GVN.cpp revision 246dbbb8befcb04abb5451d73b5d94f7d21f22c6
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself, it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/Instructions.h"
25#include "llvm/Value.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/DepthFirstIterator.h"
28#include "llvm/ADT/PostOrderIterator.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Analysis/AliasAnalysis.h"
34#include "llvm/Analysis/MemoryDependenceAnalysis.h"
35#include "llvm/Support/CFG.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Transforms/Utils/BasicBlockUtils.h"
40#include <cstdio>
41using namespace llvm;
42
43STATISTIC(NumGVNInstr, "Number of instructions deleted");
44STATISTIC(NumGVNLoad, "Number of loads deleted");
45STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
46STATISTIC(NumGVNBlocks, "Number of blocks merged");
47STATISTIC(NumPRELoad, "Number of loads PRE'd");
48
49static cl::opt<bool> EnablePRE("enable-pre",
50                               cl::init(true), cl::Hidden);
51cl::opt<bool> EnableLoadPRE("enable-load-pre"/*, cl::init(true)*/);
52
53//===----------------------------------------------------------------------===//
54//                         ValueTable Class
55//===----------------------------------------------------------------------===//
56
57/// This class holds the mapping between values and value numbers.  It is used
58/// as an efficient mechanism to determine the expression-wise equivalence of
59/// two values.
60namespace {
61  struct VISIBILITY_HIDDEN Expression {
62    enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM,
63                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
64                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
65                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
66                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
67                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
68                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
69                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
70                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
71                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
72                            EMPTY, TOMBSTONE };
73
74    ExpressionOpcode opcode;
75    const Type* type;
76    uint32_t firstVN;
77    uint32_t secondVN;
78    uint32_t thirdVN;
79    SmallVector<uint32_t, 4> varargs;
80    Value* function;
81
82    Expression() { }
83    Expression(ExpressionOpcode o) : opcode(o) { }
84
85    bool operator==(const Expression &other) const {
86      if (opcode != other.opcode)
87        return false;
88      else if (opcode == EMPTY || opcode == TOMBSTONE)
89        return true;
90      else if (type != other.type)
91        return false;
92      else if (function != other.function)
93        return false;
94      else if (firstVN != other.firstVN)
95        return false;
96      else if (secondVN != other.secondVN)
97        return false;
98      else if (thirdVN != other.thirdVN)
99        return false;
100      else {
101        if (varargs.size() != other.varargs.size())
102          return false;
103
104        for (size_t i = 0; i < varargs.size(); ++i)
105          if (varargs[i] != other.varargs[i])
106            return false;
107
108        return true;
109      }
110    }
111
112    bool operator!=(const Expression &other) const {
113      if (opcode != other.opcode)
114        return true;
115      else if (opcode == EMPTY || opcode == TOMBSTONE)
116        return false;
117      else if (type != other.type)
118        return true;
119      else if (function != other.function)
120        return true;
121      else if (firstVN != other.firstVN)
122        return true;
123      else if (secondVN != other.secondVN)
124        return true;
125      else if (thirdVN != other.thirdVN)
126        return true;
127      else {
128        if (varargs.size() != other.varargs.size())
129          return true;
130
131        for (size_t i = 0; i < varargs.size(); ++i)
132          if (varargs[i] != other.varargs[i])
133            return true;
134
135          return false;
136      }
137    }
138  };
139
140  class VISIBILITY_HIDDEN ValueTable {
141    private:
142      DenseMap<Value*, uint32_t> valueNumbering;
143      DenseMap<Expression, uint32_t> expressionNumbering;
144      AliasAnalysis* AA;
145      MemoryDependenceAnalysis* MD;
146      DominatorTree* DT;
147
148      uint32_t nextValueNumber;
149
150      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
151      Expression::ExpressionOpcode getOpcode(CmpInst* C);
152      Expression::ExpressionOpcode getOpcode(CastInst* C);
153      Expression create_expression(BinaryOperator* BO);
154      Expression create_expression(CmpInst* C);
155      Expression create_expression(ShuffleVectorInst* V);
156      Expression create_expression(ExtractElementInst* C);
157      Expression create_expression(InsertElementInst* V);
158      Expression create_expression(SelectInst* V);
159      Expression create_expression(CastInst* C);
160      Expression create_expression(GetElementPtrInst* G);
161      Expression create_expression(CallInst* C);
162      Expression create_expression(Constant* C);
163    public:
164      ValueTable() : nextValueNumber(1) { }
165      uint32_t lookup_or_add(Value* V);
166      uint32_t lookup(Value* V) const;
167      void add(Value* V, uint32_t num);
168      void clear();
169      void erase(Value* v);
170      unsigned size();
171      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
172      AliasAnalysis *getAliasAnalysis() const { return AA; }
173      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
174      void setDomTree(DominatorTree* D) { DT = D; }
175      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
176      void verifyRemoved(const Value *) const;
177  };
178}
179
180namespace llvm {
181template <> struct DenseMapInfo<Expression> {
182  static inline Expression getEmptyKey() {
183    return Expression(Expression::EMPTY);
184  }
185
186  static inline Expression getTombstoneKey() {
187    return Expression(Expression::TOMBSTONE);
188  }
189
190  static unsigned getHashValue(const Expression e) {
191    unsigned hash = e.opcode;
192
193    hash = e.firstVN + hash * 37;
194    hash = e.secondVN + hash * 37;
195    hash = e.thirdVN + hash * 37;
196
197    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
198            (unsigned)((uintptr_t)e.type >> 9)) +
199           hash * 37;
200
201    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
202         E = e.varargs.end(); I != E; ++I)
203      hash = *I + hash * 37;
204
205    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
206            (unsigned)((uintptr_t)e.function >> 9)) +
207           hash * 37;
208
209    return hash;
210  }
211  static bool isEqual(const Expression &LHS, const Expression &RHS) {
212    return LHS == RHS;
213  }
214  static bool isPod() { return true; }
215};
216}
217
218//===----------------------------------------------------------------------===//
219//                     ValueTable Internal Functions
220//===----------------------------------------------------------------------===//
221Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
222  switch(BO->getOpcode()) {
223  default: // THIS SHOULD NEVER HAPPEN
224    assert(0 && "Binary operator with unknown opcode?");
