GVN.cpp revision 17aa68055beed6faa48ca3a995c5b6fdf5092fd4
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Operator.h"
28#include "llvm/Value.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/DepthFirstIterator.h"
31#include "llvm/ADT/PostOrderIterator.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/ConstantFolding.h"
37#include "llvm/Analysis/Dominators.h"
38#include "llvm/Analysis/Loads.h"
39#include "llvm/Analysis/MemoryBuiltins.h"
40#include "llvm/Analysis/MemoryDependenceAnalysis.h"
41#include "llvm/Analysis/PHITransAddr.h"
42#include "llvm/Support/CFG.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/GetElementPtrTypeIterator.h"
47#include "llvm/Support/IRBuilder.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetData.h"
50#include "llvm/Transforms/Utils/BasicBlockUtils.h"
51#include "llvm/Transforms/Utils/Local.h"
52#include "llvm/Transforms/Utils/SSAUpdater.h"
53using namespace llvm;
54
55STATISTIC(NumGVNInstr,  "Number of instructions deleted");
56STATISTIC(NumGVNLoad,   "Number of loads deleted");
57STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
58STATISTIC(NumGVNBlocks, "Number of blocks merged");
59STATISTIC(NumPRELoad,   "Number of loads PRE'd");
60
61static cl::opt<bool> EnablePRE("enable-pre",
62                               cl::init(true), cl::Hidden);
63static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
64static cl::opt<bool> EnableFullLoadPRE("enable-full-load-pre", cl::init(false));
65
66//===----------------------------------------------------------------------===//
67//                         ValueTable Class
68//===----------------------------------------------------------------------===//
69
70/// This class holds the mapping between values and value numbers.  It is used
71/// as an efficient mechanism to determine the expression-wise equivalence of
72/// two values.
73namespace {
74  struct Expression {
75    enum ExpressionOpcode {
76      ADD = Instruction::Add,
77      FADD = Instruction::FAdd,
78      SUB = Instruction::Sub,
79      FSUB = Instruction::FSub,
80      MUL = Instruction::Mul,
81      FMUL = Instruction::FMul,
82      UDIV = Instruction::UDiv,
83      SDIV = Instruction::SDiv,
84      FDIV = Instruction::FDiv,
85      UREM = Instruction::URem,
86      SREM = Instruction::SRem,
87      FREM = Instruction::FRem,
88      SHL = Instruction::Shl,
89      LSHR = Instruction::LShr,
90      ASHR = Instruction::AShr,
91      AND = Instruction::And,
92      OR = Instruction::Or,
93      XOR = Instruction::Xor,
94      TRUNC = Instruction::Trunc,
95      ZEXT = Instruction::ZExt,
96      SEXT = Instruction::SExt,
97      FPTOUI = Instruction::FPToUI,
98      FPTOSI = Instruction::FPToSI,
99      UITOFP = Instruction::UIToFP,
100      SITOFP = Instruction::SIToFP,
101      FPTRUNC = Instruction::FPTrunc,
102      FPEXT = Instruction::FPExt,
103      PTRTOINT = Instruction::PtrToInt,
104      INTTOPTR = Instruction::IntToPtr,
105      BITCAST = Instruction::BitCast,
106      ICMPEQ, ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
107      ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
108      FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
109      FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
110      FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
111      SHUFFLE, SELECT, GEP, CALL, CONSTANT,
112      INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
113
114    ExpressionOpcode opcode;
115    const Type* type;
116    SmallVector<uint32_t, 4> varargs;
117    Value *function;
118
119    Expression() { }
120    Expression(ExpressionOpcode o) : opcode(o) { }
121
122    bool operator==(const Expression &other) const {
123      if (opcode != other.opcode)
124        return false;
125      else if (opcode == EMPTY || opcode == TOMBSTONE)
126        return true;
127      else if (type != other.type)
128        return false;
129      else if (function != other.function)
130        return false;
131      else {
132        if (varargs.size() != other.varargs.size())
133          return false;
134
135        for (size_t i = 0; i < varargs.size(); ++i)
136          if (varargs[i] != other.varargs[i])
137            return false;
138
139        return true;
140      }
141    }
142
143    /*bool operator!=(const Expression &other) const {
144      return !(*this == other);
145    }*/
146  };
147
148  class ValueTable {
149    private:
150      DenseMap<Value*, uint32_t> valueNumbering;
151      DenseMap<Expression, uint32_t> expressionNumbering;
152      AliasAnalysis* AA;
153      MemoryDependenceAnalysis* MD;
154      DominatorTree* DT;
155
156      uint32_t nextValueNumber;
157
158      Expression::ExpressionOpcode getOpcode(CmpInst* C);
159      Expression create_expression(BinaryOperator* BO);
160      Expression create_expression(CmpInst* C);
161      Expression create_expression(ShuffleVectorInst* V);
162      Expression create_expression(ExtractElementInst* C);
163      Expression create_expression(InsertElementInst* V);
164      Expression create_expression(SelectInst* V);
165      Expression create_expression(CastInst* C);
166      Expression create_expression(GetElementPtrInst* G);
167      Expression create_expression(CallInst* C);
168      Expression create_expression(ExtractValueInst* C);
169      Expression create_expression(InsertValueInst* C);
170
171      uint32_t lookup_or_add_call(CallInst* C);
172    public:
173      ValueTable() : nextValueNumber(1) { }
174      uint32_t lookup_or_add(Value *V);
175      uint32_t lookup(Value *V) const;
176      void add(Value *V, uint32_t num);
177      void clear();
178      void erase(Value *v);
179      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
180      AliasAnalysis *getAliasAnalysis() const { return AA; }
181      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
182      void setDomTree(DominatorTree* D) { DT = D; }
183      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
184      void verifyRemoved(const Value *) const;
185  };
186}
187
188namespace llvm {
189template <> struct DenseMapInfo<Expression> {
190  static inline Expression getEmptyKey() {
191    return Expression(Expression::EMPTY);
192  }
193
194  static inline Expression getTombstoneKey() {
195    return Expression(Expression::TOMBSTONE);
196  }
197
198  static unsigned getHashValue(const Expression e) {
199    unsigned hash = e.opcode;
200
201    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
202            (unsigned)((uintptr_t)e.type >> 9));
203
204    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
205         E = e.varargs.end(); I != E; ++I)
206      hash = *I + hash * 37;
207
208    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
209            (unsigned)((uintptr_t)e.function >> 9)) +
210           hash * 37;
211
212    return hash;
213  }
214  static bool isEqual(const Expression &LHS, const Expression &RHS) {
215    return LHS == RHS;
216  }
217};
218
219template <>
220struct isPodLike<Expression> { static const bool value = true; };
221
222}
223
224//===----------------------------------------------------------------------===//
225//                     ValueTable Internal Functions
226//===----------------------------------------------------------------------===//
227
228Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
229  if (isa<ICmpInst>(C)) {
230    switch (C->getPredicate()) {
231    default:  // THIS SHOULD NEVER HAPPEN
232      llvm_unreachable("Comparison with unknown predicate?");
233    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
234    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
235    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
236    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
237    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
238    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
239    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
240    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
241    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
242    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
243    }
244  } else {
245    switch (C->getPredicate()) {
246    default: // THIS SHOULD NEVER HAPPEN
247      llvm_unreachable("Comparison with unknown predicate?");
248    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
249    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
250    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
251    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
252    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
253    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
254    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
255    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
256    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
257    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
258    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
259    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
260    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
261    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
262    }
263  }
264}
265
266Expression ValueTable::create_expression(CallInst* C) {
267  Expression e;
268
269  e.type = C->getType();
270  e.function = C->getCalledFunction();
271  e.opcode = Expression::CALL;
272
273  CallSite CS(C);
274  for (CallInst::op_iterator I = CS.arg_begin(), E = CS.arg_end();
275       I != E; ++I)
276    e.varargs.push_back(lookup_or_add(*I));
277
278  return e;
279}
280
281Expression ValueTable::create_expression(BinaryOperator* BO) {
282  Expression e;
283  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
284  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
285  e.function = 0;
286  e.type = BO->getType();
287  e.opcode = static_cast<Expression::ExpressionOpcode>(BO->getOpcode());
288
289  return e;
290}
291
292Expression ValueTable::create_expression(CmpInst* C) {
293  Expression e;
294
295  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
296  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
297  e.function = 0;
298  e.type = C->getType();
299  e.opcode = getOpcode(C);
300
301  return e;
302}
303
304Expression ValueTable::create_expression(CastInst* C) {
305  Expression e;
306
307  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
308  e.function = 0;
309  e.type = C->getType();
310  e.opcode = static_cast<Expression::ExpressionOpcode>(C->getOpcode());
311
312  return e;
313}
314
315Expression ValueTable::create_expression(ShuffleVectorInst* S) {
316  Expression e;
317
318  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
319  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
320  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
321  e.function = 0;
322  e.type = S->getType();
323  e.opcode = Expression::SHUFFLE;
324
325  return e;
326}
327
328Expression ValueTable::create_expression(ExtractElementInst* E) {
329  Expression e;
330
331  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
332  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
333  e.function = 0;
334  e.type = E->getType();
335  e.opcode = Expression::EXTRACT;
336
337  return e;
338}
339
340Expression ValueTable::create_expression(InsertElementInst* I) {
341  Expression e;
342
343  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
344  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
345  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
346  e.function = 0;
347  e.type = I->getType();
348  e.opcode = Expression::INSERT;
349
350  return e;
351}
352
353Expression ValueTable::create_expression(SelectInst* I) {
354  Expression e;
355
356  e.varargs.push_back(lookup_or_add(I->getCondition()));
357  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
358  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
359  e.function = 0;
360  e.type = I->getType();
361  e.opcode = Expression::SELECT;
362
363  return e;
364}
365
366Expression ValueTable::create_expression(GetElementPtrInst* G) {
367  Expression e;
368
369  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
370  e.function = 0;
371  e.type = G->getType();
372  e.opcode = Expression::GEP;
373
374  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
375       I != E; ++I)
376    e.varargs.push_back(lookup_or_add(*I));
377
378  return e;
379}
380
381Expression ValueTable::create_expression(ExtractValueInst* E) {
382  Expression e;
383
384  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
385  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
386       II != IE; ++II)
387    e.varargs.push_back(*II);
388  e.function = 0;
389  e.type = E->getType();
390  e.opcode = Expression::EXTRACTVALUE;
391
392  return e;
393}
394
395Expression ValueTable::create_expression(InsertValueInst* E) {
396  Expression e;
397
398  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
399  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
400  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
401       II != IE; ++II)
402    e.varargs.push_back(*II);
403  e.function = 0;
404  e.type = E->getType();
405  e.opcode = Expression::INSERTVALUE;
406
407  return e;
408}
409
410//===----------------------------------------------------------------------===//
411//                     ValueTable External Functions
412//===----------------------------------------------------------------------===//
413
414/// add - Insert a value into the table with a specified value number.
