GVN.cpp revision 246ddf55d12c3347a5a4e5d1cc04e6a31974f0c8
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/Value.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/DepthFirstIterator.h"
28#include "llvm/ADT/PostOrderIterator.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Analysis/AliasAnalysis.h"
34#include "llvm/Analysis/MemoryDependenceAnalysis.h"
35#include "llvm/Support/CFG.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Transforms/Utils/BasicBlockUtils.h"
40#include <cstdio>
41using namespace llvm;
42
43STATISTIC(NumGVNInstr,  "Number of instructions deleted");
44STATISTIC(NumGVNLoad,   "Number of loads deleted");
45STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
46STATISTIC(NumGVNBlocks, "Number of blocks merged");
47STATISTIC(NumPRELoad,   "Number of loads PRE'd");
48
49static cl::opt<bool> EnablePRE("enable-pre",
50                               cl::init(true), cl::Hidden);
51cl::opt<bool> EnableLoadPRE("enable-load-pre"/*, cl::init(true)*/);
52
53//===----------------------------------------------------------------------===//
54//                         ValueTable Class
55//===----------------------------------------------------------------------===//
56
57/// This class holds the mapping between values and value numbers.  It is used
58/// as an efficient mechanism to determine the expression-wise equivalence of
59/// two values.
60namespace {
61  struct VISIBILITY_HIDDEN Expression {
62    enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM,
63                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
64                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
65                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
66                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
67                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
68                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
69                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
70                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
71                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
72                            EMPTY, TOMBSTONE };
73
74    ExpressionOpcode opcode;
75    const Type* type;
76    uint32_t firstVN;
77    uint32_t secondVN;
78    uint32_t thirdVN;
79    SmallVector<uint32_t, 4> varargs;
80    Value* function;
81
82    Expression() { }
83    Expression(ExpressionOpcode o) : opcode(o) { }
84
85    bool operator==(const Expression &other) const {
86      if (opcode != other.opcode)
87        return false;
88      else if (opcode == EMPTY || opcode == TOMBSTONE)
89        return true;
90      else if (type != other.type)
91        return false;
92      else if (function != other.function)
93        return false;
94      else if (firstVN != other.firstVN)
95        return false;
96      else if (secondVN != other.secondVN)
97        return false;
98      else if (thirdVN != other.thirdVN)
99        return false;
100      else {
101        if (varargs.size() != other.varargs.size())
102          return false;
103
104        for (size_t i = 0; i < varargs.size(); ++i)
105          if (varargs[i] != other.varargs[i])
106            return false;
107
108        return true;
109      }
110    }
111
112    bool operator!=(const Expression &other) const {
113      return !(*this == other);
114    }
115  };
116
117  class VISIBILITY_HIDDEN ValueTable {
118    private:
119      DenseMap<Value*, uint32_t> valueNumbering;
120      DenseMap<Expression, uint32_t> expressionNumbering;
121      AliasAnalysis* AA;
122      MemoryDependenceAnalysis* MD;
123      DominatorTree* DT;
124
125      uint32_t nextValueNumber;
126
127      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
128      Expression::ExpressionOpcode getOpcode(CmpInst* C);
129      Expression::ExpressionOpcode getOpcode(CastInst* C);
130      Expression create_expression(BinaryOperator* BO);
131      Expression create_expression(CmpInst* C);
132      Expression create_expression(ShuffleVectorInst* V);
133      Expression create_expression(ExtractElementInst* C);
134      Expression create_expression(InsertElementInst* V);
135      Expression create_expression(SelectInst* V);
136      Expression create_expression(CastInst* C);
137      Expression create_expression(GetElementPtrInst* G);
138      Expression create_expression(CallInst* C);
139      Expression create_expression(Constant* C);
140    public:
141      ValueTable() : nextValueNumber(1) { }
142      uint32_t lookup_or_add(Value* V);
143      uint32_t lookup(Value* V) const;
144      void add(Value* V, uint32_t num);
145      void clear();
146      void erase(Value* v);
147      unsigned size();
148      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
149      AliasAnalysis *getAliasAnalysis() const { return AA; }
150      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
151      void setDomTree(DominatorTree* D) { DT = D; }
152      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
153      void verifyRemoved(const Value *) const;
154  };
155}
156
157namespace llvm {
158template <> struct DenseMapInfo<Expression> {
159  static inline Expression getEmptyKey() {
160    return Expression(Expression::EMPTY);
161  }
162
163  static inline Expression getTombstoneKey() {
164    return Expression(Expression::TOMBSTONE);
165  }
166
167  static unsigned getHashValue(const Expression e) {
168    unsigned hash = e.opcode;
169
170    hash = e.firstVN + hash * 37;
171    hash = e.secondVN + hash * 37;
172    hash = e.thirdVN + hash * 37;
173
174    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
175            (unsigned)((uintptr_t)e.type >> 9)) +
176           hash * 37;
177
178    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
179         E = e.varargs.end(); I != E; ++I)
180      hash = *I + hash * 37;
181
182    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
183            (unsigned)((uintptr_t)e.function >> 9)) +
184           hash * 37;
185
186    return hash;
187  }
188  static bool isEqual(const Expression &LHS, const Expression &RHS) {
189    return LHS == RHS;
190  }
191  static bool isPod() { return true; }
192};
193}
194
195//===----------------------------------------------------------------------===//
196//                     ValueTable Internal Functions
197//===----------------------------------------------------------------------===//
198Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
199  switch(BO->getOpcode()) {
200  default: // THIS SHOULD NEVER HAPPEN
201    assert(0 && "Binary operator with unknown opcode?");
202  case Instruction::Add:  return Expression::ADD;
203  case Instruction::Sub:  return Expression::SUB;
204  case Instruction::Mul:  return Expression::MUL;
205  case Instruction::UDiv: return Expression::UDIV;
206  case Instruction::SDiv: return Expression::SDIV;
207  case Instruction::FDiv: return Expression::FDIV;
208  case Instruction::URem: return Expression::UREM;
209  case Instruction::SRem: return Expression::SREM;
210  case Instruction::FRem: return Expression::FREM;
211  case Instruction::Shl:  return Expression::SHL;
212  case Instruction::LShr: return Expression::LSHR;
213  case Instruction::AShr: return Expression::ASHR;
214  case Instruction::And:  return Expression::AND;
215  case Instruction::Or:   return Expression::OR;
216  case Instruction::Xor:  return Expression::XOR;
217  }
218}
219
220Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
221  if (isa<ICmpInst>(C) || isa<VICmpInst>(C)) {
222    switch (C->getPredicate()) {
223    default:  // THIS SHOULD NEVER HAPPEN
224      assert(0 && "Comparison with unknown predicate?");
225    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
226    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
227    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
228    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
229    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
230    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
231    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
