GVN.cpp revision 244d24597497c09ab68969c8bbbdf2576130262c
1116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch//
3116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch//                     The LLVM Compiler Infrastructure
4116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch//
5116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch// This file is distributed under the University of Illinois Open Source
6116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch// License. See LICENSE.TXT for details.
7116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch//
8116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch//===----------------------------------------------------------------------===//
9116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch//
10116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch// This pass performs global value numbering to eliminate fully redundant
11116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch// instructions.  It also performs simple dead load elimination.
12116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch//
13116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch// Note that this pass does the value numbering itself; it does not use the
14116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch// ValueNumbering analysis passes.
15116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch//
16116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch//===----------------------------------------------------------------------===//
17116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
18116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#define DEBUG_TYPE "gvn"
19116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Transforms/Scalar.h"
20116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/ADT/DenseMap.h"
21116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/ADT/DepthFirstIterator.h"
22116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/ADT/Hashing.h"
23116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/ADT/SmallPtrSet.h"
24116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/ADT/SetVector.h"
25116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/ADT/Statistic.h"
26116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Analysis/AliasAnalysis.h"
27116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Analysis/CFG.h"
28116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Analysis/ConstantFolding.h"
29116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Analysis/Dominators.h"
30116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Analysis/InstructionSimplify.h"
31116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Analysis/Loads.h"
32116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Analysis/MemoryBuiltins.h"
33116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Analysis/MemoryDependenceAnalysis.h"
34116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Analysis/PHITransAddr.h"
35116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Analysis/ValueTracking.h"
36116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Assembly/Writer.h"
37116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/IR/DataLayout.h"
38116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/IR/GlobalVariable.h"
39116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/IR/IRBuilder.h"
40116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/IR/IntrinsicInst.h"
41116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/IR/LLVMContext.h"
42116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/IR/Metadata.h"
43116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Support/Allocator.h"
44116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Support/CommandLine.h"
45116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Support/Debug.h"
46116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Support/PatternMatch.h"
47116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Target/TargetLibraryInfo.h"
48116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Transforms/Utils/SSAUpdater.h"
50116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include <vector>
51116680a4aac90f2aa7413d9095a592090648e557Ben Murdochusing namespace llvm;
52116680a4aac90f2aa7413d9095a592090648e557Ben Murdochusing namespace PatternMatch;
53116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
54116680a4aac90f2aa7413d9095a592090648e557Ben MurdochSTATISTIC(NumGVNInstr,  "Number of instructions deleted");
55116680a4aac90f2aa7413d9095a592090648e557Ben MurdochSTATISTIC(NumGVNLoad,   "Number of loads deleted");
56116680a4aac90f2aa7413d9095a592090648e557Ben MurdochSTATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
57116680a4aac90f2aa7413d9095a592090648e557Ben MurdochSTATISTIC(NumGVNBlocks, "Number of blocks merged");
58116680a4aac90f2aa7413d9095a592090648e557Ben MurdochSTATISTIC(NumGVNSimpl,  "Number of instructions simplified");
59116680a4aac90f2aa7413d9095a592090648e557Ben MurdochSTATISTIC(NumGVNEqProp, "Number of equalities propagated");
60116680a4aac90f2aa7413d9095a592090648e557Ben MurdochSTATISTIC(NumPRELoad,   "Number of loads PRE'd");
61116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
62116680a4aac90f2aa7413d9095a592090648e557Ben Murdochstatic cl::opt<bool> EnablePRE("enable-pre",
63116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch                               cl::init(true), cl::Hidden);
64116680a4aac90f2aa7413d9095a592090648e557Ben Murdochstatic cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
65116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
66116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch// Maximum allowed recursion depth.
67116680a4aac90f2aa7413d9095a592090648e557Ben Murdochstatic cl::opt<uint32_t>
68116680a4aac90f2aa7413d9095a592090648e557Ben MurdochMaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
69116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch                cl::desc("Max recurse depth (default = 1000)"));
70116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
71116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch//===----------------------------------------------------------------------===//
72116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch//                         ValueTable Class
73116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch//===----------------------------------------------------------------------===//
74116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
75116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch/// This class holds the mapping between values and value numbers.  It is used
76116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch/// as an efficient mechanism to determine the expression-wise equivalence of
77116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch/// two values.
78116680a4aac90f2aa7413d9095a592090648e557Ben Murdochnamespace {
79116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  struct Expression {
80116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    uint32_t opcode;
81116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    Type *type;
82116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    SmallVector<uint32_t, 4> varargs;
83116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
84116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    Expression(uint32_t o = ~2U) : opcode(o) { }
85116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
86116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    bool operator==(const Expression &other) const {
87116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch      if (opcode != other.opcode)
88116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch        return false;
89116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch      if (opcode == ~0U || opcode == ~1U)
90116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch        return true;
91116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch      if (type != other.type)
92116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch        return false;
93116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch      if (varargs != other.varargs)
94116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch        return false;
95116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch      return true;
96116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    }
97116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
98116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    friend hash_code hash_value(const Expression &Value) {
99116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch      return hash_combine(Value.opcode, Value.type,
100116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch                          hash_combine_range(Value.varargs.begin(),
101116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch                                             Value.varargs.end()));
102116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    }
103116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  };
104116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
105116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  class ValueTable {
106116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    DenseMap<Value*, uint32_t> valueNumbering;
107116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    DenseMap<Expression, uint32_t> expressionNumbering;
108116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    AliasAnalysis *AA;
109116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    MemoryDependenceAnalysis *MD;
110116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    DominatorTree *DT;
111116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
112116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    uint32_t nextValueNumber;
113116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
114116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    Expression create_expression(Instruction* I);
115116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    Expression create_cmp_expression(unsigned Opcode,
116116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch                                     CmpInst::Predicate Predicate,
117116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch                                     Value *LHS, Value *RHS);
118116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    Expression create_extractvalue_expression(ExtractValueInst* EI);
119    uint32_t lookup_or_add_call(CallInst* C);
120  public:
121    ValueTable() : nextValueNumber(1) { }
122    uint32_t lookup_or_add(Value *V);
123    uint32_t lookup(Value *V) const;
124    uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
125                               Value *LHS, Value *RHS);
126    void add(Value *V, uint32_t num);
127    void clear();
128    void erase(Value *v);
129    void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
130    AliasAnalysis *getAliasAnalysis() const { return AA; }
131    void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
132    void setDomTree(DominatorTree* D) { DT = D; }
133    uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
134    void verifyRemoved(const Value *) const;
135  };
136}
137
138namespace llvm {
139template <> struct DenseMapInfo<Expression> {
140  static inline Expression getEmptyKey() {
141    return ~0U;
142  }
143
144  static inline Expression getTombstoneKey() {
145    return ~1U;
146  }
147
148  static unsigned getHashValue(const Expression e) {
149    using llvm::hash_value;
150    return static_cast<unsigned>(hash_value(e));
151  }
152  static bool isEqual(const Expression &LHS, const Expression &RHS) {
153    return LHS == RHS;
154  }
155};
156
157}
158
159//===----------------------------------------------------------------------===//
160//                     ValueTable Internal Functions
161//===----------------------------------------------------------------------===//
162
163Expression ValueTable::create_expression(Instruction *I) {
164  Expression e;
165  e.type = I->getType();
166  e.opcode = I->getOpcode();
167  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
168       OI != OE; ++OI)
169    e.varargs.push_back(lookup_or_add(*OI));
170  if (I->isCommutative()) {
171    // Ensure that commutative instructions that only differ by a permutation
172    // of their operands get the same value number by sorting the operand value
173    // numbers.  Since all commutative instructions have two operands it is more
174    // efficient to sort by hand rather than using, say, std::sort.
175    assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
176    if (e.varargs[0] > e.varargs[1])
177      std::swap(e.varargs[0], e.varargs[1]);
178  }
179
180  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
181    // Sort the operand value numbers so x<y and y>x get the same value number.
182    CmpInst::Predicate Predicate = C->getPredicate();
183    if (e.varargs[0] > e.varargs[1]) {
184      std::swap(e.varargs[0], e.varargs[1]);
185      Predicate = CmpInst::getSwappedPredicate(Predicate);
186    }
187    e.opcode = (C->getOpcode() << 8) | Predicate;
188  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
189    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
190         II != IE; ++II)
191      e.varargs.push_back(*II);
192  }
193
194  return e;
195}
196
197Expression ValueTable::create_cmp_expression(unsigned Opcode,
198                                             CmpInst::Predicate Predicate,
199                                             Value *LHS, Value *RHS) {
200  assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
201         "Not a comparison!");
202  Expression e;
203  e.type = CmpInst::makeCmpResultType(LHS->getType());
204  e.varargs.push_back(lookup_or_add(LHS));
205  e.varargs.push_back(lookup_or_add(RHS));
206
207  // Sort the operand value numbers so x<y and y>x get the same value number.
208  if (e.varargs[0] > e.varargs[1]) {
209    std::swap(e.varargs[0], e.varargs[1]);
210    Predicate = CmpInst::getSwappedPredicate(Predicate);
211  }
212  e.opcode = (Opcode << 8) | Predicate;
213  return e;
214}
215
216Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
217  assert(EI != 0 && "Not an ExtractValueInst?");
218  Expression e;
219  e.type = EI->getType();
220  e.opcode = 0;
221
222  IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
223  if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
224    // EI might be an extract from one of our recognised intrinsics. If it
225    // is we'll synthesize a semantically equivalent expression instead on
226    // an extract value expression.
227    switch (I->getIntrinsicID()) {
228      case Intrinsic::sadd_with_overflow:
229      case Intrinsic::uadd_with_overflow:
230        e.opcode = Instruction::Add;
231        break;
232      case Intrinsic::ssub_with_overflow:
233      case Intrinsic::usub_with_overflow:
234        e.opcode = Instruction::Sub;
235        break;
236      case Intrinsic::smul_with_overflow:
237      case Intrinsic::umul_with_overflow:
238        e.opcode = Instruction::Mul;
239        break;
240      default:
241        break;
242    }
243
244    if (e.opcode != 0) {
245      // Intrinsic recognized. Grab its args to finish building the expression.
246      assert(I->getNumArgOperands() == 2 &&
247             "Expect two args for recognised intrinsics.");
248      e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
249      e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
250      return e;
251    }
252  }
253
254  // Not a recognised intrinsic. Fall back to producing an extract value
255  // expression.
256  e.opcode = EI->getOpcode();
257  for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
258       OI != OE; ++OI)
259    e.varargs.push_back(lookup_or_add(*OI));
260
261  for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
262         II != IE; ++II)
263    e.varargs.push_back(*II);
264
265  return e;
266}
267
268//===----------------------------------------------------------------------===//
269//                     ValueTable External Functions
270//===----------------------------------------------------------------------===//
271
272/// add - Insert a value into the table with a specified value number.
273void ValueTable::add(Value *V, uint32_t num) {
274  valueNumbering.insert(std::make_pair(V, num));
275}
276
277uint32_t ValueTable::lookup_or_add_call(CallInst *C) {
278  if (AA->doesNotAccessMemory(C)) {
279    Expression exp = create_expression(C);
280    uint32_t &e = expressionNumbering[exp];
281    if (!e) e = nextValueNumber++;
282    valueNumbering[C] = e;
283    return e;
284  } else if (AA->onlyReadsMemory(C)) {
285    Expression exp = create_expression(C);
286    uint32_t &e = expressionNumbering[exp];
287    if (!e) {
288      e = nextValueNumber++;
289      valueNumbering[C] = e;
290      return e;
291    }
292    if (!MD) {
293      e = nextValueNumber++;
294      valueNumbering[C] = e;
295      return e;
296    }
297
298    MemDepResult local_dep = MD->getDependency(C);
299
300    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
301      valueNumbering[C] =  nextValueNumber;
302      return nextValueNumber++;
303    }
304
305    if (local_dep.isDef()) {
306      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
307
308      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
309        valueNumbering[C] = nextValueNumber;
310        return nextValueNumber++;
311      }
312
313      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
314        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
315        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
316        if (c_vn != cd_vn) {
317          valueNumbering[C] = nextValueNumber;
318          return nextValueNumber++;
319        }
320      }
321
322      uint32_t v = lookup_or_add(local_cdep);
323      valueNumbering[C] = v;
324      return v;
325    }
326
327    // Non-local case.
