GVN.cpp revision 158d86e5b0d0a11bfce694b16bafb60c7f9507ff
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Value.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/PostOrderIterator.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/Dominators.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/MallocHelper.h"
37#include "llvm/Analysis/MemoryDependenceAnalysis.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Transforms/Utils/SSAUpdater.h"
48#include <cstdio>
49using namespace llvm;
50
51STATISTIC(NumGVNInstr,  "Number of instructions deleted");
52STATISTIC(NumGVNLoad,   "Number of loads deleted");
53STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
54STATISTIC(NumGVNBlocks, "Number of blocks merged");
55STATISTIC(NumPRELoad,   "Number of loads PRE'd");
56
57static cl::opt<bool> EnablePRE("enable-pre",
58                               cl::init(true), cl::Hidden);
59static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
60
61//===----------------------------------------------------------------------===//
62//                         ValueTable Class
63//===----------------------------------------------------------------------===//
64
65/// This class holds the mapping between values and value numbers.  It is used
66/// as an efficient mechanism to determine the expression-wise equivalence of
67/// two values.
68namespace {
69  struct Expression {
70    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
71                            UDIV, SDIV, FDIV, UREM, SREM,
72                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
73                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
74                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
75                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
76                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
77                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
78                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
79                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
80                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
81                            EMPTY, TOMBSTONE };
82
83    ExpressionOpcode opcode;
84    const Type* type;
85    uint32_t firstVN;
86    uint32_t secondVN;
87    uint32_t thirdVN;
88    SmallVector<uint32_t, 4> varargs;
89    Value *function;
90
91    Expression() { }
92    Expression(ExpressionOpcode o) : opcode(o) { }
93
94    bool operator==(const Expression &other) const {
95      if (opcode != other.opcode)
96        return false;
97      else if (opcode == EMPTY || opcode == TOMBSTONE)
98        return true;
99      else if (type != other.type)
100        return false;
101      else if (function != other.function)
102        return false;
103      else if (firstVN != other.firstVN)
104        return false;
105      else if (secondVN != other.secondVN)
106        return false;
107      else if (thirdVN != other.thirdVN)
108        return false;
109      else {
110        if (varargs.size() != other.varargs.size())
111          return false;
112
113        for (size_t i = 0; i < varargs.size(); ++i)
114          if (varargs[i] != other.varargs[i])
115            return false;
116
117        return true;
118      }
119    }
120
121    bool operator!=(const Expression &other) const {
122      return !(*this == other);
123    }
124  };
125
126  class ValueTable {
127    private:
128      DenseMap<Value*, uint32_t> valueNumbering;
129      DenseMap<Expression, uint32_t> expressionNumbering;
130      AliasAnalysis* AA;
131      MemoryDependenceAnalysis* MD;
132      DominatorTree* DT;
133
134      uint32_t nextValueNumber;
135
136      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
137      Expression::ExpressionOpcode getOpcode(CmpInst* C);
138      Expression::ExpressionOpcode getOpcode(CastInst* C);
139      Expression create_expression(BinaryOperator* BO);
140      Expression create_expression(CmpInst* C);
141      Expression create_expression(ShuffleVectorInst* V);
142      Expression create_expression(ExtractElementInst* C);
143      Expression create_expression(InsertElementInst* V);
144      Expression create_expression(SelectInst* V);
145      Expression create_expression(CastInst* C);
146      Expression create_expression(GetElementPtrInst* G);
147      Expression create_expression(CallInst* C);
148      Expression create_expression(Constant* C);
149    public:
150      ValueTable() : nextValueNumber(1) { }
151      uint32_t lookup_or_add(Value *V);
152      uint32_t lookup(Value *V) const;
153      void add(Value *V, uint32_t num);
154      void clear();
155      void erase(Value *v);
156      unsigned size();
157      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
158      AliasAnalysis *getAliasAnalysis() const { return AA; }
159      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
160      void setDomTree(DominatorTree* D) { DT = D; }
161      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
162      void verifyRemoved(const Value *) const;
163  };
164}
165
166namespace llvm {
167template <> struct DenseMapInfo<Expression> {
168  static inline Expression getEmptyKey() {
169    return Expression(Expression::EMPTY);
170  }
171
172  static inline Expression getTombstoneKey() {
173    return Expression(Expression::TOMBSTONE);
174  }
175
176  static unsigned getHashValue(const Expression e) {
177    unsigned hash = e.opcode;
178
179    hash = e.firstVN + hash * 37;
180    hash = e.secondVN + hash * 37;
181    hash = e.thirdVN + hash * 37;
182
183    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
184            (unsigned)((uintptr_t)e.type >> 9)) +
185           hash * 37;
186
187    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
188         E = e.varargs.end(); I != E; ++I)
189      hash = *I + hash * 37;
190
191    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
192            (unsigned)((uintptr_t)e.function >> 9)) +
193           hash * 37;
194
195    return hash;
196  }
197  static bool isEqual(const Expression &LHS, const Expression &RHS) {
198    return LHS == RHS;
199  }
200  static bool isPod() { return true; }
201};
202}
203
204//===----------------------------------------------------------------------===//
205//                     ValueTable Internal Functions
206//===----------------------------------------------------------------------===//
207Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
208  switch(BO->getOpcode()) {
209  default: // THIS SHOULD NEVER HAPPEN
210    llvm_unreachable("Binary operator with unknown opcode?");
211  case Instruction::Add:  return Expression::ADD;
212  case Instruction::FAdd: return Expression::FADD;
213  case Instruction::Sub:  return Expression::SUB;
214  case Instruction::FSub: return Expression::FSUB;
215  case Instruction::Mul:  return Expression::MUL;
216  case Instruction::FMul: return Expression::FMUL;
217  case Instruction::UDiv: return Expression::UDIV;
218  case Instruction::SDiv: return Expression::SDIV;
219  case Instruction::FDiv: return Expression::FDIV;
220  case Instruction::URem: return Expression::UREM;
221  case Instruction::SRem: return Expression::SREM;
222  case Instruction::FRem: return Expression::FREM;
223  case Instruction::Shl:  return Expression::SHL;
224  case Instruction::LShr: return Expression::LSHR;
225  case Instruction::AShr: return Expression::ASHR;
226  case Instruction::And:  return Expression::AND;
227  case Instruction::Or:   return Expression::OR;
228  case Instruction::Xor:  return Expression::XOR;
229  }
230}
231
232Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
233  if (isa<ICmpInst>(C)) {
234    switch (C->getPredicate()) {
235    default:  // THIS SHOULD NEVER HAPPEN
236      llvm_unreachable("Comparison with unknown predicate?");
237    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
238    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
239    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
240    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
241    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
242    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
243    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
244    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
245    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
