GVN.cpp revision 16003d0c0c20256dc02d0a922d41ad0c7e9c726c
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/InstructionSimplify.h"
27#include "llvm/Analysis/Loads.h"
28#include "llvm/Analysis/MemoryBuiltins.h"
29#include "llvm/Analysis/MemoryDependenceAnalysis.h"
30#include "llvm/Analysis/PHITransAddr.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetLibraryInfo.h"
35#include "llvm/Transforms/Utils/BasicBlockUtils.h"
36#include "llvm/Transforms/Utils/SSAUpdater.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/DepthFirstIterator.h"
39#include "llvm/ADT/Hashing.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/Support/Allocator.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/IRBuilder.h"
46#include "llvm/Support/PatternMatch.h"
47using namespace llvm;
48using namespace PatternMatch;
49
50STATISTIC(NumGVNInstr,  "Number of instructions deleted");
51STATISTIC(NumGVNLoad,   "Number of loads deleted");
52STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
53STATISTIC(NumGVNBlocks, "Number of blocks merged");
54STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
55STATISTIC(NumGVNEqProp, "Number of equalities propagated");
56STATISTIC(NumPRELoad,   "Number of loads PRE'd");
57
58static cl::opt<bool> EnablePRE("enable-pre",
59                               cl::init(true), cl::Hidden);
60static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
61
62//===----------------------------------------------------------------------===//
63//                         ValueTable Class
64//===----------------------------------------------------------------------===//
65
66/// This class holds the mapping between values and value numbers.  It is used
67/// as an efficient mechanism to determine the expression-wise equivalence of
68/// two values.
69namespace {
70  struct Expression {
71    uint32_t opcode;
72    Type *type;
73    SmallVector<uint32_t, 4> varargs;
74
75    Expression(uint32_t o = ~2U) : opcode(o) { }
76
77    bool operator==(const Expression &other) const {
78      if (opcode != other.opcode)
79        return false;
80      if (opcode == ~0U || opcode == ~1U)
81        return true;
82      if (type != other.type)
83        return false;
84      if (varargs != other.varargs)
85        return false;
86      return true;
87    }
88
89    friend hash_code hash_value(const Expression &Value) {
90      // Optimize for the common case.
91      if (Value.varargs.empty())
92        return hash_combine(Value.opcode, Value.type);
93
94      return hash_combine(Value.opcode, Value.type,
95                          hash_combine_range(Value.varargs.begin(),
96                                             Value.varargs.end()));
97    }
98  };
99
100  class ValueTable {
101    DenseMap<Value*, uint32_t> valueNumbering;
102    DenseMap<Expression, uint32_t> expressionNumbering;
103    AliasAnalysis *AA;
104    MemoryDependenceAnalysis *MD;
105    DominatorTree *DT;
106
107    uint32_t nextValueNumber;
108
109    Expression create_expression(Instruction* I);
110    Expression create_cmp_expression(unsigned Opcode,
111                                     CmpInst::Predicate Predicate,
112                                     Value *LHS, Value *RHS);
113    Expression create_extractvalue_expression(ExtractValueInst* EI);
114    uint32_t lookup_or_add_call(CallInst* C);
115  public:
116    ValueTable() : nextValueNumber(1) { }
117    uint32_t lookup_or_add(Value *V);
118    uint32_t lookup(Value *V) const;
119    uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
120                               Value *LHS, Value *RHS);
121    void add(Value *V, uint32_t num);
122    void clear();
123    void erase(Value *v);
124    void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
125    AliasAnalysis *getAliasAnalysis() const { return AA; }
126    void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
127    void setDomTree(DominatorTree* D) { DT = D; }
128    uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
129    void verifyRemoved(const Value *) const;
130  };
131}
132
133namespace llvm {
134template <> struct DenseMapInfo<Expression> {
135  static inline Expression getEmptyKey() {
136    return ~0U;
137  }
138
139  static inline Expression getTombstoneKey() {
140    return ~1U;
141  }
142
143  static unsigned getHashValue(const Expression e) {
144    using llvm::hash_value;
145    return static_cast<unsigned>(hash_value(e));
146  }
147  static bool isEqual(const Expression &LHS, const Expression &RHS) {
148    return LHS == RHS;
149  }
150};
151
152}
153
154//===----------------------------------------------------------------------===//
155//                     ValueTable Internal Functions
156//===----------------------------------------------------------------------===//
157
158Expression ValueTable::create_expression(Instruction *I) {
159  Expression e;
160  e.type = I->getType();
161  e.opcode = I->getOpcode();
162  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
163       OI != OE; ++OI)
164    e.varargs.push_back(lookup_or_add(*OI));
165  if (I->isCommutative()) {
166    // Ensure that commutative instructions that only differ by a permutation
167    // of their operands get the same value number by sorting the operand value
168    // numbers.  Since all commutative instructions have two operands it is more
169    // efficient to sort by hand rather than using, say, std::sort.
170    assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
171    if (e.varargs[0] > e.varargs[1])
172      std::swap(e.varargs[0], e.varargs[1]);
173  }
174
175  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
176    // Sort the operand value numbers so x<y and y>x get the same value number.
177    CmpInst::Predicate Predicate = C->getPredicate();
178    if (e.varargs[0] > e.varargs[1]) {
179      std::swap(e.varargs[0], e.varargs[1]);
180      Predicate = CmpInst::getSwappedPredicate(Predicate);
181    }
182    e.opcode = (C->getOpcode() << 8) | Predicate;
183  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
184    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
185         II != IE; ++II)
186      e.varargs.push_back(*II);
187  }
188
189  return e;
190}
191
192Expression ValueTable::create_cmp_expression(unsigned Opcode,
193                                             CmpInst::Predicate Predicate,
194                                             Value *LHS, Value *RHS) {
195  assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
196         "Not a comparison!");
197  Expression e;
198  e.type = CmpInst::makeCmpResultType(LHS->getType());
199  e.varargs.push_back(lookup_or_add(LHS));
200  e.varargs.push_back(lookup_or_add(RHS));
201
202  // Sort the operand value numbers so x<y and y>x get the same value number.
203  if (e.varargs[0] > e.varargs[1]) {
204    std::swap(e.varargs[0], e.varargs[1]);
205    Predicate = CmpInst::getSwappedPredicate(Predicate);
206  }
207  e.opcode = (Opcode << 8) | Predicate;
208  return e;
209}
210
211Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
212  assert(EI != 0 && "Not an ExtractValueInst?");
213  Expression e;
214  e.type = EI->getType();
215  e.opcode = 0;
216
217  IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
218  if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
219    // EI might be an extract from one of our recognised intrinsics. If it
220    // is we'll synthesize a semantically equivalent expression instead on
221    // an extract value expression.
222    switch (I->getIntrinsicID()) {
223      case Intrinsic::sadd_with_overflow:
224      case Intrinsic::uadd_with_overflow:
225        e.opcode = Instruction::Add;
226        break;
227      case Intrinsic::ssub_with_overflow:
228      case Intrinsic::usub_with_overflow:
229        e.opcode = Instruction::Sub;
230        break;
231      case Intrinsic::smul_with_overflow:
232      case Intrinsic::umul_with_overflow:
233        e.opcode = Instruction::Mul;
234        break;
235      default:
236        break;
237    }
238
239    if (e.opcode != 0) {
240      // Intrinsic recognized. Grab its args to finish building the expression.
241      assert(I->getNumArgOperands() == 2 &&
242             "Expect two args for recognised intrinsics.");
243      e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
244      e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
245      return e;
246    }
247  }
248
249  // Not a recognised intrinsic. Fall back to producing an extract value
250  // expression.
251  e.opcode = EI->getOpcode();
252  for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
253       OI != OE; ++OI)
254    e.varargs.push_back(lookup_or_add(*OI));
255
256  for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
257         II != IE; ++II)
258    e.varargs.push_back(*II);
259
260  return e;
261}
262
263//===----------------------------------------------------------------------===//
264//                     ValueTable External Functions
265//===----------------------------------------------------------------------===//
266
267/// add - Insert a value into the table with a specified value number.
268void ValueTable::add(Value *V, uint32_t num) {
269  valueNumbering.insert(std::make_pair(V, num));
270}
271
272uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
273  if (AA->doesNotAccessMemory(C)) {
274    Expression exp = create_expression(C);
275    uint32_t& e = expressionNumbering[exp];
276    if (!e) e = nextValueNumber++;
277    valueNumbering[C] = e;
278    return e;
279  } else if (AA->onlyReadsMemory(C)) {
280    Expression exp = create_expression(C);
281    uint32_t& e = expressionNumbering[exp];
282    if (!e) {
283      e = nextValueNumber++;
284      valueNumbering[C] = e;
285      return e;
286    }
287    if (!MD) {
288      e = nextValueNumber++;
289      valueNumbering[C] = e;
290      return e;
291    }
292
293    MemDepResult local_dep = MD->getDependency(C);
294
295    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
296      valueNumbering[C] =  nextValueNumber;
297      return nextValueNumber++;
298    }
299
300    if (local_dep.isDef()) {
301      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
302
303      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
304        valueNumbering[C] = nextValueNumber;
305        return nextValueNumber++;
306      }
307
308      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
309        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
310        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
311        if (c_vn != cd_vn) {
312          valueNumbering[C] = nextValueNumber;
313          return nextValueNumber++;
314        }
315      }
316
317      uint32_t v = lookup_or_add(local_cdep);
318      valueNumbering[C] = v;
319      return v;
320    }
321
322    // Non-local case.
323    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
324      MD->getNonLocalCallDependency(CallSite(C));
325    // FIXME: Move the checking logic to MemDep!
326    CallInst* cdep = 0;
327
328    // Check to see if we have a single dominating call instruction that is
329    // identical to C.
330    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
331      const NonLocalDepEntry *I = &deps[i];
332      if (I->getResult().isNonLocal())
333        continue;
334
335      // We don't handle non-definitions.  If we already have a call, reject
336      // instruction dependencies.
337      if (!I->getResult().isDef() || cdep != 0) {
338        cdep = 0;
339        break;
340      }
341
342      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
343      // FIXME: All duplicated with non-local case.
