GVN.cpp revision 19d417c346d5f49d86fe447cc58d931a1b476d8e
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Operator.h"
28#include "llvm/Value.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/DepthFirstIterator.h"
31#include "llvm/ADT/PostOrderIterator.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/ConstantFolding.h"
37#include "llvm/Analysis/Dominators.h"
38#include "llvm/Analysis/MemoryBuiltins.h"
39#include "llvm/Analysis/MemoryDependenceAnalysis.h"
40#include "llvm/Analysis/PHITransAddr.h"
41#include "llvm/Support/CFG.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/GetElementPtrTypeIterator.h"
46#include "llvm/Support/IRBuilder.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/Target/TargetData.h"
49#include "llvm/Transforms/Utils/BasicBlockUtils.h"
50#include "llvm/Transforms/Utils/Local.h"
51#include "llvm/Transforms/Utils/SSAUpdater.h"
52using namespace llvm;
53
54STATISTIC(NumGVNInstr,  "Number of instructions deleted");
55STATISTIC(NumGVNLoad,   "Number of loads deleted");
56STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
57STATISTIC(NumGVNBlocks, "Number of blocks merged");
58STATISTIC(NumPRELoad,   "Number of loads PRE'd");
59
60static cl::opt<bool> EnablePRE("enable-pre",
61                               cl::init(true), cl::Hidden);
62static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
63static cl::opt<bool> EnableFullLoadPRE("enable-full-load-pre", cl::init(false));
64
65//===----------------------------------------------------------------------===//
66//                         ValueTable Class
67//===----------------------------------------------------------------------===//
68
69/// This class holds the mapping between values and value numbers.  It is used
70/// as an efficient mechanism to determine the expression-wise equivalence of
71/// two values.
72namespace {
73  struct Expression {
74    enum ExpressionOpcode {
75      ADD = Instruction::Add,
76      FADD = Instruction::FAdd,
77      SUB = Instruction::Sub,
78      FSUB = Instruction::FSub,
79      MUL = Instruction::Mul,
80      FMUL = Instruction::FMul,
81      UDIV = Instruction::UDiv,
82      SDIV = Instruction::SDiv,
83      FDIV = Instruction::FDiv,
84      UREM = Instruction::URem,
85      SREM = Instruction::SRem,
86      FREM = Instruction::FRem,
87      SHL = Instruction::Shl,
88      LSHR = Instruction::LShr,
89      ASHR = Instruction::AShr,
90      AND = Instruction::And,
91      OR = Instruction::Or,
92      XOR = Instruction::Xor,
93      TRUNC = Instruction::Trunc,
94      ZEXT = Instruction::ZExt,
95      SEXT = Instruction::SExt,
96      FPTOUI = Instruction::FPToUI,
97      FPTOSI = Instruction::FPToSI,
98      UITOFP = Instruction::UIToFP,
99      SITOFP = Instruction::SIToFP,
100      FPTRUNC = Instruction::FPTrunc,
101      FPEXT = Instruction::FPExt,
102      PTRTOINT = Instruction::PtrToInt,
103      INTTOPTR = Instruction::IntToPtr,
104      BITCAST = Instruction::BitCast,
105      ICMPEQ, ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
106      ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
107      FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
108      FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
109      FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
110      SHUFFLE, SELECT, GEP, CALL, CONSTANT,
111      INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
112
113    ExpressionOpcode opcode;
114    const Type* type;
115    SmallVector<uint32_t, 4> varargs;
116    Value *function;
117
118    Expression() { }
119    Expression(ExpressionOpcode o) : opcode(o) { }
120
121    bool operator==(const Expression &other) const {
122      if (opcode != other.opcode)
123        return false;
124      else if (opcode == EMPTY || opcode == TOMBSTONE)
125        return true;
126      else if (type != other.type)
127        return false;
128      else if (function != other.function)
129        return false;
130      else {
131        if (varargs.size() != other.varargs.size())
132          return false;
133
134        for (size_t i = 0; i < varargs.size(); ++i)
135          if (varargs[i] != other.varargs[i])
136            return false;
137
138        return true;
139      }
140    }
141
142    bool operator!=(const Expression &other) const {
143      return !(*this == other);
144    }
145  };
146
147  class ValueTable {
148    private:
149      DenseMap<Value*, uint32_t> valueNumbering;
150      DenseMap<Expression, uint32_t> expressionNumbering;
151      AliasAnalysis* AA;
152      MemoryDependenceAnalysis* MD;
153      DominatorTree* DT;
154
155      uint32_t nextValueNumber;
156
157      Expression::ExpressionOpcode getOpcode(CmpInst* C);
158      Expression create_expression(BinaryOperator* BO);
159      Expression create_expression(CmpInst* C);
160      Expression create_expression(ShuffleVectorInst* V);
161      Expression create_expression(ExtractElementInst* C);
162      Expression create_expression(InsertElementInst* V);
163      Expression create_expression(SelectInst* V);
164      Expression create_expression(CastInst* C);
165      Expression create_expression(GetElementPtrInst* G);
166      Expression create_expression(CallInst* C);
167      Expression create_expression(Constant* C);
168      Expression create_expression(ExtractValueInst* C);
169      Expression create_expression(InsertValueInst* C);
170
171      uint32_t lookup_or_add_call(CallInst* C);
172    public:
173      ValueTable() : nextValueNumber(1) { }
174      uint32_t lookup_or_add(Value *V);
175      uint32_t lookup(Value *V) const;
176      void add(Value *V, uint32_t num);
177      void clear();
178      void erase(Value *v);
179      unsigned size();
180      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
181      AliasAnalysis *getAliasAnalysis() const { return AA; }
182      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
183      void setDomTree(DominatorTree* D) { DT = D; }
184      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
185      void verifyRemoved(const Value *) const;
186  };
187}
188
189namespace llvm {
190template <> struct DenseMapInfo<Expression> {
191  static inline Expression getEmptyKey() {
192    return Expression(Expression::EMPTY);
193  }
194
195  static inline Expression getTombstoneKey() {
196    return Expression(Expression::TOMBSTONE);
197  }
198
199  static unsigned getHashValue(const Expression e) {
200    unsigned hash = e.opcode;
201
202    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
203            (unsigned)((uintptr_t)e.type >> 9));
204
205    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
206         E = e.varargs.end(); I != E; ++I)
207      hash = *I + hash * 37;
208
209    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
210            (unsigned)((uintptr_t)e.function >> 9)) +
211           hash * 37;
212
213    return hash;
214  }
215  static bool isEqual(const Expression &LHS, const Expression &RHS) {
216    return LHS == RHS;
217  }
218};
219
220template <>
221struct isPodLike<Expression> { static const bool value = true; };
222
223}
224
225//===----------------------------------------------------------------------===//
226//                     ValueTable Internal Functions
227//===----------------------------------------------------------------------===//
228
229Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
230  if (isa<ICmpInst>(C)) {
231    switch (C->getPredicate()) {
232    default:  // THIS SHOULD NEVER HAPPEN
233      llvm_unreachable("Comparison with unknown predicate?");
234    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
235    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
236    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
237    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
238    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
239    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
240    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
241    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
242    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
243    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
244    }
245  } else {
246    switch (C->getPredicate()) {
247    default: // THIS SHOULD NEVER HAPPEN
248      llvm_unreachable("Comparison with unknown predicate?");
249    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
250    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
251    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
252    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
253    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
254    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
255    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
256    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
257    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
258    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
259    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
260    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
261    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
262    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
263    }
264  }
265}
266
267Expression ValueTable::create_expression(CallInst* C) {
268  Expression e;
269
270  e.type = C->getType();
271  e.function = C->getCalledFunction();
272  e.opcode = Expression::CALL;
273
274  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
275       I != E; ++I)
276    e.varargs.push_back(lookup_or_add(*I));
277
278  return e;
279}
280
281Expression ValueTable::create_expression(BinaryOperator* BO) {
282  Expression e;
283  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
284  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
285  e.function = 0;
286  e.type = BO->getType();
287  e.opcode = static_cast<Expression::ExpressionOpcode>(BO->getOpcode());
288
289  return e;
290}
291
292Expression ValueTable::create_expression(CmpInst* C) {
293  Expression e;
294
295  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
296  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
297  e.function = 0;
298  e.type = C->getType();
299  e.opcode = getOpcode(C);
300
301  return e;
302}
303
304Expression ValueTable::create_expression(CastInst* C) {
305  Expression e;
306
307  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
308  e.function = 0;
309  e.type = C->getType();
310  e.opcode = static_cast<Expression::ExpressionOpcode>(C->getOpcode());
311
312  return e;
313}
314
315Expression ValueTable::create_expression(ShuffleVectorInst* S) {
316  Expression e;
317
318  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
319  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
320  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
321  e.function = 0;
322  e.type = S->getType();
323  e.opcode = Expression::SHUFFLE;
324
325  return e;
326}
327
328Expression ValueTable::create_expression(ExtractElementInst* E) {
329  Expression e;
330
331  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
332  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
333  e.function = 0;
334  e.type = E->getType();
335  e.opcode = Expression::EXTRACT;
336
337  return e;
338}
339
340Expression ValueTable::create_expression(InsertElementInst* I) {
341  Expression e;
342
343  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
344  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
345  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
346  e.function = 0;
347  e.type = I->getType();
348  e.opcode = Expression::INSERT;
349
350  return e;
351}
352
353Expression ValueTable::create_expression(SelectInst* I) {
354  Expression e;
355
356  e.varargs.push_back(lookup_or_add(I->getCondition()));
357  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
358  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
359  e.function = 0;
360  e.type = I->getType();
361  e.opcode = Expression::SELECT;
362
363  return e;
364}
365
366Expression ValueTable::create_expression(GetElementPtrInst* G) {
367  Expression e;
368
369  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
370  e.function = 0;
371  e.type = G->getType();
372  e.opcode = Expression::GEP;
373
374  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
375       I != E; ++I)
376    e.varargs.push_back(lookup_or_add(*I));
377
378  return e;
379}
380
381Expression ValueTable::create_expression(ExtractValueInst* E) {
382  Expression e;
383
384  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
385  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
386       II != IE; ++II)
387    e.varargs.push_back(*II);
388  e.function = 0;
389  e.type = E->getType();
390  e.opcode = Expression::EXTRACTVALUE;
391
392  return e;
393}
394
395Expression ValueTable::create_expression(InsertValueInst* E) {
396  Expression e;
397
398  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
399  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
400  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
401       II != IE; ++II)
402    e.varargs.push_back(*II);
403  e.function = 0;
404  e.type = E->getType();
405  e.opcode = Expression::INSERTVALUE;
406
407  return e;
408}
409
410//===----------------------------------------------------------------------===//
411//                     ValueTable External Functions
412//===----------------------------------------------------------------------===//
413
414/// add - Insert a value into the table with a specified value number.