246    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
247    }
248  } else {
249    switch (C->getPredicate()) {
250    default: // THIS SHOULD NEVER HAPPEN
251      llvm_unreachable("Comparison with unknown predicate?");
252    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
253    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
254    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
255    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
256    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
257    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
258    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
259    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
260    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
261    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
262    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
263    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
264    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
265    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
266    }
267  }
268}
269
270Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
271  switch(C->getOpcode()) {
272  default: // THIS SHOULD NEVER HAPPEN
273    llvm_unreachable("Cast operator with unknown opcode?");
274  case Instruction::Trunc:    return Expression::TRUNC;
275  case Instruction::ZExt:     return Expression::ZEXT;
276  case Instruction::SExt:     return Expression::SEXT;
277  case Instruction::FPToUI:   return Expression::FPTOUI;
278  case Instruction::FPToSI:   return Expression::FPTOSI;
279  case Instruction::UIToFP:   return Expression::UITOFP;
280  case Instruction::SIToFP:   return Expression::SITOFP;
281  case Instruction::FPTrunc:  return Expression::FPTRUNC;
282  case Instruction::FPExt:    return Expression::FPEXT;
283  case Instruction::PtrToInt: return Expression::PTRTOINT;
284  case Instruction::IntToPtr: return Expression::INTTOPTR;
285  case Instruction::BitCast:  return Expression::BITCAST;
286  }
287}
288
289Expression ValueTable::create_expression(CallInst* C) {
290  Expression e;
291
292  e.type = C->getType();
293  e.firstVN = 0;
294  e.secondVN = 0;
295  e.thirdVN = 0;
296  e.function = C->getCalledFunction();
297  e.opcode = Expression::CALL;
298
299  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
300       I != E; ++I)
301    e.varargs.push_back(lookup_or_add(*I));
302
303  return e;
304}
305
306Expression ValueTable::create_expression(BinaryOperator* BO) {
307  Expression e;
308
309  e.firstVN = lookup_or_add(BO->getOperand(0));
310  e.secondVN = lookup_or_add(BO->getOperand(1));
311  e.thirdVN = 0;
312  e.function = 0;
313  e.type = BO->getType();
314  e.opcode = getOpcode(BO);
315
316  return e;
317}
318
319Expression ValueTable::create_expression(CmpInst* C) {
320  Expression e;
321
322  e.firstVN = lookup_or_add(C->getOperand(0));
323  e.secondVN = lookup_or_add(C->getOperand(1));
324  e.thirdVN = 0;
325  e.function = 0;
326  e.type = C->getType();
327  e.opcode = getOpcode(C);
328
329  return e;
330}
331
332Expression ValueTable::create_expression(CastInst* C) {
333  Expression e;
334
335  e.firstVN = lookup_or_add(C->getOperand(0));
336  e.secondVN = 0;
337  e.thirdVN = 0;
338  e.function = 0;
339  e.type = C->getType();
340  e.opcode = getOpcode(C);
341
342  return e;
343}
344
345Expression ValueTable::create_expression(ShuffleVectorInst* S) {
346  Expression e;
347
348  e.firstVN = lookup_or_add(S->getOperand(0));
349  e.secondVN = lookup_or_add(S->getOperand(1));
350  e.thirdVN = lookup_or_add(S->getOperand(2));
351  e.function = 0;
352  e.type = S->getType();
353  e.opcode = Expression::SHUFFLE;
354
355  return e;
356}
357
358Expression ValueTable::create_expression(ExtractElementInst* E) {
359  Expression e;
360
361  e.firstVN = lookup_or_add(E->getOperand(0));
362  e.secondVN = lookup_or_add(E->getOperand(1));
363  e.thirdVN = 0;
364  e.function = 0;
365  e.type = E->getType();
366  e.opcode = Expression::EXTRACT;
367
368  return e;
369}
370
371Expression ValueTable::create_expression(InsertElementInst* I) {
372  Expression e;
373
374  e.firstVN = lookup_or_add(I->getOperand(0));
375  e.secondVN = lookup_or_add(I->getOperand(1));
376  e.thirdVN = lookup_or_add(I->getOperand(2));
377  e.function = 0;
378  e.type = I->getType();
379  e.opcode = Expression::INSERT;
380
381  return e;
382}
383
384Expression ValueTable::create_expression(SelectInst* I) {
385  Expression e;
386
387  e.firstVN = lookup_or_add(I->getCondition());
388  e.secondVN = lookup_or_add(I->getTrueValue());
389  e.thirdVN = lookup_or_add(I->getFalseValue());
390  e.function = 0;
391  e.type = I->getType();
392  e.opcode = Expression::SELECT;
393
394  return e;
395}
396
397Expression ValueTable::create_expression(GetElementPtrInst* G) {
398  Expression e;
399
400  e.firstVN = lookup_or_add(G->getPointerOperand());
401  e.secondVN = 0;
402  e.thirdVN = 0;
403  e.function = 0;
404  e.type = G->getType();
405  e.opcode = Expression::GEP;
406
407  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
408       I != E; ++I)
409    e.varargs.push_back(lookup_or_add(*I));
410
411  return e;
412}
413
414//===----------------------------------------------------------------------===//
415//                     ValueTable External Functions
416//===----------------------------------------------------------------------===//
417
418/// add - Insert a value into the table with a specified value number.
419void ValueTable::add(Value *V, uint32_t num) {
420  valueNumbering.insert(std::make_pair(V, num));
421}
422
423/// lookup_or_add - Returns the value number for the specified value, assigning
424/// it a new number if it did not have one before.
425uint32_t ValueTable::lookup_or_add(Value *V) {
426  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
427  if (VI != valueNumbering.end())
428    return VI->second;
429
430  if (CallInst* C = dyn_cast<CallInst>(V)) {
431    if (AA->doesNotAccessMemory(C)) {
432      Expression exp = create_expression(C);
433      uint32_t& e = expressionNumbering[exp];
434      if (!e) e = nextValueNumber++;
435      valueNumbering[V] = e;
436      return e;
437    } else if (AA->onlyReadsMemory(C)) {
438      Expression exp = create_expression(C);
439      uint32_t& e = expressionNumbering[exp];
440      if (!e) {
441        e = nextValueNumber++;
442        valueNumbering[V] = e;
443        return e;
444      }
445
446      MemDepResult local_dep = MD->getDependency(C);
447
448      if (!local_dep.isDef() && !local_dep.isNonLocal()) {
449        valueNumbering[V] =  nextValueNumber;
450        return nextValueNumber++;
451      }
452
453      if (local_dep.isDef()) {
454        CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
455
456        if (local_cdep->getNumOperands() != C->getNumOperands()) {
457          valueNumbering[V] = nextValueNumber;
458          return nextValueNumber++;
459        }
460
461        for (unsigned i = 1; i < C->getNumOperands(); ++i) {
462          uint32_t c_vn = lookup_or_add(C->getOperand(i));
463          uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
464          if (c_vn != cd_vn) {
465            valueNumbering[V] = nextValueNumber;
466            return nextValueNumber++;
467          }
468        }
469
470        uint32_t v = lookup_or_add(local_cdep);
471        valueNumbering[V] = v;
472        return v;
473      }
474
475      // Non-local case.
476      const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
477        MD->getNonLocalCallDependency(CallSite(C));
478      // FIXME: call/call dependencies for readonly calls should return def, not
479      // clobber!  Move the checking logic to MemDep!
480      CallInst* cdep = 0;
481
482      // Check to see if we have a single dominating call instruction that is
483      // identical to C.
484      for (unsigned i = 0, e = deps.size(); i != e; ++i) {
485        const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
486        // Ignore non-local dependencies.
487        if (I->second.isNonLocal())
488          continue;
489
490        // We don't handle non-depedencies.  If we already have a call, reject
491        // instruction dependencies.
492        if (I->second.isClobber() || cdep != 0) {
493          cdep = 0;
494          break;
495        }
496
497        CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
498        // FIXME: All duplicated with non-local case.
