GVN.cpp revision 16f244e9822ffca7818d202df90cd2049f5b6cf6
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Value.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/PostOrderIterator.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/Analysis/ConstantFolding.h"
36#include "llvm/Analysis/Dominators.h"
37#include "llvm/Analysis/MemoryBuiltins.h"
38#include "llvm/Analysis/MemoryDependenceAnalysis.h"
39#include "llvm/Analysis/PHITransAddr.h"
40#include "llvm/Support/CFG.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/GetElementPtrTypeIterator.h"
45#include "llvm/Support/IRBuilder.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Transforms/Utils/Local.h"
50#include "llvm/Transforms/Utils/SSAUpdater.h"
51#include <cstdio>
52using namespace llvm;
53
54STATISTIC(NumGVNInstr,  "Number of instructions deleted");
55STATISTIC(NumGVNLoad,   "Number of loads deleted");
56STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
57STATISTIC(NumGVNBlocks, "Number of blocks merged");
58STATISTIC(NumPRELoad,   "Number of loads PRE'd");
59
60static cl::opt<bool> EnablePRE("enable-pre",
61                               cl::init(true), cl::Hidden);
62static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
63
64//===----------------------------------------------------------------------===//
65//                         ValueTable Class
66//===----------------------------------------------------------------------===//
67
68/// This class holds the mapping between values and value numbers.  It is used
69/// as an efficient mechanism to determine the expression-wise equivalence of
70/// two values.
71namespace {
72  struct Expression {
73    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
74                            UDIV, SDIV, FDIV, UREM, SREM,
75                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
76                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
77                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
78                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
79                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
80                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
81                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
82                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
83                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
84                            INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
85
86    ExpressionOpcode opcode;
87    const Type* type;
88    SmallVector<uint32_t, 4> varargs;
89    Value *function;
90
91    Expression() { }
92    Expression(ExpressionOpcode o) : opcode(o) { }
93
94    bool operator==(const Expression &other) const {
95      if (opcode != other.opcode)
96        return false;
97      else if (opcode == EMPTY || opcode == TOMBSTONE)
98        return true;
99      else if (type != other.type)
100        return false;
101      else if (function != other.function)
102        return false;
103      else {
104        if (varargs.size() != other.varargs.size())
105          return false;
106
107        for (size_t i = 0; i < varargs.size(); ++i)
108          if (varargs[i] != other.varargs[i])
109            return false;
110
111        return true;
112      }
113    }
114
115    bool operator!=(const Expression &other) const {
116      return !(*this == other);
117    }
118  };
119
120  class ValueTable {
121    private:
122      DenseMap<Value*, uint32_t> valueNumbering;
123      DenseMap<Expression, uint32_t> expressionNumbering;
124      AliasAnalysis* AA;
125      MemoryDependenceAnalysis* MD;
126      DominatorTree* DT;
127
128      uint32_t nextValueNumber;
129
130      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
131      Expression::ExpressionOpcode getOpcode(CmpInst* C);
132      Expression::ExpressionOpcode getOpcode(CastInst* C);
133      Expression create_expression(BinaryOperator* BO);
134      Expression create_expression(CmpInst* C);
135      Expression create_expression(ShuffleVectorInst* V);
136      Expression create_expression(ExtractElementInst* C);
137      Expression create_expression(InsertElementInst* V);
138      Expression create_expression(SelectInst* V);
139      Expression create_expression(CastInst* C);
140      Expression create_expression(GetElementPtrInst* G);
141      Expression create_expression(CallInst* C);
142      Expression create_expression(Constant* C);
143      Expression create_expression(ExtractValueInst* C);
144      Expression create_expression(InsertValueInst* C);
145
146      uint32_t lookup_or_add_call(CallInst* C);
147    public:
148      ValueTable() : nextValueNumber(1) { }
149      uint32_t lookup_or_add(Value *V);
150      uint32_t lookup(Value *V) const;
151      void add(Value *V, uint32_t num);
152      void clear();
153      void erase(Value *v);
154      unsigned size();
155      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
156      AliasAnalysis *getAliasAnalysis() const { return AA; }
157      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
158      void setDomTree(DominatorTree* D) { DT = D; }
159      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
160      void verifyRemoved(const Value *) const;
161  };
162}
163
164namespace llvm {
165template <> struct DenseMapInfo<Expression> {
166  static inline Expression getEmptyKey() {
167    return Expression(Expression::EMPTY);
168  }
169
170  static inline Expression getTombstoneKey() {
171    return Expression(Expression::TOMBSTONE);
172  }
173
174  static unsigned getHashValue(const Expression e) {
175    unsigned hash = e.opcode;
176
177    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
178            (unsigned)((uintptr_t)e.type >> 9));
179
180    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
181         E = e.varargs.end(); I != E; ++I)
182      hash = *I + hash * 37;
183
184    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
185            (unsigned)((uintptr_t)e.function >> 9)) +
186           hash * 37;
187
188    return hash;
189  }
190  static bool isEqual(const Expression &LHS, const Expression &RHS) {
191    return LHS == RHS;
192  }
193  static bool isPod() { return true; }
194};
195}
196
197//===----------------------------------------------------------------------===//
198//                     ValueTable Internal Functions
199//===----------------------------------------------------------------------===//
200Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
201  switch(BO->getOpcode()) {
202  default: // THIS SHOULD NEVER HAPPEN
203    llvm_unreachable("Binary operator with unknown opcode?");
204  case Instruction::Add:  return Expression::ADD;
205  case Instruction::FAdd: return Expression::FADD;
206  case Instruction::Sub:  return Expression::SUB;
207  case Instruction::FSub: return Expression::FSUB;
208  case Instruction::Mul:  return Expression::MUL;
209  case Instruction::FMul: return Expression::FMUL;
210  case Instruction::UDiv: return Expression::UDIV;
211  case Instruction::SDiv: return Expression::SDIV;
212  case Instruction::FDiv: return Expression::FDIV;
213  case Instruction::URem: return Expression::UREM;
214  case Instruction::SRem: return Expression::SREM;
215  case Instruction::FRem: return Expression::FREM;
216  case Instruction::Shl:  return Expression::SHL;
217  case Instruction::LShr: return Expression::LSHR;
218  case Instruction::AShr: return Expression::ASHR;
219  case Instruction::And:  return Expression::AND;
220  case Instruction::Or:   return Expression::OR;
221  case Instruction::Xor:  return Expression::XOR;
222  }
223}
224
225Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
226  if (isa<ICmpInst>(C)) {
227    switch (C->getPredicate()) {
228    default:  // THIS SHOULD NEVER HAPPEN
229      llvm_unreachable("Comparison with unknown predicate?");
230    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
231    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
232    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
233    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
234    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
235    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
236    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
237    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
238    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
239    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
240    }
241  } else {
242    switch (C->getPredicate()) {
243    default: // THIS SHOULD NEVER HAPPEN
244      llvm_unreachable("Comparison with unknown predicate?");
245    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
246    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
247    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
248    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
249    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
250    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
251    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
252    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
253    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
254    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
255    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
256    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
257    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
258    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
259    }
260  }
261}
262
263Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
264  switch(C->getOpcode()) {
265  default: // THIS SHOULD NEVER HAPPEN
266    llvm_unreachable("Cast operator with unknown opcode?");
267  case Instruction::Trunc:    return Expression::TRUNC;
268  case Instruction::ZExt:     return Expression::ZEXT;
269  case Instruction::SExt:     return Expression::SEXT;
270  case Instruction::FPToUI:   return Expression::FPTOUI;
271  case Instruction::FPToSI:   return Expression::FPTOSI;
272  case Instruction::UIToFP:   return Expression::UITOFP;
273  case Instruction::SIToFP:   return Expression::SITOFP;
274  case Instruction::FPTrunc:  return Expression::FPTRUNC;
275  case Instruction::FPExt:    return Expression::FPEXT;
276  case Instruction::PtrToInt: return Expression::PTRTOINT;
277  case Instruction::IntToPtr: return Expression::INTTOPTR;
278  case Instruction::BitCast:  return Expression::BITCAST;
279  }
280}
281
282Expression ValueTable::create_expression(CallInst* C) {
283  Expression e;
284
285  e.type = C->getType();
286  e.function = C->getCalledFunction();