415void ValueTable::add(Value *V, uint32_t num) {
416  valueNumbering.insert(std::make_pair(V, num));
417}
418
419uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
420  if (AA->doesNotAccessMemory(C)) {
421    Expression exp = create_expression(C);
422    uint32_t& e = expressionNumbering[exp];
423    if (!e) e = nextValueNumber++;
424    valueNumbering[C] = e;
425    return e;
426  } else if (AA->onlyReadsMemory(C)) {
427    Expression exp = create_expression(C);
428    uint32_t& e = expressionNumbering[exp];
429    if (!e) {
430      e = nextValueNumber++;
431      valueNumbering[C] = e;
432      return e;
433    }
434    if (!MD) {
435      e = nextValueNumber++;
436      valueNumbering[C] = e;
437      return e;
438    }
439
440    MemDepResult local_dep = MD->getDependency(C);
441
442    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
443      valueNumbering[C] =  nextValueNumber;
444      return nextValueNumber++;
445    }
446
447    if (local_dep.isDef()) {
448      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
449
450      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
451        valueNumbering[C] = nextValueNumber;
452        return nextValueNumber++;
453      }
454
455      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
456        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
457        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
458        if (c_vn != cd_vn) {
459          valueNumbering[C] = nextValueNumber;
460          return nextValueNumber++;
461        }
462      }
463
464      uint32_t v = lookup_or_add(local_cdep);
465      valueNumbering[C] = v;
466      return v;
467    }
468
469    // Non-local case.
470    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
471      MD->getNonLocalCallDependency(CallSite(C));
472    // FIXME: call/call dependencies for readonly calls should return def, not
473    // clobber!  Move the checking logic to MemDep!
474    CallInst* cdep = 0;
475
476    // Check to see if we have a single dominating call instruction that is
477    // identical to C.
478    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
479      const NonLocalDepEntry *I = &deps[i];
480      // Ignore non-local dependencies.
481      if (I->getResult().isNonLocal())
482        continue;
483
484      // We don't handle non-depedencies.  If we already have a call, reject
485      // instruction dependencies.
486      if (I->getResult().isClobber() || cdep != 0) {
487        cdep = 0;
488        break;
489      }
490
491      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
492      // FIXME: All duplicated with non-local case.
493      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
494        cdep = NonLocalDepCall;
495        continue;
496      }
497
498      cdep = 0;
499      break;
500    }
501
502    if (!cdep) {
503      valueNumbering[C] = nextValueNumber;
504      return nextValueNumber++;
505    }
506
507    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
508      valueNumbering[C] = nextValueNumber;
509      return nextValueNumber++;
510    }
511    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
512      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
513      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
514      if (c_vn != cd_vn) {
515        valueNumbering[C] = nextValueNumber;
516        return nextValueNumber++;
517      }
518    }
519
520    uint32_t v = lookup_or_add(cdep);
521    valueNumbering[C] = v;
522    return v;
523
524  } else {
525    valueNumbering[C] = nextValueNumber;
526    return nextValueNumber++;
527  }
528}
529
530/// lookup_or_add - Returns the value number for the specified value, assigning
531/// it a new number if it did not have one before.
532uint32_t ValueTable::lookup_or_add(Value *V) {
533  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
534  if (VI != valueNumbering.end())
535    return VI->second;
536
537  if (!isa<Instruction>(V)) {
538    valueNumbering[V] = nextValueNumber;
539    return nextValueNumber++;
540  }
541
542  Instruction* I = cast<Instruction>(V);
543  Expression exp;
544  switch (I->getOpcode()) {
545    case Instruction::Call:
546      return lookup_or_add_call(cast<CallInst>(I));
547    case Instruction::Add:
548    case Instruction::FAdd:
549    case Instruction::Sub:
550    case Instruction::FSub:
551    case Instruction::Mul:
552    case Instruction::FMul:
553    case Instruction::UDiv:
554    case Instruction::SDiv:
555    case Instruction::FDiv:
556    case Instruction::URem:
557    case Instruction::SRem:
558    case Instruction::FRem:
559    case Instruction::Shl:
560    case Instruction::LShr:
561    case Instruction::AShr:
562    case Instruction::And:
563    case Instruction::Or :
564    case Instruction::Xor:
565      exp = create_expression(cast<BinaryOperator>(I));
566      break;
567    case Instruction::ICmp:
568    case Instruction::FCmp:
569      exp = create_expression(cast<CmpInst>(I));
570      break;
571    case Instruction::Trunc:
572    case Instruction::ZExt:
573    case Instruction::SExt:
574    case Instruction::FPToUI:
575    case Instruction::FPToSI:
576    case Instruction::UIToFP:
577    case Instruction::SIToFP:
578    case Instruction::FPTrunc:
579    case Instruction::FPExt:
580    case Instruction::PtrToInt:
581    case Instruction::IntToPtr:
582    case Instruction::BitCast:
583      exp = create_expression(cast<CastInst>(I));
584      break;
585    case Instruction::Select:
586      exp = create_expression(cast<SelectInst>(I));
587      break;
588    case Instruction::ExtractElement:
589      exp = create_expression(cast<ExtractElementInst>(I));
590      break;
591    case Instruction::InsertElement:
592      exp = create_expression(cast<InsertElementInst>(I));
593      break;
594    case Instruction::ShuffleVector:
595      exp = create_expression(cast<ShuffleVectorInst>(I));
596      break;
597    case Instruction::ExtractValue:
598      exp = create_expression(cast<ExtractValueInst>(I));
599      break;
600    case Instruction::InsertValue:
601      exp = create_expression(cast<InsertValueInst>(I));
602      break;
603    case Instruction::GetElementPtr:
604      exp = create_expression(cast<GetElementPtrInst>(I));
605      break;
606    default:
607      valueNumbering[V] = nextValueNumber;
608      return nextValueNumber++;
609  }
610
611  uint32_t& e = expressionNumbering[exp];
612  if (!e) e = nextValueNumber++;
613  valueNumbering[V] = e;
614  return e;
615}
616
617/// lookup - Returns the value number of the specified value. Fails if
618/// the value has not yet been numbered.
619uint32_t ValueTable::lookup(Value *V) const {
620  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
621  assert(VI != valueNumbering.end() && "Value not numbered?");
622  return VI->second;
623}
624
625/// clear - Remove all entries from the ValueTable
626void ValueTable::clear() {
627  valueNumbering.clear();
628  expressionNumbering.clear();
629  nextValueNumber = 1;
630}
631
632/// erase - Remove a value from the value numbering
633void ValueTable::erase(Value *V) {
634  valueNumbering.erase(V);
635}
636
637/// verifyRemoved - Verify that the value is removed from all internal data
638/// structures.