499        if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
500          cdep = NonLocalDepCall;
501          continue;
502        }
503
504        cdep = 0;
505        break;
506      }
507
508      if (!cdep) {
509        valueNumbering[V] = nextValueNumber;
510        return nextValueNumber++;
511      }
512
513      if (cdep->getNumOperands() != C->getNumOperands()) {
514        valueNumbering[V] = nextValueNumber;
515        return nextValueNumber++;
516      }
517      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
518        uint32_t c_vn = lookup_or_add(C->getOperand(i));
519        uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
520        if (c_vn != cd_vn) {
521          valueNumbering[V] = nextValueNumber;
522          return nextValueNumber++;
523        }
524      }
525
526      uint32_t v = lookup_or_add(cdep);
527      valueNumbering[V] = v;
528      return v;
529
530    } else {
531      valueNumbering[V] = nextValueNumber;
532      return nextValueNumber++;
533    }
534  } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
535    Expression exp = create_expression(BO);
536    uint32_t& e = expressionNumbering[exp];
537    if (!e) e = nextValueNumber++;
538    valueNumbering[V] = e;
539    return e;
540  } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
541    Expression exp = create_expression(C);
542    uint32_t& e = expressionNumbering[exp];
543    if (!e) e = nextValueNumber++;
544    valueNumbering[V] = e;
545    return e;
546  } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
547    Expression exp = create_expression(U);
548    uint32_t& e = expressionNumbering[exp];
549    if (!e) e = nextValueNumber++;
550    valueNumbering[V] = e;
551    return e;
552  } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
553    Expression exp = create_expression(U);
554    uint32_t& e = expressionNumbering[exp];
555    if (!e) e = nextValueNumber++;
556    valueNumbering[V] = e;
557    return e;
558  } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
559    Expression exp = create_expression(U);
560    uint32_t& e = expressionNumbering[exp];
561    if (!e) e = nextValueNumber++;
562    valueNumbering[V] = e;
563    return e;
564  } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
565    Expression exp = create_expression(U);
566    uint32_t& e = expressionNumbering[exp];
567    if (!e) e = nextValueNumber++;
568    valueNumbering[V] = e;
569    return e;
570  } else if (CastInst* U = dyn_cast<CastInst>(V)) {
571    Expression exp = create_expression(U);
572    uint32_t& e = expressionNumbering[exp];
573    if (!e) e = nextValueNumber++;
574    valueNumbering[V] = e;
575    return e;
576  } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
577    Expression exp = create_expression(U);
578    uint32_t& e = expressionNumbering[exp];
579    if (!e) e = nextValueNumber++;
580    valueNumbering[V] = e;
581    return e;
582  } else {
583    valueNumbering[V] = nextValueNumber;
584    return nextValueNumber++;
585  }
586}
587
588/// lookup - Returns the value number of the specified value. Fails if
589/// the value has not yet been numbered.
590uint32_t ValueTable::lookup(Value *V) const {
591  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
592  assert(VI != valueNumbering.end() && "Value not numbered?");
593  return VI->second;
594}
595
596/// clear - Remove all entries from the ValueTable
597void ValueTable::clear() {
598  valueNumbering.clear();
599  expressionNumbering.clear();
600  nextValueNumber = 1;
601}
602
603/// erase - Remove a value from the value numbering
604void ValueTable::erase(Value *V) {
605  valueNumbering.erase(V);
606}
607
608/// verifyRemoved - Verify that the value is removed from all internal data
609/// structures.
610void ValueTable::verifyRemoved(const Value *V) const {
611  for (DenseMap<Value*, uint32_t>::iterator
612         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
613    assert(I->first != V && "Inst still occurs in value numbering map!");
614  }
615}
616
617//===----------------------------------------------------------------------===//
618//                                GVN Pass
619//===----------------------------------------------------------------------===//
620
621namespace {
622  struct ValueNumberScope {
623    ValueNumberScope* parent;
624    DenseMap<uint32_t, Value*> table;
625
626    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
627  };
628}
629
630namespace {
631
632  class GVN : public FunctionPass {
633    bool runOnFunction(Function &F);
634  public:
635    static char ID; // Pass identification, replacement for typeid
636    GVN() : FunctionPass(&ID) { }
637
638  private:
639    MemoryDependenceAnalysis *MD;
640    DominatorTree *DT;
641
642    ValueTable VN;
643    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
644
645    // This transformation requires dominator postdominator info
646    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
647      AU.addRequired<DominatorTree>();
648      AU.addRequired<MemoryDependenceAnalysis>();
649      AU.addRequired<AliasAnalysis>();
650
651      AU.addPreserved<DominatorTree>();
652      AU.addPreserved<AliasAnalysis>();
653    }
654
655    // Helper fuctions
656    // FIXME: eliminate or document these better
657    bool processLoad(LoadInst* L,
658                     SmallVectorImpl<Instruction*> &toErase);
659    bool processInstruction(Instruction *I,
660                            SmallVectorImpl<Instruction*> &toErase);
661    bool processNonLocalLoad(LoadInst* L,
662                             SmallVectorImpl<Instruction*> &toErase);
663    bool processBlock(BasicBlock *BB);
664    void dump(DenseMap<uint32_t, Value*>& d);
665    bool iterateOnFunction(Function &F);
666    Value *CollapsePhi(PHINode* p);
667    bool performPRE(Function& F);
668    Value *lookupNumber(BasicBlock *BB, uint32_t num);
669    void cleanupGlobalSets();
670    void verifyRemoved(const Instruction *I) const;
671  };
672
673  char GVN::ID = 0;
674}
675
676// createGVNPass - The public interface to this file...
677FunctionPass *llvm::createGVNPass() { return new GVN(); }
678
679static RegisterPass<GVN> X("gvn",
680                           "Global Value Numbering");
681
682void GVN::dump(DenseMap<uint32_t, Value*>& d) {
683  printf("{\n");
684  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
685       E = d.end(); I != E; ++I) {
686      printf("%d\n", I->first);
687      I->second->dump();
688  }
689  printf("}\n");
690}
691
692static bool isSafeReplacement(PHINode* p, Instruction *inst) {
693  if (!isa<PHINode>(inst))
694    return true;
695
696  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
697       UI != E; ++UI)
698    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
699      if (use_phi->getParent() == inst->getParent())
700        return false;
701
702  return true;
703}
704
705Value *GVN::CollapsePhi(PHINode *PN) {
706  Value *ConstVal = PN->hasConstantValue(DT);
707  if (!ConstVal) return 0;
708
709  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
710  if (!Inst)
711    return ConstVal;
712
713  if (DT->dominates(Inst, PN))
714    if (isSafeReplacement(PN, Inst))
715      return Inst;
716  return 0;
717}
718
719/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
720/// we're analyzing is fully available in the specified block.  As we go, keep
721/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
722/// map is actually a tri-state map with the following values:
723///   0) we know the block *is not* fully available.
724///   1) we know the block *is* fully available.
725///   2) we do not know whether the block is fully available or not, but we are
726///      currently speculating that it will be.
727///   3) we are speculating for this block and have used that to speculate for
728///      other blocks.
729static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
730                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
731  // Optimistically assume that the block is fully available and check to see
732  // if we already know about this block in one lookup.
733  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
734    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
735
736  // If the entry already existed for this block, return the precomputed value.
737  if (!IV.second) {
738    // If this is a speculative "available" value, mark it as being used for
739    // speculation of other blocks.
740    if (IV.first->second == 2)
741      IV.first->second = 3;
742    return IV.first->second != 0;
743  }
744
745  // Otherwise, see if it is fully available in all predecessors.
746  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
747
748  // If this block has no predecessors, it isn't live-in here.
749  if (PI == PE)
750    goto SpeculationFailure;
751
752  for (; PI != PE; ++PI)
753    // If the value isn't fully available in one of our predecessors, then it
754    // isn't fully available in this block either.  Undo our previous
755    // optimistic assumption and bail out.
756    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
757      goto SpeculationFailure;
758
759  return true;
760
761// SpeculationFailure - If we get here, we found out that this is not, after
762// all, a fully-available block.  We have a problem if we speculated on this and
763// used the speculation to mark other blocks as available.
764SpeculationFailure:
765  char &BBVal = FullyAvailableBlocks[BB];
766
767  // If we didn't speculate on this, just return with it set to false.
768  if (BBVal == 2) {
769    BBVal = 0;
770    return false;
771  }
772
773  // If we did speculate on this value, we could have blocks set to 1 that are
774  // incorrect.  Walk the (transitive) successors of this block and mark them as
775  // 0 if set to one.