344      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
345        cdep = NonLocalDepCall;
346        continue;
347      }
348
349      cdep = 0;
350      break;
351    }
352
353    if (!cdep) {
354      valueNumbering[C] = nextValueNumber;
355      return nextValueNumber++;
356    }
357
358    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
359      valueNumbering[C] = nextValueNumber;
360      return nextValueNumber++;
361    }
362    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
363      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
364      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
365      if (c_vn != cd_vn) {
366        valueNumbering[C] = nextValueNumber;
367        return nextValueNumber++;
368      }
369    }
370
371    uint32_t v = lookup_or_add(cdep);
372    valueNumbering[C] = v;
373    return v;
374
375  } else {
376    valueNumbering[C] = nextValueNumber;
377    return nextValueNumber++;
378  }
379}
380
381/// lookup_or_add - Returns the value number for the specified value, assigning
382/// it a new number if it did not have one before.
383uint32_t ValueTable::lookup_or_add(Value *V) {
384  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
385  if (VI != valueNumbering.end())
386    return VI->second;
387
388  if (!isa<Instruction>(V)) {
389    valueNumbering[V] = nextValueNumber;
390    return nextValueNumber++;
391  }
392
393  Instruction* I = cast<Instruction>(V);
394  Expression exp;
395  switch (I->getOpcode()) {
396    case Instruction::Call:
397      return lookup_or_add_call(cast<CallInst>(I));
398    case Instruction::Add:
399    case Instruction::FAdd:
400    case Instruction::Sub:
401    case Instruction::FSub:
402    case Instruction::Mul:
403    case Instruction::FMul:
404    case Instruction::UDiv:
405    case Instruction::SDiv:
406    case Instruction::FDiv:
407    case Instruction::URem:
408    case Instruction::SRem:
409    case Instruction::FRem:
410    case Instruction::Shl:
411    case Instruction::LShr:
412    case Instruction::AShr:
413    case Instruction::And:
414    case Instruction::Or :
415    case Instruction::Xor:
416    case Instruction::ICmp:
417    case Instruction::FCmp:
418    case Instruction::Trunc:
419    case Instruction::ZExt:
420    case Instruction::SExt:
421    case Instruction::FPToUI:
422    case Instruction::FPToSI:
423    case Instruction::UIToFP:
424    case Instruction::SIToFP:
425    case Instruction::FPTrunc:
426    case Instruction::FPExt:
427    case Instruction::PtrToInt:
428    case Instruction::IntToPtr:
429    case Instruction::BitCast:
430    case Instruction::Select:
431    case Instruction::ExtractElement:
432    case Instruction::InsertElement:
433    case Instruction::ShuffleVector:
434    case Instruction::InsertValue:
435    case Instruction::GetElementPtr:
436      exp = create_expression(I);
437      break;
438    case Instruction::ExtractValue:
439      exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
440      break;
441    default:
442      valueNumbering[V] = nextValueNumber;
443      return nextValueNumber++;
444  }
445
446  uint32_t& e = expressionNumbering[exp];
447  if (!e) e = nextValueNumber++;
448  valueNumbering[V] = e;
449  return e;
450}
451
452/// lookup - Returns the value number of the specified value. Fails if
453/// the value has not yet been numbered.
454uint32_t ValueTable::lookup(Value *V) const {
455  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
456  assert(VI != valueNumbering.end() && "Value not numbered?");
457  return VI->second;
458}
459
460/// lookup_or_add_cmp - Returns the value number of the given comparison,
461/// assigning it a new number if it did not have one before.  Useful when
462/// we deduced the result of a comparison, but don't immediately have an
463/// instruction realizing that comparison to hand.
464uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
465                                       CmpInst::Predicate Predicate,
466                                       Value *LHS, Value *RHS) {
467  Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
468  uint32_t& e = expressionNumbering[exp];
469  if (!e) e = nextValueNumber++;
470  return e;
471}
472
473/// clear - Remove all entries from the ValueTable.
474void ValueTable::clear() {
475  valueNumbering.clear();
476  expressionNumbering.clear();
477  nextValueNumber = 1;
478}
479
480/// erase - Remove a value from the value numbering.
481void ValueTable::erase(Value *V) {
482  valueNumbering.erase(V);
483}
484
485/// verifyRemoved - Verify that the value is removed from all internal data
486/// structures.
487void ValueTable::verifyRemoved(const Value *V) const {
488  for (DenseMap<Value*, uint32_t>::const_iterator
489         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
490    assert(I->first != V && "Inst still occurs in value numbering map!");
491  }
492}
493
494//===----------------------------------------------------------------------===//
495//                                GVN Pass
496//===----------------------------------------------------------------------===//
497
498namespace {
499
500  class GVN : public FunctionPass {
501    bool NoLoads;
502    MemoryDependenceAnalysis *MD;
503    DominatorTree *DT;
504    const TargetData *TD;
505    const TargetLibraryInfo *TLI;
506
507    ValueTable VN;
508
509    /// LeaderTable - A mapping from value numbers to lists of Value*'s that
510    /// have that value number.  Use findLeader to query it.
511    struct LeaderTableEntry {
512      Value *Val;
513      BasicBlock *BB;
514      LeaderTableEntry *Next;
515    };
516    DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
517    BumpPtrAllocator TableAllocator;
518
519    SmallVector<Instruction*, 8> InstrsToErase;
520  public:
521    static char ID; // Pass identification, replacement for typeid
522    explicit GVN(bool noloads = false)
523        : FunctionPass(ID), NoLoads(noloads), MD(0) {
524      initializeGVNPass(*PassRegistry::getPassRegistry());
525    }
526
527    bool runOnFunction(Function &F);
528
529    /// markInstructionForDeletion - This removes the specified instruction from
530    /// our various maps and marks it for deletion.
531    void markInstructionForDeletion(Instruction *I) {
532      VN.erase(I);
533      InstrsToErase.push_back(I);
534    }
535
536    const TargetData *getTargetData() const { return TD; }
537    DominatorTree &getDominatorTree() const { return *DT; }
538    AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
539    MemoryDependenceAnalysis &getMemDep() const { return *MD; }
540  private:
541    /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
542    /// its value number.
543    void addToLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
544      LeaderTableEntry &Curr = LeaderTable[N];
545      if (!Curr.Val) {
546        Curr.Val = V;
547        Curr.BB = BB;
548        return;
549      }
550
551      LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
552      Node->Val = V;
553      Node->BB = BB;
554      Node->Next = Curr.Next;
555      Curr.Next = Node;
556    }
557
558    /// removeFromLeaderTable - Scan the list of values corresponding to a given
559    /// value number, and remove the given value if encountered.
560    void removeFromLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
561      LeaderTableEntry* Prev = 0;
562      LeaderTableEntry* Curr = &LeaderTable[N];
563
564      while (Curr->Val != V || Curr->BB != BB) {
565        Prev = Curr;
566        Curr = Curr->Next;
567      }
568
569      if (Prev) {
570        Prev->Next = Curr->Next;
571      } else {
572        if (!Curr->Next) {
573          Curr->Val = 0;
574          Curr->BB = 0;
575        } else {
576          LeaderTableEntry* Next = Curr->Next;
577          Curr->Val = Next->Val;
578          Curr->BB = Next->BB;
579          Curr->Next = Next->Next;
580        }
581      }
582    }
583
584    // List of critical edges to be split between iterations.
585    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
586
587    // This transformation requires dominator postdominator info
588    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
589      AU.addRequired<DominatorTree>();
590      AU.addRequired<TargetLibraryInfo>();
591      if (!NoLoads)
592        AU.addRequired<MemoryDependenceAnalysis>();
593      AU.addRequired<AliasAnalysis>();
594
595      AU.addPreserved<DominatorTree>();
596      AU.addPreserved<AliasAnalysis>();
597    }
598
599
600    // Helper fuctions
601    // FIXME: eliminate or document these better
602    bool processLoad(LoadInst *L);
603    bool processInstruction(Instruction *I);
604    bool processNonLocalLoad(LoadInst *L);
605    bool processBlock(BasicBlock *BB);
606    void dump(DenseMap<uint32_t, Value*> &d);
607    bool iterateOnFunction(Function &F);
608    bool performPRE(Function &F);
609    Value *findLeader(BasicBlock *BB, uint32_t num);
610    void cleanupGlobalSets();
611    void verifyRemoved(const Instruction *I) const;
612    bool splitCriticalEdges();
613    unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
614                                         BasicBlock *Root);
615    bool propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root);
616  };
617
618  char GVN::ID = 0;
619}
620
621// createGVNPass - The public interface to this file...
622FunctionPass *llvm::createGVNPass(bool NoLoads) {
623  return new GVN(NoLoads);
624}
625
626INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
627INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
628INITIALIZE_PASS_DEPENDENCY(DominatorTree)
629INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
630INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
631INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
632
633void GVN::dump(DenseMap<uint32_t, Value*>& d) {
634  errs() << "{\n";
635  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
636       E = d.end(); I != E; ++I) {
637      errs() << I->first << "\n";
638      I->second->dump();
639  }
640  errs() << "}\n";
641}
642
643/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
644/// we're analyzing is fully available in the specified block.  As we go, keep
645/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
646/// map is actually a tri-state map with the following values:
647///   0) we know the block *is not* fully available.
648///   1) we know the block *is* fully available.
649///   2) we do not know whether the block is fully available or not, but we are
650///      currently speculating that it will be.
651///   3) we are speculating for this block and have used that to speculate for
652///      other blocks.
653static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
654                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
655  // Optimistically assume that the block is fully available and check to see
656  // if we already know about this block in one lookup.
657  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
658    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
659
660  // If the entry already existed for this block, return the precomputed value.
661  if (!IV.second) {
662    // If this is a speculative "available" value, mark it as being used for
663    // speculation of other blocks.
664    if (IV.first->second == 2)
665      IV.first->second = 3;
666    return IV.first->second != 0;
667  }
668
669  // Otherwise, see if it is fully available in all predecessors.
670  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
671
672  // If this block has no predecessors, it isn't live-in here.