415void ValueTable::add(Value *V, uint32_t num) {
416  valueNumbering.insert(std::make_pair(V, num));
417}
418
419uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
420  if (AA->doesNotAccessMemory(C)) {
421    Expression exp = create_expression(C);
422    uint32_t& e = expressionNumbering[exp];
423    if (!e) e = nextValueNumber++;
424    valueNumbering[C] = e;
425    return e;
426  } else if (AA->onlyReadsMemory(C)) {
427    Expression exp = create_expression(C);
428    uint32_t& e = expressionNumbering[exp];
429    if (!e) {
430      e = nextValueNumber++;
431      valueNumbering[C] = e;
432      return e;
433    }
434    if (!MD) {
435      e = nextValueNumber++;
436      valueNumbering[C] = e;
437      return e;
438    }
439
440    MemDepResult local_dep = MD->getDependency(C);
441
442    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
443      valueNumbering[C] =  nextValueNumber;
444      return nextValueNumber++;
445    }
446
447    if (local_dep.isDef()) {
448      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
449
450      if (local_cdep->getNumOperands() != C->getNumOperands()) {
451        valueNumbering[C] = nextValueNumber;
452        return nextValueNumber++;
453      }
454
455      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
456        uint32_t c_vn = lookup_or_add(C->getOperand(i));
457        uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
458        if (c_vn != cd_vn) {
459          valueNumbering[C] = nextValueNumber;
460          return nextValueNumber++;
461        }
462      }
463
464      uint32_t v = lookup_or_add(local_cdep);
465      valueNumbering[C] = v;
466      return v;
467    }
468
469    // Non-local case.
470    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
471      MD->getNonLocalCallDependency(CallSite(C));
472    // FIXME: call/call dependencies for readonly calls should return def, not
473    // clobber!  Move the checking logic to MemDep!
474    CallInst* cdep = 0;
475
476    // Check to see if we have a single dominating call instruction that is
477    // identical to C.
478    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
479      const NonLocalDepEntry *I = &deps[i];
480      // Ignore non-local dependencies.
481      if (I->getResult().isNonLocal())
482        continue;
483
484      // We don't handle non-depedencies.  If we already have a call, reject
485      // instruction dependencies.
486      if (I->getResult().isClobber() || cdep != 0) {
487        cdep = 0;
488        break;
489      }
490
491      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
492      // FIXME: All duplicated with non-local case.
493      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
494        cdep = NonLocalDepCall;
495        continue;
496      }
497
498      cdep = 0;
499      break;
500    }
501
502    if (!cdep) {
503      valueNumbering[C] = nextValueNumber;
504      return nextValueNumber++;
505    }
506
507    if (cdep->getNumOperands() != C->getNumOperands()) {
508      valueNumbering[C] = nextValueNumber;
509      return nextValueNumber++;
510    }
511    for (unsigned i = 1; i < C->getNumOperands(); ++i) {
512      uint32_t c_vn = lookup_or_add(C->getOperand(i));
513      uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
514      if (c_vn != cd_vn) {
515        valueNumbering[C] = nextValueNumber;
516        return nextValueNumber++;
517      }
518    }
519
520    uint32_t v = lookup_or_add(cdep);
521    valueNumbering[C] = v;
522    return v;
523
524  } else {
525    valueNumbering[C] = nextValueNumber;
526    return nextValueNumber++;
527  }
528}
529
530/// lookup_or_add - Returns the value number for the specified value, assigning
531/// it a new number if it did not have one before.
532uint32_t ValueTable::lookup_or_add(Value *V) {
533  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
534  if (VI != valueNumbering.end())
535    return VI->second;
536
537  if (!isa<Instruction>(V)) {
538    valueNumbering[V] = nextValueNumber;
539    return nextValueNumber++;
540  }
541
542  Instruction* I = cast<Instruction>(V);
543  Expression exp;
544  switch (I->getOpcode()) {
545    case Instruction::Call:
546      return lookup_or_add_call(cast<CallInst>(I));
547    case Instruction::Add:
548    case Instruction::FAdd:
549    case Instruction::Sub:
550    case Instruction::FSub:
551    case Instruction::Mul:
552    case Instruction::FMul:
553    case Instruction::UDiv:
554    case Instruction::SDiv:
555    case Instruction::FDiv:
556    case Instruction::URem:
557    case Instruction::SRem:
558    case Instruction::FRem:
559    case Instruction::Shl:
560    case Instruction::LShr:
561    case Instruction::AShr:
562    case Instruction::And:
563    case Instruction::Or :
564    case Instruction::Xor:
565      exp = create_expression(cast<BinaryOperator>(I));
566      break;
567    case Instruction::ICmp:
568    case Instruction::FCmp:
569      exp = create_expression(cast<CmpInst>(I));
570      break;
571    case Instruction::Trunc:
572    case Instruction::ZExt:
573    case Instruction::SExt:
574    case Instruction::FPToUI:
575    case Instruction::FPToSI:
576    case Instruction::UIToFP:
577    case Instruction::SIToFP:
578    case Instruction::FPTrunc:
579    case Instruction::FPExt:
580    case Instruction::PtrToInt:
581    case Instruction::IntToPtr:
582    case Instruction::BitCast:
583      exp = create_expression(cast<CastInst>(I));
584      break;
585    case Instruction::Select:
586      exp = create_expression(cast<SelectInst>(I));
587      break;
588    case Instruction::ExtractElement:
589      exp = create_expression(cast<ExtractElementInst>(I));
590      break;
591    case Instruction::InsertElement:
592      exp = create_expression(cast<InsertElementInst>(I));
593      break;
594    case Instruction::ShuffleVector:
595      exp = create_expression(cast<ShuffleVectorInst>(I));
596      break;
597    case Instruction::ExtractValue:
598      exp = create_expression(cast<ExtractValueInst>(I));
599      break;
600    case Instruction::InsertValue:
601      exp = create_expression(cast<InsertValueInst>(I));
602      break;
603    case Instruction::GetElementPtr:
604      exp = create_expression(cast<GetElementPtrInst>(I));
605      break;
606    default:
607      valueNumbering[V] = nextValueNumber;
608      return nextValueNumber++;
609  }
610
611  uint32_t& e = expressionNumbering[exp];
612  if (!e) e = nextValueNumber++;
613  valueNumbering[V] = e;
614  return e;
615}
616
617/// lookup - Returns the value number of the specified value. Fails if
618/// the value has not yet been numbered.