225  case Instruction::Add:  return Expression::ADD;
226  case Instruction::Sub:  return Expression::SUB;
227  case Instruction::Mul:  return Expression::MUL;
228  case Instruction::UDiv: return Expression::UDIV;
229  case Instruction::SDiv: return Expression::SDIV;
230  case Instruction::FDiv: return Expression::FDIV;
231  case Instruction::URem: return Expression::UREM;
232  case Instruction::SRem: return Expression::SREM;
233  case Instruction::FRem: return Expression::FREM;
234  case Instruction::Shl:  return Expression::SHL;
235  case Instruction::LShr: return Expression::LSHR;
236  case Instruction::AShr: return Expression::ASHR;
237  case Instruction::And:  return Expression::AND;
238  case Instruction::Or:   return Expression::OR;
239  case Instruction::Xor:  return Expression::XOR;
240  }
241}
242
243Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
244  if (isa<ICmpInst>(C) || isa<VICmpInst>(C)) {
245    switch (C->getPredicate()) {
246    default:  // THIS SHOULD NEVER HAPPEN
247      assert(0 && "Comparison with unknown predicate?");
248    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
249    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
250    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
251    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
252    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
253    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
254    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
255    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
256    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
257    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
258    }
259  }
260  assert((isa<FCmpInst>(C) || isa<VFCmpInst>(C)) && "Unknown compare");
261  switch (C->getPredicate()) {
262  default: // THIS SHOULD NEVER HAPPEN
263    assert(0 && "Comparison with unknown predicate?");
264  case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
265  case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
266  case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
267  case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
268  case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
269  case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
270  case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
271  case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
272  case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
273  case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
274  case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
275  case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
276  case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
277  case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
278  }
279}
280
281Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
282  switch(C->getOpcode()) {
283  default: // THIS SHOULD NEVER HAPPEN
284    assert(0 && "Cast operator with unknown opcode?");
285  case Instruction::Trunc:    return Expression::TRUNC;
286  case Instruction::ZExt:     return Expression::ZEXT;
287  case Instruction::SExt:     return Expression::SEXT;
288  case Instruction::FPToUI:   return Expression::FPTOUI;
289  case Instruction::FPToSI:   return Expression::FPTOSI;
290  case Instruction::UIToFP:   return Expression::UITOFP;
291  case Instruction::SIToFP:   return Expression::SITOFP;
292  case Instruction::FPTrunc:  return Expression::FPTRUNC;
293  case Instruction::FPExt:    return Expression::FPEXT;
294  case Instruction::PtrToInt: return Expression::PTRTOINT;
295  case Instruction::IntToPtr: return Expression::INTTOPTR;
296  case Instruction::BitCast:  return Expression::BITCAST;
297  }
298}
299
300Expression ValueTable::create_expression(CallInst* C) {
301  Expression e;
302
303  e.type = C->getType();
304  e.firstVN = 0;
305  e.secondVN = 0;
306  e.thirdVN = 0;
307  e.function = C->getCalledFunction();
308  e.opcode = Expression::CALL;
309
310  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
311       I != E; ++I)
312    e.varargs.push_back(lookup_or_add(*I));
313
314  return e;
315}
316
317Expression ValueTable::create_expression(BinaryOperator* BO) {
318  Expression e;
319
320  e.firstVN = lookup_or_add(BO->getOperand(0));
321  e.secondVN = lookup_or_add(BO->getOperand(1));
322  e.thirdVN = 0;
323  e.function = 0;
324  e.type = BO->getType();
325  e.opcode = getOpcode(BO);
326
327  return e;
328}
329
330Expression ValueTable::create_expression(CmpInst* C) {
331  Expression e;
332
333  e.firstVN = lookup_or_add(C->getOperand(0));
334  e.secondVN = lookup_or_add(C->getOperand(1));
335  e.thirdVN = 0;
336  e.function = 0;
337  e.type = C->getType();
338  e.opcode = getOpcode(C);
339
340  return e;
341}
342
343Expression ValueTable::create_expression(CastInst* C) {
344  Expression e;
345
346  e.firstVN = lookup_or_add(C->getOperand(0));
347  e.secondVN = 0;
348  e.thirdVN = 0;
349  e.function = 0;
350  e.type = C->getType();
351  e.opcode = getOpcode(C);
352
353  return e;
354}
355
356Expression ValueTable::create_expression(ShuffleVectorInst* S) {
357  Expression e;
358
359  e.firstVN = lookup_or_add(S->getOperand(0));
360  e.secondVN = lookup_or_add(S->getOperand(1));
361  e.thirdVN = lookup_or_add(S->getOperand(2));
362  e.function = 0;
363  e.type = S->getType();
364  e.opcode = Expression::SHUFFLE;
365
366  return e;
367}
368
369Expression ValueTable::create_expression(ExtractElementInst* E) {
370  Expression e;
371
372  e.firstVN = lookup_or_add(E->getOperand(0));
373  e.secondVN = lookup_or_add(E->getOperand(1));
374  e.thirdVN = 0;
375  e.function = 0;
376  e.type = E->getType();
377  e.opcode = Expression::EXTRACT;
378
379  return e;
380}
381
382Expression ValueTable::create_expression(InsertElementInst* I) {
383  Expression e;
384
385  e.firstVN = lookup_or_add(I->getOperand(0));
386  e.secondVN = lookup_or_add(I->getOperand(1));
387  e.thirdVN = lookup_or_add(I->getOperand(2));
388  e.function = 0;
389  e.type = I->getType();
390  e.opcode = Expression::INSERT;
391
392  return e;
393}
394
395Expression ValueTable::create_expression(SelectInst* I) {
396  Expression e;
397
398  e.firstVN = lookup_or_add(I->getCondition());
399  e.secondVN = lookup_or_add(I->getTrueValue());
400  e.thirdVN = lookup_or_add(I->getFalseValue());
401  e.function = 0;
402  e.type = I->getType();
403  e.opcode = Expression::SELECT;
404
405  return e;
406}
407
408Expression ValueTable::create_expression(GetElementPtrInst* G) {
409  Expression e;
410
411  e.firstVN = lookup_or_add(G->getPointerOperand());
412  e.secondVN = 0;
413  e.thirdVN = 0;
414  e.function = 0;
415  e.type = G->getType();
416  e.opcode = Expression::GEP;
417
418  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
419       I != E; ++I)
420    e.varargs.push_back(lookup_or_add(*I));
421
422  return e;
423}
424
425//===----------------------------------------------------------------------===//
426//                     ValueTable External Functions
427//===----------------------------------------------------------------------===//
428
429/// add - Insert a value into the table with a specified value number.
430void ValueTable::add(Value* V, uint32_t num) {
431  valueNumbering.insert(std::make_pair(V, num));
432}
433
434/// lookup_or_add - Returns the value number for the specified value, assigning
435/// it a new number if it did not have one before.