328    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
329      MD->getNonLocalCallDependency(CallSite(C));
330    // FIXME: Move the checking logic to MemDep!
331    CallInst* cdep = 0;
332
333    // Check to see if we have a single dominating call instruction that is
334    // identical to C.
335    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
336      const NonLocalDepEntry *I = &deps[i];
337      if (I->getResult().isNonLocal())
338        continue;
339
340      // We don't handle non-definitions.  If we already have a call, reject
341      // instruction dependencies.
342      if (!I->getResult().isDef() || cdep != 0) {
343        cdep = 0;
344        break;
345      }
346
347      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
348      // FIXME: All duplicated with non-local case.
349      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
350        cdep = NonLocalDepCall;
351        continue;
352      }
353
354      cdep = 0;
355      break;
356    }
357
358    if (!cdep) {
359      valueNumbering[C] = nextValueNumber;
360      return nextValueNumber++;
361    }
362
363    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
364      valueNumbering[C] = nextValueNumber;
365      return nextValueNumber++;
366    }
367    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
368      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
369      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
370      if (c_vn != cd_vn) {
371        valueNumbering[C] = nextValueNumber;
372        return nextValueNumber++;
373      }
374    }
375
376    uint32_t v = lookup_or_add(cdep);
377    valueNumbering[C] = v;
378    return v;
379
380  } else {
381    valueNumbering[C] = nextValueNumber;
382    return nextValueNumber++;
383  }
384}
385
386/// lookup_or_add - Returns the value number for the specified value, assigning
387/// it a new number if it did not have one before.
388uint32_t ValueTable::lookup_or_add(Value *V) {
389  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
390  if (VI != valueNumbering.end())
391    return VI->second;
392
393  if (!isa<Instruction>(V)) {
394    valueNumbering[V] = nextValueNumber;
395    return nextValueNumber++;
396  }
397
398  Instruction* I = cast<Instruction>(V);
399  Expression exp;
400  switch (I->getOpcode()) {
401    case Instruction::Call:
402      return lookup_or_add_call(cast<CallInst>(I));
403    case Instruction::Add:
404    case Instruction::FAdd:
405    case Instruction::Sub:
406    case Instruction::FSub:
407    case Instruction::Mul:
408    case Instruction::FMul:
409    case Instruction::UDiv:
410    case Instruction::SDiv:
411    case Instruction::FDiv:
412    case Instruction::URem:
413    case Instruction::SRem:
414    case Instruction::FRem:
415    case Instruction::Shl:
416    case Instruction::LShr:
417    case Instruction::AShr:
418    case Instruction::And:
419    case Instruction::Or:
420    case Instruction::Xor:
421    case Instruction::ICmp:
422    case Instruction::FCmp:
423    case Instruction::Trunc:
424    case Instruction::ZExt:
425    case Instruction::SExt:
426    case Instruction::FPToUI:
427    case Instruction::FPToSI:
428    case Instruction::UIToFP:
429    case Instruction::SIToFP:
430    case Instruction::FPTrunc:
431    case Instruction::FPExt:
432    case Instruction::PtrToInt:
433    case Instruction::IntToPtr:
434    case Instruction::BitCast:
435    case Instruction::Select:
436    case Instruction::ExtractElement:
437    case Instruction::InsertElement:
438    case Instruction::ShuffleVector:
439    case Instruction::InsertValue:
440    case Instruction::GetElementPtr:
441      exp = create_expression(I);
442      break;
443    case Instruction::ExtractValue:
444      exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
445      break;
446    default:
447      valueNumbering[V] = nextValueNumber;
448      return nextValueNumber++;
449  }
450
451  uint32_t& e = expressionNumbering[exp];
452  if (!e) e = nextValueNumber++;
453  valueNumbering[V] = e;
454  return e;
455}
456
457/// lookup - Returns the value number of the specified value. Fails if
458/// the value has not yet been numbered.
459uint32_t ValueTable::lookup(Value *V) const {
460  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
461  assert(VI != valueNumbering.end() && "Value not numbered?");
462  return VI->second;
463}
464
465/// lookup_or_add_cmp - Returns the value number of the given comparison,
466/// assigning it a new number if it did not have one before.  Useful when
467/// we deduced the result of a comparison, but don't immediately have an
468/// instruction realizing that comparison to hand.
469uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
470                                       CmpInst::Predicate Predicate,
471                                       Value *LHS, Value *RHS) {
472  Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
473  uint32_t& e = expressionNumbering[exp];
474  if (!e) e = nextValueNumber++;
475  return e;
476}
477
478/// clear - Remove all entries from the ValueTable.
479void ValueTable::clear() {
480  valueNumbering.clear();
481  expressionNumbering.clear();
482  nextValueNumber = 1;
483}
484
485/// erase - Remove a value from the value numbering.
486void ValueTable::erase(Value *V) {
487  valueNumbering.erase(V);
488}
489
490/// verifyRemoved - Verify that the value is removed from all internal data
491/// structures.
492void ValueTable::verifyRemoved(const Value *V) const {
493  for (DenseMap<Value*, uint32_t>::const_iterator
494         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
495    assert(I->first != V && "Inst still occurs in value numbering map!");
496  }
497}
498
499//===----------------------------------------------------------------------===//
500//                                GVN Pass
501//===----------------------------------------------------------------------===//
502
503namespace {
504  class GVN;
505  struct AvailableValueInBlock {
506    /// BB - The basic block in question.
507    BasicBlock *BB;
508    enum ValType {
509      SimpleVal,  // A simple offsetted value that is accessed.
510      LoadVal,    // A value produced by a load.
511      MemIntrin,  // A memory intrinsic which is loaded from.
512      UndefVal    // A UndefValue representing a value from dead block (which
513                  // is not yet physically removed from the CFG).
514    };
515
516    /// V - The value that is live out of the block.
517    PointerIntPair<Value *, 2, ValType> Val;
518
519    /// Offset - The byte offset in Val that is interesting for the load query.
520    unsigned Offset;
521
522    static AvailableValueInBlock get(BasicBlock *BB, Value *V,
523                                     unsigned Offset = 0) {
524      AvailableValueInBlock Res;
525      Res.BB = BB;
526      Res.Val.setPointer(V);
527      Res.Val.setInt(SimpleVal);
528      Res.Offset = Offset;
529      return Res;
530    }
531
532    static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
533                                       unsigned Offset = 0) {
534      AvailableValueInBlock Res;
535      Res.BB = BB;
536      Res.Val.setPointer(MI);
537      Res.Val.setInt(MemIntrin);
538      Res.Offset = Offset;
539      return Res;
540    }
541
542    static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
543                                         unsigned Offset = 0) {
544      AvailableValueInBlock Res;
545      Res.BB = BB;
546      Res.Val.setPointer(LI);
547      Res.Val.setInt(LoadVal);
548      Res.Offset = Offset;
549      return Res;
550    }
551
552    static AvailableValueInBlock getUndef(BasicBlock *BB) {
553      AvailableValueInBlock Res;
554      Res.BB = BB;
555      Res.Val.setPointer(0);
556      Res.Val.setInt(UndefVal);
557      Res.Offset = 0;
558      return Res;
559    }
560
561    bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
562    bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
563    bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
564    bool isUndefValue() const { return Val.getInt() == UndefVal; }
565
566    Value *getSimpleValue() const {
567      assert(isSimpleValue() && "Wrong accessor");
568      return Val.getPointer();
569    }
570
571    LoadInst *getCoercedLoadValue() const {
572      assert(isCoercedLoadValue() && "Wrong accessor");
573      return cast<LoadInst>(Val.getPointer());
574    }
575
576    MemIntrinsic *getMemIntrinValue() const {
577      assert(isMemIntrinValue() && "Wrong accessor");
578      return cast<MemIntrinsic>(Val.getPointer());
579    }
580
581    /// MaterializeAdjustedValue - Emit code into this block to adjust the value
582    /// defined here to the specified type.  This handles various coercion cases.
583    Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const;
584  };
585
586  class GVN : public FunctionPass {
587    bool NoLoads;
588    MemoryDependenceAnalysis *MD;
589    DominatorTree *DT;
590    const DataLayout *TD;
591    const TargetLibraryInfo *TLI;
592    SetVector<BasicBlock *> DeadBlocks;
593
594    ValueTable VN;
595
596    /// LeaderTable - A mapping from value numbers to lists of Value*'s that
597    /// have that value number.  Use findLeader to query it.
598    struct LeaderTableEntry {
599      Value *Val;
600      const BasicBlock *BB;
601      LeaderTableEntry *Next;
602    };
603    DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
604    BumpPtrAllocator TableAllocator;
605
606    SmallVector<Instruction*, 8> InstrsToErase;
607
608    typedef SmallVector<NonLocalDepResult, 64> LoadDepVect;
609    typedef SmallVector<AvailableValueInBlock, 64> AvailValInBlkVect;
610    typedef SmallVector<BasicBlock*, 64> UnavailBlkVect;
611
612  public:
613    static char ID; // Pass identification, replacement for typeid
614    explicit GVN(bool noloads = false)
615        : FunctionPass(ID), NoLoads(noloads), MD(0) {
616      initializeGVNPass(*PassRegistry::getPassRegistry());
617    }
618
619    bool runOnFunction(Function &F);
620
621    /// markInstructionForDeletion - This removes the specified instruction from
622    /// our various maps and marks it for deletion.
623    void markInstructionForDeletion(Instruction *I) {
624      VN.erase(I);
625      InstrsToErase.push_back(I);
626    }
627
628    const DataLayout *getDataLayout() const { return TD; }
629    DominatorTree &getDominatorTree() const { return *DT; }
630    AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
631    MemoryDependenceAnalysis &getMemDep() const { return *MD; }
632  private:
633    /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
634    /// its value number.
635    void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
636      LeaderTableEntry &Curr = LeaderTable[N];
637      if (!Curr.Val) {
638        Curr.Val = V;
639        Curr.BB = BB;
640        return;
641      }
642
643      LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
644      Node->Val = V;
645      Node->BB = BB;
646      Node->Next = Curr.Next;
647      Curr.Next = Node;
648    }
649
650    /// removeFromLeaderTable - Scan the list of values corresponding to a given
651    /// value number, and remove the given instruction if encountered.
652    void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
653      LeaderTableEntry* Prev = 0;
654      LeaderTableEntry* Curr = &LeaderTable[N];
655
656      while (Curr->Val != I || Curr->BB != BB) {
657        Prev = Curr;
658        Curr = Curr->Next;
659      }
660
661      if (Prev) {
662        Prev->Next = Curr->Next;
663      } else {
664        if (!Curr->Next) {
665          Curr->Val = 0;
666          Curr->BB = 0;
667        } else {
668          LeaderTableEntry* Next = Curr->Next;
669          Curr->Val = Next->Val;
670          Curr->BB = Next->BB;
671          Curr->Next = Next->Next;
672        }
673      }
674    }
675
676    // List of critical edges to be split between iterations.