287  e.opcode = Expression::CALL;
288
289  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
290       I != E; ++I)
291    e.varargs.push_back(lookup_or_add(*I));
292
293  return e;
294}
295
296Expression ValueTable::create_expression(BinaryOperator* BO) {
297  Expression e;
298  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
299  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
300  e.function = 0;
301  e.type = BO->getType();
302  e.opcode = getOpcode(BO);
303
304  return e;
305}
306
307Expression ValueTable::create_expression(CmpInst* C) {
308  Expression e;
309
310  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
311  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
312  e.function = 0;
313  e.type = C->getType();
314  e.opcode = getOpcode(C);
315
316  return e;
317}
318
319Expression ValueTable::create_expression(CastInst* C) {
320  Expression e;
321
322  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
323  e.function = 0;
324  e.type = C->getType();
325  e.opcode = getOpcode(C);
326
327  return e;
328}
329
330Expression ValueTable::create_expression(ShuffleVectorInst* S) {
331  Expression e;
332
333  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
334  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
335  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
336  e.function = 0;
337  e.type = S->getType();
338  e.opcode = Expression::SHUFFLE;
339
340  return e;
341}
342
343Expression ValueTable::create_expression(ExtractElementInst* E) {
344  Expression e;
345
346  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
347  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
348  e.function = 0;
349  e.type = E->getType();
350  e.opcode = Expression::EXTRACT;
351
352  return e;
353}
354
355Expression ValueTable::create_expression(InsertElementInst* I) {
356  Expression e;
357
358  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
359  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
360  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
361  e.function = 0;
362  e.type = I->getType();
363  e.opcode = Expression::INSERT;
364
365  return e;
366}
367
368Expression ValueTable::create_expression(SelectInst* I) {
369  Expression e;
370
371  e.varargs.push_back(lookup_or_add(I->getCondition()));
372  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
373  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
374  e.function = 0;
375  e.type = I->getType();
376  e.opcode = Expression::SELECT;
377
378  return e;
379}
380
381Expression ValueTable::create_expression(GetElementPtrInst* G) {
382  Expression e;
383
384  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
385  e.function = 0;
386  e.type = G->getType();
387  e.opcode = Expression::GEP;
388
389  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
390       I != E; ++I)
391    e.varargs.push_back(lookup_or_add(*I));
392
393  return e;
394}
395
396Expression ValueTable::create_expression(ExtractValueInst* E) {
397  Expression e;
398
399  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
400  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
401       II != IE; ++II)
402    e.varargs.push_back(*II);
403  e.function = 0;
404  e.type = E->getType();
405  e.opcode = Expression::EXTRACTVALUE;
406
407  return e;
408}
409
410Expression ValueTable::create_expression(InsertValueInst* E) {
411  Expression e;
412
413  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
414  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
415  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
416       II != IE; ++II)
417    e.varargs.push_back(*II);
418  e.function = 0;
419  e.type = E->getType();
420  e.opcode = Expression::INSERTVALUE;
421
422  return e;
423}
424
425//===----------------------------------------------------------------------===//
426//                     ValueTable External Functions
427//===----------------------------------------------------------------------===//
428
429/// add - Insert a value into the table with a specified value number.
430void ValueTable::add(Value *V, uint32_t num) {
431  valueNumbering.insert(std::make_pair(V, num));
432}
433
434uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
435  if (AA->doesNotAccessMemory(C)) {
436    Expression exp = create_expression(C);
437    uint32_t& e = expressionNumbering[exp];
438    if (!e) e = nextValueNumber++;
439    valueNumbering[C] = e;
440    return e;
441  } else if (AA->onlyReadsMemory(C)) {
442    Expression exp = create_expression(C);
443    uint32_t& e = expressionNumbering[exp];
444    if (!e) {
445      e = nextValueNumber++;
446      valueNumbering[C] = e;
447      return e;
448    }
449    if (!MD) {
450      e = nextValueNumber++;
451      valueNumbering[C] = e;
452      return e;
453    }
454
455    MemDepResult local_dep = MD->getDependency(C);
456
457    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
458      valueNumbering[C] =  nextValueNumber;
459      return nextValueNumber++;
460    }
461
462    if (local_dep.isDef()) {
463      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
464
465      if (local_cdep->getNumOperands() != C->getNumOperands()) {
466        valueNumbering[C] = nextValueNumber;
467        return nextValueNumber++;
468      }
469
470      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
471        uint32_t c_vn = lookup_or_add(C->getOperand(i));
472        uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
473        if (c_vn != cd_vn) {
474          valueNumbering[C] = nextValueNumber;
475          return nextValueNumber++;
476        }
477      }
478
479      uint32_t v = lookup_or_add(local_cdep);
480      valueNumbering[C] = v;
481      return v;
482    }
483
484    // Non-local case.
485    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
486      MD->getNonLocalCallDependency(CallSite(C));
487    // FIXME: call/call dependencies for readonly calls should return def, not
488    // clobber!  Move the checking logic to MemDep!
489    CallInst* cdep = 0;
490
491    // Check to see if we have a single dominating call instruction that is
492    // identical to C.
493    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
494      const NonLocalDepEntry *I = &deps[i];
495      // Ignore non-local dependencies.
496      if (I->getResult().isNonLocal())
497        continue;
498
499      // We don't handle non-depedencies.  If we already have a call, reject
500      // instruction dependencies.
501      if (I->getResult().isClobber() || cdep != 0) {
502        cdep = 0;
503        break;
504      }
505
506      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
507      // FIXME: All duplicated with non-local case.
508      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
509        cdep = NonLocalDepCall;
510        continue;
511      }
512
513      cdep = 0;
514      break;
515    }
516
517    if (!cdep) {
518      valueNumbering[C] = nextValueNumber;
519      return nextValueNumber++;
520    }
521
522    if (cdep->getNumOperands() != C->getNumOperands()) {
523      valueNumbering[C] = nextValueNumber;
524      return nextValueNumber++;
525    }
526    for (unsigned i = 1; i < C->getNumOperands(); ++i) {
527      uint32_t c_vn = lookup_or_add(C->getOperand(i));
528      uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
529      if (c_vn != cd_vn) {
530        valueNumbering[C] = nextValueNumber;
531        return nextValueNumber++;
532      }
533    }
534
535    uint32_t v = lookup_or_add(cdep);
536    valueNumbering[C] = v;
537    return v;
538
539  } else {
540    valueNumbering[C] = nextValueNumber;
541    return nextValueNumber++;
542  }
543}
544
545/// lookup_or_add - Returns the value number for the specified value, assigning
546/// it a new number if it did not have one before.
547uint32_t ValueTable::lookup_or_add(Value *V) {
548  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
549  if (VI != valueNumbering.end())
550    return VI->second;
551
552  if (!isa<Instruction>(V)) {
553    valueNumbering[V] = nextValueNumber;
554    return nextValueNumber++;
555  }
556
557  Instruction* I = cast<Instruction>(V);
558  Expression exp;
559  switch (I->getOpcode()) {
560    case Instruction::Call:
561      return lookup_or_add_call(cast<CallInst>(I));
562    case Instruction::Add:
563    case Instruction::FAdd:
564    case Instruction::Sub:
565    case Instruction::FSub:
566    case Instruction::Mul:
567    case Instruction::FMul:
568    case Instruction::UDiv:
569    case Instruction::SDiv:
570    case Instruction::FDiv:
571    case Instruction::URem:
572    case Instruction::SRem:
573    case Instruction::FRem:
574    case Instruction::Shl:
575    case Instruction::LShr:
576    case Instruction::AShr:
577    case Instruction::And:
578    case Instruction::Or :
579    case Instruction::Xor:
580      exp = create_expression(cast<BinaryOperator>(I));
581      break;
582    case Instruction::ICmp:
583    case Instruction::FCmp:
584      exp = create_expression(cast<CmpInst>(I));
585      break;
586    case Instruction::Trunc:
587    case Instruction::ZExt:
588    case Instruction::SExt:
589    case Instruction::FPToUI:
590    case Instruction::FPToSI:
591    case Instruction::UIToFP:
592    case Instruction::SIToFP:
593    case Instruction::FPTrunc:
594    case Instruction::FPExt:
595    case Instruction::PtrToInt:
596    case Instruction::IntToPtr:
597    case Instruction::BitCast:
598      exp = create_expression(cast<CastInst>(I));
599      break;
600    case Instruction::Select:
601      exp = create_expression(cast<SelectInst>(I));
602      break;
603    case Instruction::ExtractElement:
604      exp = create_expression(cast<ExtractElementInst>(I));
605      break;
606    case Instruction::InsertElement:
607      exp = create_expression(cast<InsertElementInst>(I));
608      break;
609    case Instruction::ShuffleVector:
610      exp = create_expression(cast<ShuffleVectorInst>(I));
611      break;
612    case Instruction::ExtractValue:
613      exp = create_expression(cast<ExtractValueInst>(I));
614      break;
615    case Instruction::InsertValue:
616      exp = create_expression(cast<InsertValueInst>(I));
617      break;
618    case Instruction::GetElementPtr:
619      exp = create_expression(cast<GetElementPtrInst>(I));
620      break;
621    default:
622      valueNumbering[V] = nextValueNumber;
623      return nextValueNumber++;
624  }
625
626  uint32_t& e = expressionNumbering[exp];
627  if (!e) e = nextValueNumber++;
628  valueNumbering[V] = e;
629  return e;
630}
631
632/// lookup - Returns the value number of the specified value. Fails if
633/// the value has not yet been numbered.