639void ValueTable::verifyRemoved(const Value *V) const {
640  for (DenseMap<Value*, uint32_t>::const_iterator
641         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
642    assert(I->first != V && "Inst still occurs in value numbering map!");
643  }
644}
645
646//===----------------------------------------------------------------------===//
647//                                GVN Pass
648//===----------------------------------------------------------------------===//
649
650namespace {
651  struct ValueNumberScope {
652    ValueNumberScope* parent;
653    DenseMap<uint32_t, Value*> table;
654
655    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
656  };
657}
658
659namespace {
660
661  class GVN : public FunctionPass {
662    bool runOnFunction(Function &F);
663  public:
664    static char ID; // Pass identification, replacement for typeid
665    explicit GVN(bool noloads = false)
666      : FunctionPass(ID), NoLoads(noloads), MD(0) { }
667
668  private:
669    bool NoLoads;
670    MemoryDependenceAnalysis *MD;
671    DominatorTree *DT;
672
673    ValueTable VN;
674    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
675
676    // List of critical edges to be split between iterations.
677    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
678
679    // This transformation requires dominator postdominator info
680    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
681      AU.addRequired<DominatorTree>();
682      if (!NoLoads)
683        AU.addRequired<MemoryDependenceAnalysis>();
684      AU.addRequired<AliasAnalysis>();
685
686      AU.addPreserved<DominatorTree>();
687      AU.addPreserved<AliasAnalysis>();
688    }
689
690    // Helper fuctions
691    // FIXME: eliminate or document these better
692    bool processLoad(LoadInst* L,
693                     SmallVectorImpl<Instruction*> &toErase);
694    bool processInstruction(Instruction *I,
695                            SmallVectorImpl<Instruction*> &toErase);
696    bool processNonLocalLoad(LoadInst* L,
697                             SmallVectorImpl<Instruction*> &toErase);
698    bool processBlock(BasicBlock *BB);
699    void dump(DenseMap<uint32_t, Value*>& d);
700    bool iterateOnFunction(Function &F);
701    Value *CollapsePhi(PHINode* p);
702    bool performPRE(Function& F);
703    Value *lookupNumber(BasicBlock *BB, uint32_t num);
704    void cleanupGlobalSets();
705    void verifyRemoved(const Instruction *I) const;
706    bool splitCriticalEdges();
707  };
708
709  char GVN::ID = 0;
710}
711
712// createGVNPass - The public interface to this file...
713FunctionPass *llvm::createGVNPass(bool NoLoads) {
714  return new GVN(NoLoads);
715}
716
717INITIALIZE_PASS(GVN, "gvn", "Global Value Numbering", false, false);
718
719void GVN::dump(DenseMap<uint32_t, Value*>& d) {
720  errs() << "{\n";
721  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
722       E = d.end(); I != E; ++I) {
723      errs() << I->first << "\n";
724      I->second->dump();
725  }
726  errs() << "}\n";
727}
728
729static bool isSafeReplacement(PHINode* p, Instruction *inst) {
730  if (!isa<PHINode>(inst))
731    return true;
732
733  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
734       UI != E; ++UI)
735    if (PHINode* use_phi = dyn_cast<PHINode>(*UI))
736      if (use_phi->getParent() == inst->getParent())
737        return false;
738
739  return true;
740}
741
742Value *GVN::CollapsePhi(PHINode *PN) {
743  Value *ConstVal = PN->hasConstantValue(DT);
744  if (!ConstVal) return 0;
745
746  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
747  if (!Inst)
748    return ConstVal;
749
750  if (DT->dominates(Inst, PN))
751    if (isSafeReplacement(PN, Inst))
752      return Inst;
753  return 0;
754}
755
756/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
757/// we're analyzing is fully available in the specified block.  As we go, keep
758/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
759/// map is actually a tri-state map with the following values:
760///   0) we know the block *is not* fully available.
761///   1) we know the block *is* fully available.
762///   2) we do not know whether the block is fully available or not, but we are
763///      currently speculating that it will be.
764///   3) we are speculating for this block and have used that to speculate for
765///      other blocks.
766static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
767                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
768  // Optimistically assume that the block is fully available and check to see
769  // if we already know about this block in one lookup.
770  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
771    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
772
773  // If the entry already existed for this block, return the precomputed value.
774  if (!IV.second) {
775    // If this is a speculative "available" value, mark it as being used for
776    // speculation of other blocks.
777    if (IV.first->second == 2)
778      IV.first->second = 3;
779    return IV.first->second != 0;
780  }
781
782  // Otherwise, see if it is fully available in all predecessors.
783  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
784
785  // If this block has no predecessors, it isn't live-in here.
786  if (PI == PE)
787    goto SpeculationFailure;
788
789  for (; PI != PE; ++PI)
790    // If the value isn't fully available in one of our predecessors, then it
791    // isn't fully available in this block either.  Undo our previous
792    // optimistic assumption and bail out.
793    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
794      goto SpeculationFailure;
795
796  return true;
797
798// SpeculationFailure - If we get here, we found out that this is not, after
799// all, a fully-available block.  We have a problem if we speculated on this and
800// used the speculation to mark other blocks as available.
801SpeculationFailure:
802  char &BBVal = FullyAvailableBlocks[BB];
803
804  // If we didn't speculate on this, just return with it set to false.
805  if (BBVal == 2) {
806    BBVal = 0;
807    return false;
808  }
809
810  // If we did speculate on this value, we could have blocks set to 1 that are
811  // incorrect.  Walk the (transitive) successors of this block and mark them as
812  // 0 if set to one.
813  SmallVector<BasicBlock*, 32> BBWorklist;
814  BBWorklist.push_back(BB);
815
816  do {
817    BasicBlock *Entry = BBWorklist.pop_back_val();
818    // Note that this sets blocks to 0 (unavailable) if they happen to not
819    // already be in FullyAvailableBlocks.  This is safe.
820    char &EntryVal = FullyAvailableBlocks[Entry];
821    if (EntryVal == 0) continue;  // Already unavailable.
822
823    // Mark as unavailable.
824    EntryVal = 0;
825
826    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
827      BBWorklist.push_back(*I);
828  } while (!BBWorklist.empty());
829
830  return false;
831}
832
833
834/// CanCoerceMustAliasedValueToLoad - Return true if
835/// CoerceAvailableValueToLoadType will succeed.
836static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
837                                            const Type *LoadTy,
838                                            const TargetData &TD) {
839  // If the loaded or stored value is an first class array or struct, don't try
840  // to transform them.  We need to be able to bitcast to integer.
841  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
842      StoredVal->getType()->isStructTy() ||
843      StoredVal->getType()->isArrayTy())
844    return false;
845
846  // The store has to be at least as big as the load.
847  if (TD.getTypeSizeInBits(StoredVal->getType()) <
848        TD.getTypeSizeInBits(LoadTy))
849    return false;
850
851  return true;
852}
853
854
855/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
856/// then a load from a must-aliased pointer of a different type, try to coerce
857/// the stored value.  LoadedTy is the type of the load we want to replace and
858/// InsertPt is the place to insert new instructions.
859///
860/// If we can't do it, return null.
861static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
862                                             const Type *LoadedTy,
863                                             Instruction *InsertPt,
864                                             const TargetData &TD) {
865  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
866    return 0;
867
868  const Type *StoredValTy = StoredVal->getType();
869
870  uint64_t StoreSize = TD.getTypeStoreSizeInBits(StoredValTy);
871  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
872
873  // If the store and reload are the same size, we can always reuse it.
874  if (StoreSize == LoadSize) {
875    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy()) {
876      // Pointer to Pointer -> use bitcast.
877      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
878    }
879
880    // Convert source pointers to integers, which can be bitcast.
881    if (StoredValTy->isPointerTy()) {
882      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
883      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
884    }
885
886    const Type *TypeToCastTo = LoadedTy;
887    if (TypeToCastTo->isPointerTy())
888      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
889
890    if (StoredValTy != TypeToCastTo)
891      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
892
893    // Cast to pointer if the load needs a pointer type.
894    if (LoadedTy->isPointerTy())
895      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
896
897    return StoredVal;
898  }
899
900  // If the loaded value is smaller than the available value, then we can
901  // extract out a piece from it.  If the available value is too small, then we
902  // can't do anything.
903  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
904
905  // Convert source pointers to integers, which can be manipulated.
906  if (StoredValTy->isPointerTy()) {
907    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
908    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
909  }
910
911  // Convert vectors and fp to integer, which can be manipulated.
912  if (!StoredValTy->isIntegerTy()) {
913    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
914    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
915  }
916
917  // If this is a big-endian system, we need to shift the value down to the low
918  // bits so that a truncate will work.
919  if (TD.isBigEndian()) {
920    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
921    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
922  }
923
924  // Truncate the integer to the right size now.