677    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
678
679    // This transformation requires dominator postdominator info
680    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
681      AU.addRequired<DominatorTree>();
682      AU.addRequired<TargetLibraryInfo>();
683      if (!NoLoads)
684        AU.addRequired<MemoryDependenceAnalysis>();
685      AU.addRequired<AliasAnalysis>();
686
687      AU.addPreserved<DominatorTree>();
688      AU.addPreserved<AliasAnalysis>();
689    }
690
691
692    // Helper fuctions of redundant load elimination
693    bool processLoad(LoadInst *L);
694    bool processNonLocalLoad(LoadInst *L);
695    void AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
696                                 AvailValInBlkVect &ValuesPerBlock,
697                                 UnavailBlkVect &UnavailableBlocks);
698    bool PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
699                        UnavailBlkVect &UnavailableBlocks);
700
701    // Other helper routines
702    bool processInstruction(Instruction *I);
703    bool processBlock(BasicBlock *BB);
704    void dump(DenseMap<uint32_t, Value*> &d);
705    bool iterateOnFunction(Function &F);
706    bool performPRE(Function &F);
707    Value *findLeader(const BasicBlock *BB, uint32_t num);
708    void cleanupGlobalSets();
709    void verifyRemoved(const Instruction *I) const;
710    bool splitCriticalEdges();
711    BasicBlock *splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ);
712    unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
713                                         const BasicBlockEdge &Root);
714    bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root);
715    bool processFoldableCondBr(BranchInst *BI);
716    void addDeadBlock(BasicBlock *BB);
717    void assignValNumForDeadCode();
718  };
719
720  char GVN::ID = 0;
721}
722
723// createGVNPass - The public interface to this file...
724FunctionPass *llvm::createGVNPass(bool NoLoads) {
725  return new GVN(NoLoads);
726}
727
728INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
729INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
730INITIALIZE_PASS_DEPENDENCY(DominatorTree)
731INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
732INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
733INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
734
735#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
736void GVN::dump(DenseMap<uint32_t, Value*>& d) {
737  errs() << "{\n";
738  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
739       E = d.end(); I != E; ++I) {
740      errs() << I->first << "\n";
741      I->second->dump();
742  }
743  errs() << "}\n";
744}
745#endif
746
747/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
748/// we're analyzing is fully available in the specified block.  As we go, keep
749/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
750/// map is actually a tri-state map with the following values:
751///   0) we know the block *is not* fully available.
752///   1) we know the block *is* fully available.
753///   2) we do not know whether the block is fully available or not, but we are
754///      currently speculating that it will be.
755///   3) we are speculating for this block and have used that to speculate for
756///      other blocks.
757static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
758                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
759                            uint32_t RecurseDepth) {
760  if (RecurseDepth > MaxRecurseDepth)
761    return false;
762
763  // Optimistically assume that the block is fully available and check to see
764  // if we already know about this block in one lookup.
765  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
766    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
767
768  // If the entry already existed for this block, return the precomputed value.
769  if (!IV.second) {
770    // If this is a speculative "available" value, mark it as being used for
771    // speculation of other blocks.
772    if (IV.first->second == 2)
773      IV.first->second = 3;
774    return IV.first->second != 0;
775  }
776
777  // Otherwise, see if it is fully available in all predecessors.
778  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
779
780  // If this block has no predecessors, it isn't live-in here.
781  if (PI == PE)
782    goto SpeculationFailure;
783
784  for (; PI != PE; ++PI)
785    // If the value isn't fully available in one of our predecessors, then it
786    // isn't fully available in this block either.  Undo our previous
787    // optimistic assumption and bail out.
788    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
789      goto SpeculationFailure;
790
791  return true;
792
793// SpeculationFailure - If we get here, we found out that this is not, after
794// all, a fully-available block.  We have a problem if we speculated on this and
795// used the speculation to mark other blocks as available.
796SpeculationFailure:
797  char &BBVal = FullyAvailableBlocks[BB];
798
799  // If we didn't speculate on this, just return with it set to false.
800  if (BBVal == 2) {
801    BBVal = 0;
802    return false;
803  }
804
805  // If we did speculate on this value, we could have blocks set to 1 that are
806  // incorrect.  Walk the (transitive) successors of this block and mark them as
807  // 0 if set to one.
808  SmallVector<BasicBlock*, 32> BBWorklist;
809  BBWorklist.push_back(BB);
810
811  do {
812    BasicBlock *Entry = BBWorklist.pop_back_val();
813    // Note that this sets blocks to 0 (unavailable) if they happen to not
814    // already be in FullyAvailableBlocks.  This is safe.
815    char &EntryVal = FullyAvailableBlocks[Entry];
816    if (EntryVal == 0) continue;  // Already unavailable.
817
818    // Mark as unavailable.
819    EntryVal = 0;
820
821    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
822      BBWorklist.push_back(*I);
823  } while (!BBWorklist.empty());
824
825  return false;
826}
827
828
829/// CanCoerceMustAliasedValueToLoad - Return true if
830/// CoerceAvailableValueToLoadType will succeed.
831static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
832                                            Type *LoadTy,
833                                            const DataLayout &TD) {
834  // If the loaded or stored value is an first class array or struct, don't try
835  // to transform them.  We need to be able to bitcast to integer.
836  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
837      StoredVal->getType()->isStructTy() ||
838      StoredVal->getType()->isArrayTy())
839    return false;
840
841  // The store has to be at least as big as the load.
842  if (TD.getTypeSizeInBits(StoredVal->getType()) <
843        TD.getTypeSizeInBits(LoadTy))
844    return false;
845
846  return true;
847}
848
849/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
850/// then a load from a must-aliased pointer of a different type, try to coerce
851/// the stored value.  LoadedTy is the type of the load we want to replace and
852/// InsertPt is the place to insert new instructions.
853///
854/// If we can't do it, return null.
855static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
856                                             Type *LoadedTy,
857                                             Instruction *InsertPt,
858                                             const DataLayout &TD) {
859  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
860    return 0;
861
862  // If this is already the right type, just return it.
863  Type *StoredValTy = StoredVal->getType();
864
865  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
866  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
867
868  // If the store and reload are the same size, we can always reuse it.
869  if (StoreSize == LoadSize) {
870    // Pointer to Pointer -> use bitcast.
871    if (StoredValTy->getScalarType()->isPointerTy() &&
872        LoadedTy->getScalarType()->isPointerTy())
873      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
874
875    // Convert source pointers to integers, which can be bitcast.
876    if (StoredValTy->getScalarType()->isPointerTy()) {
877      StoredValTy = TD.getIntPtrType(StoredValTy);
878      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
879    }
880
881    Type *TypeToCastTo = LoadedTy;
882    if (TypeToCastTo->getScalarType()->isPointerTy())
883      TypeToCastTo = TD.getIntPtrType(TypeToCastTo);
884
885    if (StoredValTy != TypeToCastTo)
886      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
887
888    // Cast to pointer if the load needs a pointer type.
889    if (LoadedTy->getScalarType()->isPointerTy())
890      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
891
892    return StoredVal;
893  }
894
895  // If the loaded value is smaller than the available value, then we can
896  // extract out a piece from it.  If the available value is too small, then we
897  // can't do anything.
898  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
899
900  // Convert source pointers to integers, which can be manipulated.
901  if (StoredValTy->getScalarType()->isPointerTy()) {
902    StoredValTy = TD.getIntPtrType(StoredValTy);
903    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
904  }
905
906  // Convert vectors and fp to integer, which can be manipulated.
907  if (!StoredValTy->isIntegerTy()) {
908    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
909    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
910  }
911
912  // If this is a big-endian system, we need to shift the value down to the low
913  // bits so that a truncate will work.
914  if (TD.isBigEndian()) {
915    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
916    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
917  }
918
919  // Truncate the integer to the right size now.
920  Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
921  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
922
923  if (LoadedTy == NewIntTy)
924    return StoredVal;
925
926  // If the result is a pointer, inttoptr.
927  if (LoadedTy->getScalarType()->isPointerTy())
928    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
929
930  // Otherwise, bitcast.
931  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
932}
933
934/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
935/// memdep query of a load that ends up being a clobbering memory write (store,
936/// memset, memcpy, memmove).  This means that the write *may* provide bits used
937/// by the load but we can't be sure because the pointers don't mustalias.
938///
939/// Check this case to see if there is anything more we can do before we give
940/// up.  This returns -1 if we have to give up, or a byte number in the stored
941/// value of the piece that feeds the load.
942static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
943                                          Value *WritePtr,
944                                          uint64_t WriteSizeInBits,
945                                          const DataLayout &TD) {
946  // If the loaded or stored value is a first class array or struct, don't try
947  // to transform them.  We need to be able to bitcast to integer.
948  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
949    return -1;
950
951  int64_t StoreOffset = 0, LoadOffset = 0;
952  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&TD);
953  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &TD);
954  if (StoreBase != LoadBase)
955    return -1;
956
957  // If the load and store are to the exact same address, they should have been
958  // a must alias.  AA must have gotten confused.
959  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
960  // to a load from the base of the memset.
961#if 0
962  if (LoadOffset == StoreOffset) {
963    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
964    << "Base       = " << *StoreBase << "\n"
965    << "Store Ptr  = " << *WritePtr << "\n"
966    << "Store Offs = " << StoreOffset << "\n"
967    << "Load Ptr   = " << *LoadPtr << "\n";
968    abort();
969  }
970#endif
971
972  // If the load and store don't overlap at all, the store doesn't provide
973  // anything to the load.  In this case, they really don't alias at all, AA
974  // must have gotten confused.
975  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
976
977  if ((WriteSizeInBits & 7) | (LoadSize & 7))
978    return -1;
979  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
980  LoadSize >>= 3;
981
982
983  bool isAAFailure = false;
984  if (StoreOffset < LoadOffset)
985    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
986  else
987    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
988
989  if (isAAFailure) {
990#if 0
991    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
992    << "Base       = " << *StoreBase << "\n"
993    << "Store Ptr  = " << *WritePtr << "\n"
994    << "Store Offs = " << StoreOffset << "\n"
995    << "Load Ptr   = " << *LoadPtr << "\n";
996    abort();
997#endif
998    return -1;
999  }
1000
1001  // If the Load isn't completely contained within the stored bits, we don't
1002  // have all the bits to feed it.  We could do something crazy in the future
1003  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1004  // valuable.
1005  if (StoreOffset > LoadOffset ||
1006      StoreOffset+StoreSize < LoadOffset+LoadSize)
1007    return -1;
1008
1009  // Okay, we can do this transformation.  Return the number of bytes into the
1010  // store that the load is.
1011  return LoadOffset-StoreOffset;
1012}
1013
1014/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1015/// memdep query of a load that ends up being a clobbering store.
1016static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
1017                                          StoreInst *DepSI,
1018                                          const DataLayout &TD) {
1019  // Cannot handle reading from store of first-class aggregate yet.
1020  if (DepSI->getValueOperand()->getType()->isStructTy() ||
1021      DepSI->getValueOperand()->getType()->isArrayTy())
1022    return -1;
1023
1024  Value *StorePtr = DepSI->getPointerOperand();
1025  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
1026  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1027                                        StorePtr, StoreSize, TD);
1028}
1029
1030/// AnalyzeLoadFromClobberingLoad - This function is called when we have a
1031/// memdep query of a load that ends up being clobbered by another load.  See if
1032/// the other load can feed into the second load.
1033static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
1034                                         LoadInst *DepLI, const DataLayout &TD){
1035  // Cannot handle reading from store of first-class aggregate yet.
1036  if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
1037    return -1;
1038
1039  Value *DepPtr = DepLI->getPointerOperand();
1040  uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
1041  int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
1042  if (R != -1) return R;
1043
1044  // If we have a load/load clobber an DepLI can be widened to cover this load,
1045  // then we should widen it!
1046  int64_t LoadOffs = 0;
1047  const Value *LoadBase =
1048    GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &TD);
1049  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
1050
1051  unsigned Size = MemoryDependenceAnalysis::
1052    getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
1053  if (Size == 0) return -1;
1054
1055  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
1056}
1057
1058
1059
1060static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
1061                                            MemIntrinsic *MI,
1062                                            const DataLayout &TD) {
1063  // If the mem operation is a non-constant size, we can't handle it.
