give up. Cases
1251    // where the instance is in the dominator will have been caught by the fast
1252    // path, and any cases that require phi construction further than this are
1253    // probably not worth it anyways.  Note that this is a SIGNIFICANT compile
1254    // time improvement.
1255    if (DT->properlyDominates(Current, orig->getParent())) return 0;
1256
1257    DenseMap<BasicBlock*, ValueNumberScope*>::iterator LA =
1258                                                       localAvail.find(Current);
1259    if (LA == localAvail.end()) return 0;
1260    DenseMap<unsigned, Value*>::iterator V = LA->second->table.find(valno);
1261
1262    if (V != LA->second->table.end()) {
1263      // Found an instance, record it.
1264      Results.insert(std::make_pair(Current, V->second));
1265      continue;
1266    }
1267
1268    // If we reach the beginning of the function, then give up.
1269    if (pred_begin(Current) == pred_end(Current))
1270      return 0;
1271
1272    for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current);
1273         PI != PE; ++PI)
1274      if (Visited.insert(*PI))
1275        Stack.push_back(*PI);
1276  }
1277
1278  // If we didn't find instances, give up.  Otherwise, perform phi construction.
1279  if (Results.size() == 0)
1280    return 0;
1281  else
1282    return GetValueForBlock(BaseBlock, orig, Results, true);
1283}
1284
1285/// processInstruction - When calculating availability, handle an instruction
1286/// by inserting it into the appropriate sets
1287bool GVN::processInstruction(Instruction *I,
1288                             SmallVectorImpl<Instruction*> &toErase) {
1289  if (LoadInst* L = dyn_cast<LoadInst>(I)) {
1290    bool changed = processLoad(L, toErase);
1291
1292    if (!changed) {
1293      unsigned num = VN.lookup_or_add(L);
1294      localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
1295    }
1296
1297    return changed;
1298  }
1299
1300  uint32_t nextNum = VN.getNextUnusedValueNumber();
1301  unsigned num = VN.lookup_or_add(I);
1302
1303  // Allocations are always uniquely numbered, so we can save time and memory
1304  // by fast failing them.
1305  if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
1306    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1307    return false;
1308  }
1309
1310  // Collapse PHI nodes
1311  if (PHINode* p = dyn_cast<PHINode>(I)) {
1312    Value* constVal = CollapsePhi(p);
1313
1314    if (constVal) {
1315      for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
1316           PI != PE; ++PI)
1317        PI->second.erase(p);
1318
1319      p->replaceAllUsesWith(constVal);
1320      if (isa<PointerType>(constVal->getType()))
1321        MD->invalidateCachedPointerInfo(constVal);
1322      toErase.push_back(p);
1323    } else {
1324      localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1325    }
1326
1327  // If the number we were assigned was a brand new VN, then we don't
1328  // need to do a lookup to see if the number already exists
1329  // somewhere in the domtree: it can't!
1330  } else if (num == nextNum) {
1331    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1332
1333  // Perform fast-path value-number based elimination of values inherited from
1334  // dominators.
1335  } else if (Value* repl = lookupNumber(I->getParent(), num)) {
1336    // Remove it!
1337    VN.erase(I);
1338    I->replaceAllUsesWith(repl);
1339    if (isa<PointerType>(repl->getType()))
1340      MD->invalidateCachedPointerInfo(repl);
1341    toErase.push_back(I);
1342    return true;
1343
1344#if 0
1345  // Perform slow-pathvalue-number based elimination with phi construction.
1346  } else if (Value* repl = AttemptRedundancyElimination(I, num)) {
1347    // Remove it!
1348    VN.erase(I);
1349    I->replaceAllUsesWith(repl);
1350    if (isa<PointerType>(repl->getType()))
1351      MD->invalidateCachedPointerInfo(repl);
1352    toErase.push_back(I);
1353    return true;
1354#endif
1355  } else {
1356    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1357  }
1358
1359  return false;
1360}
1361
1362// GVN::runOnFunction - This is the main transformation entry point for a
1363// function.
1364//
1365bool GVN::runOnFunction(Function& F) {
1366  MD = &getAnalysis<MemoryDependenceAnalysis>();
1367  DT = &getAnalysis<DominatorTree>();
1368  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1369  VN.setMemDep(MD);
1370  VN.setDomTree(DT);
1371
1372  bool changed = false;
1373  bool shouldContinue = true;
1374
1375  // Merge unconditional branches, allowing PRE to catch more
1376  // optimization opportunities.