436uint32_t ValueTable::lookup_or_add(Value* V) {
437  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
438  if (VI != valueNumbering.end())
439    return VI->second;
440
441  if (CallInst* C = dyn_cast<CallInst>(V)) {
442    if (AA->doesNotAccessMemory(C)) {
443      Expression e = create_expression(C);
444
445      DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
446      if (EI != expressionNumbering.end()) {
447        valueNumbering.insert(std::make_pair(V, EI->second));
448        return EI->second;
449      } else {
450        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
451        valueNumbering.insert(std::make_pair(V, nextValueNumber));
452
453        return nextValueNumber++;
454      }
455    } else if (AA->onlyReadsMemory(C)) {
456      Expression e = create_expression(C);
457
458      if (expressionNumbering.find(e) == expressionNumbering.end()) {
459        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
460        valueNumbering.insert(std::make_pair(V, nextValueNumber));
461        return nextValueNumber++;
462      }
463
464      MemDepResult local_dep = MD->getDependency(C);
465
466      if (!local_dep.isDef() && !local_dep.isNonLocal()) {
467        valueNumbering.insert(std::make_pair(V, nextValueNumber));
468        return nextValueNumber++;
469      }
470
471      if (local_dep.isDef()) {
472        CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
473
474        if (local_cdep->getNumOperands() != C->getNumOperands()) {
475          valueNumbering.insert(std::make_pair(V, nextValueNumber));
476          return nextValueNumber++;
477        }
478
479        for (unsigned i = 1; i < C->getNumOperands(); ++i) {
480          uint32_t c_vn = lookup_or_add(C->getOperand(i));
481          uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
482          if (c_vn != cd_vn) {
483            valueNumbering.insert(std::make_pair(V, nextValueNumber));
484            return nextValueNumber++;
485          }
486        }
487
488        uint32_t v = lookup_or_add(local_cdep);
489        valueNumbering.insert(std::make_pair(V, v));
490        return v;
491      }
492
493      // Non-local case.
494      const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
495        MD->getNonLocalCallDependency(CallSite(C));
496      // FIXME: call/call dependencies for readonly calls should return def, not
497      // clobber!  Move the checking logic to MemDep!
498      CallInst* cdep = 0;
499
500      // Check to see if we have a single dominating call instruction that is
501      // identical to C.
502      for (unsigned i = 0, e = deps.size(); i != e; ++i) {
503        const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
504        // Ignore non-local dependencies.
505        if (I->second.isNonLocal())
506          continue;
507
508        // We don't handle non-depedencies.  If we already have a call, reject
509        // instruction dependencies.
510        if (I->second.isClobber() || cdep != 0) {
511          cdep = 0;
512          break;
513        }
514
515        CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
516        // FIXME: All duplicated with non-local case.
517        if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
518          cdep = NonLocalDepCall;
519          continue;
520        }
521
522        cdep = 0;
523        break;
524      }
525
526      if (!cdep) {
527        valueNumbering.insert(std::make_pair(V, nextValueNumber));
528        return nextValueNumber++;
529      }
530
531      if (cdep->getNumOperands() != C->getNumOperands()) {
532        valueNumbering.insert(std::make_pair(V, nextValueNumber));
533        return nextValueNumber++;
534      }
535      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
536        uint32_t c_vn = lookup_or_add(C->getOperand(i));
537        uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
538        if (c_vn != cd_vn) {
539          valueNumbering.insert(std::make_pair(V, nextValueNumber));
540          return nextValueNumber++;
541        }
542      }
543
544      uint32_t v = lookup_or_add(cdep);
545      valueNumbering.insert(std::make_pair(V, v));
546      return v;
547
548    } else {
549      valueNumbering.insert(std::make_pair(V, nextValueNumber));
550      return nextValueNumber++;
551    }
552  } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
553    Expression e = create_expression(BO);
554
555    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
556    if (EI != expressionNumbering.end()) {
557      valueNumbering.insert(std::make_pair(V, EI->second));
558      return EI->second;
559    } else {
560      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
561      valueNumbering.insert(std::make_pair(V, nextValueNumber));
562
563      return nextValueNumber++;
564    }
565  } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
566    Expression e = create_expression(C);
567
568    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
569    if (EI != expressionNumbering.end()) {
570      valueNumbering.insert(std::make_pair(V, EI->second));
571      return EI->second;
572    } else {
573      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
574      valueNumbering.insert(std::make_pair(V, nextValueNumber));
575
576      return nextValueNumber++;
577    }
578  } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
579    Expression e = create_expression(U);
580
581    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
582    if (EI != expressionNumbering.end()) {
583      valueNumbering.insert(std::make_pair(V, EI->second));
584      return EI->second;
585    } else {
586      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
587      valueNumbering.insert(std::make_pair(V, nextValueNumber));
588
589      return nextValueNumber++;
590    }
591  } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
592    Expression e = create_expression(U);
593
594    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
595    if (EI != expressionNumbering.end()) {
596      valueNumbering.insert(std::make_pair(V, EI->second));
597      return EI->second;
598    } else {
599      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
600      valueNumbering.insert(std::make_pair(V, nextValueNumber));
601
602      return nextValueNumber++;
603    }
604  } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
605    Expression e = create_expression(U);
606
607    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
608    if (EI != expressionNumbering.end()) {
609      valueNumbering.insert(std::make_pair(V, EI->second));
610      return EI->second;
611    } else {
612      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
613      valueNumbering.insert(std::make_pair(V, nextValueNumber));
614
615      return nextValueNumber++;
616    }
617  } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
618    Expression e = create_expression(U);
619
620    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
621    if (EI != expressionNumbering.end()) {
622      valueNumbering.insert(std::make_pair(V, EI->second));
623      return EI->second;
624    } else {
625      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
626      valueNumbering.insert(std::make_pair(V, nextValueNumber));
627
628      return nextValueNumber++;
629    }
630  } else if (CastInst* U = dyn_cast<CastInst>(V)) {
631    Expression e = create_expression(U);
632
633    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
634    if (EI != expressionNumbering.end()) {
635      valueNumbering.insert(std::make_pair(V, EI->second));
636      return EI->second;
637    } else {
638      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
639      valueNumbering.insert(std::make_pair(V, nextValueNumber));
640
641      return nextValueNumber++;
642    }
643  } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
644    Expression e = create_expression(U);
645
646    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
647    if (EI != expressionNumbering.end()) {
648      valueNumbering.insert(std::make_pair(V, EI->second));
649      return EI->second;
650    } else {
651      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
652      valueNumbering.insert(std::make_pair(V, nextValueNumber));
653
654      return nextValueNumber++;
655    }
656  } else {
657    valueNumbering.insert(std::make_pair(V, nextValueNumber));
658    return nextValueNumber++;
659  }
660}
661
662/// lookup - Returns the value number of the specified value. Fails if
663/// the value has not yet been numbered.