232    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
233    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
234    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
235    }
236  }
237  assert((isa<FCmpInst>(C) || isa<VFCmpInst>(C)) && "Unknown compare");
238  switch (C->getPredicate()) {
239  default: // THIS SHOULD NEVER HAPPEN
240    assert(0 && "Comparison with unknown predicate?");
241  case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
242  case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
243  case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
244  case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
245  case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
246  case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
247  case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
248  case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
249  case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
250  case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
251  case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
252  case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
253  case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
254  case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
255  }
256}
257
258Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
259  switch(C->getOpcode()) {
260  default: // THIS SHOULD NEVER HAPPEN
261    assert(0 && "Cast operator with unknown opcode?");
262  case Instruction::Trunc:    return Expression::TRUNC;
263  case Instruction::ZExt:     return Expression::ZEXT;
264  case Instruction::SExt:     return Expression::SEXT;
265  case Instruction::FPToUI:   return Expression::FPTOUI;
266  case Instruction::FPToSI:   return Expression::FPTOSI;
267  case Instruction::UIToFP:   return Expression::UITOFP;
268  case Instruction::SIToFP:   return Expression::SITOFP;
269  case Instruction::FPTrunc:  return Expression::FPTRUNC;
270  case Instruction::FPExt:    return Expression::FPEXT;
271  case Instruction::PtrToInt: return Expression::PTRTOINT;
272  case Instruction::IntToPtr: return Expression::INTTOPTR;
273  case Instruction::BitCast:  return Expression::BITCAST;
274  }
275}
276
277Expression ValueTable::create_expression(CallInst* C) {
278  Expression e;
279
280  e.type = C->getType();
281  e.firstVN = 0;
282  e.secondVN = 0;
283  e.thirdVN = 0;
284  e.function = C->getCalledFunction();
285  e.opcode = Expression::CALL;
286
287  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
288       I != E; ++I)
289    e.varargs.push_back(lookup_or_add(*I));
290
291  return e;
292}
293
294Expression ValueTable::create_expression(BinaryOperator* BO) {
295  Expression e;
296
297  e.firstVN = lookup_or_add(BO->getOperand(0));
298  e.secondVN = lookup_or_add(BO->getOperand(1));
299  e.thirdVN = 0;
300  e.function = 0;
301  e.type = BO->getType();
302  e.opcode = getOpcode(BO);
303
304  return e;
305}
306
307Expression ValueTable::create_expression(CmpInst* C) {
308  Expression e;
309
310  e.firstVN = lookup_or_add(C->getOperand(0));
311  e.secondVN = lookup_or_add(C->getOperand(1));
312  e.thirdVN = 0;
313  e.function = 0;
314  e.type = C->getType();
315  e.opcode = getOpcode(C);
316
317  return e;
318}
319
320Expression ValueTable::create_expression(CastInst* C) {
321  Expression e;
322
323  e.firstVN = lookup_or_add(C->getOperand(0));
324  e.secondVN = 0;
325  e.thirdVN = 0;
326  e.function = 0;
327  e.type = C->getType();
328  e.opcode = getOpcode(C);
329
330  return e;
331}
332
333Expression ValueTable::create_expression(ShuffleVectorInst* S) {
334  Expression e;
335
336  e.firstVN = lookup_or_add(S->getOperand(0));
337  e.secondVN = lookup_or_add(S->getOperand(1));
338  e.thirdVN = lookup_or_add(S->getOperand(2));
339  e.function = 0;
340  e.type = S->getType();
341  e.opcode = Expression::SHUFFLE;
342
343  return e;
344}
345
346Expression ValueTable::create_expression(ExtractElementInst* E) {
347  Expression e;
348
349  e.firstVN = lookup_or_add(E->getOperand(0));
350  e.secondVN = lookup_or_add(E->getOperand(1));
351  e.thirdVN = 0;
352  e.function = 0;
353  e.type = E->getType();
354  e.opcode = Expression::EXTRACT;
355
356  return e;
357}
358
359Expression ValueTable::create_expression(InsertElementInst* I) {
360  Expression e;
361
362  e.firstVN = lookup_or_add(I->getOperand(0));
363  e.secondVN = lookup_or_add(I->getOperand(1));
364  e.thirdVN = lookup_or_add(I->getOperand(2));
365  e.function = 0;
366  e.type = I->getType();
367  e.opcode = Expression::INSERT;
368
369  return e;
370}
371
372Expression ValueTable::create_expression(SelectInst* I) {
373  Expression e;
374
375  e.firstVN = lookup_or_add(I->getCondition());
376  e.secondVN = lookup_or_add(I->getTrueValue());
377  e.thirdVN = lookup_or_add(I->getFalseValue());
378  e.function = 0;
379  e.type = I->getType();
380  e.opcode = Expression::SELECT;
381
382  return e;
383}
384
385Expression ValueTable::create_expression(GetElementPtrInst* G) {
386  Expression e;
387
388  e.firstVN = lookup_or_add(G->getPointerOperand());
389  e.secondVN = 0;
390  e.thirdVN = 0;
391  e.function = 0;
392  e.type = G->getType();
393  e.opcode = Expression::GEP;
394
395  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
396       I != E; ++I)
397    e.varargs.push_back(lookup_or_add(*I));
398
399  return e;
400}
401
402//===----------------------------------------------------------------------===//
403//                     ValueTable External Functions
404//===----------------------------------------------------------------------===//
405
406/// add - Insert a value into the table with a specified value number.
407void ValueTable::add(Value* V, uint32_t num) {
408  valueNumbering.insert(std::make_pair(V, num));
409}
410
411/// lookup_or_add - Returns the value number for the specified value, assigning
412/// it a new number if it did not have one before.
413uint32_t ValueTable::lookup_or_add(Value* V) {
414  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
415  if (VI != valueNumbering.end())
416    return VI->second;
417
418  if (CallInst* C = dyn_cast<CallInst>(V)) {
419    if (AA->doesNotAccessMemory(C)) {
420      Expression e = create_expression(C);
421
422      DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
423      if (EI != expressionNumbering.end()) {
424        valueNumbering.insert(std::make_pair(V, EI->second));
425        return EI->second;
426      } else {
427        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
428        valueNumbering.insert(std::make_pair(V, nextValueNumber));
429
430        return nextValueNumber++;
431      }
432    } else if (AA->onlyReadsMemory(C)) {
433      Expression e = create_expression(C);
434
435      if (expressionNumbering.find(e) == expressionNumbering.end()) {
436        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
437        valueNumbering.insert(std::make_pair(V, nextValueNumber));
438        return nextValueNumber++;
439      }
440
441      MemDepResult local_dep = MD->getDependency(C);
442
443      if (!local_dep.isDef() && !local_dep.isNonLocal()) {
444        valueNumbering.insert(std::make_pair(V, nextValueNumber));
445        return nextValueNumber++;
446      }
447
448      if (local_dep.isDef()) {
449        CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
450
451        if (local_cdep->getNumOperands() != C->getNumOperands()) {
452          valueNumbering.insert(std::make_pair(V, nextValueNumber));
453          return nextValueNumber++;
454        }
455
456        for (unsigned i = 1; i < C->getNumOperands(); ++i) {
457          uint32_t c_vn = lookup_or_add(C->getOperand(i));
458          uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
459          if (c_vn != cd_vn) {
460            valueNumbering.insert(std::make_pair(V, nextValueNumber));
461            return nextValueNumber++;
462          }
463        }
464
465        uint32_t v = lookup_or_add(local_cdep);
466        valueNumbering.insert(std::make_pair(V, v));
467        return v;
468      }
469
470      // Non-local case.