673  if (PI == PE)
674    goto SpeculationFailure;
675
676  for (; PI != PE; ++PI)
677    // If the value isn't fully available in one of our predecessors, then it
678    // isn't fully available in this block either.  Undo our previous
679    // optimistic assumption and bail out.
680    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
681      goto SpeculationFailure;
682
683  return true;
684
685// SpeculationFailure - If we get here, we found out that this is not, after
686// all, a fully-available block.  We have a problem if we speculated on this and
687// used the speculation to mark other blocks as available.
688SpeculationFailure:
689  char &BBVal = FullyAvailableBlocks[BB];
690
691  // If we didn't speculate on this, just return with it set to false.
692  if (BBVal == 2) {
693    BBVal = 0;
694    return false;
695  }
696
697  // If we did speculate on this value, we could have blocks set to 1 that are
698  // incorrect.  Walk the (transitive) successors of this block and mark them as
699  // 0 if set to one.
700  SmallVector<BasicBlock*, 32> BBWorklist;
701  BBWorklist.push_back(BB);
702
703  do {
704    BasicBlock *Entry = BBWorklist.pop_back_val();
705    // Note that this sets blocks to 0 (unavailable) if they happen to not
706    // already be in FullyAvailableBlocks.  This is safe.
707    char &EntryVal = FullyAvailableBlocks[Entry];
708    if (EntryVal == 0) continue;  // Already unavailable.
709
710    // Mark as unavailable.
711    EntryVal = 0;
712
713    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
714      BBWorklist.push_back(*I);
715  } while (!BBWorklist.empty());
716
717  return false;
718}
719
720
721/// CanCoerceMustAliasedValueToLoad - Return true if
722/// CoerceAvailableValueToLoadType will succeed.
723static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
724                                            Type *LoadTy,
725                                            const TargetData &TD) {
726  // If the loaded or stored value is an first class array or struct, don't try
727  // to transform them.  We need to be able to bitcast to integer.
728  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
729      StoredVal->getType()->isStructTy() ||
730      StoredVal->getType()->isArrayTy())
731    return false;
732
733  // The store has to be at least as big as the load.
734  if (TD.getTypeSizeInBits(StoredVal->getType()) <
735        TD.getTypeSizeInBits(LoadTy))
736    return false;
737
738  return true;
739}
740
741
742/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
743/// then a load from a must-aliased pointer of a different type, try to coerce
744/// the stored value.  LoadedTy is the type of the load we want to replace and
745/// InsertPt is the place to insert new instructions.
746///
747/// If we can't do it, return null.
748static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
749                                             Type *LoadedTy,
750                                             Instruction *InsertPt,
751                                             const TargetData &TD) {
752  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
753    return 0;
754
755  // If this is already the right type, just return it.
756  Type *StoredValTy = StoredVal->getType();
757
758  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
759  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
760
761  // If the store and reload are the same size, we can always reuse it.
762  if (StoreSize == LoadSize) {
763    // Pointer to Pointer -> use bitcast.
764    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy())
765      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
766
767    // Convert source pointers to integers, which can be bitcast.
768    if (StoredValTy->isPointerTy()) {
769      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
770      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
771    }
772
773    Type *TypeToCastTo = LoadedTy;
774    if (TypeToCastTo->isPointerTy())
775      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
776
777    if (StoredValTy != TypeToCastTo)
778      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
779
780    // Cast to pointer if the load needs a pointer type.
781    if (LoadedTy->isPointerTy())
782      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
783
784    return StoredVal;
785  }
786
787  // If the loaded value is smaller than the available value, then we can
788  // extract out a piece from it.  If the available value is too small, then we
789  // can't do anything.
790  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
791
792  // Convert source pointers to integers, which can be manipulated.
793  if (StoredValTy->isPointerTy()) {
794    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
795    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
796  }
797
798  // Convert vectors and fp to integer, which can be manipulated.
799  if (!StoredValTy->isIntegerTy()) {
800    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
801    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
802  }
803
804  // If this is a big-endian system, we need to shift the value down to the low
805  // bits so that a truncate will work.
806  if (TD.isBigEndian()) {
807    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
808    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
809  }
810
811  // Truncate the integer to the right size now.
812  Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
813  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
814
815  if (LoadedTy == NewIntTy)
816    return StoredVal;
817
818  // If the result is a pointer, inttoptr.
819  if (LoadedTy->isPointerTy())
820    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
821
822  // Otherwise, bitcast.
823  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
824}
825
826/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
827/// memdep query of a load that ends up being a clobbering memory write (store,
828/// memset, memcpy, memmove).  This means that the write *may* provide bits used
829/// by the load but we can't be sure because the pointers don't mustalias.
830///
831/// Check this case to see if there is anything more we can do before we give
832/// up.  This returns -1 if we have to give up, or a byte number in the stored
833/// value of the piece that feeds the load.
834static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
835                                          Value *WritePtr,
836                                          uint64_t WriteSizeInBits,
837                                          const TargetData &TD) {
838  // If the loaded or stored value is a first class array or struct, don't try
839  // to transform them.  We need to be able to bitcast to integer.
840  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
841    return -1;
842
843  int64_t StoreOffset = 0, LoadOffset = 0;
844  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
845  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
846  if (StoreBase != LoadBase)
847    return -1;
848
849  // If the load and store are to the exact same address, they should have been
850  // a must alias.  AA must have gotten confused.
851  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
852  // to a load from the base of the memset.
853#if 0
854  if (LoadOffset == StoreOffset) {
855    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
856    << "Base       = " << *StoreBase << "\n"
857    << "Store Ptr  = " << *WritePtr << "\n"
858    << "Store Offs = " << StoreOffset << "\n"
859    << "Load Ptr   = " << *LoadPtr << "\n";
860    abort();
861  }
862#endif
863
864  // If the load and store don't overlap at all, the store doesn't provide
865  // anything to the load.  In this case, they really don't alias at all, AA
866  // must have gotten confused.
867  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
868
869  if ((WriteSizeInBits & 7) | (LoadSize & 7))
870    return -1;
871  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
872  LoadSize >>= 3;
873
874
875  bool isAAFailure = false;
876  if (StoreOffset < LoadOffset)
877    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
878  else
879    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
880
881  if (isAAFailure) {
882#if 0
883    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
884    << "Base       = " << *StoreBase << "\n"
885    << "Store Ptr  = " << *WritePtr << "\n"
886    << "Store Offs = " << StoreOffset << "\n"
887    << "Load Ptr   = " << *LoadPtr << "\n";
888    abort();
889#endif
890    return -1;
891  }
892
893  // If the Load isn't completely contained within the stored bits, we don't
894  // have all the bits to feed it.  We could do something crazy in the future
895  // (issue a smaller load then merge the bits in) but this seems unlikely to be
896  // valuable.
897  if (StoreOffset > LoadOffset ||
898      StoreOffset+StoreSize < LoadOffset+LoadSize)
899    return -1;
900
901  // Okay, we can do this transformation.  Return the number of bytes into the
902  // store that the load is.
903  return LoadOffset-StoreOffset;
904}
905
906/// AnalyzeLoadFromClobberingStore - This function is called when we have a
907/// memdep query of a load that ends up being a clobbering store.
908static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
909                                          StoreInst *DepSI,
910                                          const TargetData &TD) {
911  // Cannot handle reading from store of first-class aggregate yet.
912  if (DepSI->getValueOperand()->getType()->isStructTy() ||
913      DepSI->getValueOperand()->getType()->isArrayTy())
914    return -1;
915
916  Value *StorePtr = DepSI->getPointerOperand();
917  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
918  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
919                                        StorePtr, StoreSize, TD);
920}
921
922/// AnalyzeLoadFromClobberingLoad - This function is called when we have a
923/// memdep query of a load that ends up being clobbered by another load.  See if
924/// the other load can feed into the second load.
925static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
926                                         LoadInst *DepLI, const TargetData &TD){
927  // Cannot handle reading from store of first-class aggregate yet.
928  if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
929    return -1;
930
931  Value *DepPtr = DepLI->getPointerOperand();
932  uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
933  int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
934  if (R != -1) return R;
935
936  // If we have a load/load clobber an DepLI can be widened to cover this load,
937  // then we should widen it!
938  int64_t LoadOffs = 0;
939  const Value *LoadBase =
940    GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD);
941  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
942
943  unsigned Size = MemoryDependenceAnalysis::
944    getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
945  if (Size == 0) return -1;
946
947  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
948}
949
950
951
952static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
953                                            MemIntrinsic *MI,
954                                            const TargetData &TD) {
955  // If the mem operation is a non-constant size, we can't handle it.
956  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
957  if (SizeCst == 0) return -1;
958  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
959
960  // If this is memset, we just need to see if the offset is valid in the size
961  // of the memset..
962  if (MI->getIntrinsicID() == Intrinsic::memset)
963    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
964                                          MemSizeInBits, TD);
965
966  // If we have a memcpy/memmove, the only case we can handle is if this is a
967  // copy from constant memory.  In that case, we can read directly from the
968  // constant memory.
969  MemTransferInst *MTI = cast<MemTransferInst>(MI);
970
971  Constant *Src = dyn_cast<Constant>(MTI->getSource());
972  if (Src == 0) return -1;
973
974  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
975  if (GV == 0 || !GV->isConstant()) return -1;
976
977  // See if the access is within the bounds of the transfer.
978  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
979                                              MI->getDest(), MemSizeInBits, TD);
980  if (Offset == -1)
981    return Offset;
982
983  // Otherwise, see if we can constant fold a load from the constant with the
984  // offset applied as appropriate.
985  Src = ConstantExpr::getBitCast(Src,
986                                 llvm::Type::getInt8PtrTy(Src->getContext()));
987  Constant *OffsetCst =
988    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
989  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
990  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
991  if (ConstantFoldLoadFromConstPtr(Src, &TD))
992    return Offset;
993  return -1;
994}
995
996
997/// GetStoreValueForLoad - This function is called when we have a
998/// memdep query of a load that ends up being a clobbering store.  This means
999/// that the store provides bits used by the load but we the pointers don't
1000/// mustalias.  Check this case to see if there is anything more we can do
1001/// before we give up.