1064  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1065  if (SizeCst == 0) return -1;
1066  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1067
1068  // If this is memset, we just need to see if the offset is valid in the size
1069  // of the memset..
1070  if (MI->getIntrinsicID() == Intrinsic::memset)
1071    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1072                                          MemSizeInBits, TD);
1073
1074  // If we have a memcpy/memmove, the only case we can handle is if this is a
1075  // copy from constant memory.  In that case, we can read directly from the
1076  // constant memory.
1077  MemTransferInst *MTI = cast<MemTransferInst>(MI);
1078
1079  Constant *Src = dyn_cast<Constant>(MTI->getSource());
1080  if (Src == 0) return -1;
1081
1082  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
1083  if (GV == 0 || !GV->isConstant()) return -1;
1084
1085  // See if the access is within the bounds of the transfer.
1086  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1087                                              MI->getDest(), MemSizeInBits, TD);
1088  if (Offset == -1)
1089    return Offset;
1090
1091  // Otherwise, see if we can constant fold a load from the constant with the
1092  // offset applied as appropriate.
1093  Src = ConstantExpr::getBitCast(Src,
1094                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1095  Constant *OffsetCst =
1096    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1097  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1098  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1099  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1100    return Offset;
1101  return -1;
1102}
1103
1104
1105/// GetStoreValueForLoad - This function is called when we have a
1106/// memdep query of a load that ends up being a clobbering store.  This means
1107/// that the store provides bits used by the load but we the pointers don't
1108/// mustalias.  Check this case to see if there is anything more we can do
1109/// before we give up.
1110static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1111                                   Type *LoadTy,
1112                                   Instruction *InsertPt, const DataLayout &TD){
1113  LLVMContext &Ctx = SrcVal->getType()->getContext();
1114
1115  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1116  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1117
1118  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1119
1120  // Compute which bits of the stored value are being used by the load.  Convert
1121  // to an integer type to start with.
1122  if (SrcVal->getType()->getScalarType()->isPointerTy())
1123    SrcVal = Builder.CreatePtrToInt(SrcVal,
1124        TD.getIntPtrType(SrcVal->getType()));
1125  if (!SrcVal->getType()->isIntegerTy())
1126    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
1127
1128  // Shift the bits to the least significant depending on endianness.
1129  unsigned ShiftAmt;
1130  if (TD.isLittleEndian())
1131    ShiftAmt = Offset*8;
1132  else
1133    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1134
1135  if (ShiftAmt)
1136    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
1137
1138  if (LoadSize != StoreSize)
1139    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
1140
1141  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1142}
1143
1144/// GetLoadValueForLoad - This function is called when we have a
1145/// memdep query of a load that ends up being a clobbering load.  This means
1146/// that the load *may* provide bits used by the load but we can't be sure
1147/// because the pointers don't mustalias.  Check this case to see if there is
1148/// anything more we can do before we give up.
1149static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
1150                                  Type *LoadTy, Instruction *InsertPt,
1151                                  GVN &gvn) {
1152  const DataLayout &TD = *gvn.getDataLayout();
1153  // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
1154  // widen SrcVal out to a larger load.
1155  unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
1156  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
1157  if (Offset+LoadSize > SrcValSize) {
1158    assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
1159    assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
1160    // If we have a load/load clobber an DepLI can be widened to cover this
1161    // load, then we should widen it to the next power of 2 size big enough!
1162    unsigned NewLoadSize = Offset+LoadSize;
1163    if (!isPowerOf2_32(NewLoadSize))
1164      NewLoadSize = NextPowerOf2(NewLoadSize);
1165
1166    Value *PtrVal = SrcVal->getPointerOperand();
1167
1168    // Insert the new load after the old load.  This ensures that subsequent
1169    // memdep queries will find the new load.  We can't easily remove the old
1170    // load completely because it is already in the value numbering table.
1171    IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
1172    Type *DestPTy =
1173      IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1174    DestPTy = PointerType::get(DestPTy,
1175                               PtrVal->getType()->getPointerAddressSpace());
1176    Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1177    PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1178    LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1179    NewLoad->takeName(SrcVal);
1180    NewLoad->setAlignment(SrcVal->getAlignment());
1181
1182    DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1183    DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1184
1185    // Replace uses of the original load with the wider load.  On a big endian
1186    // system, we need to shift down to get the relevant bits.
1187    Value *RV = NewLoad;
1188    if (TD.isBigEndian())
1189      RV = Builder.CreateLShr(RV,
1190                    NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1191    RV = Builder.CreateTrunc(RV, SrcVal->getType());
1192    SrcVal->replaceAllUsesWith(RV);
1193
1194    // We would like to use gvn.markInstructionForDeletion here, but we can't
1195    // because the load is already memoized into the leader map table that GVN
1196    // tracks.  It is potentially possible to remove the load from the table,
1197    // but then there all of the operations based on it would need to be
1198    // rehashed.  Just leave the dead load around.
1199    gvn.getMemDep().removeInstruction(SrcVal);
1200    SrcVal = NewLoad;
1201  }
1202
1203  return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
1204}
1205
1206
1207/// GetMemInstValueForLoad - This function is called when we have a
1208/// memdep query of a load that ends up being a clobbering mem intrinsic.
1209static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1210                                     Type *LoadTy, Instruction *InsertPt,
1211                                     const DataLayout &TD){
1212  LLVMContext &Ctx = LoadTy->getContext();
1213  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1214
1215  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1216
1217  // We know that this method is only called when the mem transfer fully
1218  // provides the bits for the load.
1219  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1220    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1221    // independently of what the offset is.
1222    Value *Val = MSI->getValue();
1223    if (LoadSize != 1)
1224      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1225
1226    Value *OneElt = Val;
1227
1228    // Splat the value out to the right number of bits.
1229    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1230      // If we can double the number of bytes set, do it.
1231      if (NumBytesSet*2 <= LoadSize) {
1232        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1233        Val = Builder.CreateOr(Val, ShVal);
1234        NumBytesSet <<= 1;
1235        continue;
1236      }
1237
1238      // Otherwise insert one byte at a time.
1239      Value *ShVal = Builder.CreateShl(Val, 1*8);
1240      Val = Builder.CreateOr(OneElt, ShVal);
1241      ++NumBytesSet;
1242    }
1243
1244    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1245  }
1246
1247  // Otherwise, this is a memcpy/memmove from a constant global.
1248  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1249  Constant *Src = cast<Constant>(MTI->getSource());
1250
1251  // Otherwise, see if we can constant fold a load from the constant with the
1252  // offset applied as appropriate.
1253  Src = ConstantExpr::getBitCast(Src,
1254                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1255  Constant *OffsetCst =
1256  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1257  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1258  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1259  return ConstantFoldLoadFromConstPtr(Src, &TD);
1260}
1261
1262
1263/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1264/// construct SSA form, allowing us to eliminate LI.  This returns the value
1265/// that should be used at LI's definition site.
1266static Value *ConstructSSAForLoadSet(LoadInst *LI,
1267                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1268                                     GVN &gvn) {
1269  // Check for the fully redundant, dominating load case.  In this case, we can
1270  // just use the dominating value directly.
1271  if (ValuesPerBlock.size() == 1 &&
1272      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1273                                               LI->getParent())) {
1274    assert(!ValuesPerBlock[0].isUndefValue() && "Dead BB dominate this block");
1275    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1276  }
1277
1278  // Otherwise, we have to construct SSA form.
1279  SmallVector<PHINode*, 8> NewPHIs;
1280  SSAUpdater SSAUpdate(&NewPHIs);
1281  SSAUpdate.Initialize(LI->getType(), LI->getName());
1282
1283  Type *LoadTy = LI->getType();
1284
1285  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1286    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1287    BasicBlock *BB = AV.BB;
1288
1289    if (SSAUpdate.HasValueForBlock(BB))
1290      continue;
1291
1292    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1293  }
1294
1295  // Perform PHI construction.
1296  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1297
1298  // If new PHI nodes were created, notify alias analysis.
1299  if (V->getType()->getScalarType()->isPointerTy()) {
1300    AliasAnalysis *AA = gvn.getAliasAnalysis();
1301
1302    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1303      AA->copyValue(LI, NewPHIs[i]);
1304
1305    // Now that we've copied information to the new PHIs, scan through
1306    // them again and inform alias analysis that we've added potentially
1307    // escaping uses to any values that are operands to these PHIs.
1308    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1309      PHINode *P = NewPHIs[i];
1310      for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
1311        unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
1312        AA->addEscapingUse(P->getOperandUse(jj));
1313      }
1314    }
1315  }
1316
1317  return V;
1318}
1319
1320Value *AvailableValueInBlock::MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
1321  Value *Res;
1322  if (isSimpleValue()) {
1323    Res = getSimpleValue();
1324    if (Res->getType() != LoadTy) {
1325      const DataLayout *TD = gvn.getDataLayout();
1326      assert(TD && "Need target data to handle type mismatch case");
1327      Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1328                                 *TD);
1329
1330      DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1331                   << *getSimpleValue() << '\n'
1332                   << *Res << '\n' << "\n\n\n");
1333    }
1334  } else if (isCoercedLoadValue()) {
1335    LoadInst *Load = getCoercedLoadValue();
1336    if (Load->getType() == LoadTy && Offset == 0) {
1337      Res = Load;
1338    } else {
1339      Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1340                                gvn);
1341
1342      DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
1343                   << *getCoercedLoadValue() << '\n'
1344                   << *Res << '\n' << "\n\n\n");
1345    }
1346  } else if (isMemIntrinValue()) {
1347    const DataLayout *TD = gvn.getDataLayout();
1348    assert(TD && "Need target data to handle type mismatch case");
1349    Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1350                                 LoadTy, BB->getTerminator(), *TD);
1351    DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1352                 << "  " << *getMemIntrinValue() << '\n'
1353                 << *Res << '\n' << "\n\n\n");
1354  } else {
1355    assert(isUndefValue() && "Should be UndefVal");
1356    DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
1357    return UndefValue::get(LoadTy);
1358  }
1359  return Res;
1360}
1361
1362static bool isLifetimeStart(const Instruction *Inst) {
1363  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1364    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1365  return false;
1366}
1367
1368void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
1369                                  AvailValInBlkVect &ValuesPerBlock,
1370                                  UnavailBlkVect &UnavailableBlocks) {
1371
1372  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1373  // where we have a value available in repl, also keep track of whether we see
1374  // dependencies that produce an unknown value for the load (such as a call
1375  // that could potentially clobber the load).
1376  unsigned NumDeps = Deps.size();
1377  for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1378    BasicBlock *DepBB = Deps[i].getBB();
1379    MemDepResult DepInfo = Deps[i].getResult();
1380
1381    if (DeadBlocks.count(DepBB)) {
1382      // Dead dependent mem-op disguise as a load evaluating the same value
1383      // as the load in question.
1384      ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
1385      continue;
1386    }
1387
1388    if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1389      UnavailableBlocks.push_back(DepBB);
1390      continue;
1391    }
1392
1393    if (DepInfo.isClobber()) {
1394      // The address being loaded in this non-local block may not be the same as
1395      // the pointer operand of the load if PHI translation occurs.  Make sure
1396      // to consider the right address.
1397      Value *Address = Deps[i].getAddress();
1398
1399      // If the dependence is to a store that writes to a superset of the bits
1400      // read by the load, we can extract the bits we need for the load from the
1401      // stored value.
1402      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1403        if (TD && Address) {
1404          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1405                                                      DepSI, *TD);
1406          if (Offset != -1) {
1407            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1408                                                       DepSI->getValueOperand(),
1409                                                                Offset));
1410            continue;
1411          }
1412        }
1413      }
1414
1415      // Check to see if we have something like this:
1416      //    load i32* P
1417      //    load i8* (P+1)
1418      // if we have this, replace the later with an extraction from the former.