925  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
926  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
927
928  if (LoadedTy == NewIntTy)
929    return StoredVal;
930
931  // If the result is a pointer, inttoptr.
932  if (LoadedTy->isPointerTy())
933    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
934
935  // Otherwise, bitcast.
936  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
937}
938
939/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
940/// be expressed as a base pointer plus a constant offset.  Return the base and
941/// offset to the caller.
942static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
943                                        const TargetData &TD) {
944  Operator *PtrOp = dyn_cast<Operator>(Ptr);
945  if (PtrOp == 0) return Ptr;
946
947  // Just look through bitcasts.
948  if (PtrOp->getOpcode() == Instruction::BitCast)
949    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
950
951  // If this is a GEP with constant indices, we can look through it.
952  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
953  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
954
955  gep_type_iterator GTI = gep_type_begin(GEP);
956  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
957       ++I, ++GTI) {
958    ConstantInt *OpC = cast<ConstantInt>(*I);
959    if (OpC->isZero()) continue;
960
961    // Handle a struct and array indices which add their offset to the pointer.
962    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
963      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
964    } else {
965      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
966      Offset += OpC->getSExtValue()*Size;
967    }
968  }
969
970  // Re-sign extend from the pointer size if needed to get overflow edge cases
971  // right.
972  unsigned PtrSize = TD.getPointerSizeInBits();
973  if (PtrSize < 64)
974    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
975
976  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
977}
978
979
980/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
981/// memdep query of a load that ends up being a clobbering memory write (store,
982/// memset, memcpy, memmove).  This means that the write *may* provide bits used
983/// by the load but we can't be sure because the pointers don't mustalias.
984///
985/// Check this case to see if there is anything more we can do before we give
986/// up.  This returns -1 if we have to give up, or a byte number in the stored
987/// value of the piece that feeds the load.
988static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
989                                          Value *WritePtr,
990                                          uint64_t WriteSizeInBits,
991                                          const TargetData &TD) {
992  // If the loaded or stored value is an first class array or struct, don't try
993  // to transform them.  We need to be able to bitcast to integer.
994  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
995    return -1;
996
997  int64_t StoreOffset = 0, LoadOffset = 0;
998  Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD);
999  Value *LoadBase =
1000    GetBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
1001  if (StoreBase != LoadBase)
1002    return -1;
1003
1004  // If the load and store are to the exact same address, they should have been
1005  // a must alias.  AA must have gotten confused.
1006  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
1007  // to a load from the base of the memset.
1008#if 0
1009  if (LoadOffset == StoreOffset) {
1010    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1011    << "Base       = " << *StoreBase << "\n"
1012    << "Store Ptr  = " << *WritePtr << "\n"
1013    << "Store Offs = " << StoreOffset << "\n"
1014    << "Load Ptr   = " << *LoadPtr << "\n";
1015    abort();
1016  }
1017#endif
1018
1019  // If the load and store don't overlap at all, the store doesn't provide
1020  // anything to the load.  In this case, they really don't alias at all, AA
1021  // must have gotten confused.
1022  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1023  // remove this check, as it is duplicated with what we have below.
1024  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
1025
1026  if ((WriteSizeInBits & 7) | (LoadSize & 7))
1027    return -1;
1028  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
1029  LoadSize >>= 3;
1030
1031
1032  bool isAAFailure = false;
1033  if (StoreOffset < LoadOffset)
1034    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1035  else
1036    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1037
1038  if (isAAFailure) {
1039#if 0
1040    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1041    << "Base       = " << *StoreBase << "\n"
1042    << "Store Ptr  = " << *WritePtr << "\n"
1043    << "Store Offs = " << StoreOffset << "\n"
1044    << "Load Ptr   = " << *LoadPtr << "\n";
1045    abort();
1046#endif
1047    return -1;
1048  }
1049
1050  // If the Load isn't completely contained within the stored bits, we don't
1051  // have all the bits to feed it.  We could do something crazy in the future
1052  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1053  // valuable.
1054  if (StoreOffset > LoadOffset ||
1055      StoreOffset+StoreSize < LoadOffset+LoadSize)
1056    return -1;
1057
1058  // Okay, we can do this transformation.  Return the number of bytes into the
1059  // store that the load is.
1060  return LoadOffset-StoreOffset;
1061}
1062
1063/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1064/// memdep query of a load that ends up being a clobbering store.
1065static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
1066                                          StoreInst *DepSI,
1067                                          const TargetData &TD) {
1068  // Cannot handle reading from store of first-class aggregate yet.
1069  if (DepSI->getOperand(0)->getType()->isStructTy() ||
1070      DepSI->getOperand(0)->getType()->isArrayTy())
1071    return -1;
1072
1073  Value *StorePtr = DepSI->getPointerOperand();
1074  uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
1075  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1076                                        StorePtr, StoreSize, TD);
1077}
1078
1079static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
1080                                            MemIntrinsic *MI,
1081                                            const TargetData &TD) {
1082  // If the mem operation is a non-constant size, we can't handle it.
1083  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1084  if (SizeCst == 0) return -1;
1085  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1086
1087  // If this is memset, we just need to see if the offset is valid in the size
1088  // of the memset..
1089  if (MI->getIntrinsicID() == Intrinsic::memset)
1090    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1091                                          MemSizeInBits, TD);
1092
1093  // If we have a memcpy/memmove, the only case we can handle is if this is a
1094  // copy from constant memory.  In that case, we can read directly from the
1095  // constant memory.
1096  MemTransferInst *MTI = cast<MemTransferInst>(MI);
1097
1098  Constant *Src = dyn_cast<Constant>(MTI->getSource());
1099  if (Src == 0) return -1;
1100
1101  GlobalVariable *GV = dyn_cast<GlobalVariable>(Src->getUnderlyingObject());
1102  if (GV == 0 || !GV->isConstant()) return -1;
1103
1104  // See if the access is within the bounds of the transfer.
1105  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1106                                              MI->getDest(), MemSizeInBits, TD);
1107  if (Offset == -1)
1108    return Offset;
1109
1110  // Otherwise, see if we can constant fold a load from the constant with the
1111  // offset applied as appropriate.
1112  Src = ConstantExpr::getBitCast(Src,
1113                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1114  Constant *OffsetCst =
1115    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1116  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1117  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1118  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1119    return Offset;
1120  return -1;
1121}
1122
1123
1124/// GetStoreValueForLoad - This function is called when we have a
1125/// memdep query of a load that ends up being a clobbering store.  This means
1126/// that the store *may* provide bits used by the load but we can't be sure
1127/// because the pointers don't mustalias.  Check this case to see if there is
1128/// anything more we can do before we give up.
1129static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1130                                   const Type *LoadTy,
1131                                   Instruction *InsertPt, const TargetData &TD){
1132  LLVMContext &Ctx = SrcVal->getType()->getContext();
1133
1134  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1135  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1136
1137  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1138
1139  // Compute which bits of the stored value are being used by the load.  Convert
1140  // to an integer type to start with.
1141  if (SrcVal->getType()->isPointerTy())
1142    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
1143  if (!SrcVal->getType()->isIntegerTy())
1144    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1145                                   "tmp");
1146
1147  // Shift the bits to the least significant depending on endianness.
1148  unsigned ShiftAmt;
1149  if (TD.isLittleEndian())
1150    ShiftAmt = Offset*8;
1151  else
1152    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1153
1154  if (ShiftAmt)
1155    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
1156
1157  if (LoadSize != StoreSize)
1158    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1159                                 "tmp");
1160
1161  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1162}
1163
1164/// GetMemInstValueForLoad - This function is called when we have a
1165/// memdep query of a load that ends up being a clobbering mem intrinsic.
1166static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1167                                     const Type *LoadTy, Instruction *InsertPt,
1168                                     const TargetData &TD){
1169  LLVMContext &Ctx = LoadTy->getContext();
1170  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1171
1172  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1173
1174  // We know that this method is only called when the mem transfer fully
1175  // provides the bits for the load.
1176  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1177    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1178    // independently of what the offset is.
1179    Value *Val = MSI->getValue();
1180    if (LoadSize != 1)
1181      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1182
1183    Value *OneElt = Val;
1184
1185    // Splat the value out to the right number of bits.
1186    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1187      // If we can double the number of bytes set, do it.
1188      if (NumBytesSet*2 <= LoadSize) {
1189        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1190        Val = Builder.CreateOr(Val, ShVal);
1191        NumBytesSet <<= 1;
1192        continue;
1193      }
1194
1195      // Otherwise insert one byte at a time.
1196      Value *ShVal = Builder.CreateShl(Val, 1*8);
1197      Val = Builder.CreateOr(OneElt, ShVal);
1198      ++NumBytesSet;
1199    }
1200
1201    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1202  }
1203
1204  // Otherwise, this is a memcpy/memmove from a constant global.