634uint32_t ValueTable::lookup(Value *V) const {
635  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
636  assert(VI != valueNumbering.end() && "Value not numbered?");
637  return VI->second;
638}
639
640/// clear - Remove all entries from the ValueTable
641void ValueTable::clear() {
642  valueNumbering.clear();
643  expressionNumbering.clear();
644  nextValueNumber = 1;
645}
646
647/// erase - Remove a value from the value numbering
648void ValueTable::erase(Value *V) {
649  valueNumbering.erase(V);
650}
651
652/// verifyRemoved - Verify that the value is removed from all internal data
653/// structures.
654void ValueTable::verifyRemoved(const Value *V) const {
655  for (DenseMap<Value*, uint32_t>::const_iterator
656         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
657    assert(I->first != V && "Inst still occurs in value numbering map!");
658  }
659}
660
661//===----------------------------------------------------------------------===//
662//                                GVN Pass
663//===----------------------------------------------------------------------===//
664
665namespace {
666  struct ValueNumberScope {
667    ValueNumberScope* parent;
668    DenseMap<uint32_t, Value*> table;
669
670    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
671  };
672}
673
674namespace {
675
676  class GVN : public FunctionPass {
677    bool runOnFunction(Function &F);
678  public:
679    static char ID; // Pass identification, replacement for typeid
680    explicit GVN(bool nopre = false, bool noloads = false)
681      : FunctionPass(&ID), NoPRE(nopre), NoLoads(noloads), MD(0) { }
682
683  private:
684    bool NoPRE;
685    bool NoLoads;
686    MemoryDependenceAnalysis *MD;
687    DominatorTree *DT;
688
689    ValueTable VN;
690    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
691
692    // This transformation requires dominator postdominator info
693    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
694      AU.addRequired<DominatorTree>();
695      if (!NoLoads)
696        AU.addRequired<MemoryDependenceAnalysis>();
697      AU.addRequired<AliasAnalysis>();
698
699      AU.addPreserved<DominatorTree>();
700      AU.addPreserved<AliasAnalysis>();
701    }
702
703    // Helper fuctions
704    // FIXME: eliminate or document these better
705    bool processLoad(LoadInst* L,
706                     SmallVectorImpl<Instruction*> &toErase);
707    bool processInstruction(Instruction *I,
708                            SmallVectorImpl<Instruction*> &toErase);
709    bool processNonLocalLoad(LoadInst* L,
710                             SmallVectorImpl<Instruction*> &toErase);
711    bool processBlock(BasicBlock *BB);
712    void dump(DenseMap<uint32_t, Value*>& d);
713    bool iterateOnFunction(Function &F);
714    Value *CollapsePhi(PHINode* p);
715    bool performPRE(Function& F);
716    Value *lookupNumber(BasicBlock *BB, uint32_t num);
717    void cleanupGlobalSets();
718    void verifyRemoved(const Instruction *I) const;
719  };
720
721  char GVN::ID = 0;
722}
723
724// createGVNPass - The public interface to this file...
725FunctionPass *llvm::createGVNPass(bool NoPRE, bool NoLoads) {
726  return new GVN(NoPRE, NoLoads);
727}
728
729static RegisterPass<GVN> X("gvn",
730                           "Global Value Numbering");
731
732void GVN::dump(DenseMap<uint32_t, Value*>& d) {
733  printf("{\n");
734  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
735       E = d.end(); I != E; ++I) {
736      printf("%d\n", I->first);
737      I->second->dump();
738  }
739  printf("}\n");
740}
741
742static bool isSafeReplacement(PHINode* p, Instruction *inst) {
743  if (!isa<PHINode>(inst))
744    return true;
745
746  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
747       UI != E; ++UI)
748    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
749      if (use_phi->getParent() == inst->getParent())
750        return false;
751
752  return true;
753}
754
755Value *GVN::CollapsePhi(PHINode *PN) {
756  Value *ConstVal = PN->hasConstantValue(DT);
757  if (!ConstVal) return 0;
758
759  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
760  if (!Inst)
761    return ConstVal;
762
763  if (DT->dominates(Inst, PN))
764    if (isSafeReplacement(PN, Inst))
765      return Inst;
766  return 0;
767}
768
769/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
770/// we're analyzing is fully available in the specified block.  As we go, keep
771/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
772/// map is actually a tri-state map with the following values:
773///   0) we know the block *is not* fully available.
774///   1) we know the block *is* fully available.
775///   2) we do not know whether the block is fully available or not, but we are
776///      currently speculating that it will be.
777///   3) we are speculating for this block and have used that to speculate for
778///      other blocks.
779static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
780                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
781  // Optimistically assume that the block is fully available and check to see
782  // if we already know about this block in one lookup.
783  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
784    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
785
786  // If the entry already existed for this block, return the precomputed value.
787  if (!IV.second) {
788    // If this is a speculative "available" value, mark it as being used for
789    // speculation of other blocks.
790    if (IV.first->second == 2)
791      IV.first->second = 3;
792    return IV.first->second != 0;
793  }
794
795  // Otherwise, see if it is fully available in all predecessors.
796  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
797
798  // If this block has no predecessors, it isn't live-in here.
799  if (PI == PE)
800    goto SpeculationFailure;
801
802  for (; PI != PE; ++PI)
803    // If the value isn't fully available in one of our predecessors, then it
804    // isn't fully available in this block either.  Undo our previous
805    // optimistic assumption and bail out.
806    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
807      goto SpeculationFailure;
808
809  return true;
810
811// SpeculationFailure - If we get here, we found out that this is not, after
812// all, a fully-available block.  We have a problem if we speculated on this and
813// used the speculation to mark other blocks as available.
814SpeculationFailure:
815  char &BBVal = FullyAvailableBlocks[BB];
816
817  // If we didn't speculate on this, just return with it set to false.
818  if (BBVal == 2) {
819    BBVal = 0;
820    return false;
821  }
822
823  // If we did speculate on this value, we could have blocks set to 1 that are
824  // incorrect.  Walk the (transitive) successors of this block and mark them as
825  // 0 if set to one.
826  SmallVector<BasicBlock*, 32> BBWorklist;
827  BBWorklist.push_back(BB);
828
829  while (!BBWorklist.empty()) {
830    BasicBlock *Entry = BBWorklist.pop_back_val();
831    // Note that this sets blocks to 0 (unavailable) if they happen to not
832    // already be in FullyAvailableBlocks.  This is safe.
833    char &EntryVal = FullyAvailableBlocks[Entry];
834    if (EntryVal == 0) continue;  // Already unavailable.
835
836    // Mark as unavailable.
837    EntryVal = 0;
838
839    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
840      BBWorklist.push_back(*I);
841  }
842
843  return false;
844}
845
846
847/// CanCoerceMustAliasedValueToLoad - Return true if
848/// CoerceAvailableValueToLoadType will succeed.
849static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
850                                            const Type *LoadTy,
851                                            const TargetData &TD) {
852  // If the loaded or stored value is an first class array or struct, don't try
853  // to transform them.  We need to be able to bitcast to integer.
854  if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy) ||
855      isa<StructType>(StoredVal->getType()) ||
856      isa<ArrayType>(StoredVal->getType()))
857    return false;
858
859  // The store has to be at least as big as the load.
860  if (TD.getTypeSizeInBits(StoredVal->getType()) <
861        TD.getTypeSizeInBits(LoadTy))
862    return false;
863
864  return true;
865}
866
867
868/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
869/// then a load from a must-aliased pointer of a different type, try to coerce
870/// the stored value.  LoadedTy is the type of the load we want to replace and
871/// InsertPt is the place to insert new instructions.
872///
873/// If we can't do it, return null.
874static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
875                                             const Type *LoadedTy,
876                                             Instruction *InsertPt,
877                                             const TargetData &TD) {
878  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
879    return 0;
880
881  const Type *StoredValTy = StoredVal->getType();
882
883  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
884  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
885
886  // If the store and reload are the same size, we can always reuse it.
887  if (StoreSize == LoadSize) {
888    if (isa<PointerType>(StoredValTy) && isa<PointerType>(LoadedTy)) {
889      // Pointer to Pointer -> use bitcast.
890      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
891    }
892
893    // Convert source pointers to integers, which can be bitcast.