1419      if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1420        // If this is a clobber and L is the first instruction in its block, then
1421        // we have the first instruction in the entry block.
1422        if (DepLI != LI && Address && TD) {
1423          int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
1424                                                     LI->getPointerOperand(),
1425                                                     DepLI, *TD);
1426
1427          if (Offset != -1) {
1428            ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1429                                                                    Offset));
1430            continue;
1431          }
1432        }
1433      }
1434
1435      // If the clobbering value is a memset/memcpy/memmove, see if we can
1436      // forward a value on from it.
1437      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1438        if (TD && Address) {
1439          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1440                                                        DepMI, *TD);
1441          if (Offset != -1) {
1442            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1443                                                                  Offset));
1444            continue;
1445          }
1446        }
1447      }
1448
1449      UnavailableBlocks.push_back(DepBB);
1450      continue;
1451    }
1452
1453    // DepInfo.isDef() here
1454
1455    Instruction *DepInst = DepInfo.getInst();
1456
1457    // Loading the allocation -> undef.
1458    if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
1459        // Loading immediately after lifetime begin -> undef.
1460        isLifetimeStart(DepInst)) {
1461      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1462                                             UndefValue::get(LI->getType())));
1463      continue;
1464    }
1465
1466    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1467      // Reject loads and stores that are to the same address but are of
1468      // different types if we have to.
1469      if (S->getValueOperand()->getType() != LI->getType()) {
1470        // If the stored value is larger or equal to the loaded value, we can
1471        // reuse it.
1472        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1473                                                        LI->getType(), *TD)) {
1474          UnavailableBlocks.push_back(DepBB);
1475          continue;
1476        }
1477      }
1478
1479      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1480                                                         S->getValueOperand()));
1481      continue;
1482    }
1483
1484    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1485      // If the types mismatch and we can't handle it, reject reuse of the load.
1486      if (LD->getType() != LI->getType()) {
1487        // If the stored value is larger or equal to the loaded value, we can
1488        // reuse it.
1489        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1490          UnavailableBlocks.push_back(DepBB);
1491          continue;
1492        }
1493      }
1494      ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1495      continue;
1496    }
1497
1498    UnavailableBlocks.push_back(DepBB);
1499  }
1500}
1501
1502bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
1503                         UnavailBlkVect &UnavailableBlocks) {
1504  // Okay, we have *some* definitions of the value.  This means that the value
1505  // is available in some of our (transitive) predecessors.  Lets think about
1506  // doing PRE of this load.  This will involve inserting a new load into the
1507  // predecessor when it's not available.  We could do this in general, but
1508  // prefer to not increase code size.  As such, we only do this when we know
1509  // that we only have to insert *one* load (which means we're basically moving
1510  // the load, not inserting a new one).
1511
1512  SmallPtrSet<BasicBlock *, 4> Blockers;
1513  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1514    Blockers.insert(UnavailableBlocks[i]);
1515
1516  // Let's find the first basic block with more than one predecessor.  Walk
1517  // backwards through predecessors if needed.
1518  BasicBlock *LoadBB = LI->getParent();
1519  BasicBlock *TmpBB = LoadBB;
1520
1521  while (TmpBB->getSinglePredecessor()) {
1522    TmpBB = TmpBB->getSinglePredecessor();
1523    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1524      return false;
1525    if (Blockers.count(TmpBB))
1526      return false;
1527
1528    // If any of these blocks has more than one successor (i.e. if the edge we
1529    // just traversed was critical), then there are other paths through this
1530    // block along which the load may not be anticipated.  Hoisting the load
1531    // above this block would be adding the load to execution paths along
1532    // which it was not previously executed.
1533    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1534      return false;
1535  }
1536
1537  assert(TmpBB);
1538  LoadBB = TmpBB;
1539
1540  // Check to see how many predecessors have the loaded value fully
1541  // available.
1542  DenseMap<BasicBlock*, Value*> PredLoads;
1543  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1544  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1545    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1546  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1547    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1548
1549  SmallVector<BasicBlock *, 4> CriticalEdgePred;
1550  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1551       PI != E; ++PI) {
1552    BasicBlock *Pred = *PI;
1553    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1554      continue;
1555    }
1556    PredLoads[Pred] = 0;
1557
1558    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1559      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1560        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1561              << Pred->getName() << "': " << *LI << '\n');
1562        return false;
1563      }
1564
1565      if (LoadBB->isLandingPad()) {
1566        DEBUG(dbgs()
1567              << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
1568              << Pred->getName() << "': " << *LI << '\n');
1569        return false;
1570      }
1571
1572      CriticalEdgePred.push_back(Pred);
1573    }
1574  }
1575
1576  // Decide whether PRE is profitable for this load.
1577  unsigned NumUnavailablePreds = PredLoads.size();
1578  assert(NumUnavailablePreds != 0 &&
1579         "Fully available value should already be eliminated!");
1580
1581  // If this load is unavailable in multiple predecessors, reject it.
1582  // FIXME: If we could restructure the CFG, we could make a common pred with
1583  // all the preds that don't have an available LI and insert a new load into
1584  // that one block.
1585  if (NumUnavailablePreds != 1)
1586      return false;
1587
1588  // Split critical edges, and update the unavailable predecessors accordingly.
1589  for (SmallVectorImpl<BasicBlock *>::iterator I = CriticalEdgePred.begin(),
1590         E = CriticalEdgePred.end(); I != E; I++) {
1591    BasicBlock *OrigPred = *I;
1592    BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1593    PredLoads.erase(OrigPred);
1594    PredLoads[NewPred] = 0;
1595    DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1596                 << LoadBB->getName() << '\n');
1597  }
1598
1599  // Check if the load can safely be moved to all the unavailable predecessors.
1600  bool CanDoPRE = true;
1601  SmallVector<Instruction*, 8> NewInsts;
1602  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1603         E = PredLoads.end(); I != E; ++I) {
1604    BasicBlock *UnavailablePred = I->first;
1605
1606    // Do PHI translation to get its value in the predecessor if necessary.  The
1607    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1608
1609    // If all preds have a single successor, then we know it is safe to insert
1610    // the load on the pred (?!?), so we can insert code to materialize the
1611    // pointer if it is not available.
1612    PHITransAddr Address(LI->getPointerOperand(), TD);
1613    Value *LoadPtr = 0;
1614    LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1615                                                *DT, NewInsts);
1616
1617    // If we couldn't find or insert a computation of this phi translated value,
1618    // we fail PRE.
1619    if (LoadPtr == 0) {
1620      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1621            << *LI->getPointerOperand() << "\n");
1622      CanDoPRE = false;
1623      break;
1624    }
1625
1626    I->second = LoadPtr;
1627  }
1628
1629  if (!CanDoPRE) {
1630    while (!NewInsts.empty()) {
1631      Instruction *I = NewInsts.pop_back_val();
1632      if (MD) MD->removeInstruction(I);
1633      I->eraseFromParent();
1634    }
1635    // HINT:Don't revert the edge-splitting as following transformation may
1636    // also need to split these critial edges.
1637    return !CriticalEdgePred.empty();
1638  }
1639
1640  // Okay, we can eliminate this load by inserting a reload in the predecessor
1641  // and using PHI construction to get the value in the other predecessors, do
1642  // it.
1643  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1644  DEBUG(if (!NewInsts.empty())
1645          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1646                 << *NewInsts.back() << '\n');
1647
1648  // Assign value numbers to the new instructions.
1649  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1650    // FIXME: We really _ought_ to insert these value numbers into their
1651    // parent's availability map.  However, in doing so, we risk getting into
1652    // ordering issues.  If a block hasn't been processed yet, we would be
1653    // marking a value as AVAIL-IN, which isn't what we intend.
1654    VN.lookup_or_add(NewInsts[i]);
1655  }
1656
1657  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1658         E = PredLoads.end(); I != E; ++I) {
1659    BasicBlock *UnavailablePred = I->first;
1660    Value *LoadPtr = I->second;
1661
1662    Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1663                                        LI->getAlignment(),
1664                                        UnavailablePred->getTerminator());
1665
1666    // Transfer the old load's TBAA tag to the new load.
1667    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1668      NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1669
1670    // Transfer DebugLoc.
1671    NewLoad->setDebugLoc(LI->getDebugLoc());
1672
1673    // Add the newly created load.
1674    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1675                                                        NewLoad));
1676    MD->invalidateCachedPointerInfo(LoadPtr);
1677    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1678  }
1679
1680  // Perform PHI construction.
1681  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1682  LI->replaceAllUsesWith(V);
1683  if (isa<PHINode>(V))
1684    V->takeName(LI);
1685  if (V->getType()->getScalarType()->isPointerTy())
1686    MD->invalidateCachedPointerInfo(V);
1687  markInstructionForDeletion(LI);
1688  ++NumPRELoad;
1689  return true;
1690}
1691
1692/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1693/// non-local by performing PHI construction.
1694bool GVN::processNonLocalLoad(LoadInst *LI) {
1695  // Step 1: Find the non-local dependencies of the load.
1696  LoadDepVect Deps;
1697  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1698  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1699
1700  // If we had to process more than one hundred blocks to find the
1701  // dependencies, this load isn't worth worrying about.  Optimizing
1702  // it will be too expensive.
1703  unsigned NumDeps = Deps.size();
1704  if (NumDeps > 100)
1705    return false;
1706
1707  // If we had a phi translation failure, we'll have a single entry which is a
1708  // clobber in the current block.  Reject this early.
1709  if (NumDeps == 1 &&
1710      !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1711    DEBUG(
1712      dbgs() << "GVN: non-local load ";
1713      WriteAsOperand(dbgs(), LI);
1714      dbgs() << " has unknown dependencies\n";
1715    );
1716    return false;
1717  }
1718
1719  // Step 2: Analyze the availability of the load
1720  AvailValInBlkVect ValuesPerBlock;
1721  UnavailBlkVect UnavailableBlocks;
1722  AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
1723
1724  // If we have no predecessors that produce a known value for this load, exit
1725  // early.
1726  if (ValuesPerBlock.empty())
1727    return false;
1728
1729  // Step 3: Eliminate fully redundancy.
1730  //
1731  // If all of the instructions we depend on produce a known value for this
1732  // load, then it is fully redundant and we can use PHI insertion to compute
1733  // its value.  Insert PHIs and remove the fully redundant value now.
1734  if (UnavailableBlocks.empty()) {
1735    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1736
1737    // Perform PHI construction.
1738    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1739    LI->replaceAllUsesWith(V);
1740
1741    if (isa<PHINode>(V))
1742      V->takeName(LI);
1743    if (V->getType()->getScalarType()->isPointerTy())
1744      MD->invalidateCachedPointerInfo(V);
1745    markInstructionForDeletion(LI);
1746    ++NumGVNLoad;
1747    return true;
1748  }
1749
1750  // Step 4: Eliminate partial redundancy.
1751  if (!EnablePRE || !EnableLoadPRE)
1752    return false;
1753
1754  return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
1755}
1756
1757
1758static void patchReplacementInstruction(Instruction *I, Value *Repl) {
1759  // Patch the replacement so that it is not more restrictive than the value
1760  // being replaced.