1002static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1003                                   Type *LoadTy,
1004                                   Instruction *InsertPt, const TargetData &TD){
1005  LLVMContext &Ctx = SrcVal->getType()->getContext();
1006
1007  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1008  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1009
1010  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1011
1012  // Compute which bits of the stored value are being used by the load.  Convert
1013  // to an integer type to start with.
1014  if (SrcVal->getType()->isPointerTy())
1015    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx));
1016  if (!SrcVal->getType()->isIntegerTy())
1017    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
1018
1019  // Shift the bits to the least significant depending on endianness.
1020  unsigned ShiftAmt;
1021  if (TD.isLittleEndian())
1022    ShiftAmt = Offset*8;
1023  else
1024    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1025
1026  if (ShiftAmt)
1027    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
1028
1029  if (LoadSize != StoreSize)
1030    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
1031
1032  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1033}
1034
1035/// GetLoadValueForLoad - This function is called when we have a
1036/// memdep query of a load that ends up being a clobbering load.  This means
1037/// that the load *may* provide bits used by the load but we can't be sure
1038/// because the pointers don't mustalias.  Check this case to see if there is
1039/// anything more we can do before we give up.
1040static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
1041                                  Type *LoadTy, Instruction *InsertPt,
1042                                  GVN &gvn) {
1043  const TargetData &TD = *gvn.getTargetData();
1044  // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
1045  // widen SrcVal out to a larger load.
1046  unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
1047  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
1048  if (Offset+LoadSize > SrcValSize) {
1049    assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
1050    assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
1051    // If we have a load/load clobber an DepLI can be widened to cover this
1052    // load, then we should widen it to the next power of 2 size big enough!
1053    unsigned NewLoadSize = Offset+LoadSize;
1054    if (!isPowerOf2_32(NewLoadSize))
1055      NewLoadSize = NextPowerOf2(NewLoadSize);
1056
1057    Value *PtrVal = SrcVal->getPointerOperand();
1058
1059    // Insert the new load after the old load.  This ensures that subsequent
1060    // memdep queries will find the new load.  We can't easily remove the old
1061    // load completely because it is already in the value numbering table.
1062    IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
1063    Type *DestPTy =
1064      IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1065    DestPTy = PointerType::get(DestPTy,
1066                       cast<PointerType>(PtrVal->getType())->getAddressSpace());
1067    Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1068    PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1069    LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1070    NewLoad->takeName(SrcVal);
1071    NewLoad->setAlignment(SrcVal->getAlignment());
1072
1073    DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1074    DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1075
1076    // Replace uses of the original load with the wider load.  On a big endian
1077    // system, we need to shift down to get the relevant bits.
1078    Value *RV = NewLoad;
1079    if (TD.isBigEndian())
1080      RV = Builder.CreateLShr(RV,
1081                    NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1082    RV = Builder.CreateTrunc(RV, SrcVal->getType());
1083    SrcVal->replaceAllUsesWith(RV);
1084
1085    // We would like to use gvn.markInstructionForDeletion here, but we can't
1086    // because the load is already memoized into the leader map table that GVN
1087    // tracks.  It is potentially possible to remove the load from the table,
1088    // but then there all of the operations based on it would need to be
1089    // rehashed.  Just leave the dead load around.
1090    gvn.getMemDep().removeInstruction(SrcVal);
1091    SrcVal = NewLoad;
1092  }
1093
1094  return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
1095}
1096
1097
1098/// GetMemInstValueForLoad - This function is called when we have a
1099/// memdep query of a load that ends up being a clobbering mem intrinsic.
1100static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1101                                     Type *LoadTy, Instruction *InsertPt,
1102                                     const TargetData &TD){
1103  LLVMContext &Ctx = LoadTy->getContext();
1104  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1105
1106  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1107
1108  // We know that this method is only called when the mem transfer fully
1109  // provides the bits for the load.
1110  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1111    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1112    // independently of what the offset is.
1113    Value *Val = MSI->getValue();
1114    if (LoadSize != 1)
1115      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1116
1117    Value *OneElt = Val;
1118
1119    // Splat the value out to the right number of bits.
1120    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1121      // If we can double the number of bytes set, do it.
1122      if (NumBytesSet*2 <= LoadSize) {
1123        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1124        Val = Builder.CreateOr(Val, ShVal);
1125        NumBytesSet <<= 1;
1126        continue;
1127      }
1128
1129      // Otherwise insert one byte at a time.
1130      Value *ShVal = Builder.CreateShl(Val, 1*8);
1131      Val = Builder.CreateOr(OneElt, ShVal);
1132      ++NumBytesSet;
1133    }
1134
1135    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1136  }
1137
1138  // Otherwise, this is a memcpy/memmove from a constant global.
1139  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1140  Constant *Src = cast<Constant>(MTI->getSource());
1141
1142  // Otherwise, see if we can constant fold a load from the constant with the
1143  // offset applied as appropriate.
1144  Src = ConstantExpr::getBitCast(Src,
1145                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1146  Constant *OffsetCst =
1147  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1148  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1149  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1150  return ConstantFoldLoadFromConstPtr(Src, &TD);
1151}
1152
1153namespace {
1154
1155struct AvailableValueInBlock {
1156  /// BB - The basic block in question.
1157  BasicBlock *BB;
1158  enum ValType {
1159    SimpleVal,  // A simple offsetted value that is accessed.
1160    LoadVal,    // A value produced by a load.
1161    MemIntrin   // A memory intrinsic which is loaded from.
1162  };
1163
1164  /// V - The value that is live out of the block.
1165  PointerIntPair<Value *, 2, ValType> Val;
1166
1167  /// Offset - The byte offset in Val that is interesting for the load query.
1168  unsigned Offset;
1169
1170  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1171                                   unsigned Offset = 0) {
1172    AvailableValueInBlock Res;
1173    Res.BB = BB;
1174    Res.Val.setPointer(V);
1175    Res.Val.setInt(SimpleVal);
1176    Res.Offset = Offset;
1177    return Res;
1178  }
1179
1180  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1181                                     unsigned Offset = 0) {
1182    AvailableValueInBlock Res;
1183    Res.BB = BB;
1184    Res.Val.setPointer(MI);
1185    Res.Val.setInt(MemIntrin);
1186    Res.Offset = Offset;
1187    return Res;
1188  }
1189
1190  static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
1191                                       unsigned Offset = 0) {
1192    AvailableValueInBlock Res;
1193    Res.BB = BB;
1194    Res.Val.setPointer(LI);
1195    Res.Val.setInt(LoadVal);
1196    Res.Offset = Offset;
1197    return Res;
1198  }
1199
1200  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1201  bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
1202  bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
1203
1204  Value *getSimpleValue() const {
1205    assert(isSimpleValue() && "Wrong accessor");
1206    return Val.getPointer();
1207  }
1208
1209  LoadInst *getCoercedLoadValue() const {
1210    assert(isCoercedLoadValue() && "Wrong accessor");
1211    return cast<LoadInst>(Val.getPointer());
1212  }
1213
1214  MemIntrinsic *getMemIntrinValue() const {
1215    assert(isMemIntrinValue() && "Wrong accessor");
1216    return cast<MemIntrinsic>(Val.getPointer());
1217  }
1218
1219  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1220  /// defined here to the specified type.  This handles various coercion cases.
1221  Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
1222    Value *Res;
1223    if (isSimpleValue()) {
1224      Res = getSimpleValue();
1225      if (Res->getType() != LoadTy) {
1226        const TargetData *TD = gvn.getTargetData();
1227        assert(TD && "Need target data to handle type mismatch case");
1228        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1229                                   *TD);
1230
1231        DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1232                     << *getSimpleValue() << '\n'
1233                     << *Res << '\n' << "\n\n\n");
1234      }
1235    } else if (isCoercedLoadValue()) {
1236      LoadInst *Load = getCoercedLoadValue();
1237      if (Load->getType() == LoadTy && Offset == 0) {
1238        Res = Load;
1239      } else {
1240        Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1241                                  gvn);
1242
1243        DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
1244                     << *getCoercedLoadValue() << '\n'
1245                     << *Res << '\n' << "\n\n\n");
1246      }
1247    } else {
1248      const TargetData *TD = gvn.getTargetData();
1249      assert(TD && "Need target data to handle type mismatch case");
1250      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1251                                   LoadTy, BB->getTerminator(), *TD);
1252      DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1253                   << "  " << *getMemIntrinValue() << '\n'
1254                   << *Res << '\n' << "\n\n\n");
1255    }
1256    return Res;
1257  }
1258};
1259
1260} // end anonymous namespace
1261
1262/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1263/// construct SSA form, allowing us to eliminate LI.  This returns the value
1264/// that should be used at LI's definition site.
1265static Value *ConstructSSAForLoadSet(LoadInst *LI,
1266                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1267                                     GVN &gvn) {
1268  // Check for the fully redundant, dominating load case.  In this case, we can
1269  // just use the dominating value directly.
1270  if (ValuesPerBlock.size() == 1 &&
1271      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1272                                               LI->getParent()))
1273    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1274
1275  // Otherwise, we have to construct SSA form.
1276  SmallVector<PHINode*, 8> NewPHIs;
1277  SSAUpdater SSAUpdate(&NewPHIs);
1278  SSAUpdate.Initialize(LI->getType(), LI->getName());
1279
1280  Type *LoadTy = LI->getType();
1281
1282  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1283    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1284    BasicBlock *BB = AV.BB;
1285
1286    if (SSAUpdate.HasValueForBlock(BB))
1287      continue;
1288
1289    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1290  }
1291
1292  // Perform PHI construction.
1293  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1294
1295  // If new PHI nodes were created, notify alias analysis.
1296  if (V->getType()->isPointerTy()) {
1297    AliasAnalysis *AA = gvn.getAliasAnalysis();
1298
1299    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1300      AA->copyValue(LI, NewPHIs[i]);
1301
1302    // Now that we've copied information to the new PHIs, scan through
1303    // them again and inform alias analysis that we've added potentially
1304    // escaping uses to any values that are operands to these PHIs.
1305    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1306      PHINode *P = NewPHIs[i];
1307      for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
1308        unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
1309        AA->addEscapingUse(P->getOperandUse(jj));
1310      }
1311    }
1312  }
1313
1314  return V;
1315}
1316
1317static bool isLifetimeStart(const Instruction *Inst) {
1318  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1319    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1320  return false;
1321}
1322
1323/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1324/// non-local by performing PHI construction.