894    if (isa<PointerType>(StoredValTy)) {
895      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
896      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
897    }
898
899    const Type *TypeToCastTo = LoadedTy;
900    if (isa<PointerType>(TypeToCastTo))
901      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
902
903    if (StoredValTy != TypeToCastTo)
904      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
905
906    // Cast to pointer if the load needs a pointer type.
907    if (isa<PointerType>(LoadedTy))
908      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
909
910    return StoredVal;
911  }
912
913  // If the loaded value is smaller than the available value, then we can
914  // extract out a piece from it.  If the available value is too small, then we
915  // can't do anything.
916  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
917
918  // Convert source pointers to integers, which can be manipulated.
919  if (isa<PointerType>(StoredValTy)) {
920    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
921    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
922  }
923
924  // Convert vectors and fp to integer, which can be manipulated.
925  if (!isa<IntegerType>(StoredValTy)) {
926    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
927    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
928  }
929
930  // If this is a big-endian system, we need to shift the value down to the low
931  // bits so that a truncate will work.
932  if (TD.isBigEndian()) {
933    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
934    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
935  }
936
937  // Truncate the integer to the right size now.
938  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
939  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
940
941  if (LoadedTy == NewIntTy)
942    return StoredVal;
943
944  // If the result is a pointer, inttoptr.
945  if (isa<PointerType>(LoadedTy))
946    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
947
948  // Otherwise, bitcast.
949  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
950}
951
952/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
953/// be expressed as a base pointer plus a constant offset.  Return the base and
954/// offset to the caller.
955static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
956                                        const TargetData &TD) {
957  Operator *PtrOp = dyn_cast<Operator>(Ptr);
958  if (PtrOp == 0) return Ptr;
959
960  // Just look through bitcasts.
961  if (PtrOp->getOpcode() == Instruction::BitCast)
962    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
963
964  // If this is a GEP with constant indices, we can look through it.
965  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
966  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
967
968  gep_type_iterator GTI = gep_type_begin(GEP);
969  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
970       ++I, ++GTI) {
971    ConstantInt *OpC = cast<ConstantInt>(*I);
972    if (OpC->isZero()) continue;
973
974    // Handle a struct and array indices which add their offset to the pointer.
975    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
976      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
977    } else {
978      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
979      Offset += OpC->getSExtValue()*Size;
980    }
981  }
982
983  // Re-sign extend from the pointer size if needed to get overflow edge cases
984  // right.
985  unsigned PtrSize = TD.getPointerSizeInBits();
986  if (PtrSize < 64)
987    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
988
989  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
990}
991
992
993/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
994/// memdep query of a load that ends up being a clobbering memory write (store,
995/// memset, memcpy, memmove).  This means that the write *may* provide bits used
996/// by the load but we can't be sure because the pointers don't mustalias.
997///
998/// Check this case to see if there is anything more we can do before we give
999/// up.  This returns -1 if we have to give up, or a byte number in the stored
1000/// value of the piece that feeds the load.
1001static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
1002                                          Value *WritePtr,
1003                                          uint64_t WriteSizeInBits,
1004                                          const TargetData &TD) {
1005  // If the loaded or stored value is an first class array or struct, don't try
1006  // to transform them.  We need to be able to bitcast to integer.
1007  if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy))
1008    return -1;
1009
1010  int64_t StoreOffset = 0, LoadOffset = 0;
1011  Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD);
1012  Value *LoadBase =
1013    GetBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
1014  if (StoreBase != LoadBase)
1015    return -1;
1016
1017  // If the load and store are to the exact same address, they should have been
1018  // a must alias.  AA must have gotten confused.
1019  // FIXME: Study to see if/when this happens.
1020  if (LoadOffset == StoreOffset) {
1021#if 0
1022    errs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1023    << "Base       = " << *StoreBase << "\n"
1024    << "Store Ptr  = " << *WritePtr << "\n"
1025    << "Store Offs = " << StoreOffset << "\n"
1026    << "Load Ptr   = " << *LoadPtr << "\n";
1027    abort();
1028#endif
1029    return -1;
1030  }
1031
1032  // If the load and store don't overlap at all, the store doesn't provide
1033  // anything to the load.  In this case, they really don't alias at all, AA
1034  // must have gotten confused.
1035  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1036  // remove this check, as it is duplicated with what we have below.
1037  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
1038
1039  if ((WriteSizeInBits & 7) | (LoadSize & 7))
1040    return -1;
1041  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
1042  LoadSize >>= 3;
1043
1044
1045  bool isAAFailure = false;
1046  if (StoreOffset < LoadOffset) {
1047    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1048  } else {
1049    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1050  }
1051  if (isAAFailure) {
1052#if 0
1053    errs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1054    << "Base       = " << *StoreBase << "\n"
1055    << "Store Ptr  = " << *WritePtr << "\n"
1056    << "Store Offs = " << StoreOffset << "\n"
1057    << "Load Ptr   = " << *LoadPtr << "\n";
1058    abort();
1059#endif
1060    return -1;
1061  }
1062
1063  // If the Load isn't completely contained within the stored bits, we don't
1064  // have all the bits to feed it.  We could do something crazy in the future
1065  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1066  // valuable.
1067  if (StoreOffset > LoadOffset ||
1068      StoreOffset+StoreSize < LoadOffset+LoadSize)
1069    return -1;
1070
1071  // Okay, we can do this transformation.  Return the number of bytes into the
1072  // store that the load is.
1073  return LoadOffset-StoreOffset;
1074}
1075
1076/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1077/// memdep query of a load that ends up being a clobbering store.
1078static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
1079                                          StoreInst *DepSI,
1080                                          const TargetData &TD) {
1081  // Cannot handle reading from store of first-class aggregate yet.
1082  if (isa<StructType>(DepSI->getOperand(0)->getType()) ||
1083      isa<ArrayType>(DepSI->getOperand(0)->getType()))
1084    return -1;
1085
1086  Value *StorePtr = DepSI->getPointerOperand();
1087  uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
1088  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1089                                        StorePtr, StoreSize, TD);
1090}
1091
1092static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
1093                                            MemIntrinsic *MI,
1094                                            const TargetData &TD) {
1095  // If the mem operation is a non-constant size, we can't handle it.
1096  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1097  if (SizeCst == 0) return -1;
1098  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1099
1100  // If this is memset, we just need to see if the offset is valid in the size
1101  // of the memset..
1102  if (MI->getIntrinsicID() == Intrinsic::memset)
1103    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1104                                          MemSizeInBits, TD);
1105
1106  // If we have a memcpy/memmove, the only case we can handle is if this is a
1107  // copy from constant memory.  In that case, we can read directly from the
1108  // constant memory.
1109  MemTransferInst *MTI = cast<MemTransferInst>(MI);
1110
1111  Constant *Src = dyn_cast<Constant>(MTI->getSource());
1112  if (Src == 0) return -1;
1113
1114  GlobalVariable *GV = dyn_cast<GlobalVariable>(Src->getUnderlyingObject());
1115  if (GV == 0 || !GV->isConstant()) return -1;
1116
1117  // See if the access is within the bounds of the transfer.
1118  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1119                                              MI->getDest(), MemSizeInBits, TD);
1120  if (Offset == -1)
1121    return Offset;
1122
1123  // Otherwise, see if we can constant fold a load from the constant with the
1124  // offset applied as appropriate.
1125  Src = ConstantExpr::getBitCast(Src,
1126                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1127  Constant *OffsetCst =
1128    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1129  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1130  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1131  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1132    return Offset;
1133  return -1;
1134}
1135
1136
1137/// GetStoreValueForLoad - This function is called when we have a
1138/// memdep query of a load that ends up being a clobbering store.  This means
1139/// that the store *may* provide bits used by the load but we can't be sure
1140/// because the pointers don't mustalias.  Check this case to see if there is
1141/// anything more we can do before we give up.
1142static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1143                                   const Type *LoadTy,
1144                                   Instruction *InsertPt, const TargetData &TD){
1145  LLVMContext &Ctx = SrcVal->getType()->getContext();
1146
1147  uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8;
1148  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1149
1150  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1151
1152  // Compute which bits of the stored value are being used by the load.  Convert
1153  // to an integer type to start with.
1154  if (isa<PointerType>(SrcVal->getType()))
1155    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
1156  if (!isa<IntegerType>(SrcVal->getType()))
1157    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1158                                   "tmp");
1159
1160  // Shift the bits to the least significant depending on endianness.
1161  unsigned ShiftAmt;
1162  if (TD.isLittleEndian())
1163    ShiftAmt = Offset*8;
1164  else
1165    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1166
1167  if (ShiftAmt)
1168    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
1169
1170  if (LoadSize != StoreSize)
1171    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1172                                 "tmp");
1173
1174  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1175}
1176
1177/// GetMemInstValueForLoad - This function is called when we have a
1178/// memdep query of a load that ends up being a clobbering mem intrinsic.