1761  BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
1762  BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
1763  if (Op && ReplOp && isa<OverflowingBinaryOperator>(Op) &&
1764      isa<OverflowingBinaryOperator>(ReplOp)) {
1765    if (ReplOp->hasNoSignedWrap() && !Op->hasNoSignedWrap())
1766      ReplOp->setHasNoSignedWrap(false);
1767    if (ReplOp->hasNoUnsignedWrap() && !Op->hasNoUnsignedWrap())
1768      ReplOp->setHasNoUnsignedWrap(false);
1769  }
1770  if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
1771    SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
1772    ReplInst->getAllMetadataOtherThanDebugLoc(Metadata);
1773    for (int i = 0, n = Metadata.size(); i < n; ++i) {
1774      unsigned Kind = Metadata[i].first;
1775      MDNode *IMD = I->getMetadata(Kind);
1776      MDNode *ReplMD = Metadata[i].second;
1777      switch(Kind) {
1778      default:
1779        ReplInst->setMetadata(Kind, NULL); // Remove unknown metadata
1780        break;
1781      case LLVMContext::MD_dbg:
1782        llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1783      case LLVMContext::MD_tbaa:
1784        ReplInst->setMetadata(Kind, MDNode::getMostGenericTBAA(IMD, ReplMD));
1785        break;
1786      case LLVMContext::MD_range:
1787        ReplInst->setMetadata(Kind, MDNode::getMostGenericRange(IMD, ReplMD));
1788        break;
1789      case LLVMContext::MD_prof:
1790        llvm_unreachable("MD_prof in a non terminator instruction");
1791        break;
1792      case LLVMContext::MD_fpmath:
1793        ReplInst->setMetadata(Kind, MDNode::getMostGenericFPMath(IMD, ReplMD));
1794        break;
1795      }
1796    }
1797  }
1798}
1799
1800static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1801  patchReplacementInstruction(I, Repl);
1802  I->replaceAllUsesWith(Repl);
1803}
1804
1805/// processLoad - Attempt to eliminate a load, first by eliminating it
1806/// locally, and then attempting non-local elimination if that fails.
1807bool GVN::processLoad(LoadInst *L) {
1808  if (!MD)
1809    return false;
1810
1811  if (!L->isSimple())
1812    return false;
1813
1814  if (L->use_empty()) {
1815    markInstructionForDeletion(L);
1816    return true;
1817  }
1818
1819  // ... to a pointer that has been loaded from before...
1820  MemDepResult Dep = MD->getDependency(L);
1821
1822  // If we have a clobber and target data is around, see if this is a clobber
1823  // that we can fix up through code synthesis.
1824  if (Dep.isClobber() && TD) {
1825    // Check to see if we have something like this:
1826    //   store i32 123, i32* %P
1827    //   %A = bitcast i32* %P to i8*
1828    //   %B = gep i8* %A, i32 1
1829    //   %C = load i8* %B
1830    //
1831    // We could do that by recognizing if the clobber instructions are obviously
1832    // a common base + constant offset, and if the previous store (or memset)
1833    // completely covers this load.  This sort of thing can happen in bitfield
1834    // access code.
1835    Value *AvailVal = 0;
1836    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1837      int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1838                                                  L->getPointerOperand(),
1839                                                  DepSI, *TD);
1840      if (Offset != -1)
1841        AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1842                                        L->getType(), L, *TD);
1843    }
1844
1845    // Check to see if we have something like this:
1846    //    load i32* P
1847    //    load i8* (P+1)
1848    // if we have this, replace the later with an extraction from the former.
1849    if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1850      // If this is a clobber and L is the first instruction in its block, then
1851      // we have the first instruction in the entry block.
1852      if (DepLI == L)
1853        return false;
1854
1855      int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1856                                                 L->getPointerOperand(),
1857                                                 DepLI, *TD);
1858      if (Offset != -1)
1859        AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1860    }
1861
1862    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1863    // a value on from it.
1864    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1865      int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1866                                                    L->getPointerOperand(),
1867                                                    DepMI, *TD);
1868      if (Offset != -1)
1869        AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
1870    }
1871
1872    if (AvailVal) {
1873      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1874            << *AvailVal << '\n' << *L << "\n\n\n");
1875
1876      // Replace the load!
1877      L->replaceAllUsesWith(AvailVal);
1878      if (AvailVal->getType()->getScalarType()->isPointerTy())
1879        MD->invalidateCachedPointerInfo(AvailVal);
1880      markInstructionForDeletion(L);
1881      ++NumGVNLoad;
1882      return true;
1883    }
1884  }
1885
1886  // If the value isn't available, don't do anything!
1887  if (Dep.isClobber()) {
1888    DEBUG(
1889      // fast print dep, using operator<< on instruction is too slow.
1890      dbgs() << "GVN: load ";
1891      WriteAsOperand(dbgs(), L);
1892      Instruction *I = Dep.getInst();
1893      dbgs() << " is clobbered by " << *I << '\n';
1894    );
1895    return false;
1896  }
1897
1898  // If it is defined in another block, try harder.
1899  if (Dep.isNonLocal())
1900    return processNonLocalLoad(L);
1901
1902  if (!Dep.isDef()) {
1903    DEBUG(
1904      // fast print dep, using operator<< on instruction is too slow.
1905      dbgs() << "GVN: load ";
1906      WriteAsOperand(dbgs(), L);
1907      dbgs() << " has unknown dependence\n";
1908    );
1909    return false;
1910  }
1911
1912  Instruction *DepInst = Dep.getInst();
1913  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1914    Value *StoredVal = DepSI->getValueOperand();
1915
1916    // The store and load are to a must-aliased pointer, but they may not
1917    // actually have the same type.  See if we know how to reuse the stored
1918    // value (depending on its type).
1919    if (StoredVal->getType() != L->getType()) {
1920      if (TD) {
1921        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1922                                                   L, *TD);
1923        if (StoredVal == 0)
1924          return false;
1925
1926        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1927                     << '\n' << *L << "\n\n\n");
1928      }
1929      else
1930        return false;
1931    }
1932
1933    // Remove it!
1934    L->replaceAllUsesWith(StoredVal);
1935    if (StoredVal->getType()->getScalarType()->isPointerTy())
1936      MD->invalidateCachedPointerInfo(StoredVal);
1937    markInstructionForDeletion(L);
1938    ++NumGVNLoad;
1939    return true;
1940  }
1941
1942  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1943    Value *AvailableVal = DepLI;
1944
1945    // The loads are of a must-aliased pointer, but they may not actually have
1946    // the same type.  See if we know how to reuse the previously loaded value
1947    // (depending on its type).
1948    if (DepLI->getType() != L->getType()) {
1949      if (TD) {
1950        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1951                                                      L, *TD);
1952        if (AvailableVal == 0)
1953          return false;
1954
1955        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1956                     << "\n" << *L << "\n\n\n");
1957      }
1958      else
1959        return false;
1960    }
1961
1962    // Remove it!
1963    patchAndReplaceAllUsesWith(L, AvailableVal);
1964    if (DepLI->getType()->getScalarType()->isPointerTy())
1965      MD->invalidateCachedPointerInfo(DepLI);
1966    markInstructionForDeletion(L);
1967    ++NumGVNLoad;
1968    return true;
1969  }
1970
1971  // If this load really doesn't depend on anything, then we must be loading an
1972  // undef value.  This can happen when loading for a fresh allocation with no
1973  // intervening stores, for example.
1974  if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1975    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1976    markInstructionForDeletion(L);
1977    ++NumGVNLoad;
1978    return true;
1979  }
1980
1981  // If this load occurs either right after a lifetime begin,
1982  // then the loaded value is undefined.
1983  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1984    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1985      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1986      markInstructionForDeletion(L);
1987      ++NumGVNLoad;
1988      return true;
1989    }
1990  }
1991
1992  return false;
1993}
1994
1995// findLeader - In order to find a leader for a given value number at a
1996// specific basic block, we first obtain the list of all Values for that number,
1997// and then scan the list to find one whose block dominates the block in
1998// question.  This is fast because dominator tree queries consist of only
1999// a few comparisons of DFS numbers.
2000Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
2001  LeaderTableEntry Vals = LeaderTable[num];
2002  if (!Vals.Val) return 0;
2003
2004  Value *Val = 0;
2005  if (DT->dominates(Vals.BB, BB)) {
2006    Val = Vals.Val;
2007    if (isa<Constant>(Val)) return Val;
2008  }
2009
2010  LeaderTableEntry* Next = Vals.Next;
2011  while (Next) {
2012    if (DT->dominates(Next->BB, BB)) {
2013      if (isa<Constant>(Next->Val)) return Next->Val;
2014      if (!Val) Val = Next->Val;
2015    }
2016
2017    Next = Next->Next;
2018  }
2019
2020  return Val;
2021}
2022
2023/// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
2024/// use is dominated by the given basic block.  Returns the number of uses that
2025/// were replaced.
2026unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
2027                                          const BasicBlockEdge &Root) {
2028  unsigned Count = 0;
2029  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2030       UI != UE; ) {
2031    Use &U = (UI++).getUse();
2032
2033    if (DT->dominates(Root, U)) {
2034      U.set(To);
2035      ++Count;
2036    }
2037  }
2038  return Count;
2039}
2040
2041/// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
2042/// true if every path from the entry block to 'Dst' passes via this edge.  In
2043/// particular 'Dst' must not be reachable via another edge from 'Src'.
2044static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
2045                                       DominatorTree *DT) {
2046  // While in theory it is interesting to consider the case in which Dst has
2047  // more than one predecessor, because Dst might be part of a loop which is
2048  // only reachable from Src, in practice it is pointless since at the time
2049  // GVN runs all such loops have preheaders, which means that Dst will have
2050  // been changed to have only one predecessor, namely Src.
2051  const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
2052  const BasicBlock *Src = E.getStart();
2053  assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
2054  (void)Src;
2055  return Pred != 0;
2056}
2057
2058/// propagateEquality - The given values are known to be equal in every block
2059/// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
2060/// 'RHS' everywhere in the scope.  Returns whether a change was made.
2061bool GVN::propagateEquality(Value *LHS, Value *RHS,
2062                            const BasicBlockEdge &Root) {
2063  SmallVector<std::pair<Value*, Value*>, 4> Worklist;
2064  Worklist.push_back(std::make_pair(LHS, RHS));
2065  bool Changed = false;
2066  // For speed, compute a conservative fast approximation to
2067  // DT->dominates(Root, Root.getEnd());
2068  bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
2069
2070  while (!Worklist.empty()) {
2071    std::pair<Value*, Value*> Item = Worklist.pop_back_val();
2072    LHS = Item.first; RHS = Item.second;
2073
2074    if (LHS == RHS) continue;
2075    assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
2076
2077    // Don't try to propagate equalities between constants.
2078    if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue;
2079
2080    // Prefer a constant on the right-hand side, or an Argument if no constants.
2081    if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2082      std::swap(LHS, RHS);
2083    assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
2084
2085    // If there is no obvious reason to prefer the left-hand side over the right-
2086    // hand side, ensure the longest lived term is on the right-hand side, so the
2087    // shortest lived term will be replaced by the longest lived.  This tends to
2088    // expose more simplifications.
2089    uint32_t LVN = VN.lookup_or_add(LHS);
2090    if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2091        (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2092      // Move the 'oldest' value to the right-hand side, using the value number as
2093      // a proxy for age.
2094      uint32_t RVN = VN.lookup_or_add(RHS);
2095      if (LVN < RVN) {
2096        std::swap(LHS, RHS);
2097        LVN = RVN;
2098      }
2099    }
2100
2101    // If value numbering later sees that an instruction in the scope is equal
2102    // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
2103    // the invariant that instructions only occur in the leader table for their
2104    // own value number (this is used by removeFromLeaderTable), do not do this
2105    // if RHS is an instruction (if an instruction in the scope is morphed into
2106    // LHS then it will be turned into RHS by the next GVN iteration anyway, so
2107    // using the leader table is about compiling faster, not optimizing better).
2108    // The leader table only tracks basic blocks, not edges. Only add to if we
2109    // have the simple case where the edge dominates the end.
2110    if (RootDominatesEnd && !isa<Instruction>(RHS))
2111      addToLeaderTable(LVN, RHS, Root.getEnd());
2112
2113    // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
2114    // LHS always has at least one use that is not dominated by Root, this will
2115    // never do anything if LHS has only one use.