776  SmallVector<BasicBlock*, 32> BBWorklist;
777  BBWorklist.push_back(BB);
778
779  while (!BBWorklist.empty()) {
780    BasicBlock *Entry = BBWorklist.pop_back_val();
781    // Note that this sets blocks to 0 (unavailable) if they happen to not
782    // already be in FullyAvailableBlocks.  This is safe.
783    char &EntryVal = FullyAvailableBlocks[Entry];
784    if (EntryVal == 0) continue;  // Already unavailable.
785
786    // Mark as unavailable.
787    EntryVal = 0;
788
789    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
790      BBWorklist.push_back(*I);
791  }
792
793  return false;
794}
795
796
797/// CanCoerceMustAliasedValueToLoad - Return true if
798/// CoerceAvailableValueToLoadType will succeed.
799static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
800                                            const Type *LoadTy,
801                                            const TargetData &TD) {
802  // If the loaded or stored value is an first class array or struct, don't try
803  // to transform them.  We need to be able to bitcast to integer.
804  if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy) ||
805      isa<StructType>(StoredVal->getType()) ||
806      isa<ArrayType>(StoredVal->getType()))
807    return false;
808
809  // The store has to be at least as big as the load.
810  if (TD.getTypeSizeInBits(StoredVal->getType()) <
811        TD.getTypeSizeInBits(LoadTy))
812    return false;
813
814  return true;
815}
816
817
818/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
819/// then a load from a must-aliased pointer of a different type, try to coerce
820/// the stored value.  LoadedTy is the type of the load we want to replace and
821/// InsertPt is the place to insert new instructions.
822///
823/// If we can't do it, return null.
824static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
825                                             const Type *LoadedTy,
826                                             Instruction *InsertPt,
827                                             const TargetData &TD) {
828  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
829    return 0;
830
831  const Type *StoredValTy = StoredVal->getType();
832
833  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
834  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
835
836  // If the store and reload are the same size, we can always reuse it.
837  if (StoreSize == LoadSize) {
838    if (isa<PointerType>(StoredValTy) && isa<PointerType>(LoadedTy)) {
839      // Pointer to Pointer -> use bitcast.
840      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
841    }
842
843    // Convert source pointers to integers, which can be bitcast.
844    if (isa<PointerType>(StoredValTy)) {
845      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
846      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
847    }
848
849    const Type *TypeToCastTo = LoadedTy;
850    if (isa<PointerType>(TypeToCastTo))
851      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
852
853    if (StoredValTy != TypeToCastTo)
854      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
855
856    // Cast to pointer if the load needs a pointer type.
857    if (isa<PointerType>(LoadedTy))
858      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
859
860    return StoredVal;
861  }
862
863  // If the loaded value is smaller than the available value, then we can
864  // extract out a piece from it.  If the available value is too small, then we
865  // can't do anything.
866  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
867
868  // Convert source pointers to integers, which can be manipulated.
869  if (isa<PointerType>(StoredValTy)) {
870    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
871    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
872  }
873
874  // Convert vectors and fp to integer, which can be manipulated.
875  if (!isa<IntegerType>(StoredValTy)) {
876    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
877    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
878  }
879
880  // If this is a big-endian system, we need to shift the value down to the low
881  // bits so that a truncate will work.
882  if (TD.isBigEndian()) {
883    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
884    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
885  }
886
887  // Truncate the integer to the right size now.
888  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
889  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
890
891  if (LoadedTy == NewIntTy)
892    return StoredVal;
893
894  // If the result is a pointer, inttoptr.
895  if (isa<PointerType>(LoadedTy))
896    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
897
898  // Otherwise, bitcast.
899  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
900}
901
902/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
903/// be expressed as a base pointer plus a constant offset.  Return the base and
904/// offset to the caller.
905static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
906                                        const TargetData &TD) {
907  Operator *PtrOp = dyn_cast<Operator>(Ptr);
908  if (PtrOp == 0) return Ptr;
909
910  // Just look through bitcasts.
911  if (PtrOp->getOpcode() == Instruction::BitCast)
912    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
913
914  // If this is a GEP with constant indices, we can look through it.
915  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
916  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
917
918  gep_type_iterator GTI = gep_type_begin(GEP);
919  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
920       ++I, ++GTI) {
921    ConstantInt *OpC = cast<ConstantInt>(*I);
922    if (OpC->isZero()) continue;
923
924    // Handle a struct and array indices which add their offset to the pointer.
925    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
926      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
927    } else {
928      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
929      Offset += OpC->getSExtValue()*Size;
930    }
931  }
932
933  // Re-sign extend from the pointer size if needed to get overflow edge cases
934  // right.
935  unsigned PtrSize = TD.getPointerSizeInBits();
936  if (PtrSize < 64)
937    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
938
939  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
940}
941
942
943/// AnalyzeLoadFromClobberingStore - This function is called when we have a
944/// memdep query of a load that ends up being a clobbering store.  This means
945/// that the store *may* provide bits used by the load but we can't be sure
946/// because the pointers don't mustalias.  Check this case to see if there is
947/// anything more we can do before we give up.  This returns -1 if we have to
948/// give up, or a byte number in the stored value of the piece that feeds the
949/// load.
950static int AnalyzeLoadFromClobberingStore(LoadInst *L, StoreInst *DepSI,
951                                          const TargetData &TD) {
952  // If the loaded or stored value is an first class array or struct, don't try
953  // to transform them.  We need to be able to bitcast to integer.
954  if (isa<StructType>(L->getType()) || isa<ArrayType>(L->getType()) ||
955      isa<StructType>(DepSI->getOperand(0)->getType()) ||
956      isa<ArrayType>(DepSI->getOperand(0)->getType()))
957    return -1;
958
959  int64_t StoreOffset = 0, LoadOffset = 0;
960  Value *StoreBase =
961    GetBaseWithConstantOffset(DepSI->getPointerOperand(), StoreOffset, TD);
962  Value *LoadBase =
963    GetBaseWithConstantOffset(L->getPointerOperand(), LoadOffset, TD);
964  if (StoreBase != LoadBase)
965    return -1;
966
967  // If the load and store are to the exact same address, they should have been
968  // a must alias.  AA must have gotten confused.
969  // FIXME: Study to see if/when this happens.
970  if (LoadOffset == StoreOffset) {
971#if 0
972    errs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
973    << "Base       = " << *StoreBase << "\n"
974    << "Store Ptr  = " << *DepSI->getPointerOperand() << "\n"
975    << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
976    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
977    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
978    errs() << "'" << L->getParent()->getParent()->getName() << "'"
979    << *L->getParent();
980#endif
981    return -1;
982  }
983
984  // If the load and store don't overlap at all, the store doesn't provide
985  // anything to the load.  In this case, they really don't alias at all, AA
986  // must have gotten confused.
987  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
988  // remove this check, as it is duplicated with what we have below.
989  uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
990  uint64_t LoadSize = TD.getTypeSizeInBits(L->getType());
991
992  if ((StoreSize & 7) | (LoadSize & 7))
993    return -1;
994  StoreSize >>= 3;  // Convert to bytes.
995  LoadSize >>= 3;
996
997
998  bool isAAFailure = false;
999  if (StoreOffset < LoadOffset) {
1000    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1001  } else {
1002    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1003  }
1004  if (isAAFailure) {
1005#if 0
1006    errs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1007    << "Base       = " << *StoreBase << "\n"
1008    << "Store Ptr  = " << *DepSI->getPointerOperand() << "\n"
1009    << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
1010    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
1011    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
1012    errs() << "'" << L->getParent()->getParent()->getName() << "'"
1013    << *L->getParent();
1014#endif
1015    return -1;
1016  }
1017
1018  // If the Load isn't completely contained within the stored bits, we don't
1019  // have all the bits to feed it.  We could do something crazy in the future
1020  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1021  // valuable.