664uint32_t ValueTable::lookup(Value* V) const {
665  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
666  assert(VI != valueNumbering.end() && "Value not numbered?");
667  return VI->second;
668}
669
670/// clear - Remove all entries from the ValueTable
671void ValueTable::clear() {
672  valueNumbering.clear();
673  expressionNumbering.clear();
674  nextValueNumber = 1;
675}
676
677/// erase - Remove a value from the value numbering
678void ValueTable::erase(Value* V) {
679  valueNumbering.erase(V);
680}
681
682/// verifyRemoved - Verify that the value is removed from all internal data
683/// structures.
684void ValueTable::verifyRemoved(const Value *V) const {
685  for (DenseMap<Value*, uint32_t>::iterator
686         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
687    assert(I->first != V && "Inst still occurs in value numbering map!");
688  }
689}
690
691//===----------------------------------------------------------------------===//
692//                         GVN Pass
693//===----------------------------------------------------------------------===//
694
695namespace {
696  struct VISIBILITY_HIDDEN ValueNumberScope {
697    ValueNumberScope* parent;
698    DenseMap<uint32_t, Value*> table;
699
700    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
701  };
702}
703
704namespace {
705
706  class VISIBILITY_HIDDEN GVN : public FunctionPass {
707    bool runOnFunction(Function &F);
708  public:
709    static char ID; // Pass identification, replacement for typeid
710    GVN() : FunctionPass(&ID) { }
711
712  private:
713    MemoryDependenceAnalysis *MD;
714    DominatorTree *DT;
715
716    ValueTable VN;
717    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
718
719    typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
720    PhiMapType phiMap;
721
722
723    // This transformation requires dominator postdominator info
724    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
725      AU.addRequired<DominatorTree>();
726      AU.addRequired<MemoryDependenceAnalysis>();
727      AU.addRequired<AliasAnalysis>();
728
729      AU.addPreserved<DominatorTree>();
730      AU.addPreserved<AliasAnalysis>();
731    }
732
733    // Helper fuctions
734    // FIXME: eliminate or document these better
735    bool processLoad(LoadInst* L,
736                     SmallVectorImpl<Instruction*> &toErase);
737    bool processInstruction(Instruction* I,
738                            SmallVectorImpl<Instruction*> &toErase);
739    bool processNonLocalLoad(LoadInst* L,
740                             SmallVectorImpl<Instruction*> &toErase);
741    bool processBlock(BasicBlock* BB);
742    Value *GetValueForBlock(BasicBlock *BB, Instruction* orig,
743                            DenseMap<BasicBlock*, Value*> &Phis,
744                            bool top_level = false);
745    void dump(DenseMap<uint32_t, Value*>& d);
746    bool iterateOnFunction(Function &F);
747    Value* CollapsePhi(PHINode* p);
748    bool isSafeReplacement(PHINode* p, Instruction* inst);
749    bool performPRE(Function& F);
750    Value* lookupNumber(BasicBlock* BB, uint32_t num);
751    bool mergeBlockIntoPredecessor(BasicBlock* BB);
752    Value* AttemptRedundancyElimination(Instruction* orig, unsigned valno);
753    void cleanupGlobalSets();
754    void verifyRemoved(const Instruction *I) const;
755  };
756
757  char GVN::ID = 0;
758}
759
760// createGVNPass - The public interface to this file...
761FunctionPass *llvm::createGVNPass() { return new GVN(); }
762
763static RegisterPass<GVN> X("gvn",
764                           "Global Value Numbering");
765
766void GVN::dump(DenseMap<uint32_t, Value*>& d) {
767  printf("{\n");
768  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
769       E = d.end(); I != E; ++I) {
770      printf("%d\n", I->first);
771      I->second->dump();
772  }
773  printf("}\n");
774}
775
776Value* GVN::CollapsePhi(PHINode* p) {
777  Value* constVal = p->hasConstantValue();
778  if (!constVal) return 0;
779
780  Instruction* inst = dyn_cast<Instruction>(constVal);
781  if (!inst)
782    return constVal;
783
784  if (DT->dominates(inst, p))
785    if (isSafeReplacement(p, inst))
786      return inst;
787  return 0;
788}
789
790bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
791  if (!isa<PHINode>(inst))
792    return true;
793
794  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
795       UI != E; ++UI)
796    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
797      if (use_phi->getParent() == inst->getParent())
798        return false;
799
800  return true;
801}
802
803/// GetValueForBlock - Get the value to use within the specified basic block.
804/// available values are in Phis.
805Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction* orig,
806                             DenseMap<BasicBlock*, Value*> &Phis,
807                             bool top_level) {
808
809  // If we have already computed this value, return the previously computed val.
810  DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
811  if (V != Phis.end() && !top_level) return V->second;
812
813  // If the block is unreachable, just return undef, since this path
814  // can't actually occur at runtime.
815  if (!DT->isReachableFromEntry(BB))
816    return Phis[BB] = UndefValue::get(orig->getType());
817
818  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
819    Value *ret = GetValueForBlock(Pred, orig, Phis);
820    Phis[BB] = ret;
821    return ret;
822  }
823
824  // Get the number of predecessors of this block so we can reserve space later.
825  // If there is already a PHI in it, use the #preds from it, otherwise count.
826  // Getting it from the PHI is constant time.
827  unsigned NumPreds;
828  if (PHINode *ExistingPN = dyn_cast<PHINode>(BB->begin()))
829    NumPreds = ExistingPN->getNumIncomingValues();
830  else
831    NumPreds = std::distance(pred_begin(BB), pred_end(BB));
832
833  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
834  // now, then get values to fill in the incoming values for the PHI.
835  PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
836                                BB->begin());
837  PN->reserveOperandSpace(NumPreds);
838
839  Phis.insert(std::make_pair(BB, PN));
840
841  // Fill in the incoming values for the block.
842  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
843    Value* val = GetValueForBlock(*PI, orig, Phis);
844    PN->addIncoming(val, *PI);
845  }
846
847  VN.getAliasAnalysis()->copyValue(orig, PN);
848
849  // Attempt to collapse PHI nodes that are trivially redundant
850  Value* v = CollapsePhi(PN);
851  if (!v) {
852    // Cache our phi construction results
853    if (LoadInst* L = dyn_cast<LoadInst>(orig))
854      phiMap[L->getPointerOperand()].insert(PN);
855    else
856      phiMap[orig].insert(PN);
857
858    return PN;
859  }
860
861  PN->replaceAllUsesWith(v);
862  if (isa<PointerType>(v->getType()))
863    MD->invalidateCachedPointerInfo(v);
864
865  for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
866       E = Phis.end(); I != E; ++I)
867    if (I->second == PN)
868      I->second = v;
869
870  DEBUG(cerr << "GVN removed: " << *PN);
871  MD->removeInstruction(PN);
872  PN->eraseFromParent();
873  DEBUG(verifyRemoved(PN));
874
875  Phis[BB] = v;
876  return v;
877}
878
879/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
880/// we're analyzing is fully available in the specified block.  As we go, keep
881/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
882/// map is actually a tri-state map with the following values:
883///   0) we know the block *is not* fully available.