1377  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1378    BasicBlock* BB = FI;
1379    ++FI;
1380    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1381    if (removedBlock) NumGVNBlocks++;
1382
1383    changed |= removedBlock;
1384  }
1385
1386  unsigned Iteration = 0;
1387
1388  while (shouldContinue) {
1389    DEBUG(cerr << "GVN iteration: " << Iteration << "\n");
1390    shouldContinue = iterateOnFunction(F);
1391    changed |= shouldContinue;
1392    ++Iteration;
1393  }
1394
1395  if (EnablePRE) {
1396    bool PREChanged = true;
1397    while (PREChanged) {
1398      PREChanged = performPRE(F);
1399      changed |= PREChanged;
1400    }
1401  }
1402  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1403  // computations into blocks where they become fully redundant.  Note that
1404  // we can't do this until PRE's critical edge splitting updates memdep.
1405  // Actually, when this happens, we should just fully integrate PRE into GVN.
1406
1407  cleanupGlobalSets();
1408
1409  return changed;
1410}
1411
1412
1413bool GVN::processBlock(BasicBlock* BB) {
1414  DomTreeNode* DTN = DT->getNode(BB);
1415  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1416  // incrementing BI before processing an instruction).
1417  SmallVector<Instruction*, 8> toErase;
1418  bool changed_function = false;
1419
1420  if (DTN->getIDom())
1421    localAvail[BB] =
1422                  new ValueNumberScope(localAvail[DTN->getIDom()->getBlock()]);
1423  else
1424    localAvail[BB] = new ValueNumberScope(0);
1425
1426  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1427       BI != BE;) {
1428    changed_function |= processInstruction(BI, toErase);
1429    if (toErase.empty()) {
1430      ++BI;
1431      continue;
1432    }
1433
1434    // If we need some instructions deleted, do it now.
1435    NumGVNInstr += toErase.size();
1436
1437    // Avoid iterator invalidation.
1438    bool AtStart = BI == BB->begin();
1439    if (!AtStart)
1440      --BI;
1441
1442    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1443         E = toErase.end(); I != E; ++I) {
1444      DEBUG(cerr << "GVN removed: " << **I);
1445      MD->removeInstruction(*I);
1446      (*I)->eraseFromParent();
1447    }
1448    toErase.clear();
1449
1450    if (AtStart)
1451      BI = BB->begin();
1452    else
1453      ++BI;
1454  }
1455
1456  return changed_function;
1457}
1458
1459/// performPRE - Perform a purely local form of PRE that looks for diamond
1460/// control flow patterns and attempts to perform simple PRE at the join point.
1461bool GVN::performPRE(Function& F) {
1462  bool Changed = false;
1463  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1464  DenseMap<BasicBlock*, Value*> predMap;
1465  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1466       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1467    BasicBlock* CurrentBlock = *DI;
1468
1469    // Nothing to PRE in the entry block.
1470    if (CurrentBlock == &F.getEntryBlock()) continue;
1471
1472    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1473         BE = CurrentBlock->end(); BI != BE; ) {
1474      Instruction *CurInst = BI++;
1475
1476      if (isa<AllocationInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
1477          isa<PHINode>(CurInst) || CurInst->mayReadFromMemory() ||
1478          CurInst->mayWriteToMemory())
1479        continue;
1480
1481      uint32_t valno = VN.lookup(CurInst);
1482
1483      // Look for the predecessors for PRE opportunities.  We're
1484      // only trying to solve the basic diamond case, where
1485      // a value is computed in the successor and one predecessor,
1486      // but not the other.  We also explicitly disallow cases
1487      // where the successor is its own predecessor, because they're
1488      // more complicated to get right.
1489      unsigned numWith = 0;
1490      unsigned numWithout = 0;
1491      BasicBlock* PREPred = 0;
1492      predMap.clear();
1493
1494      for (pred_iterator PI = pred_begin(CurrentBlock),
1495           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1496        // We're not interested in PRE where the block is its
1497        // own predecessor, on in blocks with predecessors
1498        // that are not reachable.