1022  if (StoreOffset > LoadOffset ||
1023      StoreOffset+StoreSize < LoadOffset+LoadSize)
1024    return -1;
1025
1026  // Okay, we can do this transformation.  Return the number of bytes into the
1027  // store that the load is.
1028  return LoadOffset-StoreOffset;
1029}
1030
1031
1032/// GetStoreValueForLoad - This function is called when we have a
1033/// memdep query of a load that ends up being a clobbering store.  This means
1034/// that the store *may* provide bits used by the load but we can't be sure
1035/// because the pointers don't mustalias.  Check this case to see if there is
1036/// anything more we can do before we give up.
1037static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1038                                   const Type *LoadTy,
1039                                   Instruction *InsertPt, const TargetData &TD){
1040  LLVMContext &Ctx = SrcVal->getType()->getContext();
1041
1042  uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8;
1043  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1044
1045
1046  // Compute which bits of the stored value are being used by the load.  Convert
1047  // to an integer type to start with.
1048  if (isa<PointerType>(SrcVal->getType()))
1049    SrcVal = new PtrToIntInst(SrcVal, TD.getIntPtrType(Ctx), "tmp", InsertPt);
1050  if (!isa<IntegerType>(SrcVal->getType()))
1051    SrcVal = new BitCastInst(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1052                             "tmp", InsertPt);
1053
1054  // Shift the bits to the least significant depending on endianness.
1055  unsigned ShiftAmt;
1056  if (TD.isLittleEndian()) {
1057    ShiftAmt = Offset*8;
1058  } else {
1059    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1060  }
1061
1062  if (ShiftAmt)
1063    SrcVal = BinaryOperator::CreateLShr(SrcVal,
1064                ConstantInt::get(SrcVal->getType(), ShiftAmt), "tmp", InsertPt);
1065
1066  if (LoadSize != StoreSize)
1067    SrcVal = new TruncInst(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1068                           "tmp", InsertPt);
1069
1070  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1071}
1072
1073struct AvailableValueInBlock {
1074  /// BB - The basic block in question.
1075  BasicBlock *BB;
1076  /// V - The value that is live out of the block.
1077  Value *V;
1078  /// Offset - The byte offset in V that is interesting for the load query.
1079  unsigned Offset;
1080
1081  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1082                                   unsigned Offset = 0) {
1083    AvailableValueInBlock Res;
1084    Res.BB = BB;
1085    Res.V = V;
1086    Res.Offset = Offset;
1087    return Res;
1088  }
1089};
1090
1091/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1092/// construct SSA form, allowing us to eliminate LI.  This returns the value
1093/// that should be used at LI's definition site.
1094static Value *ConstructSSAForLoadSet(LoadInst *LI,
1095                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1096                                     const TargetData *TD,
1097                                     AliasAnalysis *AA) {
1098  SmallVector<PHINode*, 8> NewPHIs;
1099  SSAUpdater SSAUpdate(&NewPHIs);
1100  SSAUpdate.Initialize(LI);
1101
1102  const Type *LoadTy = LI->getType();
1103
1104  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1105    BasicBlock *BB = ValuesPerBlock[i].BB;
1106    Value *AvailableVal = ValuesPerBlock[i].V;
1107    unsigned Offset = ValuesPerBlock[i].Offset;
1108
1109    if (SSAUpdate.HasValueForBlock(BB))
1110      continue;
1111
1112    if (AvailableVal->getType() != LoadTy) {
1113      assert(TD && "Need target data to handle type mismatch case");
1114      AvailableVal = GetStoreValueForLoad(AvailableVal, Offset, LoadTy,
1115                                          BB->getTerminator(), *TD);
1116
1117      if (Offset) {
1118        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
1119              << *ValuesPerBlock[i].V << '\n'
1120              << *AvailableVal << '\n' << "\n\n\n");
1121      }
1122
1123
1124      DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
1125            << *ValuesPerBlock[i].V << '\n'
1126            << *AvailableVal << '\n' << "\n\n\n");
1127    }
1128
1129    SSAUpdate.AddAvailableValue(BB, AvailableVal);
1130  }
1131
1132  // Perform PHI construction.
1133  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1134
1135  // If new PHI nodes were created, notify alias analysis.
1136  if (isa<PointerType>(V->getType()))
1137    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1138      AA->copyValue(LI, NewPHIs[i]);
1139
1140  return V;
1141}
1142
1143/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1144/// non-local by performing PHI construction.
1145bool GVN::processNonLocalLoad(LoadInst *LI,
1146                              SmallVectorImpl<Instruction*> &toErase) {
1147  // Find the non-local dependencies of the load.
1148  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
1149  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1150                                   Deps);
1151  //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
1152  //             << Deps.size() << *LI << '\n');
1153
1154  // If we had to process more than one hundred blocks to find the
1155  // dependencies, this load isn't worth worrying about.  Optimizing
1156  // it will be too expensive.
1157  if (Deps.size() > 100)
1158    return false;
1159
1160  // If we had a phi translation failure, we'll have a single entry which is a
1161  // clobber in the current block.  Reject this early.
1162  if (Deps.size() == 1 && Deps[0].second.isClobber()) {
1163    DEBUG(
1164      errs() << "GVN: non-local load ";
1165      WriteAsOperand(errs(), LI);
1166      errs() << " is clobbered by " << *Deps[0].second.getInst() << '\n';
1167    );
1168    return false;
1169  }
1170
1171  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1172  // where we have a value available in repl, also keep track of whether we see
1173  // dependencies that produce an unknown value for the load (such as a call
1174  // that could potentially clobber the load).
1175  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1176  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1177
1178  const TargetData *TD = 0;
1179
1180  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1181    BasicBlock *DepBB = Deps[i].first;
1182    MemDepResult DepInfo = Deps[i].second;
1183
1184    if (DepInfo.isClobber()) {
1185      // If the dependence is to a store that writes to a superset of the bits
1186      // read by the load, we can extract the bits we need for the load from the
1187      // stored value.
1188      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1189        if (TD == 0)
1190          TD = getAnalysisIfAvailable<TargetData>();
1191        if (TD) {
1192          int Offset = AnalyzeLoadFromClobberingStore(LI, DepSI, *TD);
1193          if (Offset != -1) {
1194            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1195                                                           DepSI->getOperand(0),
1196                                                                Offset));
1197            continue;
1198          }
1199        }
1200      }
1201
1202      // FIXME: Handle memset/memcpy.
1203      UnavailableBlocks.push_back(DepBB);
1204      continue;
1205    }
1206
1207    Instruction *DepInst = DepInfo.getInst();
1208
1209    // Loading the allocation -> undef.
1210    if (isa<AllocationInst>(DepInst) || isMalloc(DepInst)) {
1211      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1212                                             UndefValue::get(LI->getType())));
1213      continue;
1214    }
1215
1216    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1217      // Reject loads and stores that are to the same address but are of
1218      // different types if we have to.
1219      if (S->getOperand(0)->getType() != LI->getType()) {
1220        if (TD == 0)
1221          TD = getAnalysisIfAvailable<TargetData>();
1222
1223        // If the stored value is larger or equal to the loaded value, we can
1224        // reuse it.
1225        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1226                                                        LI->getType(), *TD)) {
1227          UnavailableBlocks.push_back(DepBB);
1228          continue;
1229        }
1230      }
1231
1232      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1233                                                          S->getOperand(0)));
1234      continue;
1235    }
1236
1237    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1238      // If the types mismatch and we can't handle it, reject reuse of the load.
1239      if (LD->getType() != LI->getType()) {
1240        if (TD == 0)
1241          TD = getAnalysisIfAvailable<TargetData>();
1242
1243        // If the stored value is larger or equal to the loaded value, we can
1244        // reuse it.