884///   1) we know the block *is* fully available.
885///   2) we do not know whether the block is fully available or not, but we are
886///      currently speculating that it will be.
887///   3) we are speculating for this block and have used that to speculate for
888///      other blocks.
889static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
890                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
891  // Optimistically assume that the block is fully available and check to see
892  // if we already know about this block in one lookup.
893  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
894    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
895
896  // If the entry already existed for this block, return the precomputed value.
897  if (!IV.second) {
898    // If this is a speculative "available" value, mark it as being used for
899    // speculation of other blocks.
900    if (IV.first->second == 2)
901      IV.first->second = 3;
902    return IV.first->second != 0;
903  }
904
905  // Otherwise, see if it is fully available in all predecessors.
906  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
907
908  // If this block has no predecessors, it isn't live-in here.
909  if (PI == PE)
910    goto SpeculationFailure;
911
912  for (; PI != PE; ++PI)
913    // If the value isn't fully available in one of our predecessors, then it
914    // isn't fully available in this block either.  Undo our previous
915    // optimistic assumption and bail out.
916    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
917      goto SpeculationFailure;
918
919  return true;
920
921// SpeculationFailure - If we get here, we found out that this is not, after
922// all, a fully-available block.  We have a problem if we speculated on this and
923// used the speculation to mark other blocks as available.
924SpeculationFailure:
925  char &BBVal = FullyAvailableBlocks[BB];
926
927  // If we didn't speculate on this, just return with it set to false.
928  if (BBVal == 2) {
929    BBVal = 0;
930    return false;
931  }
932
933  // If we did speculate on this value, we could have blocks set to 1 that are
934  // incorrect.  Walk the (transitive) successors of this block and mark them as
935  // 0 if set to one.
936  SmallVector<BasicBlock*, 32> BBWorklist;
937  BBWorklist.push_back(BB);
938
939  while (!BBWorklist.empty()) {
940    BasicBlock *Entry = BBWorklist.pop_back_val();
941    // Note that this sets blocks to 0 (unavailable) if they happen to not
942    // already be in FullyAvailableBlocks.  This is safe.
943    char &EntryVal = FullyAvailableBlocks[Entry];
944    if (EntryVal == 0) continue;  // Already unavailable.
945
946    // Mark as unavailable.
947    EntryVal = 0;
948
949    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
950      BBWorklist.push_back(*I);
951  }
952
953  return false;
954}
955
956/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
957/// non-local by performing PHI construction.
958bool GVN::processNonLocalLoad(LoadInst *LI,
959                              SmallVectorImpl<Instruction*> &toErase) {
960  // Find the non-local dependencies of the load.
961  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
962  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
963                                   Deps);
964  //DEBUG(cerr << "INVESTIGATING NONLOCAL LOAD: " << Deps.size() << *LI);
965
966  // If we had to process more than one hundred blocks to find the
967  // dependencies, this load isn't worth worrying about.  Optimizing
968  // it will be too expensive.
969  if (Deps.size() > 100)
970    return false;
971
972  // If we had a phi translation failure, we'll have a single entry which is a
973  // clobber in the current block.  Reject this early.
974  if (Deps.size() == 1 && Deps[0].second.isClobber())
975    return false;
976
977  // Filter out useless results (non-locals, etc).  Keep track of the blocks
978  // where we have a value available in repl, also keep track of whether we see
979  // dependencies that produce an unknown value for the load (such as a call
980  // that could potentially clobber the load).
981  SmallVector<std::pair<BasicBlock*, Value*>, 16> ValuesPerBlock;
982  SmallVector<BasicBlock*, 16> UnavailableBlocks;
983
984  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
985    BasicBlock *DepBB = Deps[i].first;
986    MemDepResult DepInfo = Deps[i].second;
987
988    if (DepInfo.isClobber()) {
989      UnavailableBlocks.push_back(DepBB);
990      continue;
991    }
992
993    Instruction *DepInst = DepInfo.getInst();
994
995    // Loading the allocation -> undef.
996    if (isa<AllocationInst>(DepInst)) {
997      ValuesPerBlock.push_back(std::make_pair(DepBB,
998                                              UndefValue::get(LI->getType())));
999      continue;
1000    }
1001
1002    if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
1003      // Reject loads and stores that are to the same address but are of
1004      // different types.
1005      // NOTE: 403.gcc does have this case (e.g. in readonly_fields_p) because
1006      // of bitfield access, it would be interesting to optimize for it at some
1007      // point.
1008      if (S->getOperand(0)->getType() != LI->getType()) {
1009        UnavailableBlocks.push_back(DepBB);
1010        continue;
1011      }
1012
1013      ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0)));
1014
1015    } else if (LoadInst* LD = dyn_cast<LoadInst>(DepInst)) {
1016      if (LD->getType() != LI->getType()) {
1017        UnavailableBlocks.push_back(DepBB);
1018        continue;
1019      }
1020      ValuesPerBlock.push_back(std::make_pair(DepBB, LD));
1021    } else {
1022      UnavailableBlocks.push_back(DepBB);
1023      continue;
1024    }
1025  }
1026
1027  // If we have no predecessors that produce a known value for this load, exit
1028  // early.
1029  if (ValuesPerBlock.empty()) return false;
1030
1031  // If all of the instructions we depend on produce a known value for this
1032  // load, then it is fully redundant and we can use PHI insertion to compute
1033  // its value.  Insert PHIs and remove the fully redundant value now.
1034  if (UnavailableBlocks.empty()) {
1035    // Use cached PHI construction information from previous runs
1036    SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1037    // FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
1038    for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1039         I != E; ++I) {
1040      if ((*I)->getParent() == LI->getParent()) {
1041        DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD #1: " << *LI);
1042        LI->replaceAllUsesWith(*I);
1043        if (isa<PointerType>((*I)->getType()))
1044          MD->invalidateCachedPointerInfo(*I);
1045        toErase.push_back(LI);
1046        NumGVNLoad++;
1047        return true;
1048      }
1049
1050      ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1051    }
1052
1053    DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD: " << *LI);
1054
1055    DenseMap<BasicBlock*, Value*> BlockReplValues;
1056    BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1057    // Perform PHI construction.
1058    Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1059    LI->replaceAllUsesWith(v);
1060
1061    if (!isa<GlobalValue>(v))
1062      v->takeName(LI);
1063    if (isa<PointerType>(v->getType()))
1064      MD->invalidateCachedPointerInfo(v);
1065    toErase.push_back(LI);
1066    NumGVNLoad++;
1067    return true;
1068  }
1069
1070  if (!EnablePRE || !EnableLoadPRE)
1071    return false;
1072
1073  // Okay, we have *some* definitions of the value.  This means that the value
1074  // is available in some of our (transitive) predecessors.  Lets think about
1075  // doing PRE of this load.  This will involve inserting a new load into the
1076  // predecessor when it's not available.  We could do this in general, but
1077  // prefer to not increase code size.  As such, we only do this when we know
1078  // that we only have to insert *one* load (which means we're basically moving
1079  // the load, not inserting a new one).