1179static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1180                                     const Type *LoadTy, Instruction *InsertPt,
1181                                     const TargetData &TD){
1182  LLVMContext &Ctx = LoadTy->getContext();
1183  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1184
1185  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1186
1187  // We know that this method is only called when the mem transfer fully
1188  // provides the bits for the load.
1189  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1190    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1191    // independently of what the offset is.
1192    Value *Val = MSI->getValue();
1193    if (LoadSize != 1)
1194      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1195
1196    Value *OneElt = Val;
1197
1198    // Splat the value out to the right number of bits.
1199    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1200      // If we can double the number of bytes set, do it.
1201      if (NumBytesSet*2 <= LoadSize) {
1202        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1203        Val = Builder.CreateOr(Val, ShVal);
1204        NumBytesSet <<= 1;
1205        continue;
1206      }
1207
1208      // Otherwise insert one byte at a time.
1209      Value *ShVal = Builder.CreateShl(Val, 1*8);
1210      Val = Builder.CreateOr(OneElt, ShVal);
1211      ++NumBytesSet;
1212    }
1213
1214    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1215  }
1216
1217  // Otherwise, this is a memcpy/memmove from a constant global.
1218  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1219  Constant *Src = cast<Constant>(MTI->getSource());
1220
1221  // Otherwise, see if we can constant fold a load from the constant with the
1222  // offset applied as appropriate.
1223  Src = ConstantExpr::getBitCast(Src,
1224                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1225  Constant *OffsetCst =
1226  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1227  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1228  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1229  return ConstantFoldLoadFromConstPtr(Src, &TD);
1230}
1231
1232
1233
1234struct AvailableValueInBlock {
1235  /// BB - The basic block in question.
1236  BasicBlock *BB;
1237  enum ValType {
1238    SimpleVal,  // A simple offsetted value that is accessed.
1239    MemIntrin   // A memory intrinsic which is loaded from.
1240  };
1241
1242  /// V - The value that is live out of the block.
1243  PointerIntPair<Value *, 1, ValType> Val;
1244
1245  /// Offset - The byte offset in Val that is interesting for the load query.
1246  unsigned Offset;
1247
1248  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1249                                   unsigned Offset = 0) {
1250    AvailableValueInBlock Res;
1251    Res.BB = BB;
1252    Res.Val.setPointer(V);
1253    Res.Val.setInt(SimpleVal);
1254    Res.Offset = Offset;
1255    return Res;
1256  }
1257
1258  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1259                                     unsigned Offset = 0) {
1260    AvailableValueInBlock Res;
1261    Res.BB = BB;
1262    Res.Val.setPointer(MI);
1263    Res.Val.setInt(MemIntrin);
1264    Res.Offset = Offset;
1265    return Res;
1266  }
1267
1268  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1269  Value *getSimpleValue() const {
1270    assert(isSimpleValue() && "Wrong accessor");
1271    return Val.getPointer();
1272  }
1273
1274  MemIntrinsic *getMemIntrinValue() const {
1275    assert(!isSimpleValue() && "Wrong accessor");
1276    return cast<MemIntrinsic>(Val.getPointer());
1277  }
1278};
1279
1280/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1281/// construct SSA form, allowing us to eliminate LI.  This returns the value
1282/// that should be used at LI's definition site.
1283static Value *ConstructSSAForLoadSet(LoadInst *LI,
1284                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1285                                     const TargetData *TD,
1286                                     AliasAnalysis *AA) {
1287  SmallVector<PHINode*, 8> NewPHIs;
1288  SSAUpdater SSAUpdate(&NewPHIs);
1289  SSAUpdate.Initialize(LI);
1290
1291  const Type *LoadTy = LI->getType();
1292
1293  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1294    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1295    BasicBlock *BB = AV.BB;
1296
1297    if (SSAUpdate.HasValueForBlock(BB))
1298      continue;
1299
1300    unsigned Offset = AV.Offset;
1301
1302    Value *AvailableVal;
1303    if (AV.isSimpleValue()) {
1304      AvailableVal = AV.getSimpleValue();
1305      if (AvailableVal->getType() != LoadTy) {
1306        assert(TD && "Need target data to handle type mismatch case");
1307        AvailableVal = GetStoreValueForLoad(AvailableVal, Offset, LoadTy,
1308                                            BB->getTerminator(), *TD);
1309
1310        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1311              << *AV.getSimpleValue() << '\n'
1312              << *AvailableVal << '\n' << "\n\n\n");
1313      }
1314    } else {
1315      AvailableVal = GetMemInstValueForLoad(AV.getMemIntrinValue(), Offset,
1316                                            LoadTy, BB->getTerminator(), *TD);
1317      DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1318            << "  " << *AV.getMemIntrinValue() << '\n'
1319            << *AvailableVal << '\n' << "\n\n\n");
1320    }
1321    SSAUpdate.AddAvailableValue(BB, AvailableVal);
1322  }
1323
1324  // Perform PHI construction.
1325  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1326
1327  // If new PHI nodes were created, notify alias analysis.
1328  if (isa<PointerType>(V->getType()))
1329    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1330      AA->copyValue(LI, NewPHIs[i]);
1331
1332  return V;
1333}
1334
1335static bool isLifetimeStart(Instruction *Inst) {
1336  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1337    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1338  return false;
1339}
1340
1341/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1342/// non-local by performing PHI construction.
1343bool GVN::processNonLocalLoad(LoadInst *LI,
1344                              SmallVectorImpl<Instruction*> &toErase) {
1345  // Find the non-local dependencies of the load.
1346  SmallVector<NonLocalDepEntry, 64> Deps;
1347  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1348                                   Deps);
1349  //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
1350  //             << Deps.size() << *LI << '\n');
1351
1352  // If we had to process more than one hundred blocks to find the
1353  // dependencies, this load isn't worth worrying about.  Optimizing
1354  // it will be too expensive.
1355  if (Deps.size() > 100)
1356    return false;
1357
1358  // If we had a phi translation failure, we'll have a single entry which is a
1359  // clobber in the current block.  Reject this early.
1360  if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
1361    DEBUG(
1362      errs() << "GVN: non-local load ";
1363      WriteAsOperand(errs(), LI);
1364      errs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
1365    );
1366    return false;
1367  }
1368
1369  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1370  // where we have a value available in repl, also keep track of whether we see
1371  // dependencies that produce an unknown value for the load (such as a call
1372  // that could potentially clobber the load).
1373  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1374  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1375
1376  const TargetData *TD = 0;
1377
1378  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1379    BasicBlock *DepBB = Deps[i].getBB();
1380    MemDepResult DepInfo = Deps[i].getResult();
1381
1382    if (DepInfo.isClobber()) {
1383      // The address being loaded in this non-local block may not be the same as
1384      // the pointer operand of the load if PHI translation occurs.  Make sure
1385      // to consider the right address.
1386      Value *Address = Deps[i].getAddress();
1387
1388      // If the dependence is to a store that writes to a superset of the bits
1389      // read by the load, we can extract the bits we need for the load from the
1390      // stored value.
1391      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1392        if (TD == 0)
1393          TD = getAnalysisIfAvailable<TargetData>();
1394        if (TD && Address) {
1395          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1396                                                      DepSI, *TD);
1397          if (Offset != -1) {
1398            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1399                                                           DepSI->getOperand(0),
1400                                                                Offset));
1401            continue;
1402          }
1403        }
1404      }
1405
1406      // If the clobbering value is a memset/memcpy/memmove, see if we can
1407      // forward a value on from it.
1408      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1409        if (TD == 0)
1410          TD = getAnalysisIfAvailable<TargetData>();
1411        if (TD && Address) {
1412          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1413                                                        DepMI, *TD);
1414          if (Offset != -1) {
1415            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1416                                                                  Offset));
1417            continue;
1418          }
1419        }
1420      }
1421
1422      UnavailableBlocks.push_back(DepBB);
1423      continue;
1424    }
1425
1426    Instruction *DepInst = DepInfo.getInst();
1427
1428    // Loading the allocation -> undef.
1429    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1430        // Loading immediately after lifetime begin -> undef.
1431        isLifetimeStart(DepInst)) {
1432      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1433                                             UndefValue::get(LI->getType())));
1434      continue;
1435    }
1436
1437    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1438      // Reject loads and stores that are to the same address but are of
1439      // different types if we have to.
1440      if (S->getOperand(0)->getType() != LI->getType()) {
1441        if (TD == 0)
1442          TD = getAnalysisIfAvailable<TargetData>();
1443
1444        // If the stored value is larger or equal to the loaded value, we can
1445        // reuse it.