471      const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
472        MD->getNonLocalCallDependency(CallSite(C));
473      // FIXME: call/call dependencies for readonly calls should return def, not
474      // clobber!  Move the checking logic to MemDep!
475      CallInst* cdep = 0;
476
477      // Check to see if we have a single dominating call instruction that is
478      // identical to C.
479      for (unsigned i = 0, e = deps.size(); i != e; ++i) {
480        const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
481        // Ignore non-local dependencies.
482        if (I->second.isNonLocal())
483          continue;
484
485        // We don't handle non-depedencies.  If we already have a call, reject
486        // instruction dependencies.
487        if (I->second.isClobber() || cdep != 0) {
488          cdep = 0;
489          break;
490        }
491
492        CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
493        // FIXME: All duplicated with non-local case.
494        if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
495          cdep = NonLocalDepCall;
496          continue;
497        }
498
499        cdep = 0;
500        break;
501      }
502
503      if (!cdep) {
504        valueNumbering.insert(std::make_pair(V, nextValueNumber));
505        return nextValueNumber++;
506      }
507
508      if (cdep->getNumOperands() != C->getNumOperands()) {
509        valueNumbering.insert(std::make_pair(V, nextValueNumber));
510        return nextValueNumber++;
511      }
512      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
513        uint32_t c_vn = lookup_or_add(C->getOperand(i));
514        uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
515        if (c_vn != cd_vn) {
516          valueNumbering.insert(std::make_pair(V, nextValueNumber));
517          return nextValueNumber++;
518        }
519      }
520
521      uint32_t v = lookup_or_add(cdep);
522      valueNumbering.insert(std::make_pair(V, v));
523      return v;
524
525    } else {
526      valueNumbering.insert(std::make_pair(V, nextValueNumber));
527      return nextValueNumber++;
528    }
529  } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
530    Expression e = create_expression(BO);
531
532    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
533    if (EI != expressionNumbering.end()) {
534      valueNumbering.insert(std::make_pair(V, EI->second));
535      return EI->second;
536    } else {
537      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
538      valueNumbering.insert(std::make_pair(V, nextValueNumber));
539
540      return nextValueNumber++;
541    }
542  } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
543    Expression e = create_expression(C);
544
545    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
546    if (EI != expressionNumbering.end()) {
547      valueNumbering.insert(std::make_pair(V, EI->second));
548      return EI->second;
549    } else {
550      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
551      valueNumbering.insert(std::make_pair(V, nextValueNumber));
552
553      return nextValueNumber++;
554    }
555  } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
556    Expression e = create_expression(U);
557
558    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
559    if (EI != expressionNumbering.end()) {
560      valueNumbering.insert(std::make_pair(V, EI->second));
561      return EI->second;
562    } else {
563      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
564      valueNumbering.insert(std::make_pair(V, nextValueNumber));
565
566      return nextValueNumber++;
567    }
568  } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
569    Expression e = create_expression(U);
570
571    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
572    if (EI != expressionNumbering.end()) {
573      valueNumbering.insert(std::make_pair(V, EI->second));
574      return EI->second;
575    } else {
576      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
577      valueNumbering.insert(std::make_pair(V, nextValueNumber));
578
579      return nextValueNumber++;
580    }
581  } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
582    Expression e = create_expression(U);
583
584    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
585    if (EI != expressionNumbering.end()) {
586      valueNumbering.insert(std::make_pair(V, EI->second));
587      return EI->second;
588    } else {
589      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
590      valueNumbering.insert(std::make_pair(V, nextValueNumber));
591
592      return nextValueNumber++;
593    }
594  } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
595    Expression e = create_expression(U);
596
597    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
598    if (EI != expressionNumbering.end()) {
599      valueNumbering.insert(std::make_pair(V, EI->second));
600      return EI->second;
601    } else {
602      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
603      valueNumbering.insert(std::make_pair(V, nextValueNumber));
604
605      return nextValueNumber++;
606    }
607  } else if (CastInst* U = dyn_cast<CastInst>(V)) {
608    Expression e = create_expression(U);
609
610    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
611    if (EI != expressionNumbering.end()) {
612      valueNumbering.insert(std::make_pair(V, EI->second));
613      return EI->second;
614    } else {
615      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
616      valueNumbering.insert(std::make_pair(V, nextValueNumber));
617
618      return nextValueNumber++;
619    }
620  } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
621    Expression e = create_expression(U);
622
623    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
624    if (EI != expressionNumbering.end()) {
625      valueNumbering.insert(std::make_pair(V, EI->second));
626      return EI->second;
627    } else {
628      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
629      valueNumbering.insert(std::make_pair(V, nextValueNumber));
630
631      return nextValueNumber++;
632    }
633  } else {
634    valueNumbering.insert(std::make_pair(V, nextValueNumber));
635    return nextValueNumber++;
636  }
637}
638
639/// lookup - Returns the value number of the specified value. Fails if
640/// the value has not yet been numbered.
641uint32_t ValueTable::lookup(Value* V) const {
642  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
643  assert(VI != valueNumbering.end() && "Value not numbered?");
644  return VI->second;
645}
646
647/// clear - Remove all entries from the ValueTable
648void ValueTable::clear() {
649  valueNumbering.clear();
650  expressionNumbering.clear();
651  nextValueNumber = 1;
652}
653
654/// erase - Remove a value from the value numbering
655void ValueTable::erase(Value* V) {
656  valueNumbering.erase(V);
657}
658
659/// verifyRemoved - Verify that the value is removed from all internal data
660/// structures.