1080
1081  // Everything we do here is based on local predecessors of LI's block.  If it
1082  // only has one predecessor, bail now.
1083  BasicBlock *LoadBB = LI->getParent();
1084  if (LoadBB->getSinglePredecessor())
1085    return false;
1086
1087  // If we have a repl set with LI itself in it, this means we have a loop where
1088  // at least one of the values is LI.  Since this means that we won't be able
1089  // to eliminate LI even if we insert uses in the other predecessors, we will
1090  // end up increasing code size.  Reject this by scanning for LI.
1091  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1092    if (ValuesPerBlock[i].second == LI)
1093      return false;
1094
1095  // Okay, we have some hope :).  Check to see if the loaded value is fully
1096  // available in all but one predecessor.
1097  // FIXME: If we could restructure the CFG, we could make a common pred with
1098  // all the preds that don't have an available LI and insert a new load into
1099  // that one block.
1100  BasicBlock *UnavailablePred = 0;
1101
1102  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1103  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1104    FullyAvailableBlocks[ValuesPerBlock[i].first] = true;
1105  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1106    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1107
1108  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1109       PI != E; ++PI) {
1110    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1111      continue;
1112
1113    // If this load is not available in multiple predecessors, reject it.
1114    if (UnavailablePred && UnavailablePred != *PI)
1115      return false;
1116    UnavailablePred = *PI;
1117  }
1118
1119  assert(UnavailablePred != 0 &&
1120         "Fully available value should be eliminated above!");
1121
1122  // If the loaded pointer is PHI node defined in this block, do PHI translation
1123  // to get its value in the predecessor.
1124  Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
1125
1126  // Make sure the value is live in the predecessor.  If it was defined by a
1127  // non-PHI instruction in this block, we don't know how to recompute it above.
1128  if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
1129    if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
1130      DEBUG(cerr << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
1131                 << *LPInst << *LI << "\n");
1132      return false;
1133    }
1134
1135  // We don't currently handle critical edges :(
1136  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1137    DEBUG(cerr << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1138                << UnavailablePred->getName() << "': " << *LI);
1139    return false;
1140  }
1141
1142  // Okay, we can eliminate this load by inserting a reload in the predecessor
1143  // and using PHI construction to get the value in the other predecessors, do
1144  // it.
1145  DEBUG(cerr << "GVN REMOVING PRE LOAD: " << *LI);
1146
1147  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1148                                LI->getAlignment(),
1149                                UnavailablePred->getTerminator());
1150
1151  DenseMap<BasicBlock*, Value*> BlockReplValues;
1152  BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1153  BlockReplValues[UnavailablePred] = NewLoad;
1154
1155  // Perform PHI construction.
1156  Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1157  LI->replaceAllUsesWith(v);
1158  if (!isa<GlobalValue>(v))
1159    v->takeName(LI);
1160  if (isa<PointerType>(v->getType()))
1161    MD->invalidateCachedPointerInfo(v);
1162  toErase.push_back(LI);
1163  NumPRELoad++;
1164  return true;
1165}
1166
1167/// processLoad - Attempt to eliminate a load, first by eliminating it
1168/// locally, and then attempting non-local elimination if that fails.
1169bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1170  if (L->isVolatile())
1171    return false;
1172
1173  Value* pointer = L->getPointerOperand();
1174
1175  // ... to a pointer that has been loaded from before...
1176  MemDepResult dep = MD->getDependency(L);
1177
1178  // If the value isn't available, don't do anything!
1179  if (dep.isClobber())
1180    return false;
1181
1182  // If it is defined in another block, try harder.
1183  if (dep.isNonLocal())
1184    return processNonLocalLoad(L, toErase);
1185
1186  Instruction *DepInst = dep.getInst();
1187  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1188    // Only forward substitute stores to loads of the same type.
1189    // FIXME: Could do better!
1190    if (DepSI->getPointerOperand()->getType() != pointer->getType())
1191      return false;
1192
1193    // Remove it!
1194    L->replaceAllUsesWith(DepSI->getOperand(0));
1195    if (isa<PointerType>(DepSI->getOperand(0)->getType()))
1196      MD->invalidateCachedPointerInfo(DepSI->getOperand(0));
1197    toErase.push_back(L);
1198    NumGVNLoad++;
1199    return true;
1200  }
1201
1202  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1203    // Only forward substitute stores to loads of the same type.
1204    // FIXME: Could do better! load i32 -> load i8 -> truncate on little endian.
1205    if (DepLI->getType() != L->getType())
1206      return false;
1207
1208    // Remove it!
1209    L->replaceAllUsesWith(DepLI);
1210    if (isa<PointerType>(DepLI->getType()))
1211      MD->invalidateCachedPointerInfo(DepLI);
1212    toErase.push_back(L);
1213    NumGVNLoad++;
1214    return true;
1215  }
1216
1217  // If this load really doesn't depend on anything, then we must be loading an
1218  // undef value.  This can happen when loading for a fresh allocation with no
1219  // intervening stores, for example.
1220  if (isa<AllocationInst>(DepInst)) {
1221    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1222    toErase.push_back(L);
1223    NumGVNLoad++;
1224    return true;
1225  }
1226
1227  return false;
1228}
1229
1230Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
1231  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1232  if (I == localAvail.end())
1233    return 0;
1234
1235  ValueNumberScope* locals = I->second;
1236
1237  while (locals) {
1238    DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
1239    if (I != locals->table.end())
1240      return I->second;
1241    else
1242      locals = locals->parent;
1243  }
1244
1245  return 0;
1246}
1247
1248/// AttemptRedundancyElimination - If the "fast path" of redundancy elimination
1249/// by inheritance from the dominator fails, see if we can perform phi
1250/// construction to eliminate the redundancy.
1251Value* GVN::AttemptRedundancyElimination(Instruction* orig, unsigned valno) {
1252  BasicBlock* BaseBlock = orig->getParent();
1253
1254  SmallPtrSet<BasicBlock*, 4> Visited;
1255  SmallVector<BasicBlock*, 8> Stack;
1256  Stack.push_back(BaseBlock);
1257
1258  DenseMap<BasicBlock*, Value*> Results;
1259
1260  // Walk backwards through our predecessors, looking for instances of the
1261  // value number we're looking for.  Instances are recorded in the Results
1262  // map, which is then used to perform phi construction.