1205  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1206  Constant *Src = cast<Constant>(MTI->getSource());
1207
1208  // Otherwise, see if we can constant fold a load from the constant with the
1209  // offset applied as appropriate.
1210  Src = ConstantExpr::getBitCast(Src,
1211                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1212  Constant *OffsetCst =
1213  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1214  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1215  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1216  return ConstantFoldLoadFromConstPtr(Src, &TD);
1217}
1218
1219namespace {
1220
1221struct AvailableValueInBlock {
1222  /// BB - The basic block in question.
1223  BasicBlock *BB;
1224  enum ValType {
1225    SimpleVal,  // A simple offsetted value that is accessed.
1226    MemIntrin   // A memory intrinsic which is loaded from.
1227  };
1228
1229  /// V - The value that is live out of the block.
1230  PointerIntPair<Value *, 1, ValType> Val;
1231
1232  /// Offset - The byte offset in Val that is interesting for the load query.
1233  unsigned Offset;
1234
1235  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1236                                   unsigned Offset = 0) {
1237    AvailableValueInBlock Res;
1238    Res.BB = BB;
1239    Res.Val.setPointer(V);
1240    Res.Val.setInt(SimpleVal);
1241    Res.Offset = Offset;
1242    return Res;
1243  }
1244
1245  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1246                                     unsigned Offset = 0) {
1247    AvailableValueInBlock Res;
1248    Res.BB = BB;
1249    Res.Val.setPointer(MI);
1250    Res.Val.setInt(MemIntrin);
1251    Res.Offset = Offset;
1252    return Res;
1253  }
1254
1255  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1256  Value *getSimpleValue() const {
1257    assert(isSimpleValue() && "Wrong accessor");
1258    return Val.getPointer();
1259  }
1260
1261  MemIntrinsic *getMemIntrinValue() const {
1262    assert(!isSimpleValue() && "Wrong accessor");
1263    return cast<MemIntrinsic>(Val.getPointer());
1264  }
1265
1266  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1267  /// defined here to the specified type.  This handles various coercion cases.
1268  Value *MaterializeAdjustedValue(const Type *LoadTy,
1269                                  const TargetData *TD) const {
1270    Value *Res;
1271    if (isSimpleValue()) {
1272      Res = getSimpleValue();
1273      if (Res->getType() != LoadTy) {
1274        assert(TD && "Need target data to handle type mismatch case");
1275        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1276                                   *TD);
1277
1278        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1279                     << *getSimpleValue() << '\n'
1280                     << *Res << '\n' << "\n\n\n");
1281      }
1282    } else {
1283      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1284                                   LoadTy, BB->getTerminator(), *TD);
1285      DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1286                   << "  " << *getMemIntrinValue() << '\n'
1287                   << *Res << '\n' << "\n\n\n");
1288    }
1289    return Res;
1290  }
1291};
1292
1293}
1294
1295/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1296/// construct SSA form, allowing us to eliminate LI.  This returns the value
1297/// that should be used at LI's definition site.
1298static Value *ConstructSSAForLoadSet(LoadInst *LI,
1299                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1300                                     const TargetData *TD,
1301                                     const DominatorTree &DT,
1302                                     AliasAnalysis *AA) {
1303  // Check for the fully redundant, dominating load case.  In this case, we can
1304  // just use the dominating value directly.
1305  if (ValuesPerBlock.size() == 1 &&
1306      DT.properlyDominates(ValuesPerBlock[0].BB, LI->getParent()))
1307    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), TD);
1308
1309  // Otherwise, we have to construct SSA form.
1310  SmallVector<PHINode*, 8> NewPHIs;
1311  SSAUpdater SSAUpdate(&NewPHIs);
1312  SSAUpdate.Initialize(LI->getType(), LI->getName());
1313
1314  const Type *LoadTy = LI->getType();
1315
1316  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1317    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1318    BasicBlock *BB = AV.BB;
1319
1320    if (SSAUpdate.HasValueForBlock(BB))
1321      continue;
1322
1323    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, TD));
1324  }
1325
1326  // Perform PHI construction.
1327  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1328
1329  // If new PHI nodes were created, notify alias analysis.
1330  if (V->getType()->isPointerTy())
1331    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1332      AA->copyValue(LI, NewPHIs[i]);
1333
1334  return V;
1335}
1336
1337static bool isLifetimeStart(const Instruction *Inst) {
1338  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1339    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1340  return false;
1341}
1342
1343/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1344/// non-local by performing PHI construction.
1345bool GVN::processNonLocalLoad(LoadInst *LI,
1346                              SmallVectorImpl<Instruction*> &toErase) {
1347  // Find the non-local dependencies of the load.
1348  SmallVector<NonLocalDepResult, 64> Deps;
1349  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1350                                   Deps);
1351  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1352  //             << Deps.size() << *LI << '\n');
1353
1354  // If we had to process more than one hundred blocks to find the
1355  // dependencies, this load isn't worth worrying about.  Optimizing
1356  // it will be too expensive.
1357  if (Deps.size() > 100)
1358    return false;
1359
1360  // If we had a phi translation failure, we'll have a single entry which is a
1361  // clobber in the current block.  Reject this early.
1362  if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
1363    DEBUG(
1364      dbgs() << "GVN: non-local load ";
1365      WriteAsOperand(dbgs(), LI);
1366      dbgs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
1367    );
1368    return false;
1369  }
1370
1371  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1372  // where we have a value available in repl, also keep track of whether we see
1373  // dependencies that produce an unknown value for the load (such as a call
1374  // that could potentially clobber the load).
1375  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1376  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1377
1378  const TargetData *TD = 0;
1379
1380  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1381    BasicBlock *DepBB = Deps[i].getBB();
1382    MemDepResult DepInfo = Deps[i].getResult();
1383
1384    if (DepInfo.isClobber()) {
1385      // The address being loaded in this non-local block may not be the same as
1386      // the pointer operand of the load if PHI translation occurs.  Make sure
1387      // to consider the right address.
1388      Value *Address = Deps[i].getAddress();
1389
1390      // If the dependence is to a store that writes to a superset of the bits
1391      // read by the load, we can extract the bits we need for the load from the
1392      // stored value.
1393      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1394        if (TD == 0)
1395          TD = getAnalysisIfAvailable<TargetData>();
1396        if (TD && Address) {
1397          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1398                                                      DepSI, *TD);
1399          if (Offset != -1) {
1400            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1401                                                           DepSI->getOperand(0),
1402                                                                Offset));
1403            continue;
1404          }
1405        }
1406      }
1407
1408      // If the clobbering value is a memset/memcpy/memmove, see if we can
1409      // forward a value on from it.
1410      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1411        if (TD == 0)
1412          TD = getAnalysisIfAvailable<TargetData>();
1413        if (TD && Address) {
1414          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1415                                                        DepMI, *TD);
1416          if (Offset != -1) {
1417            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1418                                                                  Offset));
1419            continue;
1420          }
1421        }
1422      }
1423
1424      UnavailableBlocks.push_back(DepBB);
1425      continue;
1426    }
1427
1428    Instruction *DepInst = DepInfo.getInst();
1429
1430    // Loading the allocation -> undef.
1431    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1432        // Loading immediately after lifetime begin -> undef.
1433        isLifetimeStart(DepInst)) {
1434      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1435                                             UndefValue::get(LI->getType())));
1436      continue;
1437    }
1438
1439    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1440      // Reject loads and stores that are to the same address but are of
1441      // different types if we have to.
1442      if (S->getOperand(0)->getType() != LI->getType()) {
1443        if (TD == 0)
1444          TD = getAnalysisIfAvailable<TargetData>();
1445
1446        // If the stored value is larger or equal to the loaded value, we can
1447        // reuse it.
1448        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1449                                                        LI->getType(), *TD)) {
1450          UnavailableBlocks.push_back(DepBB);
1451          continue;
1452        }
1453      }
1454
1455      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1456                                                          S->getOperand(0)));
1457      continue;
1458    }
1459
1460    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1461      // If the types mismatch and we can't handle it, reject reuse of the load.
1462      if (LD->getType() != LI->getType()) {
1463        if (TD == 0)
1464          TD = getAnalysisIfAvailable<TargetData>();
1465
1466        // If the stored value is larger or equal to the loaded value, we can
1467        // reuse it.
1468        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1469          UnavailableBlocks.push_back(DepBB);
1470          continue;
1471        }
1472      }
1473      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1474      continue;
1475    }
1476
1477    UnavailableBlocks.push_back(DepBB);
1478    continue;
1479  }
1480
1481  // If we have no predecessors that produce a known value for this load, exit
1482  // early.
1483  if (ValuesPerBlock.empty()) return false;
1484
1485  // If all of the instructions we depend on produce a known value for this
1486  // load, then it is fully redundant and we can use PHI insertion to compute
1487  // its value.  Insert PHIs and remove the fully redundant value now.