1245        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1246          UnavailableBlocks.push_back(DepBB);
1247          continue;
1248        }
1249      }
1250      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1251      continue;
1252    }
1253
1254    UnavailableBlocks.push_back(DepBB);
1255    continue;
1256  }
1257
1258  // If we have no predecessors that produce a known value for this load, exit
1259  // early.
1260  if (ValuesPerBlock.empty()) return false;
1261
1262  // If all of the instructions we depend on produce a known value for this
1263  // load, then it is fully redundant and we can use PHI insertion to compute
1264  // its value.  Insert PHIs and remove the fully redundant value now.
1265  if (UnavailableBlocks.empty()) {
1266    DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1267
1268    // Perform PHI construction.
1269    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
1270                                      VN.getAliasAnalysis());
1271    LI->replaceAllUsesWith(V);
1272
1273    if (isa<PHINode>(V))
1274      V->takeName(LI);
1275    if (isa<PointerType>(V->getType()))
1276      MD->invalidateCachedPointerInfo(V);
1277    toErase.push_back(LI);
1278    NumGVNLoad++;
1279    return true;
1280  }
1281
1282  if (!EnablePRE || !EnableLoadPRE)
1283    return false;
1284
1285  // Okay, we have *some* definitions of the value.  This means that the value
1286  // is available in some of our (transitive) predecessors.  Lets think about
1287  // doing PRE of this load.  This will involve inserting a new load into the
1288  // predecessor when it's not available.  We could do this in general, but
1289  // prefer to not increase code size.  As such, we only do this when we know
1290  // that we only have to insert *one* load (which means we're basically moving
1291  // the load, not inserting a new one).
1292
1293  SmallPtrSet<BasicBlock *, 4> Blockers;
1294  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1295    Blockers.insert(UnavailableBlocks[i]);
1296
1297  // Lets find first basic block with more than one predecessor.  Walk backwards
1298  // through predecessors if needed.
1299  BasicBlock *LoadBB = LI->getParent();
1300  BasicBlock *TmpBB = LoadBB;
1301
1302  bool isSinglePred = false;
1303  bool allSingleSucc = true;
1304  while (TmpBB->getSinglePredecessor()) {
1305    isSinglePred = true;
1306    TmpBB = TmpBB->getSinglePredecessor();
1307    if (!TmpBB) // If haven't found any, bail now.
1308      return false;
1309    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1310      return false;
1311    if (Blockers.count(TmpBB))
1312      return false;
1313    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1314      allSingleSucc = false;
1315  }
1316
1317  assert(TmpBB);
1318  LoadBB = TmpBB;
1319
1320  // If we have a repl set with LI itself in it, this means we have a loop where
1321  // at least one of the values is LI.  Since this means that we won't be able
1322  // to eliminate LI even if we insert uses in the other predecessors, we will
1323  // end up increasing code size.  Reject this by scanning for LI.
1324  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1325    if (ValuesPerBlock[i].V == LI)
1326      return false;
1327
1328  if (isSinglePred) {
1329    bool isHot = false;
1330    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1331      if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].V))
1332        // "Hot" Instruction is in some loop (because it dominates its dep.
1333        // instruction).
1334        if (DT->dominates(LI, I)) {
1335          isHot = true;
1336          break;
1337        }
1338
1339    // We are interested only in "hot" instructions. We don't want to do any
1340    // mis-optimizations here.
1341    if (!isHot)
1342      return false;
1343  }
1344
1345  // Okay, we have some hope :).  Check to see if the loaded value is fully
1346  // available in all but one predecessor.
1347  // FIXME: If we could restructure the CFG, we could make a common pred with
1348  // all the preds that don't have an available LI and insert a new load into
1349  // that one block.
1350  BasicBlock *UnavailablePred = 0;
1351
1352  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1353  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1354    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1355  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1356    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1357
1358  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1359       PI != E; ++PI) {
1360    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1361      continue;
1362
1363    // If this load is not available in multiple predecessors, reject it.
1364    if (UnavailablePred && UnavailablePred != *PI)
1365      return false;
1366    UnavailablePred = *PI;
1367  }
1368
1369  assert(UnavailablePred != 0 &&
1370         "Fully available value should be eliminated above!");
1371
1372  // If the loaded pointer is PHI node defined in this block, do PHI translation
1373  // to get its value in the predecessor.
1374  Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
1375
1376  // Make sure the value is live in the predecessor.  If it was defined by a
1377  // non-PHI instruction in this block, we don't know how to recompute it above.
1378  if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
1379    if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
1380      DEBUG(errs() << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
1381                   << *LPInst << '\n' << *LI << "\n");
1382      return false;
1383    }
1384
1385  // We don't currently handle critical edges :(
1386  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1387    DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1388                 << UnavailablePred->getName() << "': " << *LI << '\n');
1389    return false;
1390  }
1391
1392  // Make sure it is valid to move this load here.  We have to watch out for:
1393  //  @1 = getelementptr (i8* p, ...
1394  //  test p and branch if == 0
1395  //  load @1
1396  // It is valid to have the getelementptr before the test, even if p can be 0,
1397  // as getelementptr only does address arithmetic.
1398  // If we are not pushing the value through any multiple-successor blocks
1399  // we do not have this case.  Otherwise, check that the load is safe to
1400  // put anywhere; this can be improved, but should be conservatively safe.
1401  if (!allSingleSucc &&
1402      !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator()))
1403    return false;
1404
1405  // Okay, we can eliminate this load by inserting a reload in the predecessor
1406  // and using PHI construction to get the value in the other predecessors, do
1407  // it.
1408  DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1409
1410  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1411                                LI->getAlignment(),
1412                                UnavailablePred->getTerminator());
1413
1414  // Add the newly created load.
1415  ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,NewLoad));
1416
1417  // Perform PHI construction.
1418  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
1419                                    VN.getAliasAnalysis());
1420  LI->replaceAllUsesWith(V);
1421  if (isa<PHINode>(V))
1422    V->takeName(LI);
1423  if (isa<PointerType>(V->getType()))
1424    MD->invalidateCachedPointerInfo(V);
1425  toErase.push_back(LI);
1426  NumPRELoad++;
1427  return true;
1428}
1429
1430/// processLoad - Attempt to eliminate a load, first by eliminating it
1431/// locally, and then attempting non-local elimination if that fails.
1432bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1433  if (L->isVolatile())
1434    return false;
1435
1436  // ... to a pointer that has been loaded from before...
1437  MemDepResult Dep = MD->getDependency(L);
1438
1439  // If the value isn't available, don't do anything!
1440  if (Dep.isClobber()) {
1441    // FIXME: We should handle memset/memcpy/memmove as dependent instructions
1442    // to forward the value if available.
1443    //if (isa<MemIntrinsic>(Dep.getInst()))
1444    //errs() << "LOAD DEPENDS ON MEM: " << *L << "\n" << *Dep.getInst()<<"\n\n";
1445
1446    // Check to see if we have something like this:
1447    //   store i32 123, i32* %P
1448    //   %A = bitcast i32* %P to i8*
1449    //   %B = gep i8* %A, i32 1
1450    //   %C = load i8* %B
1451    //
1452    // We could do that by recognizing if the clobber instructions are obviously
1453    // a common base + constant offset, and if the previous store (or memset)
1454    // completely covers this load.  This sort of thing can happen in bitfield
1455    // access code.
1456    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1457      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1458        int Offset = AnalyzeLoadFromClobberingStore(L, DepSI, *TD);
1459        if (Offset != -1) {
1460          Value *AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1461                                                 L->getType(), L, *TD);
1462          DEBUG(errs() << "GVN COERCED STORE BITS:\n" << *DepSI << '\n'
1463                       << *AvailVal << '\n' << *L << "\n\n\n");
1464
1465          // Replace the load!