1446        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1447                                                        LI->getType(), *TD)) {
1448          UnavailableBlocks.push_back(DepBB);
1449          continue;
1450        }
1451      }
1452
1453      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1454                                                          S->getOperand(0)));
1455      continue;
1456    }
1457
1458    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1459      // If the types mismatch and we can't handle it, reject reuse of the load.
1460      if (LD->getType() != LI->getType()) {
1461        if (TD == 0)
1462          TD = getAnalysisIfAvailable<TargetData>();
1463
1464        // If the stored value is larger or equal to the loaded value, we can
1465        // reuse it.
1466        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1467          UnavailableBlocks.push_back(DepBB);
1468          continue;
1469        }
1470      }
1471      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1472      continue;
1473    }
1474
1475    UnavailableBlocks.push_back(DepBB);
1476    continue;
1477  }
1478
1479  // If we have no predecessors that produce a known value for this load, exit
1480  // early.
1481  if (ValuesPerBlock.empty()) return false;
1482
1483  // If all of the instructions we depend on produce a known value for this
1484  // load, then it is fully redundant and we can use PHI insertion to compute
1485  // its value.  Insert PHIs and remove the fully redundant value now.
1486  if (UnavailableBlocks.empty()) {
1487    DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1488
1489    // Perform PHI construction.
1490    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
1491                                      VN.getAliasAnalysis());
1492    LI->replaceAllUsesWith(V);
1493
1494    if (isa<PHINode>(V))
1495      V->takeName(LI);
1496    if (isa<PointerType>(V->getType()))
1497      MD->invalidateCachedPointerInfo(V);
1498    toErase.push_back(LI);
1499    NumGVNLoad++;
1500    return true;
1501  }
1502
1503  if (!EnablePRE || !EnableLoadPRE)
1504    return false;
1505
1506  // Okay, we have *some* definitions of the value.  This means that the value
1507  // is available in some of our (transitive) predecessors.  Lets think about
1508  // doing PRE of this load.  This will involve inserting a new load into the
1509  // predecessor when it's not available.  We could do this in general, but
1510  // prefer to not increase code size.  As such, we only do this when we know
1511  // that we only have to insert *one* load (which means we're basically moving
1512  // the load, not inserting a new one).
1513
1514  SmallPtrSet<BasicBlock *, 4> Blockers;
1515  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1516    Blockers.insert(UnavailableBlocks[i]);
1517
1518  // Lets find first basic block with more than one predecessor.  Walk backwards
1519  // through predecessors if needed.
1520  BasicBlock *LoadBB = LI->getParent();
1521  BasicBlock *TmpBB = LoadBB;
1522
1523  bool isSinglePred = false;
1524  bool allSingleSucc = true;
1525  while (TmpBB->getSinglePredecessor()) {
1526    isSinglePred = true;
1527    TmpBB = TmpBB->getSinglePredecessor();
1528    if (!TmpBB) // If haven't found any, bail now.
1529      return false;
1530    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1531      return false;
1532    if (Blockers.count(TmpBB))
1533      return false;
1534    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1535      allSingleSucc = false;
1536  }
1537
1538  assert(TmpBB);
1539  LoadBB = TmpBB;
1540
1541  // If we have a repl set with LI itself in it, this means we have a loop where
1542  // at least one of the values is LI.  Since this means that we won't be able
1543  // to eliminate LI even if we insert uses in the other predecessors, we will
1544  // end up increasing code size.  Reject this by scanning for LI.
1545  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1546    if (ValuesPerBlock[i].isSimpleValue() &&
1547        ValuesPerBlock[i].getSimpleValue() == LI)
1548      return false;
1549
1550  // FIXME: It is extremely unclear what this loop is doing, other than
1551  // artificially restricting loadpre.
1552  if (isSinglePred) {
1553    bool isHot = false;
1554    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1555      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1556      if (AV.isSimpleValue())
1557        // "Hot" Instruction is in some loop (because it dominates its dep.
1558        // instruction).
1559        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1560          if (DT->dominates(LI, I)) {
1561            isHot = true;
1562            break;
1563          }
1564    }
1565
1566    // We are interested only in "hot" instructions. We don't want to do any
1567    // mis-optimizations here.
1568    if (!isHot)
1569      return false;
1570  }
1571
1572  // Okay, we have some hope :).  Check to see if the loaded value is fully
1573  // available in all but one predecessor.
1574  // FIXME: If we could restructure the CFG, we could make a common pred with
1575  // all the preds that don't have an available LI and insert a new load into
1576  // that one block.
1577  BasicBlock *UnavailablePred = 0;
1578
1579  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1580  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1581    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1582  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1583    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1584
1585  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1586       PI != E; ++PI) {
1587    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1588      continue;
1589
1590    // If this load is not available in multiple predecessors, reject it.
1591    if (UnavailablePred && UnavailablePred != *PI)
1592      return false;
1593    UnavailablePred = *PI;
1594  }
1595
1596  assert(UnavailablePred != 0 &&
1597         "Fully available value should be eliminated above!");
1598
1599  // We don't currently handle critical edges :(
1600  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1601    DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1602                 << UnavailablePred->getName() << "': " << *LI << '\n');
1603    return false;
1604  }
1605
1606  // Do PHI translation to get its value in the predecessor if necessary.  The
1607  // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1608  //
1609  SmallVector<Instruction*, 8> NewInsts;
1610
1611  // If all preds have a single successor, then we know it is safe to insert the
1612  // load on the pred (?!?), so we can insert code to materialize the pointer if
1613  // it is not available.
1614  PHITransAddr Address(LI->getOperand(0), TD);
1615  Value *LoadPtr = 0;
1616  if (allSingleSucc) {
1617    LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1618                                                *DT, NewInsts);
1619  } else {
1620    Address.PHITranslateValue(LoadBB, UnavailablePred);
1621    LoadPtr = Address.getAddr();
1622
1623    // Make sure the value is live in the predecessor.
1624    if (Instruction *Inst = dyn_cast_or_null<Instruction>(LoadPtr))
1625      if (!DT->dominates(Inst->getParent(), UnavailablePred))
1626        LoadPtr = 0;
1627  }
1628
1629  // If we couldn't find or insert a computation of this phi translated value,
1630  // we fail PRE.
1631  if (LoadPtr == 0) {
1632    assert(NewInsts.empty() && "Shouldn't insert insts on failure");
1633    DEBUG(errs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1634                 << *LI->getOperand(0) << "\n");
1635    return false;
1636  }
1637
1638  // Assign value numbers to these new instructions.
1639  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1640    // FIXME: We really _ought_ to insert these value numbers into their
1641    // parent's availability map.  However, in doing so, we risk getting into
1642    // ordering issues.  If a block hasn't been processed yet, we would be
1643    // marking a value as AVAIL-IN, which isn't what we intend.
1644    VN.lookup_or_add(NewInsts[i]);
1645  }
1646
1647  // Make sure it is valid to move this load here.  We have to watch out for:
1648  //  @1 = getelementptr (i8* p, ...
1649  //  test p and branch if == 0
1650  //  load @1
1651  // It is valid to have the getelementptr before the test, even if p can be 0,
1652  // as getelementptr only does address arithmetic.
1653  // If we are not pushing the value through any multiple-successor blocks
1654  // we do not have this case.  Otherwise, check that the load is safe to
1655  // put anywhere; this can be improved, but should be conservatively safe.
1656  if (!allSingleSucc &&
1657      // FIXME: REEVALUTE THIS.
1658      !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator())) {
1659    assert(NewInsts.empty() && "Should not have inserted instructions");
1660    return false;
1661  }
1662
1663  // Okay, we can eliminate this load by inserting a reload in the predecessor
1664  // and using PHI construction to get the value in the other predecessors, do
1665  // it.
1666  DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1667  DEBUG(if (!NewInsts.empty())
1668          errs() << "INSERTED " << NewInsts.size() << " INSTS: "
1669                 << *NewInsts.back() << '\n');
1670
1671  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1672                                LI->getAlignment(),
1673                                UnavailablePred->getTerminator());
1674
1675  // Add the newly created load.
1676  ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,NewLoad));
1677
1678  // Perform PHI construction.
1679  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
1680                                    VN.getAliasAnalysis());
1681  LI->replaceAllUsesWith(V);
1682  if (isa<PHINode>(V))
1683    V->takeName(LI);
1684  if (isa<PointerType>(V->getType()))
1685    MD->invalidateCachedPointerInfo(V);
1686  toErase.push_back(LI);
1687  NumPRELoad++;
1688  return true;
1689}
1690
1691/// processLoad - Attempt to eliminate a load, first by eliminating it
1692/// locally, and then attempting non-local elimination if that fails.