661void ValueTable::verifyRemoved(const Value *V) const {
662  for (DenseMap<Value*, uint32_t>::iterator
663         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
664    assert(I->first != V && "Inst still occurs in value numbering map!");
665  }
666}
667
668//===----------------------------------------------------------------------===//
669//                                GVN Pass
670//===----------------------------------------------------------------------===//
671
672namespace {
673  struct VISIBILITY_HIDDEN ValueNumberScope {
674    ValueNumberScope* parent;
675    DenseMap<uint32_t, Value*> table;
676
677    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
678  };
679}
680
681namespace {
682
683  class VISIBILITY_HIDDEN GVN : public FunctionPass {
684    bool runOnFunction(Function &F);
685  public:
686    static char ID; // Pass identification, replacement for typeid
687    GVN() : FunctionPass(&ID) { }
688
689  private:
690    MemoryDependenceAnalysis *MD;
691    DominatorTree *DT;
692
693    ValueTable VN;
694    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
695
696    typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
697    PhiMapType phiMap;
698
699
700    // This transformation requires dominator postdominator info
701    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
702      AU.addRequired<DominatorTree>();
703      AU.addRequired<MemoryDependenceAnalysis>();
704      AU.addRequired<AliasAnalysis>();
705
706      AU.addPreserved<DominatorTree>();
707      AU.addPreserved<AliasAnalysis>();
708    }
709
710    // Helper fuctions
711    // FIXME: eliminate or document these better
712    bool processLoad(LoadInst* L,
713                     SmallVectorImpl<Instruction*> &toErase);
714    bool processInstruction(Instruction* I,
715                            SmallVectorImpl<Instruction*> &toErase);
716    bool processNonLocalLoad(LoadInst* L,
717                             SmallVectorImpl<Instruction*> &toErase);
718    bool processBlock(BasicBlock* BB);
719    Value *GetValueForBlock(BasicBlock *BB, Instruction* orig,
720                            DenseMap<BasicBlock*, Value*> &Phis,
721                            bool top_level = false);
722    void dump(DenseMap<uint32_t, Value*>& d);
723    bool iterateOnFunction(Function &F);
724    Value* CollapsePhi(PHINode* p);
725    bool isSafeReplacement(PHINode* p, Instruction* inst);
726    bool performPRE(Function& F);
727    Value* lookupNumber(BasicBlock* BB, uint32_t num);
728    bool mergeBlockIntoPredecessor(BasicBlock* BB);
729    Value* AttemptRedundancyElimination(Instruction* orig, unsigned valno);
730    void cleanupGlobalSets();
731    void verifyRemoved(const Instruction *I) const;
732  };
733
734  char GVN::ID = 0;
735}
736
737// createGVNPass - The public interface to this file...
738FunctionPass *llvm::createGVNPass() { return new GVN(); }
739
740static RegisterPass<GVN> X("gvn",
741                           "Global Value Numbering");
742
743void GVN::dump(DenseMap<uint32_t, Value*>& d) {
744  printf("{\n");
745  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
746       E = d.end(); I != E; ++I) {
747      printf("%d\n", I->first);
748      I->second->dump();
749  }
750  printf("}\n");
751}
752
753Value* GVN::CollapsePhi(PHINode* p) {
754  Value* constVal = p->hasConstantValue();
755  if (!constVal) return 0;
756
757  Instruction* inst = dyn_cast<Instruction>(constVal);
758  if (!inst)
759    return constVal;
760
761  if (DT->dominates(inst, p))
762    if (isSafeReplacement(p, inst))
763      return inst;
764  return 0;
765}
766
767bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
768  if (!isa<PHINode>(inst))
769    return true;
770
771  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
772       UI != E; ++UI)
773    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
774      if (use_phi->getParent() == inst->getParent())
775        return false;
776
777  return true;
778}
779
780/// GetValueForBlock - Get the value to use within the specified basic block.
781/// available values are in Phis.
782Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction* orig,
783                             DenseMap<BasicBlock*, Value*> &Phis,
784                             bool top_level) {
785
786  // If we have already computed this value, return the previously computed val.
787  DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
788  if (V != Phis.end() && !top_level) return V->second;
789
790  // If the block is unreachable, just return undef, since this path
791  // can't actually occur at runtime.
792  if (!DT->isReachableFromEntry(BB))
793    return Phis[BB] = UndefValue::get(orig->getType());
794
795  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
796    Value *ret = GetValueForBlock(Pred, orig, Phis);
797    Phis[BB] = ret;
798    return ret;
799  }
800
801  // Get the number of predecessors of this block so we can reserve space later.
802  // If there is already a PHI in it, use the #preds from it, otherwise count.
803  // Getting it from the PHI is constant time.
804  unsigned NumPreds;
805  if (PHINode *ExistingPN = dyn_cast<PHINode>(BB->begin()))
806    NumPreds = ExistingPN->getNumIncomingValues();
807  else
808    NumPreds = std::distance(pred_begin(BB), pred_end(BB));
809
810  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
811  // now, then get values to fill in the incoming values for the PHI.
812  PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
813                                BB->begin());
814  PN->reserveOperandSpace(NumPreds);
815
816  Phis.insert(std::make_pair(BB, PN));
817
818  // Fill in the incoming values for the block.
819  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
820    Value* val = GetValueForBlock(*PI, orig, Phis);
821    PN->addIncoming(val, *PI);
822  }
823
824  VN.getAliasAnalysis()->copyValue(orig, PN);
825
826  // Attempt to collapse PHI nodes that are trivially redundant
827  Value* v = CollapsePhi(PN);
828  if (!v) {
829    // Cache our phi construction results
830    if (LoadInst* L = dyn_cast<LoadInst>(orig))
831      phiMap[L->getPointerOperand()].insert(PN);
832    else
833      phiMap[orig].insert(PN);
834
835    return PN;
836  }
837
838  PN->replaceAllUsesWith(v);
839  if (isa<PointerType>(v->getType()))
840    MD->invalidateCachedPointerInfo(v);
841
842  for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
843       E = Phis.end(); I != E; ++I)
844    if (I->second == PN)
845      I->second = v;
846
847  DEBUG(cerr << "GVN removed: " << *PN);
848  MD->removeInstruction(PN);
849  PN->eraseFromParent();
850  DEBUG(verifyRemoved(PN));
851
852  Phis[BB] = v;
853  return v;
854}
855
856/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
857/// we're analyzing is fully available in the specified block.  As we go, keep
858/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
859/// map is actually a tri-state map with the following values:
860///   0) we know the block *is not* fully available.
861///   1) we know the block *is* fully available.
862///   2) we do not know whether the block is fully available or not, but we are
863///      currently speculating that it will be.
864///   3) we are speculating for this block and have used that to speculate for
865///      other blocks.
866static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
867                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
868  // Optimistically assume that the block is fully available and check to see
869  // if we already know about this block in one lookup.
870  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
871    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
872
873  // If the entry already existed for this block, return the precomputed value.
874  if (!IV.second) {
875    // If this is a speculative "available" value, mark it as being used for
876    // speculation of other blocks.
877    if (IV.first->second == 2)
878      IV.first->second = 3;
879    return IV.first->second != 0;
880  }
881
882  // Otherwise, see if it is fully available in all predecessors.
883  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
884
885  // If this block has no predecessors, it isn't live-in here.
886  if (PI == PE)
887    goto SpeculationFailure;
888
889  for (; PI != PE; ++PI)
890    // If the value isn't fully available in one of our predecessors, then it
891    // isn't fully available in this block either.  Undo our previous
892    // optimistic assumption and bail out.