1499        if (*PI == CurrentBlock) {
1500          numWithout = 2;
1501          break;
1502        } else if (!localAvail.count(*PI))  {
1503          numWithout = 2;
1504          break;
1505        }
1506
1507        DenseMap<uint32_t, Value*>::iterator predV =
1508                                            localAvail[*PI]->table.find(valno);
1509        if (predV == localAvail[*PI]->table.end()) {
1510          PREPred = *PI;
1511          numWithout++;
1512        } else if (predV->second == CurInst) {
1513          numWithout = 2;
1514        } else {
1515          predMap[*PI] = predV->second;
1516          numWith++;
1517        }
1518      }
1519
1520      // Don't do PRE when it might increase code size, i.e. when
1521      // we would need to insert instructions in more than one pred.
1522      if (numWithout != 1 || numWith == 0)
1523        continue;
1524
1525      // We can't do PRE safely on a critical edge, so instead we schedule
1526      // the edge to be split and perform the PRE the next time we iterate
1527      // on the function.
1528      unsigned succNum = 0;
1529      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1530           i != e; ++i)
1531        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1532          succNum = i;
1533          break;
1534        }
1535
1536      if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
1537        toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
1538        continue;
1539      }
1540
1541      // Instantiate the expression the in predecessor that lacked it.
1542      // Because we are going top-down through the block, all value numbers
1543      // will be available in the predecessor by the time we need them.  Any
1544      // that weren't original present will have been instantiated earlier
1545      // in this loop.
1546      Instruction* PREInstr = CurInst->clone();
1547      bool success = true;
1548      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1549        Value *Op = PREInstr->getOperand(i);
1550        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1551          continue;
1552
1553        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1554          PREInstr->setOperand(i, V);
1555        } else {
1556          success = false;
1557          break;
1558        }
1559      }
1560
1561      // Fail out if we encounter an operand that is not available in
1562      // the PRE predecessor.  This is typically because of loads which
1563      // are not value numbered precisely.
1564      if (!success) {
1565        delete PREInstr;
1566        continue;
1567      }
1568
1569      PREInstr->insertBefore(PREPred->getTerminator());
1570      PREInstr->setName(CurInst->getName() + ".pre");
1571      predMap[PREPred] = PREInstr;
1572      VN.add(PREInstr, valno);
1573      NumGVNPRE++;
1574
1575      // Update the availability map to include the new instruction.
1576      localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
1577
1578      // Create a PHI to make the value available in this block.
1579      PHINode* Phi = PHINode::Create(CurInst->getType(),
1580                                     CurInst->getName() + ".pre-phi",
1581                                     CurrentBlock->begin());
1582      for (pred_iterator PI = pred_begin(CurrentBlock),
1583           PE = pred_end(CurrentBlock); PI != PE; ++PI)
1584        Phi->addIncoming(predMap[*PI], *PI);
1585
1586      VN.add(Phi, valno);
1587      localAvail[CurrentBlock]->table[valno] = Phi;
1588
1589      CurInst->replaceAllUsesWith(Phi);
1590      if (isa<PointerType>(Phi->getType()))
1591        MD->invalidateCachedPointerInfo(Phi);
1592      VN.erase(CurInst);
1593
1594      DEBUG(cerr << "GVN PRE removed: " << *CurInst);
1595      MD->removeInstruction(CurInst);
1596      CurInst->eraseFromParent();
1597      Changed = true;
1598    }
1599  }
1600
1601  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
1602       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
1603    SplitCriticalEdge(I->first, I->second, this);
1604
1605  return Changed || toSplit.size();
1606}
1607
1608// iterateOnFunction - Executes one iteration of GVN
1609bool GVN::iterateOnFunction(Function &F) {
1610  cleanupGlobalSets();
1611
1612  // Top-down walk of the dominator tree
1613  bool changed = false;
1614#if 0
1615  // Needed for value numbering with phi construction to work.
1616  ReversePostOrderTraversal<Function*> RPOT(&F);
1617  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
1618       RE = RPOT.end(); RI != RE; ++RI)
1619    changed |= processBlock(*RI);
1620#else
1621  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1622       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
1623    changed |= processBlock(DI->getBlock());
1624#endif
1625
1626  return changed;
1627}
1628
1629void GVN::cleanupGlobalSets() {
1630  VN.clear();
1631  phiMap.clear();
1632
1633  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1634       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
1635    delete I->second;
1636  localAvail.clear();
1637}
1638