1488  if (UnavailableBlocks.empty()) {
1489    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1490
1491    // Perform PHI construction.
1492    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1493                                      VN.getAliasAnalysis());
1494    LI->replaceAllUsesWith(V);
1495
1496    if (isa<PHINode>(V))
1497      V->takeName(LI);
1498    if (V->getType()->isPointerTy())
1499      MD->invalidateCachedPointerInfo(V);
1500    VN.erase(LI);
1501    toErase.push_back(LI);
1502    ++NumGVNLoad;
1503    return true;
1504  }
1505
1506  if (!EnablePRE || !EnableLoadPRE)
1507    return false;
1508
1509  // Okay, we have *some* definitions of the value.  This means that the value
1510  // is available in some of our (transitive) predecessors.  Lets think about
1511  // doing PRE of this load.  This will involve inserting a new load into the
1512  // predecessor when it's not available.  We could do this in general, but
1513  // prefer to not increase code size.  As such, we only do this when we know
1514  // that we only have to insert *one* load (which means we're basically moving
1515  // the load, not inserting a new one).
1516
1517  SmallPtrSet<BasicBlock *, 4> Blockers;
1518  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1519    Blockers.insert(UnavailableBlocks[i]);
1520
1521  // Lets find first basic block with more than one predecessor.  Walk backwards
1522  // through predecessors if needed.
1523  BasicBlock *LoadBB = LI->getParent();
1524  BasicBlock *TmpBB = LoadBB;
1525
1526  bool isSinglePred = false;
1527  bool allSingleSucc = true;
1528  while (TmpBB->getSinglePredecessor()) {
1529    isSinglePred = true;
1530    TmpBB = TmpBB->getSinglePredecessor();
1531    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1532      return false;
1533    if (Blockers.count(TmpBB))
1534      return false;
1535    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1536      allSingleSucc = false;
1537  }
1538
1539  assert(TmpBB);
1540  LoadBB = TmpBB;
1541
1542  // If we have a repl set with LI itself in it, this means we have a loop where
1543  // at least one of the values is LI.  Since this means that we won't be able
1544  // to eliminate LI even if we insert uses in the other predecessors, we will
1545  // end up increasing code size.  Reject this by scanning for LI.
1546  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1547    if (ValuesPerBlock[i].isSimpleValue() &&
1548        ValuesPerBlock[i].getSimpleValue() == LI) {
1549      // Skip cases where LI is the only definition, even for EnableFullLoadPRE.
1550      if (!EnableFullLoadPRE || e == 1)
1551        return false;
1552    }
1553  }
1554
1555  // FIXME: It is extremely unclear what this loop is doing, other than
1556  // artificially restricting loadpre.
1557  if (isSinglePred) {
1558    bool isHot = false;
1559    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1560      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1561      if (AV.isSimpleValue())
1562        // "Hot" Instruction is in some loop (because it dominates its dep.
1563        // instruction).
1564        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1565          if (DT->dominates(LI, I)) {
1566            isHot = true;
1567            break;
1568          }
1569    }
1570
1571    // We are interested only in "hot" instructions. We don't want to do any
1572    // mis-optimizations here.
1573    if (!isHot)
1574      return false;
1575  }
1576
1577  // Check to see how many predecessors have the loaded value fully
1578  // available.
1579  DenseMap<BasicBlock*, Value*> PredLoads;
1580  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1581  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1582    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1583  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1584    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1585
1586  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1587  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1588       PI != E; ++PI) {
1589    BasicBlock *Pred = *PI;
1590    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1591      continue;
1592    }
1593    PredLoads[Pred] = 0;
1594
1595    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1596      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1597        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1598              << Pred->getName() << "': " << *LI << '\n');
1599        return false;
1600      }
1601      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1602      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1603    }
1604  }
1605  if (!NeedToSplit.empty()) {
1606    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1607    return false;
1608  }
1609
1610  // Decide whether PRE is profitable for this load.
1611  unsigned NumUnavailablePreds = PredLoads.size();
1612  assert(NumUnavailablePreds != 0 &&
1613         "Fully available value should be eliminated above!");
1614  if (!EnableFullLoadPRE) {
1615    // If this load is unavailable in multiple predecessors, reject it.
1616    // FIXME: If we could restructure the CFG, we could make a common pred with
1617    // all the preds that don't have an available LI and insert a new load into
1618    // that one block.
1619    if (NumUnavailablePreds != 1)
1620      return false;
1621  }
1622
1623  // Check if the load can safely be moved to all the unavailable predecessors.
1624  bool CanDoPRE = true;
1625  SmallVector<Instruction*, 8> NewInsts;
1626  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1627         E = PredLoads.end(); I != E; ++I) {
1628    BasicBlock *UnavailablePred = I->first;
1629
1630    // Do PHI translation to get its value in the predecessor if necessary.  The
1631    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1632
1633    // If all preds have a single successor, then we know it is safe to insert
1634    // the load on the pred (?!?), so we can insert code to materialize the
1635    // pointer if it is not available.
1636    PHITransAddr Address(LI->getOperand(0), TD);
1637    Value *LoadPtr = 0;
1638    if (allSingleSucc) {
1639      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1640                                                  *DT, NewInsts);
1641    } else {
1642      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1643      LoadPtr = Address.getAddr();
1644    }
1645
1646    // If we couldn't find or insert a computation of this phi translated value,
1647    // we fail PRE.
1648    if (LoadPtr == 0) {
1649      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1650            << *LI->getOperand(0) << "\n");
1651      CanDoPRE = false;
1652      break;
1653    }
1654
1655    // Make sure it is valid to move this load here.  We have to watch out for:
1656    //  @1 = getelementptr (i8* p, ...
1657    //  test p and branch if == 0
1658    //  load @1
1659    // It is valid to have the getelementptr before the test, even if p can be 0,
1660    // as getelementptr only does address arithmetic.
1661    // If we are not pushing the value through any multiple-successor blocks
1662    // we do not have this case.  Otherwise, check that the load is safe to
1663    // put anywhere; this can be improved, but should be conservatively safe.
1664    if (!allSingleSucc &&
1665        // FIXME: REEVALUTE THIS.
1666        !isSafeToLoadUnconditionally(LoadPtr,
1667                                     UnavailablePred->getTerminator(),
1668                                     LI->getAlignment(), TD)) {
1669      CanDoPRE = false;
1670      break;
1671    }
1672
1673    I->second = LoadPtr;
1674  }
1675
1676  if (!CanDoPRE) {
1677    while (!NewInsts.empty())
1678      NewInsts.pop_back_val()->eraseFromParent();
1679    return false;
1680  }
1681
1682  // Okay, we can eliminate this load by inserting a reload in the predecessor
1683  // and using PHI construction to get the value in the other predecessors, do
1684  // it.
1685  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1686  DEBUG(if (!NewInsts.empty())
1687          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1688                 << *NewInsts.back() << '\n');
1689
1690  // Assign value numbers to the new instructions.
1691  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1692    // FIXME: We really _ought_ to insert these value numbers into their
1693    // parent's availability map.  However, in doing so, we risk getting into
1694    // ordering issues.  If a block hasn't been processed yet, we would be
1695    // marking a value as AVAIL-IN, which isn't what we intend.
1696    VN.lookup_or_add(NewInsts[i]);
1697  }
1698
1699  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1700         E = PredLoads.end(); I != E; ++I) {
1701    BasicBlock *UnavailablePred = I->first;
1702    Value *LoadPtr = I->second;
1703
1704    Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1705                                  LI->getAlignment(),
1706                                  UnavailablePred->getTerminator());
1707
1708    // Add the newly created load.
1709    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1710                                                        NewLoad));
1711    MD->invalidateCachedPointerInfo(LoadPtr);
1712    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1713  }
1714
1715  // Perform PHI construction.
1716  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1717                                    VN.getAliasAnalysis());
1718  LI->replaceAllUsesWith(V);
1719  if (isa<PHINode>(V))
1720    V->takeName(LI);
1721  if (V->getType()->isPointerTy())
1722    MD->invalidateCachedPointerInfo(V);
1723  VN.erase(LI);
1724  toErase.push_back(LI);
1725  ++NumPRELoad;
1726  return true;
1727}
1728
1729/// processLoad - Attempt to eliminate a load, first by eliminating it
1730/// locally, and then attempting non-local elimination if that fails.
1731bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1732  if (!MD)
1733    return false;
1734
1735  if (L->isVolatile())
1736    return false;
1737
1738  // ... to a pointer that has been loaded from before...
1739  MemDepResult Dep = MD->getDependency(L);
1740
1741  // If the value isn't available, don't do anything!