1263  while (!Stack.empty()) {
1264    BasicBlock* Current = Stack.back();
1265    Stack.pop_back();
1266
1267    // If we've walked all the way to a proper dominator, then give up. Cases
1268    // where the instance is in the dominator will have been caught by the fast
1269    // path, and any cases that require phi construction further than this are
1270    // probably not worth it anyways.  Note that this is a SIGNIFICANT compile
1271    // time improvement.
1272    if (DT->properlyDominates(Current, orig->getParent())) return 0;
1273
1274    DenseMap<BasicBlock*, ValueNumberScope*>::iterator LA =
1275                                                       localAvail.find(Current);
1276    if (LA == localAvail.end()) return 0;
1277    DenseMap<unsigned, Value*>::iterator V = LA->second->table.find(valno);
1278
1279    if (V != LA->second->table.end()) {
1280      // Found an instance, record it.
1281      Results.insert(std::make_pair(Current, V->second));
1282      continue;
1283    }
1284
1285    // If we reach the beginning of the function, then give up.
1286    if (pred_begin(Current) == pred_end(Current))
1287      return 0;
1288
1289    for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current);
1290         PI != PE; ++PI)
1291      if (Visited.insert(*PI))
1292        Stack.push_back(*PI);
1293  }
1294
1295  // If we didn't find instances, give up.  Otherwise, perform phi construction.
1296  if (Results.size() == 0)
1297    return 0;
1298  else
1299    return GetValueForBlock(BaseBlock, orig, Results, true);
1300}
1301
1302/// processInstruction - When calculating availability, handle an instruction
1303/// by inserting it into the appropriate sets
1304bool GVN::processInstruction(Instruction *I,
1305                             SmallVectorImpl<Instruction*> &toErase) {
1306  if (LoadInst* L = dyn_cast<LoadInst>(I)) {
1307    bool changed = processLoad(L, toErase);
1308
1309    if (!changed) {
1310      unsigned num = VN.lookup_or_add(L);
1311      localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
1312    }
1313
1314    return changed;
1315  }
1316
1317  uint32_t nextNum = VN.getNextUnusedValueNumber();
1318  unsigned num = VN.lookup_or_add(I);
1319
1320  // Allocations are always uniquely numbered, so we can save time and memory
1321  // by fast failing them.
1322  if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
1323    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1324    return false;
1325  }
1326
1327  // Collapse PHI nodes
1328  if (PHINode* p = dyn_cast<PHINode>(I)) {
1329    Value* constVal = CollapsePhi(p);
1330
1331    if (constVal) {
1332      for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
1333           PI != PE; ++PI)
1334        PI->second.erase(p);
1335
1336      p->replaceAllUsesWith(constVal);
1337      if (isa<PointerType>(constVal->getType()))
1338        MD->invalidateCachedPointerInfo(constVal);
1339      toErase.push_back(p);
1340    } else {
1341      localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1342    }
1343
1344  // If the number we were assigned was a brand new VN, then we don't
1345  // need to do a lookup to see if the number already exists
1346  // somewhere in the domtree: it can't!
1347  } else if (num == nextNum) {
1348    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1349
1350  // Perform fast-path value-number based elimination of values inherited from
1351  // dominators.
1352  } else if (Value* repl = lookupNumber(I->getParent(), num)) {
1353    // Remove it!
1354    VN.erase(I);
1355    I->replaceAllUsesWith(repl);
1356    if (isa<PointerType>(repl->getType()))
1357      MD->invalidateCachedPointerInfo(repl);
1358    toErase.push_back(I);
1359    return true;
1360
1361#if 0
1362  // Perform slow-pathvalue-number based elimination with phi construction.
1363  } else if (Value* repl = AttemptRedundancyElimination(I, num)) {
1364    // Remove it!
1365    VN.erase(I);
1366    I->replaceAllUsesWith(repl);
1367    if (isa<PointerType>(repl->getType()))
1368      MD->invalidateCachedPointerInfo(repl);
1369    toErase.push_back(I);
1370    return true;
1371#endif
1372  } else {
1373    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1374  }
1375
1376  return false;
1377}
1378
1379// GVN::runOnFunction - This is the main transformation entry point for a
1380// function.
1381//
1382bool GVN::runOnFunction(Function& F) {
1383  MD = &getAnalysis<MemoryDependenceAnalysis>();
1384  DT = &getAnalysis<DominatorTree>();
1385  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1386  VN.setMemDep(MD);
1387  VN.setDomTree(DT);
1388
1389  bool changed = false;
1390  bool shouldContinue = true;
1391
1392  // Merge unconditional branches, allowing PRE to catch more
1393  // optimization opportunities.
1394  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1395    BasicBlock* BB = FI;
1396    ++FI;
1397    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1398    if (removedBlock) NumGVNBlocks++;
1399
1400    changed |= removedBlock;
1401  }
1402
1403  unsigned Iteration = 0;
1404
1405  while (shouldContinue) {
1406    DEBUG(cerr << "GVN iteration: " << Iteration << "\n");
1407    shouldContinue = iterateOnFunction(F);
1408    changed |= shouldContinue;
1409    ++Iteration;
1410  }
1411
1412  if (EnablePRE) {
1413    bool PREChanged = true;
1414    while (PREChanged) {
1415      PREChanged = performPRE(F);
1416      changed |= PREChanged;
1417    }
1418  }
1419  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1420  // computations into blocks where they become fully redundant.  Note that
1421  // we can't do this until PRE's critical edge splitting updates memdep.
1422  // Actually, when this happens, we should just fully integrate PRE into GVN.
1423
1424  cleanupGlobalSets();
1425
1426  return changed;
1427}
1428
1429
1430bool GVN::processBlock(BasicBlock* BB) {
1431  DomTreeNode* DTN = DT->getNode(BB);
1432  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1433  // incrementing BI before processing an instruction).
1434  SmallVector<Instruction*, 8> toErase;
1435  bool changed_function = false;
1436
1437  if (DTN->getIDom())
1438    localAvail[BB] =
1439                  new ValueNumberScope(localAvail[DTN->getIDom()->getBlock()]);
1440  else
1441    localAvail[BB] = new ValueNumberScope(0);
1442
1443  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1444       BI != BE;) {
1445    changed_function |= processInstruction(BI, toErase);
1446    if (toErase.empty()) {
1447      ++BI;
1448      continue;
1449    }
1450
1451    // If we need some instructions deleted, do it now.
1452    NumGVNInstr += toErase.size();
1453
1454    // Avoid iterator invalidation.