893    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
894      goto SpeculationFailure;
895
896  return true;
897
898// SpeculationFailure - If we get here, we found out that this is not, after
899// all, a fully-available block.  We have a problem if we speculated on this and
900// used the speculation to mark other blocks as available.
901SpeculationFailure:
902  char &BBVal = FullyAvailableBlocks[BB];
903
904  // If we didn't speculate on this, just return with it set to false.
905  if (BBVal == 2) {
906    BBVal = 0;
907    return false;
908  }
909
910  // If we did speculate on this value, we could have blocks set to 1 that are
911  // incorrect.  Walk the (transitive) successors of this block and mark them as
912  // 0 if set to one.
913  SmallVector<BasicBlock*, 32> BBWorklist;
914  BBWorklist.push_back(BB);
915
916  while (!BBWorklist.empty()) {
917    BasicBlock *Entry = BBWorklist.pop_back_val();
918    // Note that this sets blocks to 0 (unavailable) if they happen to not
919    // already be in FullyAvailableBlocks.  This is safe.
920    char &EntryVal = FullyAvailableBlocks[Entry];
921    if (EntryVal == 0) continue;  // Already unavailable.
922
923    // Mark as unavailable.
924    EntryVal = 0;
925
926    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
927      BBWorklist.push_back(*I);
928  }
929
930  return false;
931}
932
933/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
934/// non-local by performing PHI construction.
935bool GVN::processNonLocalLoad(LoadInst *LI,
936                              SmallVectorImpl<Instruction*> &toErase) {
937  // Find the non-local dependencies of the load.
938  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
939  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
940                                   Deps);
941  //DEBUG(cerr << "INVESTIGATING NONLOCAL LOAD: " << Deps.size() << *LI);
942
943  // If we had to process more than one hundred blocks to find the
944  // dependencies, this load isn't worth worrying about.  Optimizing
945  // it will be too expensive.
946  if (Deps.size() > 100)
947    return false;
948
949  // If we had a phi translation failure, we'll have a single entry which is a
950  // clobber in the current block.  Reject this early.
951  if (Deps.size() == 1 && Deps[0].second.isClobber())
952    return false;
953
954  // Filter out useless results (non-locals, etc).  Keep track of the blocks
955  // where we have a value available in repl, also keep track of whether we see
956  // dependencies that produce an unknown value for the load (such as a call
957  // that could potentially clobber the load).
958  SmallVector<std::pair<BasicBlock*, Value*>, 16> ValuesPerBlock;
959  SmallVector<BasicBlock*, 16> UnavailableBlocks;
960
961  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
962    BasicBlock *DepBB = Deps[i].first;
963    MemDepResult DepInfo = Deps[i].second;
964
965    if (DepInfo.isClobber()) {
966      UnavailableBlocks.push_back(DepBB);
967      continue;
968    }
969
970    Instruction *DepInst = DepInfo.getInst();
971
972    // Loading the allocation -> undef.
973    if (isa<AllocationInst>(DepInst)) {
974      ValuesPerBlock.push_back(std::make_pair(DepBB,
975                                              UndefValue::get(LI->getType())));
976      continue;
977    }
978
979    if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
980      // Reject loads and stores that are to the same address but are of
981      // different types.
982      // NOTE: 403.gcc does have this case (e.g. in readonly_fields_p) because
983      // of bitfield access, it would be interesting to optimize for it at some
984      // point.
985      if (S->getOperand(0)->getType() != LI->getType()) {
986        UnavailableBlocks.push_back(DepBB);
987        continue;
988      }
989
990      ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0)));
991
992    } else if (LoadInst* LD = dyn_cast<LoadInst>(DepInst)) {
993      if (LD->getType() != LI->getType()) {
994        UnavailableBlocks.push_back(DepBB);
995        continue;
996      }
997      ValuesPerBlock.push_back(std::make_pair(DepBB, LD));
998    } else {
999      UnavailableBlocks.push_back(DepBB);
1000      continue;
1001    }
1002  }
1003
1004  // If we have no predecessors that produce a known value for this load, exit
1005  // early.
1006  if (ValuesPerBlock.empty()) return false;
1007
1008  // If all of the instructions we depend on produce a known value for this
1009  // load, then it is fully redundant and we can use PHI insertion to compute
1010  // its value.  Insert PHIs and remove the fully redundant value now.
1011  if (UnavailableBlocks.empty()) {
1012    // Use cached PHI construction information from previous runs
1013    SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1014    // FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
1015    for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1016         I != E; ++I) {
1017      if ((*I)->getParent() == LI->getParent()) {
1018        DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD #1: " << *LI);
1019        LI->replaceAllUsesWith(*I);
1020        if (isa<PointerType>((*I)->getType()))
1021          MD->invalidateCachedPointerInfo(*I);
1022        toErase.push_back(LI);
1023        NumGVNLoad++;
1024        return true;
1025      }
1026
1027      ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1028    }
1029
1030    DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD: " << *LI);
1031
1032    DenseMap<BasicBlock*, Value*> BlockReplValues;
1033    BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1034    // Perform PHI construction.
1035    Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1036    LI->replaceAllUsesWith(v);
1037
1038    if (isa<PHINode>(v))
1039      v->takeName(LI);
1040    if (isa<PointerType>(v->getType()))
1041      MD->invalidateCachedPointerInfo(v);
1042    toErase.push_back(LI);
1043    NumGVNLoad++;
1044    return true;
1045  }
1046
1047  if (!EnablePRE || !EnableLoadPRE)
1048    return false;
1049
1050  // Okay, we have *some* definitions of the value.  This means that the value
1051  // is available in some of our (transitive) predecessors.  Lets think about
1052  // doing PRE of this load.  This will involve inserting a new load into the
1053  // predecessor when it's not available.  We could do this in general, but
1054  // prefer to not increase code size.  As such, we only do this when we know
1055  // that we only have to insert *one* load (which means we're basically moving
1056  // the load, not inserting a new one).
1057
1058  // Everything we do here is based on local predecessors of LI's block.  If it
1059  // only has one predecessor, bail now.
1060  BasicBlock *LoadBB = LI->getParent();
1061  if (LoadBB->getSinglePredecessor())
1062    return false;
1063
1064  // If we have a repl set with LI itself in it, this means we have a loop where
1065  // at least one of the values is LI.  Since this means that we won't be able
1066  // to eliminate LI even if we insert uses in the other predecessors, we will
1067  // end up increasing code size.  Reject this by scanning for LI.
1068  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1069    if (ValuesPerBlock[i].second == LI)
1070      return false;
1071
1072  // Okay, we have some hope :).  Check to see if the loaded value is fully
1073  // available in all but one predecessor.
1074  // FIXME: If we could restructure the CFG, we could make a common pred with
1075  // all the preds that don't have an available LI and insert a new load into
1076  // that one block.