619uint32_t ValueTable::lookup(Value *V) const {
620  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
621  assert(VI != valueNumbering.end() && "Value not numbered?");
622  return VI->second;
623}
624
625/// clear - Remove all entries from the ValueTable
626void ValueTable::clear() {
627  valueNumbering.clear();
628  expressionNumbering.clear();
629  nextValueNumber = 1;
630}
631
632/// erase - Remove a value from the value numbering
633void ValueTable::erase(Value *V) {
634  valueNumbering.erase(V);
635}
636
637/// verifyRemoved - Verify that the value is removed from all internal data
638/// structures.
639void ValueTable::verifyRemoved(const Value *V) const {
640  for (DenseMap<Value*, uint32_t>::const_iterator
641         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
642    assert(I->first != V && "Inst still occurs in value numbering map!");
643  }
644}
645
646//===----------------------------------------------------------------------===//
647//                                GVN Pass
648//===----------------------------------------------------------------------===//
649
650namespace {
651  struct ValueNumberScope {
652    ValueNumberScope* parent;
653    DenseMap<uint32_t, Value*> table;
654
655    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
656  };
657}
658
659namespace {
660
661  class GVN : public FunctionPass {
662    bool runOnFunction(Function &F);
663  public:
664    static char ID; // Pass identification, replacement for typeid
665    explicit GVN(bool noloads = false)
666      : FunctionPass(&ID), NoLoads(noloads), MD(0) { }
667
668  private:
669    bool NoLoads;
670    MemoryDependenceAnalysis *MD;
671    DominatorTree *DT;
672
673    ValueTable VN;
674    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
675
676    // List of critical edges to be split between iterations.
677    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
678
679    // This transformation requires dominator postdominator info
680    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
681      AU.addRequired<DominatorTree>();
682      if (!NoLoads)
683        AU.addRequired<MemoryDependenceAnalysis>();
684      AU.addRequired<AliasAnalysis>();
685
686      AU.addPreserved<DominatorTree>();
687      AU.addPreserved<AliasAnalysis>();
688    }
689
690    // Helper fuctions
691    // FIXME: eliminate or document these better
692    bool processLoad(LoadInst* L,
693                     SmallVectorImpl<Instruction*> &toErase);
694    bool processInstruction(Instruction *I,
695                            SmallVectorImpl<Instruction*> &toErase);
696    bool processNonLocalLoad(LoadInst* L,
697                             SmallVectorImpl<Instruction*> &toErase);
698    bool processBlock(BasicBlock *BB);
699    void dump(DenseMap<uint32_t, Value*>& d);
700    bool iterateOnFunction(Function &F);
701    Value *CollapsePhi(PHINode* p);
702    bool performPRE(Function& F);
703    Value *lookupNumber(BasicBlock *BB, uint32_t num);
704    void cleanupGlobalSets();
705    void verifyRemoved(const Instruction *I) const;
706    bool splitCriticalEdges();
707  };
708
709  char GVN::ID = 0;
710}
711
712// createGVNPass - The public interface to this file...
713FunctionPass *llvm::createGVNPass(bool NoLoads) {
714  return new GVN(NoLoads);
715}
716
717static RegisterPass<GVN> X("gvn",
718                           "Global Value Numbering");
719
720void GVN::dump(DenseMap<uint32_t, Value*>& d) {
721  errs() << "{\n";
722  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
723       E = d.end(); I != E; ++I) {
724      errs() << I->first << "\n";
725      I->second->dump();
726  }
727  errs() << "}\n";
728}
729
730static bool isSafeReplacement(PHINode* p, Instruction *inst) {
731  if (!isa<PHINode>(inst))
732    return true;
733
734  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
735       UI != E; ++UI)
736    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
737      if (use_phi->getParent() == inst->getParent())
738        return false;
739
740  return true;
741}
742
743Value *GVN::CollapsePhi(PHINode *PN) {
744  Value *ConstVal = PN->hasConstantValue(DT);
745  if (!ConstVal) return 0;
746
747  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
748  if (!Inst)
749    return ConstVal;
750
751  if (DT->dominates(Inst, PN))
752    if (isSafeReplacement(PN, Inst))
753      return Inst;
754  return 0;
755}
756
757/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
758/// we're analyzing is fully available in the specified block.  As we go, keep
759/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
760/// map is actually a tri-state map with the following values:
761///   0) we know the block *is not* fully available.
762///   1) we know the block *is* fully available.
763///   2) we do not know whether the block is fully available or not, but we are
764///      currently speculating that it will be.
765///   3) we are speculating for this block and have used that to speculate for
766///      other blocks.
767static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
768                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
769  // Optimistically assume that the block is fully available and check to see
770  // if we already know about this block in one lookup.
771  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
772    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
773
774  // If the entry already existed for this block, return the precomputed value.
775  if (!IV.second) {
776    // If this is a speculative "available" value, mark it as being used for
777    // speculation of other blocks.
778    if (IV.first->second == 2)
779      IV.first->second = 3;
780    return IV.first->second != 0;
781  }
782
783  // Otherwise, see if it is fully available in all predecessors.
784  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
785
786  // If this block has no predecessors, it isn't live-in here.
787  if (PI == PE)
788    goto SpeculationFailure;
789
790  for (; PI != PE; ++PI)
791    // If the value isn't fully available in one of our predecessors, then it
792    // isn't fully available in this block either.  Undo our previous
793    // optimistic assumption and bail out.
794    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
795      goto SpeculationFailure;
796
797  return true;
798
799// SpeculationFailure - If we get here, we found out that this is not, after
800// all, a fully-available block.  We have a problem if we speculated on this and
801// used the speculation to mark other blocks as available.
802SpeculationFailure:
803  char &BBVal = FullyAvailableBlocks[BB];
804
805  // If we didn't speculate on this, just return with it set to false.
806  if (BBVal == 2) {
807    BBVal = 0;
808    return false;
809  }
810
811  // If we did speculate on this value, we could have blocks set to 1 that are
812  // incorrect.  Walk the (transitive) successors of this block and mark them as
813  // 0 if set to one.
814  SmallVector<BasicBlock*, 32> BBWorklist;
815  BBWorklist.push_back(BB);
816
817  do {
818    BasicBlock *Entry = BBWorklist.pop_back_val();
819    // Note that this sets blocks to 0 (unavailable) if they happen to not
820    // already be in FullyAvailableBlocks.  This is safe.
821    char &EntryVal = FullyAvailableBlocks[Entry];
822    if (EntryVal == 0) continue;  // Already unavailable.
823
824    // Mark as unavailable.
825    EntryVal = 0;
826
827    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
828      BBWorklist.push_back(*I);
829  } while (!BBWorklist.empty());
830
831  return false;
832}
833
834
835/// CanCoerceMustAliasedValueToLoad - Return true if
836/// CoerceAvailableValueToLoadType will succeed.
837static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
838                                            const Type *LoadTy,
839                                            const TargetData &TD) {
840  // If the loaded or stored value is an first class array or struct, don't try
841  // to transform them.  We need to be able to bitcast to integer.
842  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
843      StoredVal->getType()->isStructTy() ||
844      StoredVal->getType()->isArrayTy())
845    return false;
846
847  // The store has to be at least as big as the load.
848  if (TD.getTypeSizeInBits(StoredVal->getType()) <
849        TD.getTypeSizeInBits(LoadTy))
850    return false;
851
852  return true;
853}
854
855
856/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
857/// then a load from a must-aliased pointer of a different type, try to coerce
858/// the stored value.  LoadedTy is the type of the load we want to replace and
859/// InsertPt is the place to insert new instructions.
860///
861/// If we can't do it, return null.
862static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
863                                             const Type *LoadedTy,
864                                             Instruction *InsertPt,
865                                             const TargetData &TD) {
866  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
867    return 0;
868
869  const Type *StoredValTy = StoredVal->getType();
870
871  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
872  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
873
874  // If the store and reload are the same size, we can always reuse it.
875  if (StoreSize == LoadSize) {
876    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy()) {
877      // Pointer to Pointer -> use bitcast.
878      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
879    }
880
881    // Convert source pointers to integers, which can be bitcast.
882    if (StoredValTy->isPointerTy()) {
883      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
884      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
885    }
886
887    const Type *TypeToCastTo = LoadedTy;
888    if (TypeToCastTo->isPointerTy())
889      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
890
891    if (StoredValTy != TypeToCastTo)
892      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
893
894    // Cast to pointer if the load needs a pointer type.
895    if (LoadedTy->isPointerTy())
896      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
897
898    return StoredVal;
899  }
900
901  // If the loaded value is smaller than the available value, then we can
902  // extract out a piece from it.  If the available value is too small, then we
903  // can't do anything.
904  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
905
906  // Convert source pointers to integers, which can be manipulated.
907  if (StoredValTy->isPointerTy()) {
908    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
909    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
910  }
911
912  // Convert vectors and fp to integer, which can be manipulated.
913  if (!StoredValTy->isIntegerTy()) {
914    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
915    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
916  }
917
918  // If this is a big-endian system, we need to shift the value down to the low
919  // bits so that a truncate will work.