1325bool GVN::processNonLocalLoad(LoadInst *LI) {
1326  // Find the non-local dependencies of the load.
1327  SmallVector<NonLocalDepResult, 64> Deps;
1328  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1329  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1330  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1331  //             << Deps.size() << *LI << '\n');
1332
1333  // If we had to process more than one hundred blocks to find the
1334  // dependencies, this load isn't worth worrying about.  Optimizing
1335  // it will be too expensive.
1336  unsigned NumDeps = Deps.size();
1337  if (NumDeps > 100)
1338    return false;
1339
1340  // If we had a phi translation failure, we'll have a single entry which is a
1341  // clobber in the current block.  Reject this early.
1342  if (NumDeps == 1 &&
1343      !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1344    DEBUG(
1345      dbgs() << "GVN: non-local load ";
1346      WriteAsOperand(dbgs(), LI);
1347      dbgs() << " has unknown dependencies\n";
1348    );
1349    return false;
1350  }
1351
1352  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1353  // where we have a value available in repl, also keep track of whether we see
1354  // dependencies that produce an unknown value for the load (such as a call
1355  // that could potentially clobber the load).
1356  SmallVector<AvailableValueInBlock, 64> ValuesPerBlock;
1357  SmallVector<BasicBlock*, 64> UnavailableBlocks;
1358
1359  for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1360    BasicBlock *DepBB = Deps[i].getBB();
1361    MemDepResult DepInfo = Deps[i].getResult();
1362
1363    if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1364      UnavailableBlocks.push_back(DepBB);
1365      continue;
1366    }
1367
1368    if (DepInfo.isClobber()) {
1369      // The address being loaded in this non-local block may not be the same as
1370      // the pointer operand of the load if PHI translation occurs.  Make sure
1371      // to consider the right address.
1372      Value *Address = Deps[i].getAddress();
1373
1374      // If the dependence is to a store that writes to a superset of the bits
1375      // read by the load, we can extract the bits we need for the load from the
1376      // stored value.
1377      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1378        if (TD && Address) {
1379          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1380                                                      DepSI, *TD);
1381          if (Offset != -1) {
1382            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1383                                                       DepSI->getValueOperand(),
1384                                                                Offset));
1385            continue;
1386          }
1387        }
1388      }
1389
1390      // Check to see if we have something like this:
1391      //    load i32* P
1392      //    load i8* (P+1)
1393      // if we have this, replace the later with an extraction from the former.
1394      if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1395        // If this is a clobber and L is the first instruction in its block, then
1396        // we have the first instruction in the entry block.
1397        if (DepLI != LI && Address && TD) {
1398          int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
1399                                                     LI->getPointerOperand(),
1400                                                     DepLI, *TD);
1401
1402          if (Offset != -1) {
1403            ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1404                                                                    Offset));
1405            continue;
1406          }
1407        }
1408      }
1409
1410      // If the clobbering value is a memset/memcpy/memmove, see if we can
1411      // forward a value on from it.
1412      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1413        if (TD && Address) {
1414          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1415                                                        DepMI, *TD);
1416          if (Offset != -1) {
1417            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1418                                                                  Offset));
1419            continue;
1420          }
1421        }
1422      }
1423
1424      UnavailableBlocks.push_back(DepBB);
1425      continue;
1426    }
1427
1428    // DepInfo.isDef() here
1429
1430    Instruction *DepInst = DepInfo.getInst();
1431
1432    // Loading the allocation -> undef.
1433    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1434        // Loading immediately after lifetime begin -> undef.
1435        isLifetimeStart(DepInst)) {
1436      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1437                                             UndefValue::get(LI->getType())));
1438      continue;
1439    }
1440
1441    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1442      // Reject loads and stores that are to the same address but are of
1443      // different types if we have to.
1444      if (S->getValueOperand()->getType() != LI->getType()) {
1445        // If the stored value is larger or equal to the loaded value, we can
1446        // reuse it.
1447        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1448                                                        LI->getType(), *TD)) {
1449          UnavailableBlocks.push_back(DepBB);
1450          continue;
1451        }
1452      }
1453
1454      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1455                                                         S->getValueOperand()));
1456      continue;
1457    }
1458
1459    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1460      // If the types mismatch and we can't handle it, reject reuse of the load.
1461      if (LD->getType() != LI->getType()) {
1462        // If the stored value is larger or equal to the loaded value, we can
1463        // reuse it.
1464        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1465          UnavailableBlocks.push_back(DepBB);
1466          continue;
1467        }
1468      }
1469      ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1470      continue;
1471    }
1472
1473    UnavailableBlocks.push_back(DepBB);
1474    continue;
1475  }
1476
1477  // If we have no predecessors that produce a known value for this load, exit
1478  // early.
1479  if (ValuesPerBlock.empty()) return false;
1480
1481  // If all of the instructions we depend on produce a known value for this
1482  // load, then it is fully redundant and we can use PHI insertion to compute
1483  // its value.  Insert PHIs and remove the fully redundant value now.
1484  if (UnavailableBlocks.empty()) {
1485    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1486
1487    // Perform PHI construction.
1488    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1489    LI->replaceAllUsesWith(V);
1490
1491    if (isa<PHINode>(V))
1492      V->takeName(LI);
1493    if (V->getType()->isPointerTy())
1494      MD->invalidateCachedPointerInfo(V);
1495    markInstructionForDeletion(LI);
1496    ++NumGVNLoad;
1497    return true;
1498  }
1499
1500  if (!EnablePRE || !EnableLoadPRE)
1501    return false;
1502
1503  // Okay, we have *some* definitions of the value.  This means that the value
1504  // is available in some of our (transitive) predecessors.  Lets think about
1505  // doing PRE of this load.  This will involve inserting a new load into the
1506  // predecessor when it's not available.  We could do this in general, but
1507  // prefer to not increase code size.  As such, we only do this when we know
1508  // that we only have to insert *one* load (which means we're basically moving
1509  // the load, not inserting a new one).
1510
1511  SmallPtrSet<BasicBlock *, 4> Blockers;
1512  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1513    Blockers.insert(UnavailableBlocks[i]);
1514
1515  // Let's find the first basic block with more than one predecessor.  Walk
1516  // backwards through predecessors if needed.
1517  BasicBlock *LoadBB = LI->getParent();
1518  BasicBlock *TmpBB = LoadBB;
1519
1520  bool isSinglePred = false;
1521  bool allSingleSucc = true;
1522  while (TmpBB->getSinglePredecessor()) {
1523    isSinglePred = true;
1524    TmpBB = TmpBB->getSinglePredecessor();
1525    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1526      return false;
1527    if (Blockers.count(TmpBB))
1528      return false;
1529
1530    // If any of these blocks has more than one successor (i.e. if the edge we
1531    // just traversed was critical), then there are other paths through this
1532    // block along which the load may not be anticipated.  Hoisting the load
1533    // above this block would be adding the load to execution paths along
1534    // which it was not previously executed.
1535    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1536      return false;
1537  }
1538
1539  assert(TmpBB);
1540  LoadBB = TmpBB;
1541
1542  // FIXME: It is extremely unclear what this loop is doing, other than
1543  // artificially restricting loadpre.
1544  if (isSinglePred) {
1545    bool isHot = false;
1546    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1547      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1548      if (AV.isSimpleValue())
1549        // "Hot" Instruction is in some loop (because it dominates its dep.
1550        // instruction).
1551        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1552          if (DT->dominates(LI, I)) {
1553            isHot = true;
1554            break;
1555          }
1556    }
1557
1558    // We are interested only in "hot" instructions. We don't want to do any
1559    // mis-optimizations here.
1560    if (!isHot)
1561      return false;
1562  }
1563
1564  // Check to see how many predecessors have the loaded value fully
1565  // available.
1566  DenseMap<BasicBlock*, Value*> PredLoads;
1567  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1568  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1569    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1570  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1571    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1572
1573  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1574  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1575       PI != E; ++PI) {
1576    BasicBlock *Pred = *PI;
1577    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1578      continue;
1579    }
1580    PredLoads[Pred] = 0;
1581
1582    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1583      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1584        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1585              << Pred->getName() << "': " << *LI << '\n');
1586        return false;
1587      }
1588
1589      if (LoadBB->isLandingPad()) {
1590        DEBUG(dbgs()
1591              << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
1592              << Pred->getName() << "': " << *LI << '\n');
1593        return false;
1594      }
1595
1596      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1597      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1598    }
1599  }
1600
1601  if (!NeedToSplit.empty()) {
1602    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1603    return false;
1604  }
1605
1606  // Decide whether PRE is profitable for this load.
1607  unsigned NumUnavailablePreds = PredLoads.size();
1608  assert(NumUnavailablePreds != 0 &&
1609         "Fully available value should be eliminated above!");
1610
1611  // If this load is unavailable in multiple predecessors, reject it.
1612  // FIXME: If we could restructure the CFG, we could make a common pred with
1613  // all the preds that don't have an available LI and insert a new load into
1614  // that one block.
1615  if (NumUnavailablePreds != 1)
1616      return false;
1617
1618  // Check if the load can safely be moved to all the unavailable predecessors.
1619  bool CanDoPRE = true;
1620  SmallVector<Instruction*, 8> NewInsts;
1621  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1622         E = PredLoads.end(); I != E; ++I) {
1623    BasicBlock *UnavailablePred = I->first;
1624
1625    // Do PHI translation to get its value in the predecessor if necessary.  The
1626    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1627
1628    // If all preds have a single successor, then we know it is safe to insert
1629    // the load on the pred (?!?), so we can insert code to materialize the
1630    // pointer if it is not available.
1631    PHITransAddr Address(LI->getPointerOperand(), TD);
1632    Value *LoadPtr = 0;
1633    if (allSingleSucc) {
1634      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1635                                                  *DT, NewInsts);
1636    } else {
1637      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1638      LoadPtr = Address.getAddr();
1639    }
1640
1641    // If we couldn't find or insert a computation of this phi translated value,
1642    // we fail PRE.