1077  BasicBlock *UnavailablePred = 0;
1078
1079  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1080  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1081    FullyAvailableBlocks[ValuesPerBlock[i].first] = true;
1082  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1083    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1084
1085  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1086       PI != E; ++PI) {
1087    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1088      continue;
1089
1090    // If this load is not available in multiple predecessors, reject it.
1091    if (UnavailablePred && UnavailablePred != *PI)
1092      return false;
1093    UnavailablePred = *PI;
1094  }
1095
1096  assert(UnavailablePred != 0 &&
1097         "Fully available value should be eliminated above!");
1098
1099  // If the loaded pointer is PHI node defined in this block, do PHI translation
1100  // to get its value in the predecessor.
1101  Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
1102
1103  // Make sure the value is live in the predecessor.  If it was defined by a
1104  // non-PHI instruction in this block, we don't know how to recompute it above.
1105  if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
1106    if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
1107      DEBUG(cerr << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
1108                 << *LPInst << *LI << "\n");
1109      return false;
1110    }
1111
1112  // We don't currently handle critical edges :(
1113  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1114    DEBUG(cerr << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1115                << UnavailablePred->getName() << "': " << *LI);
1116    return false;
1117  }
1118
1119  // Okay, we can eliminate this load by inserting a reload in the predecessor
1120  // and using PHI construction to get the value in the other predecessors, do
1121  // it.
1122  DEBUG(cerr << "GVN REMOVING PRE LOAD: " << *LI);
1123
1124  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1125                                LI->getAlignment(),
1126                                UnavailablePred->getTerminator());
1127
1128  SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1129  for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1130       I != E; ++I)
1131    ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1132
1133  DenseMap<BasicBlock*, Value*> BlockReplValues;
1134  BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1135  BlockReplValues[UnavailablePred] = NewLoad;
1136
1137  // Perform PHI construction.
1138  Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1139  LI->replaceAllUsesWith(v);
1140  if (isa<PHINode>(v))
1141    v->takeName(LI);
1142  if (isa<PointerType>(v->getType()))
1143    MD->invalidateCachedPointerInfo(v);
1144  toErase.push_back(LI);
1145  NumPRELoad++;
1146  return true;
1147}
1148
1149/// processLoad - Attempt to eliminate a load, first by eliminating it
1150/// locally, and then attempting non-local elimination if that fails.
1151bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1152  if (L->isVolatile())
1153    return false;
1154
1155  Value* pointer = L->getPointerOperand();
1156
1157  // ... to a pointer that has been loaded from before...
1158  MemDepResult dep = MD->getDependency(L);
1159
1160  // If the value isn't available, don't do anything!
1161  if (dep.isClobber())
1162    return false;
1163
1164  // If it is defined in another block, try harder.
1165  if (dep.isNonLocal())
1166    return processNonLocalLoad(L, toErase);
1167
1168  Instruction *DepInst = dep.getInst();
1169  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1170    // Only forward substitute stores to loads of the same type.
1171    // FIXME: Could do better!
1172    if (DepSI->getPointerOperand()->getType() != pointer->getType())
1173      return false;
1174
1175    // Remove it!
1176    L->replaceAllUsesWith(DepSI->getOperand(0));
1177    if (isa<PointerType>(DepSI->getOperand(0)->getType()))
1178      MD->invalidateCachedPointerInfo(DepSI->getOperand(0));
1179    toErase.push_back(L);
1180    NumGVNLoad++;
1181    return true;
1182  }
1183
1184  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1185    // Only forward substitute stores to loads of the same type.
1186    // FIXME: Could do better! load i32 -> load i8 -> truncate on little endian.
1187    if (DepLI->getType() != L->getType())
1188      return false;
1189
1190    // Remove it!
1191    L->replaceAllUsesWith(DepLI);
1192    if (isa<PointerType>(DepLI->getType()))
1193      MD->invalidateCachedPointerInfo(DepLI);
1194    toErase.push_back(L);
1195    NumGVNLoad++;
1196    return true;
1197  }
1198
1199  // If this load really doesn't depend on anything, then we must be loading an
1200  // undef value.  This can happen when loading for a fresh allocation with no
1201  // intervening stores, for example.
1202  if (isa<AllocationInst>(DepInst)) {
1203    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1204    toErase.push_back(L);
1205    NumGVNLoad++;
1206    return true;
1207  }
1208
1209  return false;
1210}
1211
1212Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
1213  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1214  if (I == localAvail.end())
1215    return 0;
1216
1217  ValueNumberScope* locals = I->second;
1218
1219  while (locals) {
1220    DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
1221    if (I != locals->table.end())
1222      return I->second;
1223    else
1224      locals = locals->parent;
1225  }
1226
1227  return 0;
1228}
1229
1230/// AttemptRedundancyElimination - If the "fast path" of redundancy elimination
1231/// by inheritance from the dominator fails, see if we can perform phi
1232/// construction to eliminate the redundancy.
1233Value* GVN::AttemptRedundancyElimination(Instruction* orig, unsigned valno) {
1234  BasicBlock* BaseBlock = orig->getParent();
1235
1236  SmallPtrSet<BasicBlock*, 4> Visited;
1237  SmallVector<BasicBlock*, 8> Stack;
1238  Stack.push_back(BaseBlock);
1239
1240  DenseMap<BasicBlock*, Value*> Results;
1241
1242  // Walk backwards through our predecessors, looking for instances of the
1243  // value number we're looking for.  Instances are recorded in the Results
1244  // map, which is then used to perform phi construction.
1245  while (!Stack.empty()) {
1246    BasicBlock* Current = Stack.back();
1247    Stack.pop_back();
1248
1249    // If we've walked all the way to a proper dominator, then give up. Cases
1250    // where the instance is in the dominator will have been caught by the fast
1251    // path, and any cases that require phi construction further than this are
1252    // probably not worth it anyways.  Note that this is a SIGNIFICANT compile
1253    // time improvement.
1254    if (DT->properlyDominates(Current, orig->getParent())) return 0;
1255
1256    DenseMap<BasicBlock*, ValueNumberScope*>::iterator LA =
1257                                                       localAvail.find(Current);
1258    if (LA == localAvail.end()) return 0;
1259    DenseMap<uint32_t, Value*>::iterator V = LA->second->table.find(valno);
1260
1261    if (V != LA->second->table.end()) {
1262      // Found an instance, record it.
1263      Results.insert(std::make_pair(Current, V->second));
1264      continue;
1265    }
1266
1267    // If we reach the beginning of the function, then give up.
1268    if (pred_begin(Current) == pred_end(Current))
1269      return 0;
1270
1271    for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current);
1272         PI != PE; ++PI)
1273      if (Visited.insert(*PI))
1274        Stack.push_back(*PI);
1275  }
1276
1277  // If we didn't find instances, give up.  Otherwise, perform phi construction.