1693bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1694  if (!MD)
1695    return false;
1696
1697  if (L->isVolatile())
1698    return false;
1699
1700  // ... to a pointer that has been loaded from before...
1701  MemDepResult Dep = MD->getDependency(L);
1702
1703  // If the value isn't available, don't do anything!
1704  if (Dep.isClobber()) {
1705    // Check to see if we have something like this:
1706    //   store i32 123, i32* %P
1707    //   %A = bitcast i32* %P to i8*
1708    //   %B = gep i8* %A, i32 1
1709    //   %C = load i8* %B
1710    //
1711    // We could do that by recognizing if the clobber instructions are obviously
1712    // a common base + constant offset, and if the previous store (or memset)
1713    // completely covers this load.  This sort of thing can happen in bitfield
1714    // access code.
1715    Value *AvailVal = 0;
1716    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1717      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1718        int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1719                                                    L->getPointerOperand(),
1720                                                    DepSI, *TD);
1721        if (Offset != -1)
1722          AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1723                                          L->getType(), L, *TD);
1724      }
1725
1726    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1727    // a value on from it.
1728    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1729      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1730        int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1731                                                      L->getPointerOperand(),
1732                                                      DepMI, *TD);
1733        if (Offset != -1)
1734          AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
1735      }
1736    }
1737
1738    if (AvailVal) {
1739      DEBUG(errs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1740            << *AvailVal << '\n' << *L << "\n\n\n");
1741
1742      // Replace the load!
1743      L->replaceAllUsesWith(AvailVal);
1744      if (isa<PointerType>(AvailVal->getType()))
1745        MD->invalidateCachedPointerInfo(AvailVal);
1746      toErase.push_back(L);
1747      NumGVNLoad++;
1748      return true;
1749    }
1750
1751    DEBUG(
1752      // fast print dep, using operator<< on instruction would be too slow
1753      errs() << "GVN: load ";
1754      WriteAsOperand(errs(), L);
1755      Instruction *I = Dep.getInst();
1756      errs() << " is clobbered by " << *I << '\n';
1757    );
1758    return false;
1759  }
1760
1761  // If it is defined in another block, try harder.
1762  if (Dep.isNonLocal())
1763    return processNonLocalLoad(L, toErase);
1764
1765  Instruction *DepInst = Dep.getInst();
1766  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1767    Value *StoredVal = DepSI->getOperand(0);
1768
1769    // The store and load are to a must-aliased pointer, but they may not
1770    // actually have the same type.  See if we know how to reuse the stored
1771    // value (depending on its type).
1772    const TargetData *TD = 0;
1773    if (StoredVal->getType() != L->getType()) {
1774      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1775        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1776                                                   L, *TD);
1777        if (StoredVal == 0)
1778          return false;
1779
1780        DEBUG(errs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1781                     << '\n' << *L << "\n\n\n");
1782      }
1783      else
1784        return false;
1785    }
1786
1787    // Remove it!
1788    L->replaceAllUsesWith(StoredVal);
1789    if (isa<PointerType>(StoredVal->getType()))
1790      MD->invalidateCachedPointerInfo(StoredVal);
1791    toErase.push_back(L);
1792    NumGVNLoad++;
1793    return true;
1794  }
1795
1796  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1797    Value *AvailableVal = DepLI;
1798
1799    // The loads are of a must-aliased pointer, but they may not actually have
1800    // the same type.  See if we know how to reuse the previously loaded value
1801    // (depending on its type).
1802    const TargetData *TD = 0;
1803    if (DepLI->getType() != L->getType()) {
1804      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1805        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1806        if (AvailableVal == 0)
1807          return false;
1808
1809        DEBUG(errs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1810                     << "\n" << *L << "\n\n\n");
1811      }
1812      else
1813        return false;
1814    }
1815
1816    // Remove it!
1817    L->replaceAllUsesWith(AvailableVal);
1818    if (isa<PointerType>(DepLI->getType()))
1819      MD->invalidateCachedPointerInfo(DepLI);
1820    toErase.push_back(L);
1821    NumGVNLoad++;
1822    return true;
1823  }
1824
1825  // If this load really doesn't depend on anything, then we must be loading an
1826  // undef value.  This can happen when loading for a fresh allocation with no
1827  // intervening stores, for example.
1828  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1829    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1830    toErase.push_back(L);
1831    NumGVNLoad++;
1832    return true;
1833  }
1834
1835  // If this load occurs either right after a lifetime begin,
1836  // then the loaded value is undefined.
1837  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1838    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1839      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1840      toErase.push_back(L);
1841      NumGVNLoad++;
1842      return true;
1843    }
1844  }
1845
1846  return false;
1847}
1848
1849Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1850  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1851  if (I == localAvail.end())
1852    return 0;
1853
1854  ValueNumberScope *Locals = I->second;
1855  while (Locals) {
1856    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1857    if (I != Locals->table.end())
1858      return I->second;
1859    Locals = Locals->parent;
1860  }
1861
1862  return 0;
1863}
1864
1865
1866/// processInstruction - When calculating availability, handle an instruction
1867/// by inserting it into the appropriate sets
1868bool GVN::processInstruction(Instruction *I,
1869                             SmallVectorImpl<Instruction*> &toErase) {
1870  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1871    bool Changed = processLoad(LI, toErase);
1872
1873    if (!Changed) {
1874      unsigned Num = VN.lookup_or_add(LI);
1875      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1876    }
1877
1878    return Changed;
1879  }
1880
1881  uint32_t NextNum = VN.getNextUnusedValueNumber();
1882  unsigned Num = VN.lookup_or_add(I);
1883
1884  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1885    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1886
1887    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1888      return false;
1889
1890    Value *BranchCond = BI->getCondition();
1891    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1892
1893    BasicBlock *TrueSucc = BI->getSuccessor(0);
1894    BasicBlock *FalseSucc = BI->getSuccessor(1);
1895
1896    if (TrueSucc->getSinglePredecessor())
1897      localAvail[TrueSucc]->table[CondVN] =
1898        ConstantInt::getTrue(TrueSucc->getContext());
1899    if (FalseSucc->getSinglePredecessor())
1900      localAvail[FalseSucc]->table[CondVN] =
1901        ConstantInt::getFalse(TrueSucc->getContext());
1902
1903    return false;
1904
1905  // Allocations are always uniquely numbered, so we can save time and memory
1906  // by fast failing them.
1907  } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
1908    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1909    return false;
1910  }
1911
1912  // Collapse PHI nodes
1913  if (PHINode* p = dyn_cast<PHINode>(I)) {
1914    Value *constVal = CollapsePhi(p);
1915
1916    if (constVal) {
1917      p->replaceAllUsesWith(constVal);
1918      if (MD && isa<PointerType>(constVal->getType()))
1919        MD->invalidateCachedPointerInfo(constVal);
1920      VN.erase(p);
1921
1922      toErase.push_back(p);
1923    } else {
1924      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1925    }
1926
1927  // If the number we were assigned was a brand new VN, then we don't
1928  // need to do a lookup to see if the number already exists
1929  // somewhere in the domtree: it can't!
1930  } else if (Num == NextNum) {
1931    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1932
1933  // Perform fast-path value-number based elimination of values inherited from
1934  // dominators.
1935  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1936    // Remove it!
1937    VN.erase(I);
1938    I->replaceAllUsesWith(repl);
1939    if (MD && isa<PointerType>(repl->getType()))
1940      MD->invalidateCachedPointerInfo(repl);
1941    toErase.push_back(I);
1942    return true;
1943
1944  } else {
1945    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1946  }
1947
1948  return false;
1949}
1950
1951/// runOnFunction - This is the main transformation entry point for a function.
1952bool GVN::runOnFunction(Function& F) {
1953  if (!NoLoads)
1954    MD = &getAnalysis<MemoryDependenceAnalysis>();
1955  DT = &getAnalysis<DominatorTree>();
1956  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1957  VN.setMemDep(MD);
1958  VN.setDomTree(DT);
1959
1960  bool Changed = false;
1961  bool ShouldContinue = true;
1962
1963  // Merge unconditional branches, allowing PRE to catch more
1964  // optimization opportunities.
1965  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1966    BasicBlock *BB = FI;
1967    ++FI;
1968    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1969    if (removedBlock) NumGVNBlocks++;
1970
1971    Changed |= removedBlock;
1972  }
1973
1974  unsigned Iteration = 0;
1975
1976  while (ShouldContinue) {
1977    DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
1978    ShouldContinue = iterateOnFunction(F);
1979    Changed |= ShouldContinue;
1980    ++Iteration;
1981  }
1982
1983  if (EnablePRE) {
1984    bool PREChanged = true;
1985    while (PREChanged) {
1986      PREChanged = performPRE(F);
1987      Changed |= PREChanged;
1988    }
1989  }
1990  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1991  // computations into blocks where they become fully redundant.  Note that
1992  // we can't do this until PRE's critical edge splitting updates memdep.