1643    if (LoadPtr == 0) {
1644      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1645            << *LI->getPointerOperand() << "\n");
1646      CanDoPRE = false;
1647      break;
1648    }
1649
1650    // Make sure it is valid to move this load here.  We have to watch out for:
1651    //  @1 = getelementptr (i8* p, ...
1652    //  test p and branch if == 0
1653    //  load @1
1654    // It is valid to have the getelementptr before the test, even if p can
1655    // be 0, as getelementptr only does address arithmetic.
1656    // If we are not pushing the value through any multiple-successor blocks
1657    // we do not have this case.  Otherwise, check that the load is safe to
1658    // put anywhere; this can be improved, but should be conservatively safe.
1659    if (!allSingleSucc &&
1660        // FIXME: REEVALUTE THIS.
1661        !isSafeToLoadUnconditionally(LoadPtr,
1662                                     UnavailablePred->getTerminator(),
1663                                     LI->getAlignment(), TD)) {
1664      CanDoPRE = false;
1665      break;
1666    }
1667
1668    I->second = LoadPtr;
1669  }
1670
1671  if (!CanDoPRE) {
1672    while (!NewInsts.empty()) {
1673      Instruction *I = NewInsts.pop_back_val();
1674      if (MD) MD->removeInstruction(I);
1675      I->eraseFromParent();
1676    }
1677    return false;
1678  }
1679
1680  // Okay, we can eliminate this load by inserting a reload in the predecessor
1681  // and using PHI construction to get the value in the other predecessors, do
1682  // it.
1683  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1684  DEBUG(if (!NewInsts.empty())
1685          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1686                 << *NewInsts.back() << '\n');
1687
1688  // Assign value numbers to the new instructions.
1689  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1690    // FIXME: We really _ought_ to insert these value numbers into their
1691    // parent's availability map.  However, in doing so, we risk getting into
1692    // ordering issues.  If a block hasn't been processed yet, we would be
1693    // marking a value as AVAIL-IN, which isn't what we intend.
1694    VN.lookup_or_add(NewInsts[i]);
1695  }
1696
1697  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1698         E = PredLoads.end(); I != E; ++I) {
1699    BasicBlock *UnavailablePred = I->first;
1700    Value *LoadPtr = I->second;
1701
1702    Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1703                                        LI->getAlignment(),
1704                                        UnavailablePred->getTerminator());
1705
1706    // Transfer the old load's TBAA tag to the new load.
1707    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1708      NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1709
1710    // Transfer DebugLoc.
1711    NewLoad->setDebugLoc(LI->getDebugLoc());
1712
1713    // Add the newly created load.
1714    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1715                                                        NewLoad));
1716    MD->invalidateCachedPointerInfo(LoadPtr);
1717    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1718  }
1719
1720  // Perform PHI construction.
1721  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1722  LI->replaceAllUsesWith(V);
1723  if (isa<PHINode>(V))
1724    V->takeName(LI);
1725  if (V->getType()->isPointerTy())
1726    MD->invalidateCachedPointerInfo(V);
1727  markInstructionForDeletion(LI);
1728  ++NumPRELoad;
1729  return true;
1730}
1731
1732/// processLoad - Attempt to eliminate a load, first by eliminating it
1733/// locally, and then attempting non-local elimination if that fails.
1734bool GVN::processLoad(LoadInst *L) {
1735  if (!MD)
1736    return false;
1737
1738  if (!L->isSimple())
1739    return false;
1740
1741  if (L->use_empty()) {
1742    markInstructionForDeletion(L);
1743    return true;
1744  }
1745
1746  // ... to a pointer that has been loaded from before...
1747  MemDepResult Dep = MD->getDependency(L);
1748
1749  // If we have a clobber and target data is around, see if this is a clobber
1750  // that we can fix up through code synthesis.
1751  if (Dep.isClobber() && TD) {
1752    // Check to see if we have something like this:
1753    //   store i32 123, i32* %P
1754    //   %A = bitcast i32* %P to i8*
1755    //   %B = gep i8* %A, i32 1
1756    //   %C = load i8* %B
1757    //
1758    // We could do that by recognizing if the clobber instructions are obviously
1759    // a common base + constant offset, and if the previous store (or memset)
1760    // completely covers this load.  This sort of thing can happen in bitfield
1761    // access code.
1762    Value *AvailVal = 0;
1763    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1764      int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1765                                                  L->getPointerOperand(),
1766                                                  DepSI, *TD);
1767      if (Offset != -1)
1768        AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1769                                        L->getType(), L, *TD);
1770    }
1771
1772    // Check to see if we have something like this:
1773    //    load i32* P
1774    //    load i8* (P+1)
1775    // if we have this, replace the later with an extraction from the former.
1776    if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1777      // If this is a clobber and L is the first instruction in its block, then
1778      // we have the first instruction in the entry block.
1779      if (DepLI == L)
1780        return false;
1781
1782      int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1783                                                 L->getPointerOperand(),
1784                                                 DepLI, *TD);
1785      if (Offset != -1)
1786        AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1787    }
1788
1789    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1790    // a value on from it.
1791    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1792      int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1793                                                    L->getPointerOperand(),
1794                                                    DepMI, *TD);
1795      if (Offset != -1)
1796        AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
1797    }
1798
1799    if (AvailVal) {
1800      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1801            << *AvailVal << '\n' << *L << "\n\n\n");
1802
1803      // Replace the load!
1804      L->replaceAllUsesWith(AvailVal);
1805      if (AvailVal->getType()->isPointerTy())
1806        MD->invalidateCachedPointerInfo(AvailVal);
1807      markInstructionForDeletion(L);
1808      ++NumGVNLoad;
1809      return true;
1810    }
1811  }
1812
1813  // If the value isn't available, don't do anything!
1814  if (Dep.isClobber()) {
1815    DEBUG(
1816      // fast print dep, using operator<< on instruction is too slow.
1817      dbgs() << "GVN: load ";
1818      WriteAsOperand(dbgs(), L);
1819      Instruction *I = Dep.getInst();
1820      dbgs() << " is clobbered by " << *I << '\n';
1821    );
1822    return false;
1823  }
1824
1825  // If it is defined in another block, try harder.
1826  if (Dep.isNonLocal())
1827    return processNonLocalLoad(L);
1828
1829  if (!Dep.isDef()) {
1830    DEBUG(
1831      // fast print dep, using operator<< on instruction is too slow.
1832      dbgs() << "GVN: load ";
1833      WriteAsOperand(dbgs(), L);
1834      dbgs() << " has unknown dependence\n";
1835    );
1836    return false;
1837  }
1838
1839  Instruction *DepInst = Dep.getInst();
1840  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1841    Value *StoredVal = DepSI->getValueOperand();
1842
1843    // The store and load are to a must-aliased pointer, but they may not
1844    // actually have the same type.  See if we know how to reuse the stored
1845    // value (depending on its type).
1846    if (StoredVal->getType() != L->getType()) {
1847      if (TD) {
1848        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1849                                                   L, *TD);
1850        if (StoredVal == 0)
1851          return false;
1852
1853        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1854                     << '\n' << *L << "\n\n\n");
1855      }
1856      else
1857        return false;
1858    }
1859
1860    // Remove it!
1861    L->replaceAllUsesWith(StoredVal);
1862    if (StoredVal->getType()->isPointerTy())
1863      MD->invalidateCachedPointerInfo(StoredVal);
1864    markInstructionForDeletion(L);
1865    ++NumGVNLoad;
1866    return true;
1867  }
1868
1869  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1870    Value *AvailableVal = DepLI;
1871
1872    // The loads are of a must-aliased pointer, but they may not actually have
1873    // the same type.  See if we know how to reuse the previously loaded value
1874    // (depending on its type).
1875    if (DepLI->getType() != L->getType()) {
1876      if (TD) {
1877        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1878                                                      L, *TD);
1879        if (AvailableVal == 0)
1880          return false;
1881
1882        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1883                     << "\n" << *L << "\n\n\n");
1884      }
1885      else
1886        return false;
1887    }
1888
1889    // Remove it!
1890    L->replaceAllUsesWith(AvailableVal);
1891    if (DepLI->getType()->isPointerTy())
1892      MD->invalidateCachedPointerInfo(DepLI);
1893    markInstructionForDeletion(L);
1894    ++NumGVNLoad;
1895    return true;
1896  }
1897
1898  // If this load really doesn't depend on anything, then we must be loading an
1899  // undef value.  This can happen when loading for a fresh allocation with no
1900  // intervening stores, for example.
1901  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1902    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1903    markInstructionForDeletion(L);
1904    ++NumGVNLoad;
1905    return true;
1906  }
1907
1908  // If this load occurs either right after a lifetime begin,
1909  // then the loaded value is undefined.
1910  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1911    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1912      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1913      markInstructionForDeletion(L);
1914      ++NumGVNLoad;
1915      return true;
1916    }
1917  }
1918
1919  return false;
1920}
1921
1922// findLeader - In order to find a leader for a given value number at a
1923// specific basic block, we first obtain the list of all Values for that number,
1924// and then scan the list to find one whose block dominates the block in
1925// question.  This is fast because dominator tree queries consist of only
1926// a few comparisons of DFS numbers.
1927Value *GVN::findLeader(BasicBlock *BB, uint32_t num) {
1928  LeaderTableEntry Vals = LeaderTable[num];
1929  if (!Vals.Val) return 0;
1930
1931  Value *Val = 0;
1932  if (DT->dominates(Vals.BB, BB)) {
1933    Val = Vals.Val;
1934    if (isa<Constant>(Val)) return Val;
1935  }
1936
1937  LeaderTableEntry* Next = Vals.Next;
1938  while (Next) {
1939    if (DT->dominates(Next->BB, BB)) {
1940      if (isa<Constant>(Next->Val)) return Next->Val;
1941      if (!Val) Val = Next->Val;
1942    }
1943
1944    Next = Next->Next;
1945  }
1946
1947  return Val;
1948}
1949
1950/// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
1951/// use is dominated by the given basic block.  Returns the number of uses that
1952/// were replaced.