920  if (TD.isBigEndian()) {
921    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
922    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
923  }
924
925  // Truncate the integer to the right size now.
926  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
927  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
928
929  if (LoadedTy == NewIntTy)
930    return StoredVal;
931
932  // If the result is a pointer, inttoptr.
933  if (LoadedTy->isPointerTy())
934    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
935
936  // Otherwise, bitcast.
937  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
938}
939
940/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
941/// be expressed as a base pointer plus a constant offset.  Return the base and
942/// offset to the caller.
943static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
944                                        const TargetData &TD) {
945  Operator *PtrOp = dyn_cast<Operator>(Ptr);
946  if (PtrOp == 0) return Ptr;
947
948  // Just look through bitcasts.
949  if (PtrOp->getOpcode() == Instruction::BitCast)
950    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
951
952  // If this is a GEP with constant indices, we can look through it.
953  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
954  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
955
956  gep_type_iterator GTI = gep_type_begin(GEP);
957  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
958       ++I, ++GTI) {
959    ConstantInt *OpC = cast<ConstantInt>(*I);
960    if (OpC->isZero()) continue;
961
962    // Handle a struct and array indices which add their offset to the pointer.
963    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
964      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
965    } else {
966      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
967      Offset += OpC->getSExtValue()*Size;
968    }
969  }
970
971  // Re-sign extend from the pointer size if needed to get overflow edge cases
972  // right.
973  unsigned PtrSize = TD.getPointerSizeInBits();
974  if (PtrSize < 64)
975    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
976
977  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
978}
979
980
981/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
982/// memdep query of a load that ends up being a clobbering memory write (store,
983/// memset, memcpy, memmove).  This means that the write *may* provide bits used
984/// by the load but we can't be sure because the pointers don't mustalias.
985///
986/// Check this case to see if there is anything more we can do before we give
987/// up.  This returns -1 if we have to give up, or a byte number in the stored
988/// value of the piece that feeds the load.
989static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
990                                          Value *WritePtr,
991                                          uint64_t WriteSizeInBits,
992                                          const TargetData &TD) {
993  // If the loaded or stored value is an first class array or struct, don't try
994  // to transform them.  We need to be able to bitcast to integer.
995  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
996    return -1;
997
998  int64_t StoreOffset = 0, LoadOffset = 0;
999  Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD);
1000  Value *LoadBase =
1001    GetBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
1002  if (StoreBase != LoadBase)
1003    return -1;
1004
1005  // If the load and store are to the exact same address, they should have been
1006  // a must alias.  AA must have gotten confused.
1007  // FIXME: Study to see if/when this happens.
1008  if (LoadOffset == StoreOffset) {
1009#if 0
1010    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1011    << "Base       = " << *StoreBase << "\n"
1012    << "Store Ptr  = " << *WritePtr << "\n"
1013    << "Store Offs = " << StoreOffset << "\n"
1014    << "Load Ptr   = " << *LoadPtr << "\n";
1015    abort();
1016#endif
1017    return -1;
1018  }
1019
1020  // If the load and store don't overlap at all, the store doesn't provide
1021  // anything to the load.  In this case, they really don't alias at all, AA
1022  // must have gotten confused.
1023  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1024  // remove this check, as it is duplicated with what we have below.
1025  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
1026
1027  if ((WriteSizeInBits & 7) | (LoadSize & 7))
1028    return -1;
1029  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
1030  LoadSize >>= 3;
1031
1032
1033  bool isAAFailure = false;
1034  if (StoreOffset < LoadOffset) {
1035    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1036  } else {
1037    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1038  }
1039  if (isAAFailure) {
1040#if 0
1041    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1042    << "Base       = " << *StoreBase << "\n"
1043    << "Store Ptr  = " << *WritePtr << "\n"
1044    << "Store Offs = " << StoreOffset << "\n"
1045    << "Load Ptr   = " << *LoadPtr << "\n";
1046    abort();
1047#endif
1048    return -1;
1049  }
1050
1051  // If the Load isn't completely contained within the stored bits, we don't
1052  // have all the bits to feed it.  We could do something crazy in the future
1053  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1054  // valuable.
1055  if (StoreOffset > LoadOffset ||
1056      StoreOffset+StoreSize < LoadOffset+LoadSize)
1057    return -1;
1058
1059  // Okay, we can do this transformation.  Return the number of bytes into the
1060  // store that the load is.
1061  return LoadOffset-StoreOffset;
1062}
1063
1064/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1065/// memdep query of a load that ends up being a clobbering store.
1066static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
1067                                          StoreInst *DepSI,
1068                                          const TargetData &TD) {
1069  // Cannot handle reading from store of first-class aggregate yet.
1070  if (DepSI->getOperand(0)->getType()->isStructTy() ||
1071      DepSI->getOperand(0)->getType()->isArrayTy())
1072    return -1;
1073
1074  Value *StorePtr = DepSI->getPointerOperand();
1075  uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
1076  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1077                                        StorePtr, StoreSize, TD);
1078}
1079
1080static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
1081                                            MemIntrinsic *MI,
1082                                            const TargetData &TD) {
1083  // If the mem operation is a non-constant size, we can't handle it.
1084  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1085  if (SizeCst == 0) return -1;
1086  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1087
1088  // If this is memset, we just need to see if the offset is valid in the size
1089  // of the memset..
1090  if (MI->getIntrinsicID() == Intrinsic::memset)
1091    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1092                                          MemSizeInBits, TD);
1093
1094  // If we have a memcpy/memmove, the only case we can handle is if this is a
1095  // copy from constant memory.  In that case, we can read directly from the
1096  // constant memory.
1097  MemTransferInst *MTI = cast<MemTransferInst>(MI);
1098
1099  Constant *Src = dyn_cast<Constant>(MTI->getSource());
1100  if (Src == 0) return -1;
1101
1102  GlobalVariable *GV = dyn_cast<GlobalVariable>(Src->getUnderlyingObject());
1103  if (GV == 0 || !GV->isConstant()) return -1;
1104
1105  // See if the access is within the bounds of the transfer.
1106  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1107                                              MI->getDest(), MemSizeInBits, TD);
1108  if (Offset == -1)
1109    return Offset;
1110
1111  // Otherwise, see if we can constant fold a load from the constant with the
1112  // offset applied as appropriate.
1113  Src = ConstantExpr::getBitCast(Src,
1114                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1115  Constant *OffsetCst =
1116    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1117  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1118  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1119  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1120    return Offset;
1121  return -1;
1122}
1123
1124
1125/// GetStoreValueForLoad - This function is called when we have a
1126/// memdep query of a load that ends up being a clobbering store.  This means
1127/// that the store *may* provide bits used by the load but we can't be sure
1128/// because the pointers don't mustalias.  Check this case to see if there is
1129/// anything more we can do before we give up.
1130static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1131                                   const Type *LoadTy,
1132                                   Instruction *InsertPt, const TargetData &TD){
1133  LLVMContext &Ctx = SrcVal->getType()->getContext();
1134
1135  uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8;
1136  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1137
1138  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1139
1140  // Compute which bits of the stored value are being used by the load.  Convert
1141  // to an integer type to start with.
1142  if (SrcVal->getType()->isPointerTy())
1143    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
1144  if (!SrcVal->getType()->isIntegerTy())
1145    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1146                                   "tmp");
1147
1148  // Shift the bits to the least significant depending on endianness.
1149  unsigned ShiftAmt;
1150  if (TD.isLittleEndian())
1151    ShiftAmt = Offset*8;
1152  else
1153    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1154
1155  if (ShiftAmt)
1156    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
1157
1158  if (LoadSize != StoreSize)
1159    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1160                                 "tmp");
1161
1162  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1163}
1164
1165/// GetMemInstValueForLoad - This function is called when we have a
1166/// memdep query of a load that ends up being a clobbering mem intrinsic.
1167static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1168                                     const Type *LoadTy, Instruction *InsertPt,
1169                                     const TargetData &TD){
1170  LLVMContext &Ctx = LoadTy->getContext();
1171  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1172
1173  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1174
1175  // We know that this method is only called when the mem transfer fully
1176  // provides the bits for the load.
1177  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1178    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1179    // independently of what the offset is.
1180    Value *Val = MSI->getValue();
1181    if (LoadSize != 1)
1182      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1183
1184    Value *OneElt = Val;
1185
1186    // Splat the value out to the right number of bits.
1187    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1188      // If we can double the number of bytes set, do it.
1189      if (NumBytesSet*2 <= LoadSize) {
1190        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1191        Val = Builder.CreateOr(Val, ShVal);
1192        NumBytesSet <<= 1;
1193        continue;
1194      }
1195
1196      // Otherwise insert one byte at a time.