1993  // Actually, when this happens, we should just fully integrate PRE into GVN.
1994
1995  cleanupGlobalSets();
1996
1997  return Changed;
1998}
1999
2000
2001bool GVN::processBlock(BasicBlock *BB) {
2002  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
2003  // incrementing BI before processing an instruction).
2004  SmallVector<Instruction*, 8> toErase;
2005  bool ChangedFunction = false;
2006
2007  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2008       BI != BE;) {
2009    ChangedFunction |= processInstruction(BI, toErase);
2010    if (toErase.empty()) {
2011      ++BI;
2012      continue;
2013    }
2014
2015    // If we need some instructions deleted, do it now.
2016    NumGVNInstr += toErase.size();
2017
2018    // Avoid iterator invalidation.
2019    bool AtStart = BI == BB->begin();
2020    if (!AtStart)
2021      --BI;
2022
2023    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
2024         E = toErase.end(); I != E; ++I) {
2025      DEBUG(errs() << "GVN removed: " << **I << '\n');
2026      if (MD) MD->removeInstruction(*I);
2027      (*I)->eraseFromParent();
2028      DEBUG(verifyRemoved(*I));
2029    }
2030    toErase.clear();
2031
2032    if (AtStart)
2033      BI = BB->begin();
2034    else
2035      ++BI;
2036  }
2037
2038  return ChangedFunction;
2039}
2040
2041/// performPRE - Perform a purely local form of PRE that looks for diamond
2042/// control flow patterns and attempts to perform simple PRE at the join point.
2043bool GVN::performPRE(Function &F) {
2044  bool Changed = false;
2045  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
2046  DenseMap<BasicBlock*, Value*> predMap;
2047  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2048       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2049    BasicBlock *CurrentBlock = *DI;
2050
2051    // Nothing to PRE in the entry block.
2052    if (CurrentBlock == &F.getEntryBlock()) continue;
2053
2054    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2055         BE = CurrentBlock->end(); BI != BE; ) {
2056      Instruction *CurInst = BI++;
2057
2058      if (isa<AllocaInst>(CurInst) ||
2059          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2060          CurInst->getType()->isVoidTy() ||
2061          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2062          isa<DbgInfoIntrinsic>(CurInst))
2063        continue;
2064
2065      uint32_t ValNo = VN.lookup(CurInst);
2066
2067      // Look for the predecessors for PRE opportunities.  We're
2068      // only trying to solve the basic diamond case, where
2069      // a value is computed in the successor and one predecessor,
2070      // but not the other.  We also explicitly disallow cases
2071      // where the successor is its own predecessor, because they're
2072      // more complicated to get right.
2073      unsigned NumWith = 0;
2074      unsigned NumWithout = 0;
2075      BasicBlock *PREPred = 0;
2076      predMap.clear();
2077
2078      for (pred_iterator PI = pred_begin(CurrentBlock),
2079           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2080        // We're not interested in PRE where the block is its
2081        // own predecessor, on in blocks with predecessors
2082        // that are not reachable.
2083        if (*PI == CurrentBlock) {
2084          NumWithout = 2;
2085          break;
2086        } else if (!localAvail.count(*PI))  {
2087          NumWithout = 2;
2088          break;
2089        }
2090
2091        DenseMap<uint32_t, Value*>::iterator predV =
2092                                            localAvail[*PI]->table.find(ValNo);
2093        if (predV == localAvail[*PI]->table.end()) {
2094          PREPred = *PI;
2095          NumWithout++;
2096        } else if (predV->second == CurInst) {
2097          NumWithout = 2;
2098        } else {
2099          predMap[*PI] = predV->second;
2100          NumWith++;
2101        }
2102      }
2103
2104      // Don't do PRE when it might increase code size, i.e. when
2105      // we would need to insert instructions in more than one pred.
2106      if (NumWithout != 1 || NumWith == 0)
2107        continue;
2108
2109      // Don't do PRE across indirect branch.
2110      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2111        continue;
2112
2113      // We can't do PRE safely on a critical edge, so instead we schedule
2114      // the edge to be split and perform the PRE the next time we iterate
2115      // on the function.
2116      unsigned SuccNum = 0;
2117      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
2118           i != e; ++i)
2119        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
2120          SuccNum = i;
2121          break;
2122        }
2123
2124      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2125        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2126        continue;
2127      }
2128
2129      // Instantiate the expression the in predecessor that lacked it.
2130      // Because we are going top-down through the block, all value numbers
2131      // will be available in the predecessor by the time we need them.  Any
2132      // that weren't original present will have been instantiated earlier
2133      // in this loop.
2134      Instruction *PREInstr = CurInst->clone();
2135      bool success = true;
2136      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2137        Value *Op = PREInstr->getOperand(i);
2138        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2139          continue;
2140
2141        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
2142          PREInstr->setOperand(i, V);
2143        } else {
2144          success = false;
2145          break;
2146        }
2147      }
2148
2149      // Fail out if we encounter an operand that is not available in
2150      // the PRE predecessor.  This is typically because of loads which
2151      // are not value numbered precisely.
2152      if (!success) {
2153        delete PREInstr;
2154        DEBUG(verifyRemoved(PREInstr));
2155        continue;
2156      }
2157
2158      PREInstr->insertBefore(PREPred->getTerminator());
2159      PREInstr->setName(CurInst->getName() + ".pre");
2160      predMap[PREPred] = PREInstr;
2161      VN.add(PREInstr, ValNo);
2162      NumGVNPRE++;
2163
2164      // Update the availability map to include the new instruction.
2165      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
2166
2167      // Create a PHI to make the value available in this block.
2168      PHINode* Phi = PHINode::Create(CurInst->getType(),
2169                                     CurInst->getName() + ".pre-phi",
2170                                     CurrentBlock->begin());
2171      for (pred_iterator PI = pred_begin(CurrentBlock),
2172           PE = pred_end(CurrentBlock); PI != PE; ++PI)
2173        Phi->addIncoming(predMap[*PI], *PI);
2174
2175      VN.add(Phi, ValNo);
2176      localAvail[CurrentBlock]->table[ValNo] = Phi;
2177
2178      CurInst->replaceAllUsesWith(Phi);
2179      if (MD && isa<PointerType>(Phi->getType()))
2180        MD->invalidateCachedPointerInfo(Phi);
2181      VN.erase(CurInst);
2182
2183      DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
2184      if (MD) MD->removeInstruction(CurInst);
2185      CurInst->eraseFromParent();
2186      DEBUG(verifyRemoved(CurInst));
2187      Changed = true;
2188    }
2189  }
2190
2191  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
2192       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
2193    SplitCriticalEdge(I->first, I->second, this);
2194
2195  return Changed || toSplit.size();
2196}
2197
2198/// iterateOnFunction - Executes one iteration of GVN
2199bool GVN::iterateOnFunction(Function &F) {
2200  cleanupGlobalSets();
2201
2202  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2203       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
2204    if (DI->getIDom())
2205      localAvail[DI->getBlock()] =
2206                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
2207    else
2208      localAvail[DI->getBlock()] = new ValueNumberScope(0);
2209  }
2210
2211  // Top-down walk of the dominator tree
2212  bool Changed = false;
2213#if 0
2214  // Needed for value numbering with phi construction to work.
2215  ReversePostOrderTraversal<Function*> RPOT(&F);
2216  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2217       RE = RPOT.end(); RI != RE; ++RI)
2218    Changed |= processBlock(*RI);
2219#else
2220  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2221       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2222    Changed |= processBlock(DI->getBlock());
2223#endif
2224
2225  return Changed;
2226}
2227
2228void GVN::cleanupGlobalSets() {
2229  VN.clear();
2230
2231  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2232       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
2233    delete I->second;
2234  localAvail.clear();
2235}
2236
2237/// verifyRemoved - Verify that the specified instruction does not occur in our
2238/// internal data structures.
2239void GVN::verifyRemoved(const Instruction *Inst) const {
2240  VN.verifyRemoved(Inst);
2241
2242  // Walk through the value number scope to make sure the instruction isn't
2243  // ferreted away in it.
2244  for (DenseMap<BasicBlock*, ValueNumberScope*>::const_iterator
2245         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2246    const ValueNumberScope *VNS = I->second;
2247
2248    while (VNS) {
2249      for (DenseMap<uint32_t, Value*>::const_iterator
2250             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2251        assert(II->second != Inst && "Inst still in value numbering scope!");
2252      }
2253
2254      VNS = VNS->parent;
2255    }
2256  }
2257}
2258