1953unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
1954                                          BasicBlock *Root) {
1955  unsigned Count = 0;
1956  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1957       UI != UE; ) {
1958    Use &U = (UI++).getUse();
1959
1960    // If From occurs as a phi node operand then the use implicitly lives in the
1961    // corresponding incoming block.  Otherwise it is the block containing the
1962    // user that must be dominated by Root.
1963    BasicBlock *UsingBlock;
1964    if (PHINode *PN = dyn_cast<PHINode>(U.getUser()))
1965      UsingBlock = PN->getIncomingBlock(U);
1966    else
1967      UsingBlock = cast<Instruction>(U.getUser())->getParent();
1968
1969    if (DT->dominates(Root, UsingBlock)) {
1970      U.set(To);
1971      ++Count;
1972    }
1973  }
1974  return Count;
1975}
1976
1977/// propagateEquality - The given values are known to be equal in every block
1978/// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
1979/// 'RHS' everywhere in the scope.  Returns whether a change was made.
1980bool GVN::propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root) {
1981  if (LHS == RHS) return false;
1982  assert(LHS->getType() == RHS->getType() && "Equal but types differ!");
1983
1984  // Don't try to propagate equalities between constants.
1985  if (isa<Constant>(LHS) && isa<Constant>(RHS))
1986    return false;
1987
1988  // Prefer a constant on the right-hand side, or an Argument if no constants.
1989  if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
1990    std::swap(LHS, RHS);
1991  assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
1992
1993  // If there is no obvious reason to prefer the left-hand side over the right-
1994  // hand side, ensure the longest lived term is on the right-hand side, so the
1995  // shortest lived term will be replaced by the longest lived.  This tends to
1996  // expose more simplifications.
1997  uint32_t LVN = VN.lookup_or_add(LHS);
1998  if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
1999      (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2000    // Move the 'oldest' value to the right-hand side, using the value number as
2001    // a proxy for age.
2002    uint32_t RVN = VN.lookup_or_add(RHS);
2003    if (LVN < RVN) {
2004      std::swap(LHS, RHS);
2005      LVN = RVN;
2006    }
2007  }
2008
2009  // If value numbering later deduces that an instruction in the scope is equal
2010  // to 'LHS' then ensure it will be turned into 'RHS'.
2011  addToLeaderTable(LVN, RHS, Root);
2012
2013  // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
2014  // LHS always has at least one use that is not dominated by Root, this will
2015  // never do anything if LHS has only one use.
2016  bool Changed = false;
2017  if (!LHS->hasOneUse()) {
2018    unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
2019    Changed |= NumReplacements > 0;
2020    NumGVNEqProp += NumReplacements;
2021  }
2022
2023  // Now try to deduce additional equalities from this one.  For example, if the
2024  // known equality was "(A != B)" == "false" then it follows that A and B are
2025  // equal in the scope.  Only boolean equalities with an explicit true or false
2026  // RHS are currently supported.
2027  if (!RHS->getType()->isIntegerTy(1))
2028    // Not a boolean equality - bail out.
2029    return Changed;
2030  ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2031  if (!CI)
2032    // RHS neither 'true' nor 'false' - bail out.
2033    return Changed;
2034  // Whether RHS equals 'true'.  Otherwise it equals 'false'.
2035  bool isKnownTrue = CI->isAllOnesValue();
2036  bool isKnownFalse = !isKnownTrue;
2037
2038  // If "A && B" is known true then both A and B are known true.  If "A || B"
2039  // is known false then both A and B are known false.
2040  Value *A, *B;
2041  if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
2042      (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
2043    Changed |= propagateEquality(A, RHS, Root);
2044    Changed |= propagateEquality(B, RHS, Root);
2045    return Changed;
2046  }
2047
2048  // If we are propagating an equality like "(A == B)" == "true" then also
2049  // propagate the equality A == B.  When propagating a comparison such as
2050  // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2051  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
2052    Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2053
2054    // If "A == B" is known true, or "A != B" is known false, then replace
2055    // A with B everywhere in the scope.
2056    if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
2057        (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
2058      Changed |= propagateEquality(Op0, Op1, Root);
2059
2060    // If "A >= B" is known true, replace "A < B" with false everywhere.
2061    CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2062    Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2063    // Since we don't have the instruction "A < B" immediately to hand, work out
2064    // the value number that it would have and use that to find an appropriate
2065    // instruction (if any).
2066    uint32_t NextNum = VN.getNextUnusedValueNumber();
2067    uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2068    // If the number we were assigned was brand new then there is no point in
2069    // looking for an instruction realizing it: there cannot be one!
2070    if (Num < NextNum) {
2071      Value *NotCmp = findLeader(Root, Num);
2072      if (NotCmp && isa<Instruction>(NotCmp)) {
2073        unsigned NumReplacements =
2074          replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
2075        Changed |= NumReplacements > 0;
2076        NumGVNEqProp += NumReplacements;
2077      }
2078    }
2079    // Ensure that any instruction in scope that gets the "A < B" value number
2080    // is replaced with false.
2081    addToLeaderTable(Num, NotVal, Root);
2082
2083    return Changed;
2084  }
2085
2086  return Changed;
2087}
2088
2089/// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
2090/// true if every path from the entry block to 'Dst' passes via this edge.  In
2091/// particular 'Dst' must not be reachable via another edge from 'Src'.
2092static bool isOnlyReachableViaThisEdge(BasicBlock *Src, BasicBlock *Dst,
2093                                       DominatorTree *DT) {
2094  // While in theory it is interesting to consider the case in which Dst has
2095  // more than one predecessor, because Dst might be part of a loop which is
2096  // only reachable from Src, in practice it is pointless since at the time
2097  // GVN runs all such loops have preheaders, which means that Dst will have
2098  // been changed to have only one predecessor, namely Src.
2099  BasicBlock *Pred = Dst->getSinglePredecessor();
2100  assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
2101  (void)Src;
2102  return Pred != 0;
2103}
2104
2105/// processInstruction - When calculating availability, handle an instruction
2106/// by inserting it into the appropriate sets
2107bool GVN::processInstruction(Instruction *I) {
2108  // Ignore dbg info intrinsics.
2109  if (isa<DbgInfoIntrinsic>(I))
2110    return false;
2111
2112  // If the instruction can be easily simplified then do so now in preference
2113  // to value numbering it.  Value numbering often exposes redundancies, for
2114  // example if it determines that %y is equal to %x then the instruction
2115  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2116  if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
2117    I->replaceAllUsesWith(V);
2118    if (MD && V->getType()->isPointerTy())
2119      MD->invalidateCachedPointerInfo(V);
2120    markInstructionForDeletion(I);
2121    ++NumGVNSimpl;
2122    return true;
2123  }
2124
2125  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2126    if (processLoad(LI))
2127      return true;
2128
2129    unsigned Num = VN.lookup_or_add(LI);
2130    addToLeaderTable(Num, LI, LI->getParent());
2131    return false;
2132  }
2133
2134  // For conditional branches, we can perform simple conditional propagation on
2135  // the condition value itself.
2136  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2137    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
2138      return false;
2139
2140    Value *BranchCond = BI->getCondition();
2141
2142    BasicBlock *TrueSucc = BI->getSuccessor(0);
2143    BasicBlock *FalseSucc = BI->getSuccessor(1);
2144    BasicBlock *Parent = BI->getParent();
2145    bool Changed = false;
2146
2147    if (isOnlyReachableViaThisEdge(Parent, TrueSucc, DT))
2148      Changed |= propagateEquality(BranchCond,
2149                                   ConstantInt::getTrue(TrueSucc->getContext()),
2150                                   TrueSucc);
2151
2152    if (isOnlyReachableViaThisEdge(Parent, FalseSucc, DT))
2153      Changed |= propagateEquality(BranchCond,
2154                                   ConstantInt::getFalse(FalseSucc->getContext()),
2155                                   FalseSucc);
2156
2157    return Changed;
2158  }
2159
2160  // For switches, propagate the case values into the case destinations.
2161  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2162    Value *SwitchCond = SI->getCondition();
2163    BasicBlock *Parent = SI->getParent();
2164    bool Changed = false;
2165    for (unsigned i = 0, e = SI->getNumCases(); i != e; ++i) {
2166      BasicBlock *Dst = SI->getCaseSuccessor(i);
2167      if (isOnlyReachableViaThisEdge(Parent, Dst, DT))
2168        Changed |= propagateEquality(SwitchCond, SI->getCaseValue(i), Dst);
2169    }
2170    return Changed;
2171  }
2172
2173  // Instructions with void type don't return a value, so there's
2174  // no point in trying to find redundancies in them.
2175  if (I->getType()->isVoidTy()) return false;
2176
2177  uint32_t NextNum = VN.getNextUnusedValueNumber();
2178  unsigned Num = VN.lookup_or_add(I);
2179
2180  // Allocations are always uniquely numbered, so we can save time and memory
2181  // by fast failing them.
2182  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
2183    addToLeaderTable(Num, I, I->getParent());
2184    return false;
2185  }
2186
2187  // If the number we were assigned was a brand new VN, then we don't
2188  // need to do a lookup to see if the number already exists
2189  // somewhere in the domtree: it can't!
2190  if (Num >= NextNum) {
2191    addToLeaderTable(Num, I, I->getParent());
2192    return false;
2193  }
2194
2195  // Perform fast-path value-number based elimination of values inherited from
2196  // dominators.
2197  Value *repl = findLeader(I->getParent(), Num);
2198  if (repl == 0) {
2199    // Failure, just remember this instance for future use.
2200    addToLeaderTable(Num, I, I->getParent());
2201    return false;
2202  }
2203
2204  // Remove it!
2205  I->replaceAllUsesWith(repl);
2206  if (MD && repl->getType()->isPointerTy())
2207    MD->invalidateCachedPointerInfo(repl);
2208  markInstructionForDeletion(I);
2209  return true;
2210}
2211
2212/// runOnFunction - This is the main transformation entry point for a function.
2213bool GVN::runOnFunction(Function& F) {
2214  if (!NoLoads)
2215    MD = &getAnalysis<MemoryDependenceAnalysis>();
2216  DT = &getAnalysis<DominatorTree>();
2217  TD = getAnalysisIfAvailable<TargetData>();
2218  TLI = &getAnalysis<TargetLibraryInfo>();
2219  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2220  VN.setMemDep(MD);
2221  VN.setDomTree(DT);
2222
2223  bool Changed = false;
2224  bool ShouldContinue = true;
2225
2226  // Merge unconditional branches, allowing PRE to catch more
2227  // optimization opportunities.