2116    if (!LHS->hasOneUse()) {
2117      unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
2118      Changed |= NumReplacements > 0;
2119      NumGVNEqProp += NumReplacements;
2120    }
2121
2122    // Now try to deduce additional equalities from this one.  For example, if the
2123    // known equality was "(A != B)" == "false" then it follows that A and B are
2124    // equal in the scope.  Only boolean equalities with an explicit true or false
2125    // RHS are currently supported.
2126    if (!RHS->getType()->isIntegerTy(1))
2127      // Not a boolean equality - bail out.
2128      continue;
2129    ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2130    if (!CI)
2131      // RHS neither 'true' nor 'false' - bail out.
2132      continue;
2133    // Whether RHS equals 'true'.  Otherwise it equals 'false'.
2134    bool isKnownTrue = CI->isAllOnesValue();
2135    bool isKnownFalse = !isKnownTrue;
2136
2137    // If "A && B" is known true then both A and B are known true.  If "A || B"
2138    // is known false then both A and B are known false.
2139    Value *A, *B;
2140    if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
2141        (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
2142      Worklist.push_back(std::make_pair(A, RHS));
2143      Worklist.push_back(std::make_pair(B, RHS));
2144      continue;
2145    }
2146
2147    // If we are propagating an equality like "(A == B)" == "true" then also
2148    // propagate the equality A == B.  When propagating a comparison such as
2149    // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2150    if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
2151      Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2152
2153      // If "A == B" is known true, or "A != B" is known false, then replace
2154      // A with B everywhere in the scope.
2155      if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
2156          (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
2157        Worklist.push_back(std::make_pair(Op0, Op1));
2158
2159      // If "A >= B" is known true, replace "A < B" with false everywhere.
2160      CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2161      Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2162      // Since we don't have the instruction "A < B" immediately to hand, work out
2163      // the value number that it would have and use that to find an appropriate
2164      // instruction (if any).
2165      uint32_t NextNum = VN.getNextUnusedValueNumber();
2166      uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2167      // If the number we were assigned was brand new then there is no point in
2168      // looking for an instruction realizing it: there cannot be one!
2169      if (Num < NextNum) {
2170        Value *NotCmp = findLeader(Root.getEnd(), Num);
2171        if (NotCmp && isa<Instruction>(NotCmp)) {
2172          unsigned NumReplacements =
2173            replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
2174          Changed |= NumReplacements > 0;
2175          NumGVNEqProp += NumReplacements;
2176        }
2177      }
2178      // Ensure that any instruction in scope that gets the "A < B" value number
2179      // is replaced with false.
2180      // The leader table only tracks basic blocks, not edges. Only add to if we
2181      // have the simple case where the edge dominates the end.
2182      if (RootDominatesEnd)
2183        addToLeaderTable(Num, NotVal, Root.getEnd());
2184
2185      continue;
2186    }
2187  }
2188
2189  return Changed;
2190}
2191
2192/// processInstruction - When calculating availability, handle an instruction
2193/// by inserting it into the appropriate sets
2194bool GVN::processInstruction(Instruction *I) {
2195  // Ignore dbg info intrinsics.
2196  if (isa<DbgInfoIntrinsic>(I))
2197    return false;
2198
2199  // If the instruction can be easily simplified then do so now in preference
2200  // to value numbering it.  Value numbering often exposes redundancies, for
2201  // example if it determines that %y is equal to %x then the instruction
2202  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2203  if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
2204    I->replaceAllUsesWith(V);
2205    if (MD && V->getType()->getScalarType()->isPointerTy())
2206      MD->invalidateCachedPointerInfo(V);
2207    markInstructionForDeletion(I);
2208    ++NumGVNSimpl;
2209    return true;
2210  }
2211
2212  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2213    if (processLoad(LI))
2214      return true;
2215
2216    unsigned Num = VN.lookup_or_add(LI);
2217    addToLeaderTable(Num, LI, LI->getParent());
2218    return false;
2219  }
2220
2221  // For conditional branches, we can perform simple conditional propagation on
2222  // the condition value itself.
2223  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2224    if (!BI->isConditional())
2225      return false;
2226
2227    if (isa<Constant>(BI->getCondition()))
2228      return processFoldableCondBr(BI);
2229
2230    Value *BranchCond = BI->getCondition();
2231    BasicBlock *TrueSucc = BI->getSuccessor(0);
2232    BasicBlock *FalseSucc = BI->getSuccessor(1);
2233    // Avoid multiple edges early.
2234    if (TrueSucc == FalseSucc)
2235      return false;
2236
2237    BasicBlock *Parent = BI->getParent();
2238    bool Changed = false;
2239
2240    Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2241    BasicBlockEdge TrueE(Parent, TrueSucc);
2242    Changed |= propagateEquality(BranchCond, TrueVal, TrueE);
2243
2244    Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2245    BasicBlockEdge FalseE(Parent, FalseSucc);
2246    Changed |= propagateEquality(BranchCond, FalseVal, FalseE);
2247
2248    return Changed;
2249  }
2250
2251  // For switches, propagate the case values into the case destinations.
2252  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2253    Value *SwitchCond = SI->getCondition();
2254    BasicBlock *Parent = SI->getParent();
2255    bool Changed = false;
2256
2257    // Remember how many outgoing edges there are to every successor.
2258    SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2259    for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2260      ++SwitchEdges[SI->getSuccessor(i)];
2261
2262    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2263         i != e; ++i) {
2264      BasicBlock *Dst = i.getCaseSuccessor();
2265      // If there is only a single edge, propagate the case value into it.
2266      if (SwitchEdges.lookup(Dst) == 1) {
2267        BasicBlockEdge E(Parent, Dst);
2268        Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E);
2269      }
2270    }
2271    return Changed;
2272  }
2273
2274  // Instructions with void type don't return a value, so there's
2275  // no point in trying to find redundancies in them.
2276  if (I->getType()->isVoidTy()) return false;
2277
2278  uint32_t NextNum = VN.getNextUnusedValueNumber();
2279  unsigned Num = VN.lookup_or_add(I);
2280
2281  // Allocations are always uniquely numbered, so we can save time and memory
2282  // by fast failing them.
2283  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
2284    addToLeaderTable(Num, I, I->getParent());
2285    return false;
2286  }
2287
2288  // If the number we were assigned was a brand new VN, then we don't
2289  // need to do a lookup to see if the number already exists
2290  // somewhere in the domtree: it can't!
2291  if (Num >= NextNum) {
2292    addToLeaderTable(Num, I, I->getParent());
2293    return false;
2294  }
2295
2296  // Perform fast-path value-number based elimination of values inherited from
2297  // dominators.
2298  Value *repl = findLeader(I->getParent(), Num);
2299  if (repl == 0) {
2300    // Failure, just remember this instance for future use.
2301    addToLeaderTable(Num, I, I->getParent());
2302    return false;
2303  }
2304
2305  // Remove it!
2306  patchAndReplaceAllUsesWith(I, repl);
2307  if (MD && repl->getType()->getScalarType()->isPointerTy())
2308    MD->invalidateCachedPointerInfo(repl);
2309  markInstructionForDeletion(I);
2310  return true;
2311}
2312
2313/// runOnFunction - This is the main transformation entry point for a function.
2314bool GVN::runOnFunction(Function& F) {
2315  if (!NoLoads)
2316    MD = &getAnalysis<MemoryDependenceAnalysis>();
2317  DT = &getAnalysis<DominatorTree>();
2318  TD = getAnalysisIfAvailable<DataLayout>();
2319  TLI = &getAnalysis<TargetLibraryInfo>();
2320  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2321  VN.setMemDep(MD);
2322  VN.setDomTree(DT);
2323
2324  bool Changed = false;
2325  bool ShouldContinue = true;
2326
2327  // Merge unconditional branches, allowing PRE to catch more
2328  // optimization opportunities.
2329  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2330    BasicBlock *BB = FI++;
2331
2332    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2333    if (removedBlock) ++NumGVNBlocks;
2334
2335    Changed |= removedBlock;
2336  }
2337
2338  unsigned Iteration = 0;
2339  while (ShouldContinue) {
2340    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2341    ShouldContinue = iterateOnFunction(F);
2342    Changed |= ShouldContinue;
2343    ++Iteration;
2344  }
2345
2346  if (EnablePRE) {
2347    // Fabricate val-num for dead-code in order to suppress assertion in
2348    // performPRE().
2349    assignValNumForDeadCode();
2350    bool PREChanged = true;
2351    while (PREChanged) {
2352      PREChanged = performPRE(F);
2353      Changed |= PREChanged;
2354    }
2355  }
2356
2357  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2358  // computations into blocks where they become fully redundant.  Note that
2359  // we can't do this until PRE's critical edge splitting updates memdep.
2360  // Actually, when this happens, we should just fully integrate PRE into GVN.
2361
2362  cleanupGlobalSets();
2363  // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2364  // iteration.
2365  DeadBlocks.clear();
2366
2367  return Changed;
2368}
2369
2370
2371bool GVN::processBlock(BasicBlock *BB) {
2372  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2373  // (and incrementing BI before processing an instruction).
2374  assert(InstrsToErase.empty() &&
2375         "We expect InstrsToErase to be empty across iterations");
2376  if (DeadBlocks.count(BB))
2377    return false;
2378
2379  bool ChangedFunction = false;
2380
2381  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2382       BI != BE;) {
2383    ChangedFunction |= processInstruction(BI);
2384    if (InstrsToErase.empty()) {
2385      ++BI;
2386      continue;
2387    }
2388
2389    // If we need some instructions deleted, do it now.
2390    NumGVNInstr += InstrsToErase.size();
2391
2392    // Avoid iterator invalidation.
2393    bool AtStart = BI == BB->begin();
2394    if (!AtStart)
2395      --BI;
2396
2397    for (SmallVectorImpl<Instruction *>::iterator I = InstrsToErase.begin(),
2398         E = InstrsToErase.end(); I != E; ++I) {
2399      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2400      if (MD) MD->removeInstruction(*I);
2401      DEBUG(verifyRemoved(*I));
2402      (*I)->eraseFromParent();
2403    }
2404    InstrsToErase.clear();
2405
2406    if (AtStart)
2407      BI = BB->begin();
2408    else
2409      ++BI;
2410  }
2411
2412  return ChangedFunction;
2413}
2414
2415/// performPRE - Perform a purely local form of PRE that looks for diamond
2416/// control flow patterns and attempts to perform simple PRE at the join point.
2417bool GVN::performPRE(Function &F) {
2418  bool Changed = false;
2419  SmallVector<std::pair<Value*, BasicBlock*>, 8> predMap;
2420  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2421       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2422    BasicBlock *CurrentBlock = *DI;
2423
2424    // Nothing to PRE in the entry block.
2425    if (CurrentBlock == &F.getEntryBlock()) continue;
2426
2427    // Don't perform PRE on a landing pad.
2428    if (CurrentBlock->isLandingPad()) continue;
2429
2430    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2431         BE = CurrentBlock->end(); BI != BE; ) {
2432      Instruction *CurInst = BI++;
2433
2434      if (isa<AllocaInst>(CurInst) ||
2435          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2436          CurInst->getType()->isVoidTy() ||
2437          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2438          isa<DbgInfoIntrinsic>(CurInst))
2439        continue;
2440
2441      // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2442      // sinking the compare again, and it would force the code generator to
2443      // move the i1 from processor flags or predicate registers into a general
2444      // purpose register.
2445      if (isa<CmpInst>(CurInst))
2446        continue;
2447
2448      // We don't currently value number ANY inline asm calls.
2449      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2450        if (CallI->isInlineAsm())
2451          continue;
2452
2453      uint32_t ValNo = VN.lookup(CurInst);
2454
2455      // Look for the predecessors for PRE opportunities.  We're
2456      // only trying to solve the basic diamond case, where
2457      // a value is computed in the successor and one predecessor,
2458      // but not the other.  We also explicitly disallow cases
2459      // where the successor is its own predecessor, because they're
2460      // more complicated to get right.