1197      Value *ShVal = Builder.CreateShl(Val, 1*8);
1198      Val = Builder.CreateOr(OneElt, ShVal);
1199      ++NumBytesSet;
1200    }
1201
1202    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1203  }
1204
1205  // Otherwise, this is a memcpy/memmove from a constant global.
1206  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1207  Constant *Src = cast<Constant>(MTI->getSource());
1208
1209  // Otherwise, see if we can constant fold a load from the constant with the
1210  // offset applied as appropriate.
1211  Src = ConstantExpr::getBitCast(Src,
1212                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1213  Constant *OffsetCst =
1214  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1215  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1216  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1217  return ConstantFoldLoadFromConstPtr(Src, &TD);
1218}
1219
1220
1221
1222struct AvailableValueInBlock {
1223  /// BB - The basic block in question.
1224  BasicBlock *BB;
1225  enum ValType {
1226    SimpleVal,  // A simple offsetted value that is accessed.
1227    MemIntrin   // A memory intrinsic which is loaded from.
1228  };
1229
1230  /// V - The value that is live out of the block.
1231  PointerIntPair<Value *, 1, ValType> Val;
1232
1233  /// Offset - The byte offset in Val that is interesting for the load query.
1234  unsigned Offset;
1235
1236  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1237                                   unsigned Offset = 0) {
1238    AvailableValueInBlock Res;
1239    Res.BB = BB;
1240    Res.Val.setPointer(V);
1241    Res.Val.setInt(SimpleVal);
1242    Res.Offset = Offset;
1243    return Res;
1244  }
1245
1246  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1247                                     unsigned Offset = 0) {
1248    AvailableValueInBlock Res;
1249    Res.BB = BB;
1250    Res.Val.setPointer(MI);
1251    Res.Val.setInt(MemIntrin);
1252    Res.Offset = Offset;
1253    return Res;
1254  }
1255
1256  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1257  Value *getSimpleValue() const {
1258    assert(isSimpleValue() && "Wrong accessor");
1259    return Val.getPointer();
1260  }
1261
1262  MemIntrinsic *getMemIntrinValue() const {
1263    assert(!isSimpleValue() && "Wrong accessor");
1264    return cast<MemIntrinsic>(Val.getPointer());
1265  }
1266
1267  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1268  /// defined here to the specified type.  This handles various coercion cases.
1269  Value *MaterializeAdjustedValue(const Type *LoadTy,
1270                                  const TargetData *TD) const {
1271    Value *Res;
1272    if (isSimpleValue()) {
1273      Res = getSimpleValue();
1274      if (Res->getType() != LoadTy) {
1275        assert(TD && "Need target data to handle type mismatch case");
1276        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1277                                   *TD);
1278
1279        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1280                     << *getSimpleValue() << '\n'
1281                     << *Res << '\n' << "\n\n\n");
1282      }
1283    } else {
1284      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1285                                   LoadTy, BB->getTerminator(), *TD);
1286      DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1287                   << "  " << *getMemIntrinValue() << '\n'
1288                   << *Res << '\n' << "\n\n\n");
1289    }
1290    return Res;
1291  }
1292};
1293
1294/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1295/// construct SSA form, allowing us to eliminate LI.  This returns the value
1296/// that should be used at LI's definition site.
1297static Value *ConstructSSAForLoadSet(LoadInst *LI,
1298                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1299                                     const TargetData *TD,
1300                                     const DominatorTree &DT,
1301                                     AliasAnalysis *AA) {
1302  // Check for the fully redundant, dominating load case.  In this case, we can
1303  // just use the dominating value directly.
1304  if (ValuesPerBlock.size() == 1 &&
1305      DT.properlyDominates(ValuesPerBlock[0].BB, LI->getParent()))
1306    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), TD);
1307
1308  // Otherwise, we have to construct SSA form.
1309  SmallVector<PHINode*, 8> NewPHIs;
1310  SSAUpdater SSAUpdate(&NewPHIs);
1311  SSAUpdate.Initialize(LI);
1312
1313  const Type *LoadTy = LI->getType();
1314
1315  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1316    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1317    BasicBlock *BB = AV.BB;
1318
1319    if (SSAUpdate.HasValueForBlock(BB))
1320      continue;
1321
1322    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, TD));
1323  }
1324
1325  // Perform PHI construction.
1326  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1327
1328  // If new PHI nodes were created, notify alias analysis.
1329  if (V->getType()->isPointerTy())
1330    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1331      AA->copyValue(LI, NewPHIs[i]);
1332
1333  return V;
1334}
1335
1336static bool isLifetimeStart(Instruction *Inst) {
1337  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1338    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1339  return false;
1340}
1341
1342/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1343/// non-local by performing PHI construction.
1344bool GVN::processNonLocalLoad(LoadInst *LI,
1345                              SmallVectorImpl<Instruction*> &toErase) {
1346  // Find the non-local dependencies of the load.
1347  SmallVector<NonLocalDepResult, 64> Deps;
1348  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1349                                   Deps);
1350  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1351  //             << Deps.size() << *LI << '\n');
1352
1353  // If we had to process more than one hundred blocks to find the
1354  // dependencies, this load isn't worth worrying about.  Optimizing
1355  // it will be too expensive.
1356  if (Deps.size() > 100)
1357    return false;
1358
1359  // If we had a phi translation failure, we'll have a single entry which is a
1360  // clobber in the current block.  Reject this early.
1361  if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
1362    DEBUG(
1363      dbgs() << "GVN: non-local load ";
1364      WriteAsOperand(dbgs(), LI);
1365      dbgs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
1366    );
1367    return false;
1368  }
1369
1370  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1371  // where we have a value available in repl, also keep track of whether we see
1372  // dependencies that produce an unknown value for the load (such as a call
1373  // that could potentially clobber the load).
1374  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1375  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1376
1377  const TargetData *TD = 0;
1378
1379  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1380    BasicBlock *DepBB = Deps[i].getBB();
1381    MemDepResult DepInfo = Deps[i].getResult();
1382
1383    if (DepInfo.isClobber()) {
1384      // The address being loaded in this non-local block may not be the same as
1385      // the pointer operand of the load if PHI translation occurs.  Make sure
1386      // to consider the right address.
1387      Value *Address = Deps[i].getAddress();
1388
1389      // If the dependence is to a store that writes to a superset of the bits
1390      // read by the load, we can extract the bits we need for the load from the
1391      // stored value.
1392      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1393        if (TD == 0)
1394          TD = getAnalysisIfAvailable<TargetData>();
1395        if (TD && Address) {
1396          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1397                                                      DepSI, *TD);
1398          if (Offset != -1) {
1399            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1400                                                           DepSI->getOperand(0),
1401                                                                Offset));
1402            continue;
1403          }
1404        }
1405      }
1406
1407      // If the clobbering value is a memset/memcpy/memmove, see if we can
1408      // forward a value on from it.
1409      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1410        if (TD == 0)
1411          TD = getAnalysisIfAvailable<TargetData>();
1412        if (TD && Address) {
1413          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1414                                                        DepMI, *TD);
1415          if (Offset != -1) {
1416            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1417                                                                  Offset));
1418            continue;
1419          }
1420        }
1421      }
1422
1423      UnavailableBlocks.push_back(DepBB);
1424      continue;
1425    }
1426
1427    Instruction *DepInst = DepInfo.getInst();
1428
1429    // Loading the allocation -> undef.
1430    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1431        // Loading immediately after lifetime begin -> undef.
1432        isLifetimeStart(DepInst)) {
1433      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1434                                             UndefValue::get(LI->getType())));
1435      continue;
1436    }
1437
1438    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1439      // Reject loads and stores that are to the same address but are of
1440      // different types if we have to.
1441      if (S->getOperand(0)->getType() != LI->getType()) {
1442        if (TD == 0)
1443          TD = getAnalysisIfAvailable<TargetData>();
1444
1445        // If the stored value is larger or equal to the loaded value, we can
1446        // reuse it.
1447        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1448                                                        LI->getType(), *TD)) {
1449          UnavailableBlocks.push_back(DepBB);
1450          continue;
1451        }
1452      }
1453
1454      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1455                                                          S->getOperand(0)));
1456      continue;
1457    }
1458
1459    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1460      // If the types mismatch and we can't handle it, reject reuse of the load.
1461      if (LD->getType() != LI->getType()) {
1462        if (TD == 0)
1463          TD = getAnalysisIfAvailable<TargetData>();
1464
1465        // If the stored value is larger or equal to the loaded value, we can
1466        // reuse it.
1467        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1468          UnavailableBlocks.push_back(DepBB);
1469          continue;
1470        }
1471      }
1472      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1473      continue;
1474    }
1475
1476    UnavailableBlocks.push_back(DepBB);
1477    continue;
1478  }
1479
1480  // If we have no predecessors that produce a known value for this load, exit
1481  // early.