1278  if (Results.size() == 0)
1279    return 0;
1280  else
1281    return GetValueForBlock(BaseBlock, orig, Results, true);
1282}
1283
1284/// processInstruction - When calculating availability, handle an instruction
1285/// by inserting it into the appropriate sets
1286bool GVN::processInstruction(Instruction *I,
1287                             SmallVectorImpl<Instruction*> &toErase) {
1288  if (LoadInst* L = dyn_cast<LoadInst>(I)) {
1289    bool changed = processLoad(L, toErase);
1290
1291    if (!changed) {
1292      unsigned num = VN.lookup_or_add(L);
1293      localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
1294    }
1295
1296    return changed;
1297  }
1298
1299  uint32_t nextNum = VN.getNextUnusedValueNumber();
1300  unsigned num = VN.lookup_or_add(I);
1301
1302  if (BranchInst* BI = dyn_cast<BranchInst>(I)) {
1303    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1304
1305    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1306      return false;
1307
1308    Value* branchCond = BI->getCondition();
1309    uint32_t condVN = VN.lookup_or_add(branchCond);
1310
1311    BasicBlock* trueSucc = BI->getSuccessor(0);
1312    BasicBlock* falseSucc = BI->getSuccessor(1);
1313
1314    if (trueSucc->getSinglePredecessor())
1315      localAvail[trueSucc]->table[condVN] = ConstantInt::getTrue();
1316    if (falseSucc->getSinglePredecessor())
1317      localAvail[falseSucc]->table[condVN] = ConstantInt::getFalse();
1318
1319    return false;
1320
1321  // Allocations are always uniquely numbered, so we can save time and memory
1322  // by fast failing them.
1323  } else if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
1324    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1325    return false;
1326  }
1327
1328  // Collapse PHI nodes
1329  if (PHINode* p = dyn_cast<PHINode>(I)) {
1330    Value* constVal = CollapsePhi(p);
1331
1332    if (constVal) {
1333      for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
1334           PI != PE; ++PI)
1335        PI->second.erase(p);
1336
1337      p->replaceAllUsesWith(constVal);
1338      if (isa<PointerType>(constVal->getType()))
1339        MD->invalidateCachedPointerInfo(constVal);
1340      VN.erase(p);
1341
1342      toErase.push_back(p);
1343    } else {
1344      localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1345    }
1346
1347  // If the number we were assigned was a brand new VN, then we don't
1348  // need to do a lookup to see if the number already exists
1349  // somewhere in the domtree: it can't!
1350  } else if (num == nextNum) {
1351    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1352
1353  // Perform fast-path value-number based elimination of values inherited from
1354  // dominators.
1355  } else if (Value* repl = lookupNumber(I->getParent(), num)) {
1356    // Remove it!
1357    VN.erase(I);
1358    I->replaceAllUsesWith(repl);
1359    if (isa<PointerType>(repl->getType()))
1360      MD->invalidateCachedPointerInfo(repl);
1361    toErase.push_back(I);
1362    return true;
1363
1364#if 0
1365  // Perform slow-pathvalue-number based elimination with phi construction.
1366  } else if (Value* repl = AttemptRedundancyElimination(I, num)) {
1367    // Remove it!
1368    VN.erase(I);
1369    I->replaceAllUsesWith(repl);
1370    if (isa<PointerType>(repl->getType()))
1371      MD->invalidateCachedPointerInfo(repl);
1372    toErase.push_back(I);
1373    return true;
1374#endif
1375  } else {
1376    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1377  }
1378
1379  return false;
1380}
1381
1382/// runOnFunction - This is the main transformation entry point for a function.
1383bool GVN::runOnFunction(Function& F) {
1384  MD = &getAnalysis<MemoryDependenceAnalysis>();
1385  DT = &getAnalysis<DominatorTree>();
1386  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1387  VN.setMemDep(MD);
1388  VN.setDomTree(DT);
1389
1390  bool changed = false;
1391  bool shouldContinue = true;
1392
1393  // Merge unconditional branches, allowing PRE to catch more
1394  // optimization opportunities.
1395  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1396    BasicBlock* BB = FI;
1397    ++FI;
1398    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1399    if (removedBlock) NumGVNBlocks++;
1400
1401    changed |= removedBlock;
1402  }
1403
1404  unsigned Iteration = 0;
1405
1406  while (shouldContinue) {
1407    DEBUG(cerr << "GVN iteration: " << Iteration << "\n");
1408    shouldContinue = iterateOnFunction(F);
1409    changed |= shouldContinue;
1410    ++Iteration;
1411  }
1412
1413  if (EnablePRE) {
1414    bool PREChanged = true;
1415    while (PREChanged) {
1416      PREChanged = performPRE(F);
1417      changed |= PREChanged;
1418    }
1419  }
1420  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1421  // computations into blocks where they become fully redundant.  Note that
1422  // we can't do this until PRE's critical edge splitting updates memdep.
1423  // Actually, when this happens, we should just fully integrate PRE into GVN.
1424
1425  cleanupGlobalSets();
1426
1427  return changed;
1428}
1429
1430
1431bool GVN::processBlock(BasicBlock* BB) {
1432  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1433  // incrementing BI before processing an instruction).
1434  SmallVector<Instruction*, 8> toErase;
1435  bool changed_function = false;
1436
1437  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1438       BI != BE;) {
1439    changed_function |= processInstruction(BI, toErase);
1440    if (toErase.empty()) {
1441      ++BI;
1442      continue;
1443    }
1444
1445    // If we need some instructions deleted, do it now.
1446    NumGVNInstr += toErase.size();
1447
1448    // Avoid iterator invalidation.
1449    bool AtStart = BI == BB->begin();
1450    if (!AtStart)
1451      --BI;
1452
1453    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1454         E = toErase.end(); I != E; ++I) {
1455      DEBUG(cerr << "GVN removed: " << **I);
1456      MD->removeInstruction(*I);
1457      (*I)->eraseFromParent();
1458      DEBUG(verifyRemoved(*I));
1459    }
1460    toErase.clear();
1461
1462    if (AtStart)
1463      BI = BB->begin();
1464    else
1465      ++BI;
1466  }
1467
1468  return changed_function;
1469}
1470
1471/// performPRE - Perform a purely local form of PRE that looks for diamond
1472/// control flow patterns and attempts to perform simple PRE at the join point.
1473bool GVN::performPRE(Function& F) {
1474  bool Changed = false;
1475  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1476  DenseMap<BasicBlock*, Value*> predMap;
1477  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1478       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1479    BasicBlock* CurrentBlock = *DI;
1480
1481    // Nothing to PRE in the entry block.