2461      unsigned NumWith = 0;
2462      unsigned NumWithout = 0;
2463      BasicBlock *PREPred = 0;
2464      predMap.clear();
2465
2466      for (pred_iterator PI = pred_begin(CurrentBlock),
2467           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2468        BasicBlock *P = *PI;
2469        // We're not interested in PRE where the block is its
2470        // own predecessor, or in blocks with predecessors
2471        // that are not reachable.
2472        if (P == CurrentBlock) {
2473          NumWithout = 2;
2474          break;
2475        } else if (!DT->isReachableFromEntry(P))  {
2476          NumWithout = 2;
2477          break;
2478        }
2479
2480        Value* predV = findLeader(P, ValNo);
2481        if (predV == 0) {
2482          predMap.push_back(std::make_pair(static_cast<Value *>(0), P));
2483          PREPred = P;
2484          ++NumWithout;
2485        } else if (predV == CurInst) {
2486          /* CurInst dominates this predecessor. */
2487          NumWithout = 2;
2488          break;
2489        } else {
2490          predMap.push_back(std::make_pair(predV, P));
2491          ++NumWith;
2492        }
2493      }
2494
2495      // Don't do PRE when it might increase code size, i.e. when
2496      // we would need to insert instructions in more than one pred.
2497      if (NumWithout != 1 || NumWith == 0)
2498        continue;
2499
2500      // Don't do PRE across indirect branch.
2501      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2502        continue;
2503
2504      // We can't do PRE safely on a critical edge, so instead we schedule
2505      // the edge to be split and perform the PRE the next time we iterate
2506      // on the function.
2507      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2508      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2509        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2510        continue;
2511      }
2512
2513      // Instantiate the expression in the predecessor that lacked it.
2514      // Because we are going top-down through the block, all value numbers
2515      // will be available in the predecessor by the time we need them.  Any
2516      // that weren't originally present will have been instantiated earlier
2517      // in this loop.
2518      Instruction *PREInstr = CurInst->clone();
2519      bool success = true;
2520      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2521        Value *Op = PREInstr->getOperand(i);
2522        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2523          continue;
2524
2525        if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2526          PREInstr->setOperand(i, V);
2527        } else {
2528          success = false;
2529          break;
2530        }
2531      }
2532
2533      // Fail out if we encounter an operand that is not available in
2534      // the PRE predecessor.  This is typically because of loads which
2535      // are not value numbered precisely.
2536      if (!success) {
2537        DEBUG(verifyRemoved(PREInstr));
2538        delete PREInstr;
2539        continue;
2540      }
2541
2542      PREInstr->insertBefore(PREPred->getTerminator());
2543      PREInstr->setName(CurInst->getName() + ".pre");
2544      PREInstr->setDebugLoc(CurInst->getDebugLoc());
2545      VN.add(PREInstr, ValNo);
2546      ++NumGVNPRE;
2547
2548      // Update the availability map to include the new instruction.
2549      addToLeaderTable(ValNo, PREInstr, PREPred);
2550
2551      // Create a PHI to make the value available in this block.
2552      PHINode* Phi = PHINode::Create(CurInst->getType(), predMap.size(),
2553                                     CurInst->getName() + ".pre-phi",
2554                                     CurrentBlock->begin());
2555      for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2556        if (Value *V = predMap[i].first)
2557          Phi->addIncoming(V, predMap[i].second);
2558        else
2559          Phi->addIncoming(PREInstr, PREPred);
2560      }
2561
2562      VN.add(Phi, ValNo);
2563      addToLeaderTable(ValNo, Phi, CurrentBlock);
2564      Phi->setDebugLoc(CurInst->getDebugLoc());
2565      CurInst->replaceAllUsesWith(Phi);
2566      if (Phi->getType()->getScalarType()->isPointerTy()) {
2567        // Because we have added a PHI-use of the pointer value, it has now
2568        // "escaped" from alias analysis' perspective.  We need to inform
2569        // AA of this.
2570        for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
2571             ++ii) {
2572          unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
2573          VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
2574        }
2575
2576        if (MD)
2577          MD->invalidateCachedPointerInfo(Phi);
2578      }
2579      VN.erase(CurInst);
2580      removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2581
2582      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2583      if (MD) MD->removeInstruction(CurInst);
2584      DEBUG(verifyRemoved(CurInst));
2585      CurInst->eraseFromParent();
2586      Changed = true;
2587    }
2588  }
2589
2590  if (splitCriticalEdges())
2591    Changed = true;
2592
2593  return Changed;
2594}
2595
2596/// Split the critical edge connecting the given two blocks, and return
2597/// the block inserted to the critical edge.
2598BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2599  BasicBlock *BB = SplitCriticalEdge(Pred, Succ, this);
2600  if (MD)
2601    MD->invalidateCachedPredecessors();
2602  return BB;
2603}
2604
2605/// splitCriticalEdges - Split critical edges found during the previous
2606/// iteration that may enable further optimization.
2607bool GVN::splitCriticalEdges() {
2608  if (toSplit.empty())
2609    return false;
2610  do {
2611    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2612    SplitCriticalEdge(Edge.first, Edge.second, this);
2613  } while (!toSplit.empty());
2614  if (MD) MD->invalidateCachedPredecessors();
2615  return true;
2616}
2617
2618/// iterateOnFunction - Executes one iteration of GVN
2619bool GVN::iterateOnFunction(Function &F) {
2620  cleanupGlobalSets();
2621
2622  // Top-down walk of the dominator tree
2623  bool Changed = false;
2624#if 0
2625  // Needed for value numbering with phi construction to work.
2626  ReversePostOrderTraversal<Function*> RPOT(&F);
2627  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2628       RE = RPOT.end(); RI != RE; ++RI)
2629    Changed |= processBlock(*RI);
2630#else
2631  // Save the blocks this function have before transformation begins. GVN may
2632  // split critical edge, and hence may invalidate the RPO/DT iterator.
2633  //
2634  std::vector<BasicBlock *> BBVect;
2635  BBVect.reserve(256);
2636  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2637       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2638    BBVect.push_back(DI->getBlock());
2639
2640  for (std::vector<BasicBlock *>::iterator I = BBVect.begin(), E = BBVect.end();
2641       I != E; I++)
2642    Changed |= processBlock(*I);
2643#endif
2644
2645  return Changed;
2646}
2647
2648void GVN::cleanupGlobalSets() {
2649  VN.clear();
2650  LeaderTable.clear();
2651  TableAllocator.Reset();
2652}
2653
2654/// verifyRemoved - Verify that the specified instruction does not occur in our
2655/// internal data structures.
2656void GVN::verifyRemoved(const Instruction *Inst) const {
2657  VN.verifyRemoved(Inst);
2658
2659  // Walk through the value number scope to make sure the instruction isn't
2660  // ferreted away in it.
2661  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2662       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2663    const LeaderTableEntry *Node = &I->second;
2664    assert(Node->Val != Inst && "Inst still in value numbering scope!");
2665
2666    while (Node->Next) {
2667      Node = Node->Next;
2668      assert(Node->Val != Inst && "Inst still in value numbering scope!");
2669    }
2670  }
2671}
2672
2673// BB is declared dead, which implied other blocks become dead as well. This
2674// function is to add all these blocks to "DeadBlocks". For the dead blocks'
2675// live successors, update their phi nodes by replacing the operands
2676// corresponding to dead blocks with UndefVal.
2677//
2678void GVN::addDeadBlock(BasicBlock *BB) {
2679  SmallVector<BasicBlock *, 4> NewDead;
2680  SmallSetVector<BasicBlock *, 4> DF;
2681
2682  NewDead.push_back(BB);
2683  while (!NewDead.empty()) {
2684    BasicBlock *D = NewDead.pop_back_val();
2685    if (DeadBlocks.count(D))
2686      continue;
2687
2688    // All blocks dominated by D are dead.
2689    SmallVector<BasicBlock *, 8> Dom;
2690    DT->getDescendants(D, Dom);
2691    DeadBlocks.insert(Dom.begin(), Dom.end());
2692
2693    // Figure out the dominance-frontier(D).
2694    for (SmallVectorImpl<BasicBlock *>::iterator I = Dom.begin(),
2695           E = Dom.end(); I != E; I++) {
2696      BasicBlock *B = *I;
2697      for (succ_iterator SI = succ_begin(B), SE = succ_end(B); SI != SE; SI++) {
2698        BasicBlock *S = *SI;
2699        if (DeadBlocks.count(S))
2700          continue;
2701
2702        bool AllPredDead = true;
2703        for (pred_iterator PI = pred_begin(S), PE = pred_end(S); PI != PE; PI++)
2704          if (!DeadBlocks.count(*PI)) {
2705            AllPredDead = false;
2706            break;
2707          }
2708
2709        if (!AllPredDead) {
2710          // S could be proved dead later on. That is why we don't update phi
2711          // operands at this moment.
2712          DF.insert(S);
2713        } else {
2714          // While S is not dominated by D, it is dead by now. This could take
2715          // place if S already have a dead predecessor before D is declared
2716          // dead.
2717          NewDead.push_back(S);
2718        }
2719      }
2720    }
2721  }
2722
2723  // For the dead blocks' live successors, update their phi nodes by replacing
2724  // the operands corresponding to dead blocks with UndefVal.
2725  for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
2726        I != E; I++) {
2727    BasicBlock *B = *I;
2728    if (DeadBlocks.count(B))
2729      continue;
2730
2731    for (pred_iterator PI = pred_begin(B), PE = pred_end(B); PI != PE; PI++) {
2732      BasicBlock *P = *PI;
2733      if (!DeadBlocks.count(P))
2734        continue;
2735      for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
2736        PHINode &Phi = cast<PHINode>(*II);
2737        Phi.setIncomingValue(Phi.getBasicBlockIndex(P),
2738                             UndefValue::get(Phi.getType()));
2739      }
2740    }
2741  }
2742}
2743
2744// If the given branch is recognized as a foldable branch (i.e. conditional
2745// branch with constant condition), it will perform following analyses and
2746// transformation.
2747//  1) If the dead out-coming edge is a critical-edge, split it. Let
2748//     R be the target of the dead out-coming edge.
2749//  1) Identify the set of dead blocks implied by the branch's dead outcoming
2750//     edge. The result of this step will be {X| X is dominated by R}
2751//  2) Identify those blocks which haves at least one dead prodecessor. The
2752//     result of this step will be dominance-frontier(R).
2753//  3) Update the PHIs in DF(R) by replacing the operands corresponding to
2754//     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
2755//
2756// Return true iff *NEW* dead code are found.
2757bool GVN::processFoldableCondBr(BranchInst *BI) {
2758  if (!BI || BI->isUnconditional())
2759    return false;
2760
2761  ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
2762  if (!Cond)
2763    return false;
2764
2765  BasicBlock *DeadRoot = Cond->getZExtValue() ?
2766                         BI->getSuccessor(1) : BI->getSuccessor(0);
2767  if (DeadBlocks.count(DeadRoot))
2768    return false;
2769
2770  if (!DeadRoot->getSinglePredecessor())
2771    DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
2772
2773  addDeadBlock(DeadRoot);
2774  return true;
2775}
2776
2777// performPRE() will trigger assert if it come across an instruciton without
2778// associated val-num. As it normally has far more live instructions than dead
2779// instructions, it makes more sense just to "fabricate" a val-number for the
2780// dead code than checking if instruction involved is dead or not.
2781void GVN::assignValNumForDeadCode() {
2782  for (SetVector<BasicBlock *>::iterator I = DeadBlocks.begin(),
2783        E = DeadBlocks.end(); I != E; I++) {
2784    BasicBlock *BB = *I;
2785    for (BasicBlock::iterator II = BB->begin(), EE = BB->end();
2786          II != EE; II++) {
2787      Instruction *Inst = &*II;
2788      unsigned ValNum = VN.lookup_or_add(Inst);
2789      addToLeaderTable(ValNum, Inst, BB);
2790    }
2791  }
2792}
2793