2228  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2229    BasicBlock *BB = FI++;
2230
2231    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2232    if (removedBlock) ++NumGVNBlocks;
2233
2234    Changed |= removedBlock;
2235  }
2236
2237  unsigned Iteration = 0;
2238  while (ShouldContinue) {
2239    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2240    ShouldContinue = iterateOnFunction(F);
2241    if (splitCriticalEdges())
2242      ShouldContinue = true;
2243    Changed |= ShouldContinue;
2244    ++Iteration;
2245  }
2246
2247  if (EnablePRE) {
2248    bool PREChanged = true;
2249    while (PREChanged) {
2250      PREChanged = performPRE(F);
2251      Changed |= PREChanged;
2252    }
2253  }
2254  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2255  // computations into blocks where they become fully redundant.  Note that
2256  // we can't do this until PRE's critical edge splitting updates memdep.
2257  // Actually, when this happens, we should just fully integrate PRE into GVN.
2258
2259  cleanupGlobalSets();
2260
2261  return Changed;
2262}
2263
2264
2265bool GVN::processBlock(BasicBlock *BB) {
2266  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2267  // (and incrementing BI before processing an instruction).
2268  assert(InstrsToErase.empty() &&
2269         "We expect InstrsToErase to be empty across iterations");
2270  bool ChangedFunction = false;
2271
2272  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2273       BI != BE;) {
2274    ChangedFunction |= processInstruction(BI);
2275    if (InstrsToErase.empty()) {
2276      ++BI;
2277      continue;
2278    }
2279
2280    // If we need some instructions deleted, do it now.
2281    NumGVNInstr += InstrsToErase.size();
2282
2283    // Avoid iterator invalidation.
2284    bool AtStart = BI == BB->begin();
2285    if (!AtStart)
2286      --BI;
2287
2288    for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
2289         E = InstrsToErase.end(); I != E; ++I) {
2290      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2291      if (MD) MD->removeInstruction(*I);
2292      (*I)->eraseFromParent();
2293      DEBUG(verifyRemoved(*I));
2294    }
2295    InstrsToErase.clear();
2296
2297    if (AtStart)
2298      BI = BB->begin();
2299    else
2300      ++BI;
2301  }
2302
2303  return ChangedFunction;
2304}
2305
2306/// performPRE - Perform a purely local form of PRE that looks for diamond
2307/// control flow patterns and attempts to perform simple PRE at the join point.
2308bool GVN::performPRE(Function &F) {
2309  bool Changed = false;
2310  DenseMap<BasicBlock*, Value*> predMap;
2311  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2312       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2313    BasicBlock *CurrentBlock = *DI;
2314
2315    // Nothing to PRE in the entry block.
2316    if (CurrentBlock == &F.getEntryBlock()) continue;
2317
2318    // Don't perform PRE on a landing pad.
2319    if (CurrentBlock->isLandingPad()) continue;
2320
2321    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2322         BE = CurrentBlock->end(); BI != BE; ) {
2323      Instruction *CurInst = BI++;
2324
2325      if (isa<AllocaInst>(CurInst) ||
2326          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2327          CurInst->getType()->isVoidTy() ||
2328          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2329          isa<DbgInfoIntrinsic>(CurInst))
2330        continue;
2331
2332      // We don't currently value number ANY inline asm calls.
2333      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2334        if (CallI->isInlineAsm())
2335          continue;
2336
2337      uint32_t ValNo = VN.lookup(CurInst);
2338
2339      // Look for the predecessors for PRE opportunities.  We're
2340      // only trying to solve the basic diamond case, where
2341      // a value is computed in the successor and one predecessor,
2342      // but not the other.  We also explicitly disallow cases
2343      // where the successor is its own predecessor, because they're
2344      // more complicated to get right.
2345      unsigned NumWith = 0;
2346      unsigned NumWithout = 0;
2347      BasicBlock *PREPred = 0;
2348      predMap.clear();
2349
2350      for (pred_iterator PI = pred_begin(CurrentBlock),
2351           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2352        BasicBlock *P = *PI;
2353        // We're not interested in PRE where the block is its
2354        // own predecessor, or in blocks with predecessors
2355        // that are not reachable.
2356        if (P == CurrentBlock) {
2357          NumWithout = 2;
2358          break;
2359        } else if (!DT->dominates(&F.getEntryBlock(), P))  {
2360          NumWithout = 2;
2361          break;
2362        }
2363
2364        Value* predV = findLeader(P, ValNo);
2365        if (predV == 0) {
2366          PREPred = P;
2367          ++NumWithout;
2368        } else if (predV == CurInst) {
2369          NumWithout = 2;
2370        } else {
2371          predMap[P] = predV;
2372          ++NumWith;
2373        }
2374      }
2375
2376      // Don't do PRE when it might increase code size, i.e. when
2377      // we would need to insert instructions in more than one pred.
2378      if (NumWithout != 1 || NumWith == 0)
2379        continue;
2380
2381      // Don't do PRE across indirect branch.
2382      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2383        continue;
2384
2385      // We can't do PRE safely on a critical edge, so instead we schedule
2386      // the edge to be split and perform the PRE the next time we iterate
2387      // on the function.
2388      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2389      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2390        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2391        continue;
2392      }
2393
2394      // Instantiate the expression in the predecessor that lacked it.
2395      // Because we are going top-down through the block, all value numbers
2396      // will be available in the predecessor by the time we need them.  Any
2397      // that weren't originally present will have been instantiated earlier
2398      // in this loop.
2399      Instruction *PREInstr = CurInst->clone();
2400      bool success = true;
2401      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2402        Value *Op = PREInstr->getOperand(i);
2403        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2404          continue;
2405
2406        if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2407          PREInstr->setOperand(i, V);
2408        } else {
2409          success = false;
2410          break;
2411        }
2412      }
2413
2414      // Fail out if we encounter an operand that is not available in
2415      // the PRE predecessor.  This is typically because of loads which
2416      // are not value numbered precisely.
2417      if (!success) {
2418        delete PREInstr;
2419        DEBUG(verifyRemoved(PREInstr));
2420        continue;
2421      }
2422
2423      PREInstr->insertBefore(PREPred->getTerminator());
2424      PREInstr->setName(CurInst->getName() + ".pre");
2425      PREInstr->setDebugLoc(CurInst->getDebugLoc());
2426      predMap[PREPred] = PREInstr;
2427      VN.add(PREInstr, ValNo);
2428      ++NumGVNPRE;
2429
2430      // Update the availability map to include the new instruction.
2431      addToLeaderTable(ValNo, PREInstr, PREPred);
2432
2433      // Create a PHI to make the value available in this block.
2434      pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
2435      PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE),
2436                                     CurInst->getName() + ".pre-phi",
2437                                     CurrentBlock->begin());
2438      for (pred_iterator PI = PB; PI != PE; ++PI) {
2439        BasicBlock *P = *PI;
2440        Phi->addIncoming(predMap[P], P);
2441      }
2442
2443      VN.add(Phi, ValNo);
2444      addToLeaderTable(ValNo, Phi, CurrentBlock);
2445      Phi->setDebugLoc(CurInst->getDebugLoc());
2446      CurInst->replaceAllUsesWith(Phi);
2447      if (Phi->getType()->isPointerTy()) {
2448        // Because we have added a PHI-use of the pointer value, it has now
2449        // "escaped" from alias analysis' perspective.  We need to inform
2450        // AA of this.
2451        for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
2452             ++ii) {
2453          unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
2454          VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
2455        }
2456
2457        if (MD)
2458          MD->invalidateCachedPointerInfo(Phi);
2459      }
2460      VN.erase(CurInst);
2461      removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2462
2463      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2464      if (MD) MD->removeInstruction(CurInst);
2465      CurInst->eraseFromParent();
2466      DEBUG(verifyRemoved(CurInst));
2467      Changed = true;
2468    }
2469  }
2470
2471  if (splitCriticalEdges())
2472    Changed = true;
2473
2474  return Changed;
2475}
2476
2477/// splitCriticalEdges - Split critical edges found during the previous
2478/// iteration that may enable further optimization.
2479bool GVN::splitCriticalEdges() {
2480  if (toSplit.empty())
2481    return false;
2482  do {
2483    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2484    SplitCriticalEdge(Edge.first, Edge.second, this);
2485  } while (!toSplit.empty());
2486  if (MD) MD->invalidateCachedPredecessors();
2487  return true;
2488}
2489
2490/// iterateOnFunction - Executes one iteration of GVN
2491bool GVN::iterateOnFunction(Function &F) {
2492  cleanupGlobalSets();
2493
2494  // Top-down walk of the dominator tree
2495  bool Changed = false;
2496#if 0
2497  // Needed for value numbering with phi construction to work.
2498  ReversePostOrderTraversal<Function*> RPOT(&F);
2499  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2500       RE = RPOT.end(); RI != RE; ++RI)
2501    Changed |= processBlock(*RI);
2502#else
2503  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2504       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2505    Changed |= processBlock(DI->getBlock());
2506#endif
2507
2508  return Changed;
2509}
2510
2511void GVN::cleanupGlobalSets() {
2512  VN.clear();
2513  LeaderTable.clear();
2514  TableAllocator.Reset();
2515}
2516
2517/// verifyRemoved - Verify that the specified instruction does not occur in our
2518/// internal data structures.
2519void GVN::verifyRemoved(const Instruction *Inst) const {
2520  VN.verifyRemoved(Inst);
2521
2522  // Walk through the value number scope to make sure the instruction isn't
2523  // ferreted away in it.
2524  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2525       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2526    const LeaderTableEntry *Node = &I->second;
2527    assert(Node->Val != Inst && "Inst still in value numbering scope!");
2528
2529    while (Node->Next) {
2530      Node = Node->Next;
2531      assert(Node->Val != Inst && "Inst still in value numbering scope!");
2532    }
2533  }
2534}
2535