1482  if (ValuesPerBlock.empty()) return false;
1483
1484  // If all of the instructions we depend on produce a known value for this
1485  // load, then it is fully redundant and we can use PHI insertion to compute
1486  // its value.  Insert PHIs and remove the fully redundant value now.
1487  if (UnavailableBlocks.empty()) {
1488    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1489
1490    // Perform PHI construction.
1491    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1492                                      VN.getAliasAnalysis());
1493    LI->replaceAllUsesWith(V);
1494
1495    if (isa<PHINode>(V))
1496      V->takeName(LI);
1497    if (V->getType()->isPointerTy())
1498      MD->invalidateCachedPointerInfo(V);
1499    VN.erase(LI);
1500    toErase.push_back(LI);
1501    NumGVNLoad++;
1502    return true;
1503  }
1504
1505  if (!EnablePRE || !EnableLoadPRE)
1506    return false;
1507
1508  // Okay, we have *some* definitions of the value.  This means that the value
1509  // is available in some of our (transitive) predecessors.  Lets think about
1510  // doing PRE of this load.  This will involve inserting a new load into the
1511  // predecessor when it's not available.  We could do this in general, but
1512  // prefer to not increase code size.  As such, we only do this when we know
1513  // that we only have to insert *one* load (which means we're basically moving
1514  // the load, not inserting a new one).
1515
1516  SmallPtrSet<BasicBlock *, 4> Blockers;
1517  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1518    Blockers.insert(UnavailableBlocks[i]);
1519
1520  // Lets find first basic block with more than one predecessor.  Walk backwards
1521  // through predecessors if needed.
1522  BasicBlock *LoadBB = LI->getParent();
1523  BasicBlock *TmpBB = LoadBB;
1524
1525  bool isSinglePred = false;
1526  bool allSingleSucc = true;
1527  while (TmpBB->getSinglePredecessor()) {
1528    isSinglePred = true;
1529    TmpBB = TmpBB->getSinglePredecessor();
1530    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1531      return false;
1532    if (Blockers.count(TmpBB))
1533      return false;
1534    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1535      allSingleSucc = false;
1536  }
1537
1538  assert(TmpBB);
1539  LoadBB = TmpBB;
1540
1541  // If we have a repl set with LI itself in it, this means we have a loop where
1542  // at least one of the values is LI.  Since this means that we won't be able
1543  // to eliminate LI even if we insert uses in the other predecessors, we will
1544  // end up increasing code size.  Reject this by scanning for LI.
1545  if (!EnableFullLoadPRE) {
1546    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1547      if (ValuesPerBlock[i].isSimpleValue() &&
1548          ValuesPerBlock[i].getSimpleValue() == LI)
1549        return false;
1550  }
1551
1552  // FIXME: It is extremely unclear what this loop is doing, other than
1553  // artificially restricting loadpre.
1554  if (isSinglePred) {
1555    bool isHot = false;
1556    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1557      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1558      if (AV.isSimpleValue())
1559        // "Hot" Instruction is in some loop (because it dominates its dep.
1560        // instruction).
1561        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1562          if (DT->dominates(LI, I)) {
1563            isHot = true;
1564            break;
1565          }
1566    }
1567
1568    // We are interested only in "hot" instructions. We don't want to do any
1569    // mis-optimizations here.
1570    if (!isHot)
1571      return false;
1572  }
1573
1574  // Check to see how many predecessors have the loaded value fully
1575  // available.
1576  DenseMap<BasicBlock*, Value*> PredLoads;
1577  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1578  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1579    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1580  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1581    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1582
1583  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1584       PI != E; ++PI) {
1585    BasicBlock *Pred = *PI;
1586    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1587      continue;
1588    }
1589    PredLoads[Pred] = 0;
1590
1591    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1592      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1593        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1594              << Pred->getName() << "': " << *LI << '\n');
1595        return false;
1596      }
1597      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1598      toSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1599      return false;
1600    }
1601  }
1602
1603  // Decide whether PRE is profitable for this load.
1604  unsigned NumUnavailablePreds = PredLoads.size();
1605  assert(NumUnavailablePreds != 0 &&
1606         "Fully available value should be eliminated above!");
1607  if (!EnableFullLoadPRE) {
1608    // If this load is unavailable in multiple predecessors, reject it.
1609    // FIXME: If we could restructure the CFG, we could make a common pred with
1610    // all the preds that don't have an available LI and insert a new load into
1611    // that one block.
1612    if (NumUnavailablePreds != 1)
1613      return false;
1614  }
1615
1616  // Check if the load can safely be moved to all the unavailable predecessors.
1617  bool CanDoPRE = true;
1618  SmallVector<Instruction*, 8> NewInsts;
1619  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1620         E = PredLoads.end(); I != E; ++I) {
1621    BasicBlock *UnavailablePred = I->first;
1622
1623    // Do PHI translation to get its value in the predecessor if necessary.  The
1624    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1625
1626    // If all preds have a single successor, then we know it is safe to insert
1627    // the load on the pred (?!?), so we can insert code to materialize the
1628    // pointer if it is not available.
1629    PHITransAddr Address(LI->getOperand(0), TD);
1630    Value *LoadPtr = 0;
1631    if (allSingleSucc) {
1632      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1633                                                  *DT, NewInsts);
1634    } else {
1635      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1636      LoadPtr = Address.getAddr();
1637    }
1638
1639    // If we couldn't find or insert a computation of this phi translated value,
1640    // we fail PRE.
1641    if (LoadPtr == 0) {
1642      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1643            << *LI->getOperand(0) << "\n");
1644      CanDoPRE = false;
1645      break;
1646    }
1647
1648    // Make sure it is valid to move this load here.  We have to watch out for:
1649    //  @1 = getelementptr (i8* p, ...
1650    //  test p and branch if == 0
1651    //  load @1
1652    // It is valid to have the getelementptr before the test, even if p can be 0,
1653    // as getelementptr only does address arithmetic.
1654    // If we are not pushing the value through any multiple-successor blocks
1655    // we do not have this case.  Otherwise, check that the load is safe to
1656    // put anywhere; this can be improved, but should be conservatively safe.
1657    if (!allSingleSucc &&
1658        // FIXME: REEVALUTE THIS.
1659        !isSafeToLoadUnconditionally(LoadPtr,
1660                                     UnavailablePred->getTerminator(),
1661                                     LI->getAlignment(), TD)) {
1662      CanDoPRE = false;
1663      break;
1664    }
1665
1666    I->second = LoadPtr;
1667  }
1668
1669  if (!CanDoPRE) {
1670    while (!NewInsts.empty())
1671      NewInsts.pop_back_val()->eraseFromParent();
1672    return false;
1673  }
1674
1675  // Okay, we can eliminate this load by inserting a reload in the predecessor
1676  // and using PHI construction to get the value in the other predecessors, do
1677  // it.
1678  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1679  DEBUG(if (!NewInsts.empty())
1680          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1681                 << *NewInsts.back() << '\n');
1682
1683  // Assign value numbers to the new instructions.
1684  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1685    // FIXME: We really _ought_ to insert these value numbers into their
1686    // parent's availability map.  However, in doing so, we risk getting into
1687    // ordering issues.  If a block hasn't been processed yet, we would be
1688    // marking a value as AVAIL-IN, which isn't what we intend.
1689    VN.lookup_or_add(NewInsts[i]);
1690  }
1691
1692  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1693         E = PredLoads.end(); I != E; ++I) {
1694    BasicBlock *UnavailablePred = I->first;
1695    Value *LoadPtr = I->second;
1696
1697    Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1698                                  LI->getAlignment(),
1699                                  UnavailablePred->getTerminator());
1700
1701    // Add the newly created load.
1702    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1703                                                        NewLoad));
1704    MD->invalidateCachedPointerInfo(LoadPtr);
1705    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1706  }
1707
1708  // Perform PHI construction.
1709  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1710                                    VN.getAliasAnalysis());
1711  LI->replaceAllUsesWith(V);
1712  if (isa<PHINode>(V))
1713    V->takeName(LI);
1714  if (V->getType()->isPointerTy())
1715    MD->invalidateCachedPointerInfo(V);
1716  VN.erase(LI);
1717  toErase.push_back(LI);
1718  NumPRELoad++;
1719  return true;
1720}
1721
1722/// processLoad - Attempt to eliminate a load, first by eliminating it
1723/// locally, and then attempting non-local elimination if that fails.
1724bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1725  if (!MD)
1726    return false;
1727
1728  if (L->isVolatile())
1729    return false;
1730
1731  // ... to a pointer that has been loaded from before...
1732  MemDepResult Dep = MD->getDependency(L);
1733
1734  // If the value isn't available, don't do anything!