1466          L->replaceAllUsesWith(AvailVal);
1467          if (isa<PointerType>(AvailVal->getType()))
1468            MD->invalidateCachedPointerInfo(AvailVal);
1469          toErase.push_back(L);
1470          NumGVNLoad++;
1471          return true;
1472        }
1473      }
1474
1475    DEBUG(
1476      // fast print dep, using operator<< on instruction would be too slow
1477      errs() << "GVN: load ";
1478      WriteAsOperand(errs(), L);
1479      Instruction *I = Dep.getInst();
1480      errs() << " is clobbered by " << *I << '\n';
1481    );
1482    return false;
1483  }
1484
1485  // If it is defined in another block, try harder.
1486  if (Dep.isNonLocal())
1487    return processNonLocalLoad(L, toErase);
1488
1489  Instruction *DepInst = Dep.getInst();
1490  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1491    Value *StoredVal = DepSI->getOperand(0);
1492
1493    // The store and load are to a must-aliased pointer, but they may not
1494    // actually have the same type.  See if we know how to reuse the stored
1495    // value (depending on its type).
1496    const TargetData *TD = 0;
1497    if (StoredVal->getType() != L->getType() &&
1498        (TD = getAnalysisIfAvailable<TargetData>())) {
1499      StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1500                                                 L, *TD);
1501      if (StoredVal == 0)
1502        return false;
1503
1504      DEBUG(errs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1505                   << '\n' << *L << "\n\n\n");
1506    }
1507
1508    // Remove it!
1509    L->replaceAllUsesWith(StoredVal);
1510    if (isa<PointerType>(StoredVal->getType()))
1511      MD->invalidateCachedPointerInfo(StoredVal);
1512    toErase.push_back(L);
1513    NumGVNLoad++;
1514    return true;
1515  }
1516
1517  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1518    Value *AvailableVal = DepLI;
1519
1520    // The loads are of a must-aliased pointer, but they may not actually have
1521    // the same type.  See if we know how to reuse the previously loaded value
1522    // (depending on its type).
1523    const TargetData *TD = 0;
1524    if (DepLI->getType() != L->getType() &&
1525        (TD = getAnalysisIfAvailable<TargetData>())) {
1526      AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1527      if (AvailableVal == 0)
1528        return false;
1529
1530      DEBUG(errs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1531                   << "\n" << *L << "\n\n\n");
1532    }
1533
1534    // Remove it!
1535    L->replaceAllUsesWith(AvailableVal);
1536    if (isa<PointerType>(DepLI->getType()))
1537      MD->invalidateCachedPointerInfo(DepLI);
1538    toErase.push_back(L);
1539    NumGVNLoad++;
1540    return true;
1541  }
1542
1543  // If this load really doesn't depend on anything, then we must be loading an
1544  // undef value.  This can happen when loading for a fresh allocation with no
1545  // intervening stores, for example.
1546  if (isa<AllocationInst>(DepInst) || isMalloc(DepInst)) {
1547    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1548    toErase.push_back(L);
1549    NumGVNLoad++;
1550    return true;
1551  }
1552
1553  return false;
1554}
1555
1556Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1557  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1558  if (I == localAvail.end())
1559    return 0;
1560
1561  ValueNumberScope *Locals = I->second;
1562  while (Locals) {
1563    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1564    if (I != Locals->table.end())
1565      return I->second;
1566    Locals = Locals->parent;
1567  }
1568
1569  return 0;
1570}
1571
1572
1573/// processInstruction - When calculating availability, handle an instruction
1574/// by inserting it into the appropriate sets
1575bool GVN::processInstruction(Instruction *I,
1576                             SmallVectorImpl<Instruction*> &toErase) {
1577  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1578    bool Changed = processLoad(LI, toErase);
1579
1580    if (!Changed) {
1581      unsigned Num = VN.lookup_or_add(LI);
1582      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1583    }
1584
1585    return Changed;
1586  }
1587
1588  uint32_t NextNum = VN.getNextUnusedValueNumber();
1589  unsigned Num = VN.lookup_or_add(I);
1590
1591  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1592    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1593
1594    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1595      return false;
1596
1597    Value *BranchCond = BI->getCondition();
1598    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1599
1600    BasicBlock *TrueSucc = BI->getSuccessor(0);
1601    BasicBlock *FalseSucc = BI->getSuccessor(1);
1602
1603    if (TrueSucc->getSinglePredecessor())
1604      localAvail[TrueSucc]->table[CondVN] =
1605        ConstantInt::getTrue(TrueSucc->getContext());
1606    if (FalseSucc->getSinglePredecessor())
1607      localAvail[FalseSucc]->table[CondVN] =
1608        ConstantInt::getFalse(TrueSucc->getContext());
1609
1610    return false;
1611
1612  // Allocations are always uniquely numbered, so we can save time and memory
1613  // by fast failing them.
1614  } else if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
1615    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1616    return false;
1617  }
1618
1619  // Collapse PHI nodes
1620  if (PHINode* p = dyn_cast<PHINode>(I)) {
1621    Value *constVal = CollapsePhi(p);
1622
1623    if (constVal) {
1624      p->replaceAllUsesWith(constVal);
1625      if (isa<PointerType>(constVal->getType()))
1626        MD->invalidateCachedPointerInfo(constVal);
1627      VN.erase(p);
1628
1629      toErase.push_back(p);
1630    } else {
1631      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1632    }
1633
1634  // If the number we were assigned was a brand new VN, then we don't
1635  // need to do a lookup to see if the number already exists
1636  // somewhere in the domtree: it can't!
1637  } else if (Num == NextNum) {
1638    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1639
1640  // Perform fast-path value-number based elimination of values inherited from
1641  // dominators.
1642  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1643    // Remove it!
1644    VN.erase(I);
1645    I->replaceAllUsesWith(repl);
1646    if (isa<PointerType>(repl->getType()))
1647      MD->invalidateCachedPointerInfo(repl);
1648    toErase.push_back(I);
1649    return true;
1650
1651  } else {
1652    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1653  }
1654
1655  return false;
1656}
1657
1658/// runOnFunction - This is the main transformation entry point for a function.
1659bool GVN::runOnFunction(Function& F) {
1660  MD = &getAnalysis<MemoryDependenceAnalysis>();
1661  DT = &getAnalysis<DominatorTree>();
1662  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1663  VN.setMemDep(MD);
1664  VN.setDomTree(DT);
1665
1666  bool Changed = false;
1667  bool ShouldContinue = true;
1668
1669  // Merge unconditional branches, allowing PRE to catch more
1670  // optimization opportunities.
1671  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1672    BasicBlock *BB = FI;
1673    ++FI;
1674    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1675    if (removedBlock) NumGVNBlocks++;
1676
1677    Changed |= removedBlock;
1678  }
1679
1680  unsigned Iteration = 0;
1681
1682  while (ShouldContinue) {
1683    DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
1684    ShouldContinue = iterateOnFunction(F);
1685    Changed |= ShouldContinue;
1686    ++Iteration;
1687  }
1688
1689  if (EnablePRE) {
1690    bool PREChanged = true;
1691    while (PREChanged) {
1692      PREChanged = performPRE(F);
1693      Changed |= PREChanged;
1694    }
1695  }
1696  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1697  // computations into blocks where they become fully redundant.  Note that
1698  // we can't do this until PRE's critical edge splitting updates memdep.
1699  // Actually, when this happens, we should just fully integrate PRE into GVN.
1700
1701  cleanupGlobalSets();
1702
1703  return Changed;
1704}
1705
1706
1707bool GVN::processBlock(BasicBlock *BB) {
1708  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1709  // incrementing BI before processing an instruction).
1710  SmallVector<Instruction*, 8> toErase;
1711  bool ChangedFunction = false;
1712
1713  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1714       BI != BE;) {
1715    ChangedFunction |= processInstruction(BI, toErase);
1716    if (toErase.empty()) {
1717      ++BI;
1718      continue;
1719    }
1720
1721    // If we need some instructions deleted, do it now.