1742  if (Dep.isClobber()) {
1743    // Check to see if we have something like this:
1744    //   store i32 123, i32* %P
1745    //   %A = bitcast i32* %P to i8*
1746    //   %B = gep i8* %A, i32 1
1747    //   %C = load i8* %B
1748    //
1749    // We could do that by recognizing if the clobber instructions are obviously
1750    // a common base + constant offset, and if the previous store (or memset)
1751    // completely covers this load.  This sort of thing can happen in bitfield
1752    // access code.
1753    Value *AvailVal = 0;
1754    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1755      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1756        int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1757                                                    L->getPointerOperand(),
1758                                                    DepSI, *TD);
1759        if (Offset != -1)
1760          AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1761                                          L->getType(), L, *TD);
1762      }
1763
1764    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1765    // a value on from it.
1766    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1767      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1768        int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1769                                                      L->getPointerOperand(),
1770                                                      DepMI, *TD);
1771        if (Offset != -1)
1772          AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
1773      }
1774    }
1775
1776    if (AvailVal) {
1777      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1778            << *AvailVal << '\n' << *L << "\n\n\n");
1779
1780      // Replace the load!
1781      L->replaceAllUsesWith(AvailVal);
1782      if (AvailVal->getType()->isPointerTy())
1783        MD->invalidateCachedPointerInfo(AvailVal);
1784      VN.erase(L);
1785      toErase.push_back(L);
1786      ++NumGVNLoad;
1787      return true;
1788    }
1789
1790    DEBUG(
1791      // fast print dep, using operator<< on instruction would be too slow
1792      dbgs() << "GVN: load ";
1793      WriteAsOperand(dbgs(), L);
1794      Instruction *I = Dep.getInst();
1795      dbgs() << " is clobbered by " << *I << '\n';
1796    );
1797    return false;
1798  }
1799
1800  // If it is defined in another block, try harder.
1801  if (Dep.isNonLocal())
1802    return processNonLocalLoad(L, toErase);
1803
1804  Instruction *DepInst = Dep.getInst();
1805  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1806    Value *StoredVal = DepSI->getOperand(0);
1807
1808    // The store and load are to a must-aliased pointer, but they may not
1809    // actually have the same type.  See if we know how to reuse the stored
1810    // value (depending on its type).
1811    const TargetData *TD = 0;
1812    if (StoredVal->getType() != L->getType()) {
1813      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1814        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1815                                                   L, *TD);
1816        if (StoredVal == 0)
1817          return false;
1818
1819        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1820                     << '\n' << *L << "\n\n\n");
1821      }
1822      else
1823        return false;
1824    }
1825
1826    // Remove it!
1827    L->replaceAllUsesWith(StoredVal);
1828    if (StoredVal->getType()->isPointerTy())
1829      MD->invalidateCachedPointerInfo(StoredVal);
1830    VN.erase(L);
1831    toErase.push_back(L);
1832    ++NumGVNLoad;
1833    return true;
1834  }
1835
1836  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1837    Value *AvailableVal = DepLI;
1838
1839    // The loads are of a must-aliased pointer, but they may not actually have
1840    // the same type.  See if we know how to reuse the previously loaded value
1841    // (depending on its type).
1842    const TargetData *TD = 0;
1843    if (DepLI->getType() != L->getType()) {
1844      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1845        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1846        if (AvailableVal == 0)
1847          return false;
1848
1849        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1850                     << "\n" << *L << "\n\n\n");
1851      }
1852      else
1853        return false;
1854    }
1855
1856    // Remove it!
1857    L->replaceAllUsesWith(AvailableVal);
1858    if (DepLI->getType()->isPointerTy())
1859      MD->invalidateCachedPointerInfo(DepLI);
1860    VN.erase(L);
1861    toErase.push_back(L);
1862    ++NumGVNLoad;
1863    return true;
1864  }
1865
1866  // If this load really doesn't depend on anything, then we must be loading an
1867  // undef value.  This can happen when loading for a fresh allocation with no
1868  // intervening stores, for example.
1869  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1870    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1871    VN.erase(L);
1872    toErase.push_back(L);
1873    ++NumGVNLoad;
1874    return true;
1875  }
1876
1877  // If this load occurs either right after a lifetime begin,
1878  // then the loaded value is undefined.
1879  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1880    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1881      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1882      VN.erase(L);
1883      toErase.push_back(L);
1884      ++NumGVNLoad;
1885      return true;
1886    }
1887  }
1888
1889  return false;
1890}
1891
1892Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1893  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1894  if (I == localAvail.end())
1895    return 0;
1896
1897  ValueNumberScope *Locals = I->second;
1898  while (Locals) {
1899    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1900    if (I != Locals->table.end())
1901      return I->second;
1902    Locals = Locals->parent;
1903  }
1904
1905  return 0;
1906}
1907
1908
1909/// processInstruction - When calculating availability, handle an instruction
1910/// by inserting it into the appropriate sets
1911bool GVN::processInstruction(Instruction *I,
1912                             SmallVectorImpl<Instruction*> &toErase) {
1913  // Ignore dbg info intrinsics.
1914  if (isa<DbgInfoIntrinsic>(I))
1915    return false;
1916
1917  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1918    bool Changed = processLoad(LI, toErase);
1919
1920    if (!Changed) {
1921      unsigned Num = VN.lookup_or_add(LI);
1922      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1923    }
1924
1925    return Changed;
1926  }
1927
1928  uint32_t NextNum = VN.getNextUnusedValueNumber();
1929  unsigned Num = VN.lookup_or_add(I);
1930
1931  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1932    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1933
1934    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1935      return false;
1936
1937    Value *BranchCond = BI->getCondition();
1938    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1939
1940    BasicBlock *TrueSucc = BI->getSuccessor(0);
1941    BasicBlock *FalseSucc = BI->getSuccessor(1);
1942
1943    if (TrueSucc->getSinglePredecessor())
1944      localAvail[TrueSucc]->table[CondVN] =
1945        ConstantInt::getTrue(TrueSucc->getContext());
1946    if (FalseSucc->getSinglePredecessor())
1947      localAvail[FalseSucc]->table[CondVN] =
1948        ConstantInt::getFalse(TrueSucc->getContext());
1949
1950    return false;
1951
1952  // Allocations are always uniquely numbered, so we can save time and memory
1953  // by fast failing them.
1954  } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
1955    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1956    return false;
1957  }
1958
1959  // Collapse PHI nodes
1960  if (PHINode* p = dyn_cast<PHINode>(I)) {
1961    Value *constVal = CollapsePhi(p);
1962
1963    if (constVal) {
1964      p->replaceAllUsesWith(constVal);
1965      if (MD && constVal->getType()->isPointerTy())
1966        MD->invalidateCachedPointerInfo(constVal);
1967      VN.erase(p);
1968
1969      toErase.push_back(p);
1970    } else {
1971      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1972    }
1973
1974  // If the number we were assigned was a brand new VN, then we don't
1975  // need to do a lookup to see if the number already exists
1976  // somewhere in the domtree: it can't!
1977  } else if (Num == NextNum) {
1978    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1979
1980  // Perform fast-path value-number based elimination of values inherited from
1981  // dominators.
1982  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1983    // Remove it!
1984    VN.erase(I);
1985    I->replaceAllUsesWith(repl);
1986    if (MD && repl->getType()->isPointerTy())
1987      MD->invalidateCachedPointerInfo(repl);
1988    toErase.push_back(I);
1989    return true;
1990
1991  } else {
1992    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1993  }
1994
1995  return false;
1996}
1997
1998/// runOnFunction - This is the main transformation entry point for a function.
1999bool GVN::runOnFunction(Function& F) {
2000  if (!NoLoads)
2001    MD = &getAnalysis<MemoryDependenceAnalysis>();
2002  DT = &getAnalysis<DominatorTree>();
2003  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2004  VN.setMemDep(MD);
2005  VN.setDomTree(DT);
2006
2007  bool Changed = false;
2008  bool ShouldContinue = true;
2009
2010  // Merge unconditional branches, allowing PRE to catch more
2011  // optimization opportunities.
2012  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2013    BasicBlock *BB = FI;
2014    ++FI;
2015    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2016    if (removedBlock) ++NumGVNBlocks;
2017
2018    Changed |= removedBlock;
2019  }
2020
2021  unsigned Iteration = 0;
2022
2023  while (ShouldContinue) {
2024    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2025    ShouldContinue = iterateOnFunction(F);
2026    if (splitCriticalEdges())
2027      ShouldContinue = true;
2028    Changed |= ShouldContinue;
2029    ++Iteration;
2030  }
2031
2032  if (EnablePRE) {
2033    bool PREChanged = true;
2034    while (PREChanged) {
2035      PREChanged = performPRE(F);
2036      Changed |= PREChanged;
2037    }
2038  }
2039  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2040  // computations into blocks where they become fully redundant.  Note that
2041  // we can't do this until PRE's critical edge splitting updates memdep.