1482    if (CurrentBlock == &F.getEntryBlock()) continue;
1483
1484    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1485         BE = CurrentBlock->end(); BI != BE; ) {
1486      Instruction *CurInst = BI++;
1487
1488      if (isa<AllocationInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
1489          isa<PHINode>(CurInst) || (CurInst->getType() == Type::VoidTy) ||
1490          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
1491          isa<DbgInfoIntrinsic>(CurInst))
1492        continue;
1493
1494      uint32_t valno = VN.lookup(CurInst);
1495
1496      // Look for the predecessors for PRE opportunities.  We're
1497      // only trying to solve the basic diamond case, where
1498      // a value is computed in the successor and one predecessor,
1499      // but not the other.  We also explicitly disallow cases
1500      // where the successor is its own predecessor, because they're
1501      // more complicated to get right.
1502      unsigned numWith = 0;
1503      unsigned numWithout = 0;
1504      BasicBlock* PREPred = 0;
1505      predMap.clear();
1506
1507      for (pred_iterator PI = pred_begin(CurrentBlock),
1508           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1509        // We're not interested in PRE where the block is its
1510        // own predecessor, on in blocks with predecessors
1511        // that are not reachable.
1512        if (*PI == CurrentBlock) {
1513          numWithout = 2;
1514          break;
1515        } else if (!localAvail.count(*PI))  {
1516          numWithout = 2;
1517          break;
1518        }
1519
1520        DenseMap<uint32_t, Value*>::iterator predV =
1521                                            localAvail[*PI]->table.find(valno);
1522        if (predV == localAvail[*PI]->table.end()) {
1523          PREPred = *PI;
1524          numWithout++;
1525        } else if (predV->second == CurInst) {
1526          numWithout = 2;
1527        } else {
1528          predMap[*PI] = predV->second;
1529          numWith++;
1530        }
1531      }
1532
1533      // Don't do PRE when it might increase code size, i.e. when
1534      // we would need to insert instructions in more than one pred.
1535      if (numWithout != 1 || numWith == 0)
1536        continue;
1537
1538      // We can't do PRE safely on a critical edge, so instead we schedule
1539      // the edge to be split and perform the PRE the next time we iterate
1540      // on the function.
1541      unsigned succNum = 0;
1542      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1543           i != e; ++i)
1544        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1545          succNum = i;
1546          break;
1547        }
1548
1549      if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
1550        toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
1551        continue;
1552      }
1553
1554      // Instantiate the expression the in predecessor that lacked it.
1555      // Because we are going top-down through the block, all value numbers
1556      // will be available in the predecessor by the time we need them.  Any
1557      // that weren't original present will have been instantiated earlier
1558      // in this loop.
1559      Instruction* PREInstr = CurInst->clone();
1560      bool success = true;
1561      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1562        Value *Op = PREInstr->getOperand(i);
1563        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1564          continue;
1565
1566        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1567          PREInstr->setOperand(i, V);
1568        } else {
1569          success = false;
1570          break;
1571        }
1572      }
1573
1574      // Fail out if we encounter an operand that is not available in
1575      // the PRE predecessor.  This is typically because of loads which
1576      // are not value numbered precisely.
1577      if (!success) {
1578        delete PREInstr;
1579        DEBUG(verifyRemoved(PREInstr));
1580        continue;
1581      }
1582
1583      PREInstr->insertBefore(PREPred->getTerminator());
1584      PREInstr->setName(CurInst->getName() + ".pre");
1585      predMap[PREPred] = PREInstr;
1586      VN.add(PREInstr, valno);
1587      NumGVNPRE++;
1588
1589      // Update the availability map to include the new instruction.
1590      localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
1591
1592      // Create a PHI to make the value available in this block.
1593      PHINode* Phi = PHINode::Create(CurInst->getType(),
1594                                     CurInst->getName() + ".pre-phi",
1595                                     CurrentBlock->begin());
1596      for (pred_iterator PI = pred_begin(CurrentBlock),
1597           PE = pred_end(CurrentBlock); PI != PE; ++PI)
1598        Phi->addIncoming(predMap[*PI], *PI);
1599
1600      VN.add(Phi, valno);
1601      localAvail[CurrentBlock]->table[valno] = Phi;
1602
1603      CurInst->replaceAllUsesWith(Phi);
1604      if (isa<PointerType>(Phi->getType()))
1605        MD->invalidateCachedPointerInfo(Phi);
1606      VN.erase(CurInst);
1607
1608      DEBUG(cerr << "GVN PRE removed: " << *CurInst);
1609      MD->removeInstruction(CurInst);
1610      CurInst->eraseFromParent();
1611      DEBUG(verifyRemoved(CurInst));
1612      Changed = true;
1613    }
1614  }
1615
1616  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
1617       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
1618    SplitCriticalEdge(I->first, I->second, this);
1619
1620  return Changed || toSplit.size();
1621}
1622
1623/// iterateOnFunction - Executes one iteration of GVN
1624bool GVN::iterateOnFunction(Function &F) {
1625  cleanupGlobalSets();
1626
1627  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1628       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
1629    if (DI->getIDom())
1630      localAvail[DI->getBlock()] =
1631                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
1632    else
1633      localAvail[DI->getBlock()] = new ValueNumberScope(0);
1634  }
1635
1636  // Top-down walk of the dominator tree
1637  bool changed = false;
1638#if 0
1639  // Needed for value numbering with phi construction to work.
1640  ReversePostOrderTraversal<Function*> RPOT(&F);
1641  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
1642       RE = RPOT.end(); RI != RE; ++RI)
1643    changed |= processBlock(*RI);
1644#else
1645  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1646       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
1647    changed |= processBlock(DI->getBlock());
1648#endif
1649
1650  return changed;
1651}
1652
1653void GVN::cleanupGlobalSets() {
1654  VN.clear();
1655  phiMap.clear();
1656
1657  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1658       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
1659    delete I->second;
1660  localAvail.clear();
1661}
1662
1663/// verifyRemoved - Verify that the specified instruction does not occur in our
1664/// internal data structures.
1665void GVN::verifyRemoved(const Instruction *Inst) const {
1666  VN.verifyRemoved(Inst);
1667
1668  // Walk through the PHI map to make sure the instruction isn't hiding in there
1669  // somewhere.
1670  for (PhiMapType::iterator
1671         I = phiMap.begin(), E = phiMap.end(); I != E; ++I) {
1672    assert(I->first != Inst && "Inst is still a key in PHI map!");
1673
1674    for (SmallPtrSet<Instruction*, 4>::iterator
1675           II = I->second.begin(), IE = I->second.end(); II != IE; ++II) {
1676      assert(*II != Inst && "Inst is still a value in PHI map!");
1677    }
1678  }
1679
1680  // Walk through the value number scope to make sure the instruction isn't
1681  // ferreted away in it.
1682  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1683         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
1684    const ValueNumberScope *VNS = I->second;
1685
1686    while (VNS) {
1687      for (DenseMap<uint32_t, Value*>::iterator
1688             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
1689        assert(II->second != Inst && "Inst still in value numbering scope!");
1690      }
1691
1692      VNS = VNS->parent;
1693    }
1694  }
1695}
1696