1722    NumGVNInstr += toErase.size();
1723
1724    // Avoid iterator invalidation.
1725    bool AtStart = BI == BB->begin();
1726    if (!AtStart)
1727      --BI;
1728
1729    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1730         E = toErase.end(); I != E; ++I) {
1731      DEBUG(errs() << "GVN removed: " << **I << '\n');
1732      MD->removeInstruction(*I);
1733      (*I)->eraseFromParent();
1734      DEBUG(verifyRemoved(*I));
1735    }
1736    toErase.clear();
1737
1738    if (AtStart)
1739      BI = BB->begin();
1740    else
1741      ++BI;
1742  }
1743
1744  return ChangedFunction;
1745}
1746
1747/// performPRE - Perform a purely local form of PRE that looks for diamond
1748/// control flow patterns and attempts to perform simple PRE at the join point.
1749bool GVN::performPRE(Function& F) {
1750  bool Changed = false;
1751  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1752  DenseMap<BasicBlock*, Value*> predMap;
1753  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1754       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1755    BasicBlock *CurrentBlock = *DI;
1756
1757    // Nothing to PRE in the entry block.
1758    if (CurrentBlock == &F.getEntryBlock()) continue;
1759
1760    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1761         BE = CurrentBlock->end(); BI != BE; ) {
1762      Instruction *CurInst = BI++;
1763
1764      if (isa<AllocationInst>(CurInst) ||
1765          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
1766          CurInst->getType()->isVoidTy() ||
1767          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
1768          isa<DbgInfoIntrinsic>(CurInst))
1769        continue;
1770
1771      uint32_t ValNo = VN.lookup(CurInst);
1772
1773      // Look for the predecessors for PRE opportunities.  We're
1774      // only trying to solve the basic diamond case, where
1775      // a value is computed in the successor and one predecessor,
1776      // but not the other.  We also explicitly disallow cases
1777      // where the successor is its own predecessor, because they're
1778      // more complicated to get right.
1779      unsigned NumWith = 0;
1780      unsigned NumWithout = 0;
1781      BasicBlock *PREPred = 0;
1782      predMap.clear();
1783
1784      for (pred_iterator PI = pred_begin(CurrentBlock),
1785           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1786        // We're not interested in PRE where the block is its
1787        // own predecessor, on in blocks with predecessors
1788        // that are not reachable.
1789        if (*PI == CurrentBlock) {
1790          NumWithout = 2;
1791          break;
1792        } else if (!localAvail.count(*PI))  {
1793          NumWithout = 2;
1794          break;
1795        }
1796
1797        DenseMap<uint32_t, Value*>::iterator predV =
1798                                            localAvail[*PI]->table.find(ValNo);
1799        if (predV == localAvail[*PI]->table.end()) {
1800          PREPred = *PI;
1801          NumWithout++;
1802        } else if (predV->second == CurInst) {
1803          NumWithout = 2;
1804        } else {
1805          predMap[*PI] = predV->second;
1806          NumWith++;
1807        }
1808      }
1809
1810      // Don't do PRE when it might increase code size, i.e. when
1811      // we would need to insert instructions in more than one pred.
1812      if (NumWithout != 1 || NumWith == 0)
1813        continue;
1814
1815      // We can't do PRE safely on a critical edge, so instead we schedule
1816      // the edge to be split and perform the PRE the next time we iterate
1817      // on the function.
1818      unsigned SuccNum = 0;
1819      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1820           i != e; ++i)
1821        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1822          SuccNum = i;
1823          break;
1824        }
1825
1826      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
1827        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
1828        continue;
1829      }
1830
1831      // Instantiate the expression the in predecessor that lacked it.
1832      // Because we are going top-down through the block, all value numbers
1833      // will be available in the predecessor by the time we need them.  Any
1834      // that weren't original present will have been instantiated earlier
1835      // in this loop.
1836      Instruction *PREInstr = CurInst->clone();
1837      bool success = true;
1838      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1839        Value *Op = PREInstr->getOperand(i);
1840        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1841          continue;
1842
1843        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1844          PREInstr->setOperand(i, V);
1845        } else {
1846          success = false;
1847          break;
1848        }
1849      }
1850
1851      // Fail out if we encounter an operand that is not available in
1852      // the PRE predecessor.  This is typically because of loads which
1853      // are not value numbered precisely.
1854      if (!success) {
1855        delete PREInstr;
1856        DEBUG(verifyRemoved(PREInstr));
1857        continue;
1858      }
1859
1860      PREInstr->insertBefore(PREPred->getTerminator());
1861      PREInstr->setName(CurInst->getName() + ".pre");
1862      predMap[PREPred] = PREInstr;
1863      VN.add(PREInstr, ValNo);
1864      NumGVNPRE++;
1865
1866      // Update the availability map to include the new instruction.
1867      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
1868
1869      // Create a PHI to make the value available in this block.
1870      PHINode* Phi = PHINode::Create(CurInst->getType(),
1871                                     CurInst->getName() + ".pre-phi",
1872                                     CurrentBlock->begin());
1873      for (pred_iterator PI = pred_begin(CurrentBlock),
1874           PE = pred_end(CurrentBlock); PI != PE; ++PI)
1875        Phi->addIncoming(predMap[*PI], *PI);
1876
1877      VN.add(Phi, ValNo);
1878      localAvail[CurrentBlock]->table[ValNo] = Phi;
1879
1880      CurInst->replaceAllUsesWith(Phi);
1881      if (isa<PointerType>(Phi->getType()))
1882        MD->invalidateCachedPointerInfo(Phi);
1883      VN.erase(CurInst);
1884
1885      DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
1886      MD->removeInstruction(CurInst);
1887      CurInst->eraseFromParent();
1888      DEBUG(verifyRemoved(CurInst));
1889      Changed = true;
1890    }
1891  }
1892
1893  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
1894       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
1895    SplitCriticalEdge(I->first, I->second, this);
1896
1897  return Changed || toSplit.size();
1898}
1899
1900/// iterateOnFunction - Executes one iteration of GVN
1901bool GVN::iterateOnFunction(Function &F) {
1902  cleanupGlobalSets();
1903
1904  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1905       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
1906    if (DI->getIDom())
1907      localAvail[DI->getBlock()] =
1908                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
1909    else
1910      localAvail[DI->getBlock()] = new ValueNumberScope(0);
1911  }
1912
1913  // Top-down walk of the dominator tree
1914  bool Changed = false;
1915#if 0
1916  // Needed for value numbering with phi construction to work.
1917  ReversePostOrderTraversal<Function*> RPOT(&F);
1918  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
1919       RE = RPOT.end(); RI != RE; ++RI)
1920    Changed |= processBlock(*RI);
1921#else
1922  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1923       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
1924    Changed |= processBlock(DI->getBlock());
1925#endif
1926
1927  return Changed;
1928}
1929
1930void GVN::cleanupGlobalSets() {
1931  VN.clear();
1932
1933  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1934       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
1935    delete I->second;
1936  localAvail.clear();
1937}
1938
1939/// verifyRemoved - Verify that the specified instruction does not occur in our
1940/// internal data structures.
1941void GVN::verifyRemoved(const Instruction *Inst) const {
1942  VN.verifyRemoved(Inst);
1943
1944  // Walk through the value number scope to make sure the instruction isn't
1945  // ferreted away in it.
1946  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1947         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
1948    const ValueNumberScope *VNS = I->second;
1949
1950    while (VNS) {
1951      for (DenseMap<uint32_t, Value*>::iterator
1952             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
1953        assert(II->second != Inst && "Inst still in value numbering scope!");
1954      }
1955
1956      VNS = VNS->parent;
1957    }
1958  }
1959}
1960