1735  if (Dep.isClobber()) {
1736    // Check to see if we have something like this:
1737    //   store i32 123, i32* %P
1738    //   %A = bitcast i32* %P to i8*
1739    //   %B = gep i8* %A, i32 1
1740    //   %C = load i8* %B
1741    //
1742    // We could do that by recognizing if the clobber instructions are obviously
1743    // a common base + constant offset, and if the previous store (or memset)
1744    // completely covers this load.  This sort of thing can happen in bitfield
1745    // access code.
1746    Value *AvailVal = 0;
1747    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1748      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1749        int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1750                                                    L->getPointerOperand(),
1751                                                    DepSI, *TD);
1752        if (Offset != -1)
1753          AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1754                                          L->getType(), L, *TD);
1755      }
1756
1757    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1758    // a value on from it.
1759    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1760      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1761        int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1762                                                      L->getPointerOperand(),
1763                                                      DepMI, *TD);
1764        if (Offset != -1)
1765          AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
1766      }
1767    }
1768
1769    if (AvailVal) {
1770      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1771            << *AvailVal << '\n' << *L << "\n\n\n");
1772
1773      // Replace the load!
1774      L->replaceAllUsesWith(AvailVal);
1775      if (AvailVal->getType()->isPointerTy())
1776        MD->invalidateCachedPointerInfo(AvailVal);
1777      VN.erase(L);
1778      toErase.push_back(L);
1779      NumGVNLoad++;
1780      return true;
1781    }
1782
1783    DEBUG(
1784      // fast print dep, using operator<< on instruction would be too slow
1785      dbgs() << "GVN: load ";
1786      WriteAsOperand(dbgs(), L);
1787      Instruction *I = Dep.getInst();
1788      dbgs() << " is clobbered by " << *I << '\n';
1789    );
1790    return false;
1791  }
1792
1793  // If it is defined in another block, try harder.
1794  if (Dep.isNonLocal())
1795    return processNonLocalLoad(L, toErase);
1796
1797  Instruction *DepInst = Dep.getInst();
1798  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1799    Value *StoredVal = DepSI->getOperand(0);
1800
1801    // The store and load are to a must-aliased pointer, but they may not
1802    // actually have the same type.  See if we know how to reuse the stored
1803    // value (depending on its type).
1804    const TargetData *TD = 0;
1805    if (StoredVal->getType() != L->getType()) {
1806      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1807        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1808                                                   L, *TD);
1809        if (StoredVal == 0)
1810          return false;
1811
1812        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1813                     << '\n' << *L << "\n\n\n");
1814      }
1815      else
1816        return false;
1817    }
1818
1819    // Remove it!
1820    L->replaceAllUsesWith(StoredVal);
1821    if (StoredVal->getType()->isPointerTy())
1822      MD->invalidateCachedPointerInfo(StoredVal);
1823    VN.erase(L);
1824    toErase.push_back(L);
1825    NumGVNLoad++;
1826    return true;
1827  }
1828
1829  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1830    Value *AvailableVal = DepLI;
1831
1832    // The loads are of a must-aliased pointer, but they may not actually have
1833    // the same type.  See if we know how to reuse the previously loaded value
1834    // (depending on its type).
1835    const TargetData *TD = 0;
1836    if (DepLI->getType() != L->getType()) {
1837      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1838        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1839        if (AvailableVal == 0)
1840          return false;
1841
1842        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1843                     << "\n" << *L << "\n\n\n");
1844      }
1845      else
1846        return false;
1847    }
1848
1849    // Remove it!
1850    L->replaceAllUsesWith(AvailableVal);
1851    if (DepLI->getType()->isPointerTy())
1852      MD->invalidateCachedPointerInfo(DepLI);
1853    VN.erase(L);
1854    toErase.push_back(L);
1855    NumGVNLoad++;
1856    return true;
1857  }
1858
1859  // If this load really doesn't depend on anything, then we must be loading an
1860  // undef value.  This can happen when loading for a fresh allocation with no
1861  // intervening stores, for example.
1862  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1863    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1864    VN.erase(L);
1865    toErase.push_back(L);
1866    NumGVNLoad++;
1867    return true;
1868  }
1869
1870  // If this load occurs either right after a lifetime begin,
1871  // then the loaded value is undefined.
1872  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1873    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1874      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1875      VN.erase(L);
1876      toErase.push_back(L);
1877      NumGVNLoad++;
1878      return true;
1879    }
1880  }
1881
1882  return false;
1883}
1884
1885Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1886  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1887  if (I == localAvail.end())
1888    return 0;
1889
1890  ValueNumberScope *Locals = I->second;
1891  while (Locals) {
1892    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1893    if (I != Locals->table.end())
1894      return I->second;
1895    Locals = Locals->parent;
1896  }
1897
1898  return 0;
1899}
1900
1901
1902/// processInstruction - When calculating availability, handle an instruction
1903/// by inserting it into the appropriate sets
1904bool GVN::processInstruction(Instruction *I,
1905                             SmallVectorImpl<Instruction*> &toErase) {
1906  // Ignore dbg info intrinsics.
1907  if (isa<DbgInfoIntrinsic>(I))
1908    return false;
1909
1910  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1911    bool Changed = processLoad(LI, toErase);
1912
1913    if (!Changed) {
1914      unsigned Num = VN.lookup_or_add(LI);
1915      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1916    }
1917
1918    return Changed;
1919  }
1920
1921  uint32_t NextNum = VN.getNextUnusedValueNumber();
1922  unsigned Num = VN.lookup_or_add(I);
1923
1924  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1925    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1926
1927    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1928      return false;
1929
1930    Value *BranchCond = BI->getCondition();
1931    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1932
1933    BasicBlock *TrueSucc = BI->getSuccessor(0);
1934    BasicBlock *FalseSucc = BI->getSuccessor(1);
1935
1936    if (TrueSucc->getSinglePredecessor())
1937      localAvail[TrueSucc]->table[CondVN] =
1938        ConstantInt::getTrue(TrueSucc->getContext());
1939    if (FalseSucc->getSinglePredecessor())
1940      localAvail[FalseSucc]->table[CondVN] =
1941        ConstantInt::getFalse(TrueSucc->getContext());
1942
1943    return false;
1944
1945  // Allocations are always uniquely numbered, so we can save time and memory
1946  // by fast failing them.
1947  } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
1948    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1949    return false;
1950  }
1951
1952  // Collapse PHI nodes
1953  if (PHINode* p = dyn_cast<PHINode>(I)) {
1954    Value *constVal = CollapsePhi(p);
1955
1956    if (constVal) {
1957      p->replaceAllUsesWith(constVal);
1958      if (MD && constVal->getType()->isPointerTy())
1959        MD->invalidateCachedPointerInfo(constVal);
1960      VN.erase(p);
1961
1962      toErase.push_back(p);
1963    } else {
1964      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1965    }
1966
1967  // If the number we were assigned was a brand new VN, then we don't
1968  // need to do a lookup to see if the number already exists
1969  // somewhere in the domtree: it can't!
1970  } else if (Num == NextNum) {
1971    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1972
1973  // Perform fast-path value-number based elimination of values inherited from
1974  // dominators.
1975  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1976    // Remove it!
1977    VN.erase(I);
1978    I->replaceAllUsesWith(repl);
1979    if (MD && repl->getType()->isPointerTy())
1980      MD->invalidateCachedPointerInfo(repl);
1981    toErase.push_back(I);
1982    return true;
1983
1984  } else {
1985    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1986  }
1987
1988  return false;
1989}
1990
1991/// runOnFunction - This is the main transformation entry point for a function.
1992bool GVN::runOnFunction(Function& F) {
1993  if (!NoLoads)
1994    MD = &getAnalysis<MemoryDependenceAnalysis>();
1995  DT = &getAnalysis<DominatorTree>();
1996  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1997  VN.setMemDep(MD);
1998  VN.setDomTree(DT);
1999
2000  bool Changed = false;
2001  bool ShouldContinue = true;
2002
2003  // Merge unconditional branches, allowing PRE to catch more
2004  // optimization opportunities.
2005  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2006    BasicBlock *BB = FI;
2007    ++FI;
2008    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2009    if (removedBlock) NumGVNBlocks++;
2010
2011    Changed |= removedBlock;
2012  }
2013
2014  unsigned Iteration = 0;
2015
2016  while (ShouldContinue) {
2017    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2018    ShouldContinue = iterateOnFunction(F);
2019    if (splitCriticalEdges())
2020      ShouldContinue = true;
2021    Changed |= ShouldContinue;
2022    ++Iteration;
2023  }
2024
2025  if (EnablePRE) {
2026    bool PREChanged = true;
2027    while (PREChanged) {
2028      PREChanged = performPRE(F);
2029      Changed |= PREChanged;
2030    }
2031  }
2032  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2033  // computations into blocks where they become fully redundant.  Note that
2034  // we can't do this until PRE's critical edge splitting updates memdep.