1455    bool AtStart = BI == BB->begin();
1456    if (!AtStart)
1457      --BI;
1458
1459    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1460         E = toErase.end(); I != E; ++I) {
1461      DEBUG(cerr << "GVN removed: " << **I);
1462      MD->removeInstruction(*I);
1463      (*I)->eraseFromParent();
1464    }
1465    toErase.clear();
1466
1467    if (AtStart)
1468      BI = BB->begin();
1469    else
1470      ++BI;
1471  }
1472
1473  return changed_function;
1474}
1475
1476/// performPRE - Perform a purely local form of PRE that looks for diamond
1477/// control flow patterns and attempts to perform simple PRE at the join point.
1478bool GVN::performPRE(Function& F) {
1479  bool Changed = false;
1480  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1481  DenseMap<BasicBlock*, Value*> predMap;
1482  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1483       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1484    BasicBlock* CurrentBlock = *DI;
1485
1486    // Nothing to PRE in the entry block.
1487    if (CurrentBlock == &F.getEntryBlock()) continue;
1488
1489    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1490         BE = CurrentBlock->end(); BI != BE; ) {
1491      Instruction *CurInst = BI++;
1492
1493      if (isa<AllocationInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
1494          isa<PHINode>(CurInst) || CurInst->mayReadFromMemory() ||
1495          CurInst->mayWriteToMemory())
1496        continue;
1497
1498      uint32_t valno = VN.lookup(CurInst);
1499
1500      // Look for the predecessors for PRE opportunities.  We're
1501      // only trying to solve the basic diamond case, where
1502      // a value is computed in the successor and one predecessor,
1503      // but not the other.  We also explicitly disallow cases
1504      // where the successor is its own predecessor, because they're
1505      // more complicated to get right.
1506      unsigned numWith = 0;
1507      unsigned numWithout = 0;
1508      BasicBlock* PREPred = 0;
1509      predMap.clear();
1510
1511      for (pred_iterator PI = pred_begin(CurrentBlock),
1512           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1513        // We're not interested in PRE where the block is its
1514        // own predecessor, on in blocks with predecessors
1515        // that are not reachable.
1516        if (*PI == CurrentBlock) {
1517          numWithout = 2;
1518          break;
1519        } else if (!localAvail.count(*PI))  {
1520          numWithout = 2;
1521          break;
1522        }
1523
1524        DenseMap<uint32_t, Value*>::iterator predV =
1525                                            localAvail[*PI]->table.find(valno);
1526        if (predV == localAvail[*PI]->table.end()) {
1527          PREPred = *PI;
1528          numWithout++;
1529        } else if (predV->second == CurInst) {
1530          numWithout = 2;
1531        } else {
1532          predMap[*PI] = predV->second;
1533          numWith++;
1534        }
1535      }
1536
1537      // Don't do PRE when it might increase code size, i.e. when
1538      // we would need to insert instructions in more than one pred.
1539      if (numWithout != 1 || numWith == 0)
1540        continue;
1541
1542      // We can't do PRE safely on a critical edge, so instead we schedule
1543      // the edge to be split and perform the PRE the next time we iterate
1544      // on the function.
1545      unsigned succNum = 0;
1546      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1547           i != e; ++i)
1548        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1549          succNum = i;
1550          break;
1551        }
1552
1553      if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
1554        toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
1555        continue;
1556      }
1557
1558      // Instantiate the expression the in predecessor that lacked it.
1559      // Because we are going top-down through the block, all value numbers
1560      // will be available in the predecessor by the time we need them.  Any
1561      // that weren't original present will have been instantiated earlier
1562      // in this loop.
1563      Instruction* PREInstr = CurInst->clone();
1564      bool success = true;
1565      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1566        Value *Op = PREInstr->getOperand(i);
1567        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1568          continue;
1569
1570        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1571          PREInstr->setOperand(i, V);
1572        } else {
1573          success = false;
1574          break;
1575        }
1576      }
1577
1578      // Fail out if we encounter an operand that is not available in
1579      // the PRE predecessor.  This is typically because of loads which
1580      // are not value numbered precisely.
1581      if (!success) {
1582        delete PREInstr;
1583        continue;
1584      }
1585
1586      PREInstr->insertBefore(PREPred->getTerminator());
1587      PREInstr->setName(CurInst->getName() + ".pre");
1588      predMap[PREPred] = PREInstr;
1589      VN.add(PREInstr, valno);
1590      NumGVNPRE++;
1591
1592      // Update the availability map to include the new instruction.
1593      localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
1594
1595      // Create a PHI to make the value available in this block.
1596      PHINode* Phi = PHINode::Create(CurInst->getType(),
1597                                     CurInst->getName() + ".pre-phi",
1598                                     CurrentBlock->begin());
1599      for (pred_iterator PI = pred_begin(CurrentBlock),
1600           PE = pred_end(CurrentBlock); PI != PE; ++PI)
1601        Phi->addIncoming(predMap[*PI], *PI);
1602
1603      VN.add(Phi, valno);
1604      localAvail[CurrentBlock]->table[valno] = Phi;
1605
1606      CurInst->replaceAllUsesWith(Phi);
1607      if (isa<PointerType>(Phi->getType()))
1608        MD->invalidateCachedPointerInfo(Phi);
1609      VN.erase(CurInst);
1610
1611      DEBUG(cerr << "GVN PRE removed: " << *CurInst);
1612      MD->removeInstruction(CurInst);
1613      CurInst->eraseFromParent();
1614      Changed = true;
1615    }
1616  }
1617
1618  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
1619       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
1620    SplitCriticalEdge(I->first, I->second, this);
1621
1622  return Changed || toSplit.size();
1623}
1624
1625// iterateOnFunction - Executes one iteration of GVN
1626bool GVN::iterateOnFunction(Function &F) {
1627  cleanupGlobalSets();
1628
1629  // Top-down walk of the dominator tree
1630  bool changed = false;
1631#if 0
1632  // Needed for value numbering with phi construction to work.
1633  ReversePostOrderTraversal<Function*> RPOT(&F);
1634  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
1635       RE = RPOT.end(); RI != RE; ++RI)
1636    changed |= processBlock(*RI);
1637#else
1638  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1639       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
1640    changed |= processBlock(DI->getBlock());
1641#endif
1642
1643  return changed;
1644}
1645
1646void GVN::cleanupGlobalSets() {
1647  VN.clear();
1648  phiMap.clear();
1649
1650  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1651       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
1652    delete I->second;
1653  localAvail.clear();
1654}
1655
1656/// verifyRemoved - Verify that the specified instruction does not occur in our
1657/// internal data structures.
1658void GVN::verifyRemoved(const Instruction *I) const {
1659  VN.verifyRemoved(I);
1660}
1661