2042  // Actually, when this happens, we should just fully integrate PRE into GVN.
2043
2044  cleanupGlobalSets();
2045
2046  return Changed;
2047}
2048
2049
2050bool GVN::processBlock(BasicBlock *BB) {
2051  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
2052  // incrementing BI before processing an instruction).
2053  SmallVector<Instruction*, 8> toErase;
2054  bool ChangedFunction = false;
2055
2056  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2057       BI != BE;) {
2058    ChangedFunction |= processInstruction(BI, toErase);
2059    if (toErase.empty()) {
2060      ++BI;
2061      continue;
2062    }
2063
2064    // If we need some instructions deleted, do it now.
2065    NumGVNInstr += toErase.size();
2066
2067    // Avoid iterator invalidation.
2068    bool AtStart = BI == BB->begin();
2069    if (!AtStart)
2070      --BI;
2071
2072    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
2073         E = toErase.end(); I != E; ++I) {
2074      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2075      if (MD) MD->removeInstruction(*I);
2076      (*I)->eraseFromParent();
2077      DEBUG(verifyRemoved(*I));
2078    }
2079    toErase.clear();
2080
2081    if (AtStart)
2082      BI = BB->begin();
2083    else
2084      ++BI;
2085  }
2086
2087  return ChangedFunction;
2088}
2089
2090/// performPRE - Perform a purely local form of PRE that looks for diamond
2091/// control flow patterns and attempts to perform simple PRE at the join point.
2092bool GVN::performPRE(Function &F) {
2093  bool Changed = false;
2094  DenseMap<BasicBlock*, Value*> predMap;
2095  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2096       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2097    BasicBlock *CurrentBlock = *DI;
2098
2099    // Nothing to PRE in the entry block.
2100    if (CurrentBlock == &F.getEntryBlock()) continue;
2101
2102    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2103         BE = CurrentBlock->end(); BI != BE; ) {
2104      Instruction *CurInst = BI++;
2105
2106      if (isa<AllocaInst>(CurInst) ||
2107          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2108          CurInst->getType()->isVoidTy() ||
2109          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2110          isa<DbgInfoIntrinsic>(CurInst))
2111        continue;
2112
2113      // We don't currently value number ANY inline asm calls.
2114      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2115        if (CallI->isInlineAsm())
2116          continue;
2117
2118      uint32_t ValNo = VN.lookup(CurInst);
2119
2120      // Look for the predecessors for PRE opportunities.  We're
2121      // only trying to solve the basic diamond case, where
2122      // a value is computed in the successor and one predecessor,
2123      // but not the other.  We also explicitly disallow cases
2124      // where the successor is its own predecessor, because they're
2125      // more complicated to get right.
2126      unsigned NumWith = 0;
2127      unsigned NumWithout = 0;
2128      BasicBlock *PREPred = 0;
2129      predMap.clear();
2130
2131      for (pred_iterator PI = pred_begin(CurrentBlock),
2132           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2133        BasicBlock *P = *PI;
2134        // We're not interested in PRE where the block is its
2135        // own predecessor, or in blocks with predecessors
2136        // that are not reachable.
2137        if (P == CurrentBlock) {
2138          NumWithout = 2;
2139          break;
2140        } else if (!localAvail.count(P))  {
2141          NumWithout = 2;
2142          break;
2143        }
2144
2145        DenseMap<uint32_t, Value*>::iterator predV =
2146                                            localAvail[P]->table.find(ValNo);
2147        if (predV == localAvail[P]->table.end()) {
2148          PREPred = P;
2149          ++NumWithout;
2150        } else if (predV->second == CurInst) {
2151          NumWithout = 2;
2152        } else {
2153          predMap[P] = predV->second;
2154          ++NumWith;
2155        }
2156      }
2157
2158      // Don't do PRE when it might increase code size, i.e. when
2159      // we would need to insert instructions in more than one pred.
2160      if (NumWithout != 1 || NumWith == 0)
2161        continue;
2162
2163      // Don't do PRE across indirect branch.
2164      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2165        continue;
2166
2167      // We can't do PRE safely on a critical edge, so instead we schedule
2168      // the edge to be split and perform the PRE the next time we iterate
2169      // on the function.
2170      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2171      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2172        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2173        continue;
2174      }
2175
2176      // Instantiate the expression in the predecessor that lacked it.
2177      // Because we are going top-down through the block, all value numbers
2178      // will be available in the predecessor by the time we need them.  Any
2179      // that weren't originally present will have been instantiated earlier
2180      // in this loop.
2181      Instruction *PREInstr = CurInst->clone();
2182      bool success = true;
2183      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2184        Value *Op = PREInstr->getOperand(i);
2185        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2186          continue;
2187
2188        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
2189          PREInstr->setOperand(i, V);
2190        } else {
2191          success = false;
2192          break;
2193        }
2194      }
2195
2196      // Fail out if we encounter an operand that is not available in
2197      // the PRE predecessor.  This is typically because of loads which
2198      // are not value numbered precisely.
2199      if (!success) {
2200        delete PREInstr;
2201        DEBUG(verifyRemoved(PREInstr));
2202        continue;
2203      }
2204
2205      PREInstr->insertBefore(PREPred->getTerminator());
2206      PREInstr->setName(CurInst->getName() + ".pre");
2207      predMap[PREPred] = PREInstr;
2208      VN.add(PREInstr, ValNo);
2209      ++NumGVNPRE;
2210
2211      // Update the availability map to include the new instruction.
2212      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
2213
2214      // Create a PHI to make the value available in this block.
2215      PHINode* Phi = PHINode::Create(CurInst->getType(),
2216                                     CurInst->getName() + ".pre-phi",
2217                                     CurrentBlock->begin());
2218      for (pred_iterator PI = pred_begin(CurrentBlock),
2219           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2220        BasicBlock *P = *PI;
2221        Phi->addIncoming(predMap[P], P);
2222      }
2223
2224      VN.add(Phi, ValNo);
2225      localAvail[CurrentBlock]->table[ValNo] = Phi;
2226
2227      CurInst->replaceAllUsesWith(Phi);
2228      if (MD && Phi->getType()->isPointerTy())
2229        MD->invalidateCachedPointerInfo(Phi);
2230      VN.erase(CurInst);
2231
2232      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2233      if (MD) MD->removeInstruction(CurInst);
2234      CurInst->eraseFromParent();
2235      DEBUG(verifyRemoved(CurInst));
2236      Changed = true;
2237    }
2238  }
2239
2240  if (splitCriticalEdges())
2241    Changed = true;
2242
2243  return Changed;
2244}
2245
2246/// splitCriticalEdges - Split critical edges found during the previous
2247/// iteration that may enable further optimization.
2248bool GVN::splitCriticalEdges() {
2249  if (toSplit.empty())
2250    return false;
2251  do {
2252    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2253    SplitCriticalEdge(Edge.first, Edge.second, this);
2254  } while (!toSplit.empty());
2255  if (MD) MD->invalidateCachedPredecessors();
2256  return true;
2257}
2258
2259/// iterateOnFunction - Executes one iteration of GVN
2260bool GVN::iterateOnFunction(Function &F) {
2261  cleanupGlobalSets();
2262
2263  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2264       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
2265    if (DI->getIDom())
2266      localAvail[DI->getBlock()] =
2267                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
2268    else
2269      localAvail[DI->getBlock()] = new ValueNumberScope(0);
2270  }
2271
2272  // Top-down walk of the dominator tree
2273  bool Changed = false;
2274#if 0
2275  // Needed for value numbering with phi construction to work.
2276  ReversePostOrderTraversal<Function*> RPOT(&F);
2277  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2278       RE = RPOT.end(); RI != RE; ++RI)
2279    Changed |= processBlock(*RI);
2280#else
2281  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2282       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2283    Changed |= processBlock(DI->getBlock());
2284#endif
2285
2286  return Changed;
2287}
2288
2289void GVN::cleanupGlobalSets() {
2290  VN.clear();
2291
2292  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2293       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
2294    delete I->second;
2295  localAvail.clear();
2296}
2297
2298/// verifyRemoved - Verify that the specified instruction does not occur in our
2299/// internal data structures.
2300void GVN::verifyRemoved(const Instruction *Inst) const {
2301  VN.verifyRemoved(Inst);
2302
2303  // Walk through the value number scope to make sure the instruction isn't
2304  // ferreted away in it.
2305  for (DenseMap<BasicBlock*, ValueNumberScope*>::const_iterator
2306         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2307    const ValueNumberScope *VNS = I->second;
2308
2309    while (VNS) {
2310      for (DenseMap<uint32_t, Value*>::const_iterator
2311             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2312        assert(II->second != Inst && "Inst still in value numbering scope!");
2313      }
2314
2315      VNS = VNS->parent;
2316    }
2317  }
2318}
2319