2035  // Actually, when this happens, we should just fully integrate PRE into GVN.
2036
2037  cleanupGlobalSets();
2038
2039  return Changed;
2040}
2041
2042
2043bool GVN::processBlock(BasicBlock *BB) {
2044  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
2045  // incrementing BI before processing an instruction).
2046  SmallVector<Instruction*, 8> toErase;
2047  bool ChangedFunction = false;
2048
2049  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2050       BI != BE;) {
2051    ChangedFunction |= processInstruction(BI, toErase);
2052    if (toErase.empty()) {
2053      ++BI;
2054      continue;
2055    }
2056
2057    // If we need some instructions deleted, do it now.
2058    NumGVNInstr += toErase.size();
2059
2060    // Avoid iterator invalidation.
2061    bool AtStart = BI == BB->begin();
2062    if (!AtStart)
2063      --BI;
2064
2065    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
2066         E = toErase.end(); I != E; ++I) {
2067      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2068      if (MD) MD->removeInstruction(*I);
2069      (*I)->eraseFromParent();
2070      DEBUG(verifyRemoved(*I));
2071    }
2072    toErase.clear();
2073
2074    if (AtStart)
2075      BI = BB->begin();
2076    else
2077      ++BI;
2078  }
2079
2080  return ChangedFunction;
2081}
2082
2083/// performPRE - Perform a purely local form of PRE that looks for diamond
2084/// control flow patterns and attempts to perform simple PRE at the join point.
2085bool GVN::performPRE(Function &F) {
2086  bool Changed = false;
2087  DenseMap<BasicBlock*, Value*> predMap;
2088  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2089       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2090    BasicBlock *CurrentBlock = *DI;
2091
2092    // Nothing to PRE in the entry block.
2093    if (CurrentBlock == &F.getEntryBlock()) continue;
2094
2095    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2096         BE = CurrentBlock->end(); BI != BE; ) {
2097      Instruction *CurInst = BI++;
2098
2099      if (isa<AllocaInst>(CurInst) ||
2100          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2101          CurInst->getType()->isVoidTy() ||
2102          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2103          isa<DbgInfoIntrinsic>(CurInst))
2104        continue;
2105
2106      uint32_t ValNo = VN.lookup(CurInst);
2107
2108      // Look for the predecessors for PRE opportunities.  We're
2109      // only trying to solve the basic diamond case, where
2110      // a value is computed in the successor and one predecessor,
2111      // but not the other.  We also explicitly disallow cases
2112      // where the successor is its own predecessor, because they're
2113      // more complicated to get right.
2114      unsigned NumWith = 0;
2115      unsigned NumWithout = 0;
2116      BasicBlock *PREPred = 0;
2117      predMap.clear();
2118
2119      for (pred_iterator PI = pred_begin(CurrentBlock),
2120           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2121        // We're not interested in PRE where the block is its
2122        // own predecessor, or in blocks with predecessors
2123        // that are not reachable.
2124        if (*PI == CurrentBlock) {
2125          NumWithout = 2;
2126          break;
2127        } else if (!localAvail.count(*PI))  {
2128          NumWithout = 2;
2129          break;
2130        }
2131
2132        DenseMap<uint32_t, Value*>::iterator predV =
2133                                            localAvail[*PI]->table.find(ValNo);
2134        if (predV == localAvail[*PI]->table.end()) {
2135          PREPred = *PI;
2136          NumWithout++;
2137        } else if (predV->second == CurInst) {
2138          NumWithout = 2;
2139        } else {
2140          predMap[*PI] = predV->second;
2141          NumWith++;
2142        }
2143      }
2144
2145      // Don't do PRE when it might increase code size, i.e. when
2146      // we would need to insert instructions in more than one pred.
2147      if (NumWithout != 1 || NumWith == 0)
2148        continue;
2149
2150      // Don't do PRE across indirect branch.
2151      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2152        continue;
2153
2154      // We can't do PRE safely on a critical edge, so instead we schedule
2155      // the edge to be split and perform the PRE the next time we iterate
2156      // on the function.
2157      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2158      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2159        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2160        continue;
2161      }
2162
2163      // Instantiate the expression in the predecessor that lacked it.
2164      // Because we are going top-down through the block, all value numbers
2165      // will be available in the predecessor by the time we need them.  Any
2166      // that weren't originally present will have been instantiated earlier
2167      // in this loop.
2168      Instruction *PREInstr = CurInst->clone();
2169      bool success = true;
2170      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2171        Value *Op = PREInstr->getOperand(i);
2172        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2173          continue;
2174
2175        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
2176          PREInstr->setOperand(i, V);
2177        } else {
2178          success = false;
2179          break;
2180        }
2181      }
2182
2183      // Fail out if we encounter an operand that is not available in
2184      // the PRE predecessor.  This is typically because of loads which
2185      // are not value numbered precisely.
2186      if (!success) {
2187        delete PREInstr;
2188        DEBUG(verifyRemoved(PREInstr));
2189        continue;
2190      }
2191
2192      PREInstr->insertBefore(PREPred->getTerminator());
2193      PREInstr->setName(CurInst->getName() + ".pre");
2194      predMap[PREPred] = PREInstr;
2195      VN.add(PREInstr, ValNo);
2196      NumGVNPRE++;
2197
2198      // Update the availability map to include the new instruction.
2199      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
2200
2201      // Create a PHI to make the value available in this block.
2202      PHINode* Phi = PHINode::Create(CurInst->getType(),
2203                                     CurInst->getName() + ".pre-phi",
2204                                     CurrentBlock->begin());
2205      for (pred_iterator PI = pred_begin(CurrentBlock),
2206           PE = pred_end(CurrentBlock); PI != PE; ++PI)
2207        Phi->addIncoming(predMap[*PI], *PI);
2208
2209      VN.add(Phi, ValNo);
2210      localAvail[CurrentBlock]->table[ValNo] = Phi;
2211
2212      CurInst->replaceAllUsesWith(Phi);
2213      if (MD && Phi->getType()->isPointerTy())
2214        MD->invalidateCachedPointerInfo(Phi);
2215      VN.erase(CurInst);
2216
2217      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2218      if (MD) MD->removeInstruction(CurInst);
2219      CurInst->eraseFromParent();
2220      DEBUG(verifyRemoved(CurInst));
2221      Changed = true;
2222    }
2223  }
2224
2225  if (splitCriticalEdges())
2226    Changed = true;
2227
2228  return Changed;
2229}
2230
2231/// splitCriticalEdges - Split critical edges found during the previous
2232/// iteration that may enable further optimization.
2233bool GVN::splitCriticalEdges() {
2234  if (toSplit.empty())
2235    return false;
2236  do {
2237    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2238    SplitCriticalEdge(Edge.first, Edge.second, this);
2239  } while (!toSplit.empty());
2240  if (MD) MD->invalidateCachedPredecessors();
2241  return true;
2242}
2243
2244/// iterateOnFunction - Executes one iteration of GVN
2245bool GVN::iterateOnFunction(Function &F) {
2246  cleanupGlobalSets();
2247
2248  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2249       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
2250    if (DI->getIDom())
2251      localAvail[DI->getBlock()] =
2252                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
2253    else
2254      localAvail[DI->getBlock()] = new ValueNumberScope(0);
2255  }
2256
2257  // Top-down walk of the dominator tree
2258  bool Changed = false;
2259#if 0
2260  // Needed for value numbering with phi construction to work.
2261  ReversePostOrderTraversal<Function*> RPOT(&F);
2262  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2263       RE = RPOT.end(); RI != RE; ++RI)
2264    Changed |= processBlock(*RI);
2265#else
2266  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2267       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2268    Changed |= processBlock(DI->getBlock());
2269#endif
2270
2271  return Changed;
2272}
2273
2274void GVN::cleanupGlobalSets() {
2275  VN.clear();
2276
2277  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2278       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
2279    delete I->second;
2280  localAvail.clear();
2281}
2282
2283/// verifyRemoved - Verify that the specified instruction does not occur in our
2284/// internal data structures.
2285void GVN::verifyRemoved(const Instruction *Inst) const {
2286  VN.verifyRemoved(Inst);
2287
2288  // Walk through the value number scope to make sure the instruction isn't
2289  // ferreted away in it.
2290  for (DenseMap<BasicBlock*, ValueNumberScope*>::const_iterator
2291         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2292    const ValueNumberScope *VNS = I->second;
2293
2294    while (VNS) {
2295      for (DenseMap<uint32_t, Value*>::const_iterator
2296             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2297        assert(II->second != Inst && "Inst still in value numbering scope!");
2298      }
2299
2300      VNS = VNS->parent;
2301    }
2302  }
2303}
2304